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ABSTRACT

The notion of inverse Lyndon word is related to the classical notion of Lyndon word. More precisely,
inverse Lyndon words are all and only the nonempty prefixes of the powers of the anti-Lyndon
words, where an anti-Lyndon word with respect to a lexicographical order is a classical Lyndon
word with respect to the inverse lexicographic order. Each word w admits a factorization in inverse
Lyndon words, named the canonical inverse Lyndon factorization ICFL(w), which maintains the
main properties of the Lyndon factorization of w. Although there is a huge literature on the Lyndon
factorization, the relation between the Lyndon factorization CFLin with respect to the inverse order
and the canonical inverse Lyndon factorization ICFL has not been thoroughly investigated. In this
paper, we address this question and we show how to obtain one factorization from the other via the
notion of grouping, defined in [1]. This result naturally opens new insights in the investigation of
the relationship between ICFL and other notions, e.g., variants of Burrows Wheeler Transform, as
already done for the Lyndon factorization.

Keywords Lyndon words · Lyndon factorization · Combinatorial algorithms on words

1 Introduction

A word w over a totally ordered alphabet Σ is a Lyndon word if for each nontrivial factorization w = uv, w is
strictly smaller than vu for the lexicographical ordering. A well-known theorem of Lyndon asserts that any nonempty
word factorizes uniquely into a nonincreasing product of Lyndon words, called its Lyndon factorization [2]. It can be
efficiently computed. Linear-time algorithms for computing this factorization can be found in [3] whereas an O(lg n)-
time parallel algorithm has been proposed in [4]. There are several results which give relations between Lyndon words,
codes and combinatorics of words and there are many algorithmic applications of the Lyndon factorization [5]. For
instance, bijective versions of the classical Burrows Wheeler Transform have been defined in [6, 7, 8] and they are
based on combinatorial results on Lyndon words proved in [9] (see [10] for more recent related results). As another
example, a main property proved in [11] is the Compatibility Property. Roughly, the compatibility property allows
us to extend the mutual order between suffixes of products of the Lyndon factors to the suffixes of the whole word.
Similar ideas have been further investigated to accelerate suffix sorting in practice [12].

More recently Lyndon words found a renewed theoretical interest and several variants of them have been studied
[13, 14, 15, 16, 17]. In particular, inverse Lyndon words have been introduced in [1]. More precisely, an anti-Lyndon
word with respect to a lexicographical order is a classical Lyndon word with respect to the inverse lexicographic order.

http://arxiv.org/abs/2404.17969v1
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Then, inverse Lyndon words are all and only the nonempty prefixes of the powers of the anti-Lyndon words. Each
word w admits a factorization in inverse Lyndon words, named the canonical inverse Lyndon factorization ICFL(w),
which maintains the main properties of the Lyndon factorization of w: it is uniquely determined and can be computed
in linear time. In addition, it maintains a similar Compatibility Property. Other combinatorial properties of ICFL(w)
have been proved in [18].

In this paper we address a main theoretical question left open in [1]. More precisely, we have proved in [1] that
the canonical inverse Lyndon factorization ICFL(w) of w is a grouping of the Lyndon factorization CFLin(w) of w
with respect to the inverse order. Roughly, this means that every element in ICFL(w) is the concatenation of factors
of CFLin(w) that are related by the prefix order. The proof of this result is not constructive and leaves open the
problem of constructing this grouping, that is, how to obtain ICFL from CFLin. Moreover, another open problem is
how to obtain CFLin from ICFL. The main result of this paper is to solve these two problems, by providing a full
characterization of the relationship between CFLin and ICFL via grouping.

In detail, we know that every element in ICFL(w) is the concatenation of factors of CFLin(w) that are related by the
prefix order. Then, in Proposition 9.1 we prove that ICFL(w) can be computed locally in the non-increasing maximal
chains for the prefix order of CFLin(w). There is a pair of words, the canonical pair associated with w, which is
crucial in the construction of ICFL(w) (see Section 6 for the definition). In Proposition 9.8 we show how to determine
such a pair in one of the aforementioned chains.

The procedure for obtaining CFLin(w) from ICFL(w) is very simple. We know that every element in ICFL(w) is
the concatenation of factors of CFLin(w) that are related by the prefix order. Therefore, we first demonstrate that we
can limit ourselves to handling the single factor mi in ICFL(w) = (m1, . . . ,mk) (Corollary 8.1). Next, we show
that each bordered word has a unique nonempty border which is unbordered (Proposition 8.2). This combinatorial
property allows us to recursively construct a sequence of words uniquely associated with each mi which will turn out
to be CFLin(mi) (Definition 8.1, Corollary 8.2).

Propositions 5.2 and 7.2 were proved in [1] and [18], respectively. Both make use of Proposition 3.2 which was stated
in a slightly incorrect form in [1, 18]. After having correctly stated Proposition 3.2, as minor results we demonstrate
Propositions 5.2 and 7.2 again.

The paper is organized as follows. In Sections 2, 3, 4, 5, 6, 7, we gathered the basic definitions and known results
we need. We show how to obtain the Lyndon factorization CFLin(w) of w with respect to the inverse order from the
canonical inverse Lyndon factorization ICFL(w) in Section 8 and we illustrate how to group factors of CFLin(w) to
obtain ICFL(w) in Section 9. We conclude in Section 10 with some main issues that follow on from the results proved
in the paper.

2 Words

Throughout this paper we follow [19, 20, 21, 22, 23] for the notations. We denote by Σ∗ the free monoid generated by
a finite alphabet Σ and we set Σ+ = Σ∗ \ 1, where 1 is the empty word. For a word w ∈ Σ∗, we denote by |w| its
length. A word x ∈ Σ∗ is a factor of w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1xu2. If u1 = 1 (resp. u2 = 1),
then x is a prefix (resp. suffix) of w. A factor (resp. prefix, suffix) x of w is proper if x 6= w. Two words x, y are
incomparable for the prefix order, denoted as x ⋊⋉ y, if neither x is a prefix of y nor y is a prefix of x. Otherwise, x, y
are comparable for the prefix order. We write x ≤p y if x is a prefix of y and x ≥p y if y is a prefix of x. The notion
of a pair of words comparable (or incomparable) for the suffix order is defined symmetrically.

We recall that, given a nonempty word w, a border of w is a word which is both a proper prefix and a suffix of w
[24]. The longest proper prefix of w which is a suffix of w is also called the border of w [24, 22]. A word w ∈ Σ+ is
bordered if it has a nonempty border. Otherwise, w is unbordered. A nonempty word w is primitive if w = xk implies
k = 1. An unbordered word is primitive. A sesquipower of a word x is a word w = xnp where p is a proper prefix of
x and n ≥ 1.

Two words x, y are called conjugate if there exist words u, v such that x = uv, y = vu. The conjugacy relation is an
equivalence relation. A conjugacy class is a class of this equivalence relation.

Definition 2.1 Let (Σ, <) be a totally ordered alphabet. The lexicographic (or alphabetic order) ≺ on (Σ∗, <) is
defined by setting x ≺ y if

• x is a proper prefix of y, or

• x = ras, y = rbt, a < b, for a, b ∈ Σ and r, s, t ∈ Σ∗.

2
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In the next part of the paper we will implicitly refer to totally ordered alphabets. For two nonempty words x, y, we
write x ≪ y if x ≺ y and x is not a proper prefix of y [25]. We also write y ≻ x if x ≺ y. Basic properties of the
lexicographic order are recalled below.

Lemma 2.1 For x, y ∈ Σ∗, the following properties hold.

(1) x ≺ y if and only if zx ≺ zy, for every word z.

(2) If x ≪ y, then xu ≪ yv for all words u, v.

(3) If x ≺ y ≺ xz for a word z, then y = xy′ for some word y′ such that y′ ≺ z.

Let S1, . . . ,St be sequences, with Sj = (sj,1, . . . , sj,rj ). For abbreviation, we let

(S1, . . . ,St)

stand for the sequence
(s1,1, . . . , s1,r1 , . . . , st,1, . . . , st,rt)

3 Lyndon words

Definition 3.1 A Lyndon word w ∈ Σ+ is a word which is primitive and the smallest one in its conjugacy class for
the lexicographic order.

Example 3.1 Let Σ = {a, b} with a < b. The words a, b, aaab, abbb, aabab and aababaabb are Lyndon words.
On the contrary, abab, aba and abaab are not Lyndon words. Indeed, abab is a non-primitive word, aab ≺ aba and
aabab ≺ abaab.

Lyndon words are also called prime words and their prefixes are also called preprime words in [26].

Proposition 3.1 Each Lyndon word w is unbordered.

A class of conjugacy is also called a necklace and often identified with the minimal word for the lexicographic order
in it. We will adopt this terminology. Then a word is a necklace if and only if it is a power of a Lyndon word. A
prenecklace is a prefix of a necklace. Then clearly any nonempty prenecklace w has the form w = (uv)ku, where uv
is a Lyndon word, u ∈ Σ∗, v ∈ Σ+, k ≥ 1, that is, w is a sesquipower of a Lyndon word uv. The following result
has been proved in [3]. It shows that the nonempty prefixes of Lyndon words are exactly the nonempty prefixes of the
powers of Lyndon words with the exclusion of ck, where c is the maximal letter and k ≥ 2.

Proposition 3.2 A word is a nonempty preprime word if and only if it is a sesquipower of a Lyndon word distinct of
ck, where c is the maximal letter and k ≥ 2.

The proof of Proposition 3.2 uses the following result which characterizes, for a given nonempty prenecklace w and a
letter b, whether wb is still a prenecklace or not and, in the first case, whether wb is a Lyndon word or not [3, Lemma
1.6].

Theorem 3.1 Let w = (uav′)ku be a nonempty prenecklace, where uav′ is a Lyndon word, u, v′ ∈ Σ∗, a ∈ Σ, k ≥ 1.
For any b ∈ Σ, the word wb is a prenecklace if and only if b ≥ a. Moreover wb ∈ L if and only if b > a.

4 Lyndon factorization

In the following L = L(Σ∗,<) will be the set of Lyndon words, totally ordered by the relation ≺ on (Σ∗, <).

Theorem 4.1 Any word w ∈ Σ+ can be written in a unique way as a nonincreasing product w = ℓ1ℓ2 · · · ℓh of
Lyndon words, i.e., in the form

w = ℓ1ℓ2 · · · ℓh, with ℓj ∈ L and ℓ1 � ℓ2 � . . . � ℓh (4.1)

The sequence CFL(w) = (ℓ1, . . . , ℓh) in Eq. (4.1) is called the Lyndon decomposition (or Lyndon factorization) of w.
It is denoted by CFL(w) because Theorem 4.1 is usually credited to Chen, Fox and Lyndon [2]. Uniqueness of the
above factorization can be obtained as a consequence of the following result, proved in [3].
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Lemma 4.1 Let w ∈ Σ+ and let CFL(w) = (ℓ1, . . . , ℓh). Then the following properties hold:

(i) ℓh is the nonempty suffix of w which is the smallest with respect to the lexicographic order.

(ii) ℓh is the longest suffix of w which is a Lyndon word.

(iii) ℓ1 is the longest prefix of w which is a Lyndon word.

A direct consequence is stated below and it is necessary for our aims.

Corollary 4.1 Let w ∈ Σ+, let ℓ1 be its longest prefix which is a Lyndon word and let w′ be such that w = ℓ1w
′. If

w′ 6= 1, then CFL(w) = (ℓ1,CFL(w
′)).

Sometimes we need to emphasize consecutive equal factors in CFL. We write CFL(w) = (ℓn1

1 , . . . , ℓnr
r ) to denote a

tuple of n1 + . . .+ nr Lyndon words, where r > 0, n1, . . . , nr ≥ 1. Precisely ℓ1 ≻ . . . ≻ ℓr are Lyndon words, also
named Lyndon factors of w. There is a linear time algorithm to compute the pair (ℓ1, n1) and thus, by iteration, the
Lyndon factorization of w [22, 27]. Linear time algorithms may also be found in [3] and in the more recent paper [28].

5 Inverse Lyndon words

For the material in this section see [1, 29, 18]. Inverse Lyndon words are related to the inverse alphabetic order. Its
definition is recalled below.

Definition 5.1 Let (Σ, <) be a totally ordered alphabet. The inverse <in of < is defined by

∀a, b ∈ Σ b <in a ⇔ a < b

The inverse lexicographic or inverse alphabetic order on (Σ∗, <), denoted≺in, is the lexicographic order on (Σ∗, <in).

Example 5.1 Let Σ = {a, b, c, d} with a < b < c < d. Then dab ≺ dabd and dabda ≺ dac. We have d <in c <in

b <in a. Therefore dab ≺in dabd and dac ≺in dabda.

Of course for all x, y ∈ Σ∗ such that x ⋊⋉ y,
y ≺in x ⇔ x ≺ y.

Moreover, in this case x ≪ y. This justifies the adopted terminology.

From now on, Lin = L(Σ∗,<in) denotes the set of the Lyndon words on Σ∗ with respect to the inverse lexicographic
order. Following [30], a word w ∈ Lin will be named an anti-Lyndon word. Correspondingly, an anti-prenecklace
will be a prefix of an anti-necklace, which in turn will be a necklace with respect to the inverse lexicographic order.

In the following, we denote by CFLin(w) the Lyndon factorization of w with respect to the inverse order <in.

Definition 5.2 A word w ∈ Σ+ is an inverse Lyndon word if s ≺ w, for each nonempty proper suffix s of w.

Example 5.2 The words a, b, aaaaa, bbba, baaab, bbaba and bbababbaa are inverse Lyndon words on {a, b}, with
a < b. On the contrary, aaba is not an inverse Lyndon word since aaba ≺ ba. Analogously, aabba ≺ ba and thus
aabba is not an inverse Lyndon word.

The following result has been stated in [18].

Proposition 5.1 A word w ∈ Σ+ is an anti-Lyndon word if and only if it is an unbordered inverse Lyndon word.

The following results have been proved in [1].

Lemma 5.1 Any nonempty prefix of an inverse Lyndon word is an inverse Lyndon word.

The proof of Proposition 5.2 was given in [1]. The reason we report it here is that this proof uses the statement in
Proposition 3.2 but in [1] that statement was slightly incorrect. However, the proof still holds.

Proposition 5.2 A word w ∈ Σ+ is an inverse Lyndon word if and only if w is a nonempty anti-prenecklace.

4
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PROOF :

Let w ∈ Σ+ be an inverse Lyndon word. The first letter of w is an anti-Lyndon word thus also a nonempty anti-
prenecklace. Let p be the longest nonempty prefix of w which is an anti-prenecklace. By Theorem 3.1, if p were
distinct from w, then we would have p = (uav′)ku, w = (uav′)kubt, where uav′ ∈ Lin, u, v′, t ∈ Σ∗, a, b ∈ Σ,
a < b, k ≥ 1. Thus, w ≪ ubt, in contradiction with Definition 5.2. Therefore, w is a nonempty anti-prenecklace.
Conversely, let w be a nonempty anti-prenecklace, that is, a sesquipower of an anti-Lyndon word. If w = an, where a
is the minimal letter in Σ and n ≥ 2, then clearly w is an inverse Lyndon word. Otherwise, by Proposition 3.2, there
is a word t such that wt ∈ Lin. By Proposition 5.1, wt is an inverse Lyndon word. If there existed a nonempty proper
suffix s of w such that w ≺ s, we clearly would have w ≪ s. Hence, by item (2) in Lemma 2.1, wt ≪ st, where st is
a nonempty proper suffix of wt. This is in contradiction with Definition 5.2, thus w is an inverse Lyndon word.

6 Inverse Lyndon factorizations

For the material in this section see [1, 29, 18]. An inverse Lyndon factorization of a word w ∈ Σ+ is a sequence
(m1, . . . ,mk) of inverse Lyndon words such that m1 · · ·mk = w and mi ≪ mi+1, 1 ≤ i ≤ k − 1. A word may have
different inverse Lyndon factorizations (see Example 6.2) but it has a unique canonical inverse Lyndon factorization,
denoted ICFL(w). If w is an inverse Lyndon word, then ICFL(w) = w. Otherwise, ICFL(w) is recursively defined.
The first factor of ICFL(w) is obtained by a special factorization of the shortest nonempty prefix z of w such that z is
not an inverse Lyndon word defined below.

Definition 6.1 [1] Let w ∈ Σ+, let p be an inverse Lyndon word which is a nonempty proper prefix of w = pv. The
bounded right extension p of p (relatively to w), if it exists, is a nonempty prefix of v such that:

(1) p is an inverse Lyndon word,

(2) pz′ is an inverse Lyndon word, for each proper nonempty prefix z′ of p,

(3) pp is not an inverse Lyndon word,

(4) p ≪ p.

Moreover, we set Prefbre(w) = {(p, p) | p is an inverse Lyndon word which is a
nonempty proper prefix of w}.

It has been proved that Prefbre(w) is empty if and only if w is an inverse Lyndon word (Proposition 4.2 in [1]). If w
is not an inverse Lyndon word, then Prefbre(w) contains only one pair and the description of this pair is given below
(Propositions 4.1 and 4.3 in [1]). In the next, the unique pair (p, p) in Prefbre(w) will be named the canonical pair
associated with w.

Proposition 6.1 Let w ∈ Σ+ be a word which is not an inverse Lyndon word. Let z be the shortest nonempty prefix
of w which is not an inverse Lyndon word. Then,

(1) z = pp, with (p, p) ∈ Prefbre(w).

(2) p = ras and p = rb, where r, s ∈ Σ∗, a, b ∈ Σ and r is the shortest prefix of pp such that pp = rasrb, with
a < b.

Example 6.1 Let Σ = {a, b} with a < b. Let us consider w = babaaabb and the prefixes p1 = bab and p2 = babaaa
of w. First, w is not an inverse Lyndon word. Thus, Prefbre(w) contains only one pair. Moreover each proper
nonempty prefix of w is an inverse Lyndon word. By item (1) in Proposition 6.1, we have w = pp. By item (2) in
Proposition 6.1, the bounded right extension of p1 = bab does not exist (we should have p1 = aaabb in contradiction
with p1 ≪ p1). Since w starts with b, the shortest common prefix r of p and p has a positive length. Indeed,
p = p2 = babaaa and p = p2 = bb.

The above results suggest the following characterization of the canonical pair (p, p) associated with w (Proposition
6.2 in [18]).

Proposition 6.2 Let w ∈ Σ+ be a word which is not an inverse Lyndon word. A pair of words (p, p) is the canonical
pair associated with w if and only the following conditions are satisfied.
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(1) z = pp is the shortest nonempty prefix of w which is not an inverse Lyndon word.

(2) p = ras and p = rb, where r, s ∈ Σ∗, a, b ∈ Σ and r is the shortest prefix of pp such that pp = rasrb, with
a < b.

(3) p is an inverse Lyndon word.

Given a word w which is not an inverse Lyndon word, Proposition 6.2 suggests a method to identify the canonical pair
(p, p) associated with w: just find the shortest nonempty prefix z of w which is not an inverse Lyndon word and then
a factorization z = pp such that conditions (2) and (3) in Proposition 6.2 are satisfied.

The canonical inverse Lyndon factorization has been also recursively defined.

Definition 6.2 Let w ∈ Σ+.
(Basis Step) If w is an inverse Lyndon word, then ICFL(w) = (w).
(Recursive Step) If w is not an inverse Lyndon word, let (p, p) be the canonical pair associated with w and let v ∈ Σ∗

such that w = pv. Let ICFL(v) = (m′

1, . . . ,m
′

k) and let r, s ∈ Σ∗, a, b ∈ Σ such that p = ras, p = rb with a < b.

ICFL(w) =

{

(p, ICFL(v)) if p = rb ≤p m′

1

(pm′

1,m
′

2, . . . ,m
′

k) if m′

1 ≤p r

Example 6.2 [1]. Let Σ = {a, b, c, d} with a < b < c < d, w = dabadabdabdadac. We have
CFLin(w) = (daba, dab, dab, dadac), ICFL(w) = (daba, dabdab, dadac). Another inverse Lyndon factoriza-
tions of w is (dabadab, dabda, dac). Consider z = dabdadacddbdc. It is easy to see that (dab, dadacd, db, dc),
(dabda, dac, ddbdc), (dab, dadac, ddbdc) are all inverse Lyndon factorizations of z. The first factorization has four
factors whereas the others have three factors. Moreover ICFL(z) = CFLin(z) = (dab, dadac, ddbdc).

7 Groupings

In this section we recall a special property of ICFL proved in [1], needed here for our aims.

Let CFLin(w) = (ℓ1, . . . , ℓh), where ℓ1 �in ℓ2 �in . . . �in ℓh. Consider the partial order ≥p, where x ≥p y if y is
a prefix of x. Recall that a chain is a set of a pairwise comparable elements. We say that a chain is maximal if it is not
strictly contained in any other chain. A non-increasing (maximal) chain in CFLin(w) is the sequence corresponding
to a (maximal) chain in the multiset {ℓ1, . . . , ℓh} with respect to ≥p. We denote by PMC a non-increasing maximal
chain in CFLin(w). Looking at the definition of the (inverse) lexicographic order, it is easy to see that a PMC is a
sequence of consecutive factors in CFLin(w). Moreover CFLin(w) is the concatenation of its PMC. The formal
definitions are given below.

Definition 7.1 Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let 1 ≤ r < s ≤ h. We say that ℓr, ℓr+1, . . . , ℓs
is a non-increasing maximal chain for the prefix order in CFLin(w), abbreviated PMC, if ℓr ≥p ℓr+1 ≥p . . . ≥p

ℓs. Moreover, if r > 1, then ℓr−1 6≥p ℓr, if s < h, then ℓs 6≥p ℓs+1. Two PMC C1 = ℓr, ℓr+1, . . . , ℓs, C2 =
ℓr′ , ℓr′+1, . . . , ℓs′ are consecutive if r′ = s+ 1 (or r = s′ + 1).

Definition 7.2 Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh). We say that (C1, C2, . . . , Cs) is the decomposition of
CFLin(w) into its non-increasing maximal chains for the prefix order if the following holds

(1) Each Cj is a non-increasing maximal chain in CFLin(w).

(2) Cj and Cj+1 are consecutive, 1 ≤ j ≤ s− 1.

(3) CFLin(w) is the concatenation of the sequences C1, C2, . . . , Cs.

Example 7.1 [1]. Let Σ = {a, b, c, d} with a < b < c < d, w = dabadabdabdadac. In Example 6.2, we ob-
served that CFLin(w) = (daba, dab, dab, dadac). This sequence has two PMC, namely (daba, dab, dab), (dadac).
The decomposition of CFLin(w) into its PMC is ((daba, dab, dab), (dadac)). Let z = dabdadacddbdc. Then
CFLin(z) = (dab, dadac, ddbdc) has three PMC: (dab), (dadac), (ddbdc). The decomposition of CFLin(w) into
its PMC is ((dab), (dadac), (ddbdc)).

A grouping of CFLin(w) is an inverse Lyndon factorization (m1, . . . ,mk) of w such that any factor is a product of
consecutive factors in a PMC of CFLin(w). Formally, the definition of a grouping of CFLin(w) is given below in
two steps. We first define the grouping of a PMC. Then a grouping of CFLin(w) is obtained by changing each PMC
with one of its groupings.

6
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Definition 7.3 Let ℓ1, . . . , ℓh be words in Lin such that ℓi is a prefix of ℓi−1, 1 < i ≤ h. We say that (m1, . . . ,mk) is
a grouping of (ℓ1, . . . , ℓh) if the following conditions are satisfied.

(1) mj is an inverse Lyndon word,

(2) ℓ1 · · · ℓh = m1 · · ·mk. More precisely, there are i0, i1, . . . , ik, i0 = 0, 1 ≤ ij ≤ h, ik = h, such that
mj = ℓij−1+1 · · · ℓij , 1 ≤ j ≤ k,

(3) m1 ≪ . . . ≪ mk.

We now extend Definition 7.3 to CFLin(w).

Definition 7.4 Let w ∈ Σ+ and let CFLin(w) = (ℓ1, . . . , ℓh). We say that (m1, . . . ,mk) is a grouping of CFLin(w)
if it can be obtained by replacing any PMC C in CFLin(w) by a grouping of C.

Groupings of CFLin(w) are inverse Lyndon factorizations of w but there are inverse Lyndon factorizations which are
not groupings. Surprisingly enough, ICFL(w) is a grouping of CFLin(w) but it is not always its unique grouping.

Proposition 7.1 [1] Let (Σ, <) be a totally ordered alphabet. For any w ∈ Σ+, ICFL(w) is a grouping of CFLin(w).

Example 7.2 [1]. Let Σ = {a, b, c, d}, a < b < c < d, and w = dabadabdabdadac. We have
CFLin(w) = (daba, dab, dab, dadac), ICFL(w) = (daba, dabdab, dadac) (see Example 6.2). ICFL(w) is a group-
ing of CFLin(w) but (dabadab, dabda, dac) is not a grouping. Next, let y = dabadabdabdabdadac. We have
CFLin(y) = (daba, dab, dab, dab, dadac) and ICFL(y) = (daba, (dab)3, dadac). The inverse Lyndon factorization
(dabadab, (dab)2, dadac) is another grouping of CFLin(y).

Lemma 7.1 has been proved in [18]. It is needed in the proof of Proposition 7.2. In turn, Proposition 7.2 shows that
the word p in the pair (p, p̄) ∈ Prefbre(w) has a grouping-like property. Again, the proof of Proposition 7.2 was given
in [18] but in [18] uses a slightly incorrect statement of Proposition 3.2. However, the above-mentioned proof, also
given below, still holds because Proposition 3.2 is in fact unnecessary for it.

Lemma 7.1 Let w ∈ Σ+ be a word which is not an inverse Lyndon word, let CFLin(w) = (ℓn1

1 , . . . , ℓnh

h ), with h > 0,

n1, . . . , nh ≥ 1. For all z ∈ Σ+ and b ∈ Σ such that z is an anti-prenecklace, zb is not an anti-prenecklace and zb is
a prefix of w, there is an integer g such that

zb = (u1v1)
n1 · · · (ugvg)

ngugb,

where ujvj = ujajv
′

j = ℓj , 1 ≤ j ≤ g, aj < b and ugb is an anti-prenecklace.

Remark 7.1 [18] Let x, y two different borders of a same word w ∈ Σ+. If x is shorter than y, then x is a border of
y.

Proposition 7.2 Let w ∈ Σ+ be a word which is not an inverse Lyndon word, let (p, p̄) ∈ Prefbre(w) and let
ICFL(w) = (m1, . . . ,mk). Let CFLin(w) = (ℓn1

1 , . . . , ℓnh

h ), with h > 0, n1, . . . , nh ≥ 1 and let (ℓn1

1 , . . . , ℓ
nq
q ) be a

PMC in CFLin(w), 1 ≤ q ≤ h. Then the following properties hold.

(1) p = ℓn1

1 · · · ℓ
ng

g , for some g, 1 ≤ g ≤ q.

(2) ℓg = ugvg = ugagv
′

g , p̄ = ugb, ag < b.

PROOF :

Let w ∈ Σ+ be a word which is not an inverse Lyndon word, let (p, p̄) ∈ Prefbre(w). Let CFLin(w) = (ℓn1

1 , . . . , ℓnh

h ),
with h > 0, n1, . . . , nh ≥ 1 and let (ℓn1

1 , . . . , ℓ
nq
q ) be a PMC in CFLin(w), 1 ≤ q ≤ h. Let r, s ∈ Σ∗, a′, b ∈ Σ be

such that p = ra′s, p̄ = rb, a′ < b.

By Proposition 5.2, the word pp̄ = prb is not an anti-prenecklace but its longest proper prefix is an anti-prenecklace.
Thus, by Lemma 7.1 there is an integer g such that

pp̄ = (u1v1)
n1 · · · (ugvg)

ngugb,

where ujvj = ujajv
′

j = ℓj , 1 ≤ j ≤ g, aj < b and ugb is an anti-prenecklace. Moreover ugb is a prefix of
ℓ
ng+1

g+1 · · · ℓnh

h . Let
β = (u1v1)

n1(u2v2)
n2 · · · (ugvg)

ng .

7
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The word β is a nonempty proper prefix of pp̄ thus, by Definition 6.1, β is an inverse Lyndon word. Therefore g ≤ q
(otherwise g ≥ q+1, hence ℓq would be a prefix of β and there would be a word z′ such that ℓq+1z

′ is a suffix of β, a
contradiction since ℓq ≪ ℓq+1 implies β ≪ ℓq+1z

′). Moreover β ≪ ugb.

Since p = ra′s, p̄ = rb, a′ < b, then pp̄ = βugb = ra′srb. By Proposition 6.1, r is a suffix of ug. If r = ug, then
p = β and the proof is ended. By contradiction, assume that r is a proper suffix of ug.

Since r is a proper suffix of ug, we have |β| < |p| ≤ |βug|. Hence, ℓg = ugvg and ug are nonempty prefixes of p. By
Lemma 5.1 ug is an inverse Lyndon word, thus, by Proposition 5.2, ug is a nonempty anti-prenecklace. Therefore, ug

and ugb are both nonempty anti-prenecklaces. By Theorem 3.1, there are x, y ∈ Σ∗, an integer t ≥ 1, c ∈ Σ such that
xy is an anti-Lyndon word, ug = (xy)tx, y = cy′ with c ≥ b.

Observe that m1 = pr′, for a prefix r′ of r. Thus again |β| < |m1| ≤ |βug|. Moreover, the words ℓg+1 and
ugb = (xy)txb are both prefixes of the same word γ = ℓ

ng+1

g+1 · · · ℓnh

h , hence they are comparable for the prefix
order. Since ℓg+1 is the longest anti-Lyndon prefix of γ, we have |ℓg+1| ≥ |xy| and since ℓg+1 is unbordered, either
ℓg+1 = xy is a prefix of ℓg and g + 1 ≤ q, or the word ugb = (xy)txb is a prefix of ℓg+1. By Proposition 7.1, the first
case holds, otherwise m1 would not be a product of anti-Lyndon words because m1 is a prefix of βug longer than β.

Recall that r is a proper suffix of ug. Moreover r and ra′ are also prefixes of ug because ra′ and ug are both prefixes
of p and r is shorter than ug. Therefore r is a border of ug and ug starts with ra′. Of course r 6= x because ug starts
with ra′ and also with xc, with c ≥ b > a′. Now r and x are two different borders of ug. If r were shorter than
x, then r would be a border of x by Remark 7.1. This is impossible because rcy′(xy)t−1x would be a suffix of the
inverse Lyndon word ug and ug starts with ra′, with c ≥ b > a′. Thus |r| > |x| ≥ 0. Since r is a nonempty border of
ug = (xy)tx and |r| > |x| ≥ 0, one of the following three cases holds:

r = (xy)t
′

x, 0 < t′ < t (7.1)

r = y1(xy)
t′x, y1 nonempty suffix of y, 0 ≤ t′ < t (7.2)

r = x1(yx)
t′ , x1 nonempty suffix of x, 0 < t′ ≤ t (7.3)

Assume that Eq. (7.1) holds. Then p starts with ra′ = (xy)t
′

xa′, a′ < b, and p also starts with ug = (xy)tx. Since
t′ < t, the letter a′ should be the first letter of y = cy′, c ≥ b > a′. Therefore, Eq. (7.1) cannot hold.

Assume that Eq. (7.2) holds. Recall that r is a prefix of ug. Therefore y1 is a prefix of xy and y1 is also a nonempty
suffix of xy. The word xy is an anti-Lyndon word, thus xy is umbordered. Consequently, y1 = xy, hence x = 1 and
y1 = y. By Eq. (7.2), we have r = yt

′+1, with 0 ≤ t′ < t. Moreover, t′ + 1 < t since r is a proper suffix of ug = yt.
As above, p starts with ra′ = yt

′+1a′, a′ < b, and p also starts with ug = yt. Since t′ + 1 < t, the letter a′ should be
the first letter of y = cy′, c ≥ b > a′. Therefore, Eq. (7.2) cannot hold.

Finally, assume that Eq. (7.3) holds. If x1 6= x, then x1y would be both a proper nonempty suffix and a prefix of xy,
hence a nonempty border of xy, which is impossible since xy is an anti-Lyndon word. Therefore x1 = x. If t′ < t,
then r satisfies Eq. (7.1) and we proved that this is impossible. Thus t′ = t, which implies r = ug, a contradiction.

The following result was proved in [1] and will be used in Section 9.

Proposition 7.3 Let (Σ, <) be a totally ordered alphabet. Let w ∈ Σ+ and let CFLin(w) = (ℓ1, . . . , ℓh). If w is an
inverse Lyndon word, then either w is unbordered or ℓ1, . . . , ℓh is a PMC in CFLin(w). In both cases ICFL(w) =
(w) is the unique grouping of CFLin(w).

8 From ICFL to CFLin

In what follows, (Σ, <) denotes a totally ordered alphabet. Let w ∈ Σ+ and let ICFL(w) = (m1, . . . ,mk), where
mi ≪ mi+1, 1 ≤ i ≤ k − 1. In this section we give an algorithm to construct CFLin(w) starting from ICFL(w)
(Definition 8.1). To this aim, we first demonstrate that we can limit ourselves to handling the single factor mi in
ICFL(w) (Corollary 8.1). This result is a direct consequence of the following proposition.

Proposition 8.1 Let w ∈ Σ+. If (m1, . . . ,mk) is a grouping of CFLin(w), then

CFLin(w) = (CFLin(m1), . . . ,CFLin(mk))

PROOF :

8
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Let w ∈ Σ+ and let CFLin(w) = (ℓ1, . . . , ℓh). We prove our statement by induction on |w|. If |w| = 1, then there is
only one grouping of CFLin(w), namely (w). Obviously CFLin(w) = (w) and we are done.

Assume |w| > 1. Let (m1, . . . ,mk) be a grouping of CFLin(w) and let w′ ∈ Σ∗ be such that w = m1w
′. According

to Definition 7.4 there are words in CFLin(w), say ℓ1, . . . , ℓv, 1 ≤ v ≤ h, such that ℓi is a prefix of ℓi−1, 1 < i ≤ v
and m1 = ℓ1 · · · ℓv. Moreover, by Theorem 4.1

CFLin(m1) = (ℓ1, . . . , ℓv) (8.1)

If w′ = 1, then w = m1, v = h, hence CFLin(w) = CFLin(m1) and we are done.

Otherwise, w′ = m2 · · ·mk ∈ Σ+, v < h and, by Theorem 4.1, CFLin(w
′) = (ℓv+1, . . . , ℓh). In addition,

(m2, . . . ,mk) is a grouping of CFLin(w
′) and |w′| < |w|. By using the induction hypothesis, we have

CFLin(w
′) = (ℓv+1, . . . , ℓh) = (CFLin(m2), . . . ,CFLin(mk)) (8.2)

Finally, by Eqs. (8.1), (8.2), we obtain

CFLin(w) = (ℓ1, . . . , ℓh) = (CFLin(m1), . . . ,CFLin(mk)) (8.3)

Corollary 8.1 Let w ∈ Σ+. If ICFL(w) = (m1, . . . ,mk), then

CFLin(w) = (CFLin(m1), . . . ,CFLin(mk))

PROOF :

Let w ∈ Σ+ and let ICFL(w) = (m1, . . . ,mk). By Proposition 7.1, ICFL(w) is a grouping of CFLin(w), hence our
claim follows by Proposition 8.1.

In the following proposition, we show that each bordered word has a unique nonempty border which is unbordered.

Proposition 8.2 Each bordered word has a unique nonempty border which is unbordered.

PROOF :

We first prove that each bordered word w ∈ Σ+ has a nonempty border z which is unbordered, by induction on the
length of w. Indeed, the shortest bordered word is w = aa, where a is a letter and z = a.

Let |w| > 2 and let y be a nonempty border of w. Thus, there are nonempty words x, x′ such that

w = xy = yx′ (8.4)

If y is unbordered, we are done. Otherwise, since y is a bordered word shorter than w, by induction hypothesis, y has
a nonempty border z which is unbordered and there are t, t′ ∈ Σ+ such that

y = tz = zt′ (8.5)

By using Eqs. (8.4), (8.5), we get
xtz = xy = w = yx′ = zt′x′

hence z is a nonempty border of w which is unbordered.

Now we prove that there is only one unbordered nonempty border of w. Suppose that y, v are two nonempty unbor-
dered borders of w. Thus there are x, x′, u, u′ ∈ Σ+ such that

w = xy = yx′ = uv = vu′ (8.6)

Assume |y| ≥ |v| (a similar argument holds if |y| ≤ |v|). By Eq. (8.6), there are t, t′ ∈ Σ∗ such that

y = tv = vt′

Since y is unbordered we get t = t′ = 1, hence y = v.

Example 8.1 Let Σ = {a, b}. The word ababa has the nonempty borders a, aba and a is unbordered. The word aaaa
has the nonempty borders a, aa, aaa and a is unbordered.

9
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Definition 8.1 below provides a recursive construction of a sequence NB(x) of suffixes of a word x. Proposition 8.3
proves that every nonempty word x is the concatenation of the elements of NB(x) and that there is only one sequence
NB(x) associated with x according to Definition 8.1. Subsequently Proposition 8.4 proves that if w ∈ Σ+ and x is
a factor of a grouping of of CFLin(w), then CFLin(x) = NB(x). According to Corollary 8.1, our aim, that is, to
construct CFLin(w) from ICFLin(w), is achieved (Corollary 8.2).

Definition 8.1 Let x ∈ Σ+.

(Basis Step) If x is unbordered, then NB(x) = (x).

(Recursive Step) If x is bordered, let z be the unique nonempty border of x which is unbordered and let
y ∈ Σ+ be such that x = yz. Then, NB(x) = (NB(y), z).

The length |NB(x)| of NB(x) is the number of elements in NB(x).

Proposition 8.3 For any word x ∈ Σ+, there is a unique sequence ℓ′1, . . . , ℓ
′

v of words over Σ such that NB(x) =
(ℓ′1, . . . , ℓ

′

v). If ℓ′1, . . . , ℓ
′

v is such that NB(x) = (ℓ′1, . . . , ℓ
′

v), then

x = ℓ′1 · · · ℓ
′

v

PROOF :

Notice that if x is unbordered, then, by Definition 8.1, NB(x) = (x) is uniquely determined and we are done. The
proof is by induction on |x|. By the above reasoning if |x| = 1, then the conclusion follows immediately and the same
holds for any unbordered word x.

Hence, let x be a bordered word such that |x| > 1. Let

NB(x) = (ℓ′1, . . . , ℓ
′

v), NB(x) = (µ1, . . . , µp) (8.7)

with v > 1, p > 1. Let z be the unique nonempty border of x which is unbordered and let y ∈ Σ+ be such that x = yz.
By Definition 8.1, we have

NB(x) = (NB(y), z) = (ℓ′1, . . . , ℓ
′

v), NB(x) = (NB(y), z) = (µ1, . . . , µp) (8.8)

Hence, ℓ′v = z = µp and NB(y) = (ℓ′1, . . . , ℓ
′

v−1), NB(y) = (µ1, . . . , µp−1). Obviously |y| < |x|. By using
induction hypothesis, we have p = v, ℓ′i = µi, 1 ≤ i ≤ v,

x = yz = ℓ′1 · · · ℓ
′

v−1z = ℓ′1 · · · ℓ
′

v

and the proof is complete.

The following example provides an interesting observation.

Example 8.2 Let Σ = {a, b, c, d}, a < b < c < d, and w = dabadabdabdadac. We have ICFL(w) =
(daba, dabdab, dadac) (see Example 6.2). Then, NB(daba) = daba, NB(dabdab) = (dab, dab), NB(dadac) =
dadac. Notice that

CFLin(w) = (daba, dab, dab, dadac) = (NB(daba),NB(dabdab),NB(dadac))

6= (dabadabdabdadac) = (NB(dabadabdabdadac)) = (NB(w))

Next, let y = dabadabdabdabdadac. We have ICFL(w) = (daba, (dab)3, dadac) and

CFLin(y) = (daba, dab, dab, dab, dadac) = (NB(daba),NB((dab)3),NB(dadac))

Proposition 8.4 Let (Σ, <) be a totally ordered alphabet. Let m, ℓ1, . . . , ℓh be words in Σ+ such that

(1) m is an inverse Lyndon word.

(2) ℓ1, . . . , ℓh are words in Lin such that ℓi is a prefix of ℓi−1, 1 < i ≤ h.

(3) m = ℓ1 · · · ℓh.

Then the two sequences CFLin(m), NB(m) are equal, that is, CFLin(m) = NB(m).

10
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PROOF :

The proof is by induction on |NB(m)|. If |NB(m)| = 1, then by Definition 8.1, the inverse Lyndon word m is
unbordered and NB(m) = (m). Thus, by Proposition 5.1, the word m is is an anti-Lyndon word. Consequently,
CFLin(m) = (m) = NB(m).

Otherwise, let |NB(m)| > 1. Let y, z be such that z is the unique unbordered border of m and m = yz. Then, by
Definition 8.1, NB(m) = (NB(y), z). Let ℓ1, . . . , ℓh be as in the statement. Of course CFLin(m) = (ℓ1, . . . , ℓh).
Let NB(y) = (ℓ′1, . . . , ℓ

′

v). By item (3) and by Proposition 8.3 applied to y, we have
m = yz = ℓ′1 · · · ℓ

′

vz = ℓ1 · · · ℓh (8.9)
Now, ℓh is a border of m, because ℓh is a prefix of ℓ1, hence of m. Moreover, by Proposition 3.1, ℓh is an unbordered
word. By Proposition 8.2 and looking at Eq. (8.9), we have

z = ℓh, y = ℓ′1 · · · ℓ
′

v = ℓ1 · · · ℓh−1 (8.10)
The word y is an inverse Lyndon word because it is a nonempty prefix of the inverse Lyndon word m (Lemma 5.1).
Moreover CFLin(y) = (ℓ1, . . . , ℓh−1) and y, ℓ1, . . . , ℓh−1 satisfy the hypothesis of the statement with |NB(y)| <
|NB(m)|. Thus, by using the induction hypothesis and Eq. (8.10), CFLin(y) and NB(y) are equal, that is,

(ℓ1, . . . , ℓh−1) = CFLin(y) = NB(y) = (ℓ′1, . . . , ℓ
′

v) (8.11)
and consequently

h− 1 = v, ℓi = ℓ′i, 1 ≤ i ≤ h− 1 (8.12)
Finally, by Eqs. (8.10), (8.11), (8.12), we have

CFLin(m) = (ℓ1, . . . , ℓh) = (ℓ′1, . . . , ℓ
′

v, ℓh) = (ℓ′1, . . . , ℓ
′

v, z) = (NB(y), z) = NB(m)

Proposition 8.5 Let w ∈ Σ+. If (m1, . . . ,mk) is a grouping of CFLin(w), then for each i, 1 ≤ i ≤ v, CFLin(mi) =
NB(mi).

PROOF :

Let w ∈ Σ+, let (m1, . . . ,mk) be a grouping of CFLin(w). Looking at Definitions 7.3, 7.4, the conclusion follows
easily from Proposition 8.4 applied to the word mi, for each i, 1 ≤ i ≤ v.

Proposition 8.6 Let w ∈ Σ+. If (m1, . . . ,mk) is a grouping of CFLin(w), then CFLin(w) =
(NB(m1), . . . ,NB(mk)).

PROOF :

Let w ∈ Σ+, let (m1, . . . ,mk) be a grouping of CFLin(w). By Propositions 8.1, 8.5, we have
CFLin(w) = (CFLin(m1), . . . ,CFLin(mk)) = (NB(m1), . . . ,NB(mk))

Corollary 8.2 Let w ∈ Σ+. If ICFL(w) = (m1, . . . ,mk), then

CFLin(w) = (NB(m1), . . . ,NB(mk))

PROOF :

The conclusion follows easily from Propositions 7.1 and 8.6.

Example 8.3 Let Σ = {a, b, c, d}, a < b < c < d, and let y = dabadabdabdabdadac. We know that ICFL(y) =
(daba, (dab)3, dadac) (see Example 7.2). By Corollaries 8.1 and 8.2, we have

CFLin(y) = (CFLin(daba),CFLin((dab)
3),CFLin(dadac))

= (NB(daba),NB((dab)3),NB(dadac))

= (daba, dab, dab, dab, dadac)

The inverse Lyndon factorization (dabadab, (dab)2, dadac) is another grouping of CFLin(y). By Propositions 8.1
and 8.6, we have

CFLin(y) = (CFLin(dabadab),CFLin((dab)
2),CFLin(dadac))

= (NB(dabadab),NB((dab)2),NB(dadac))

= (daba, dab, dab, dab, dadac)
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9 From CFLin to ICFL

In what follows, (Σ, <) denotes a totally ordered alphabet. Let w ∈ Σ+. The aim of this section is to show how to
get ICFL(w) from CFLin(w). As we know, ICFL(w) = (m1, . . . ,mk) is a grouping of CFLin(w) (Proposition
7.1). We also know that the word p in the pair (p, p̄) ∈ Prefbre(w) has a grouping-like property (Proposition 7.2).
These properties allow us to prove that ICFL(w) can be computed locally in the non-increasing maximal chains for
the prefix order of its decomposition (Proposition 9.1).

Remark 9.1 Let (ℓ′1, . . . , ℓ
′

v) be a non-increasing chain for the prefix order of anti-Lyndon words. Let y = ℓ′1 · · · ℓ
′

v.
It is easy to see that CFLin(y) = (ℓ′1, . . . , ℓ

′

v).

Proposition 9.1 Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let (C1, C2, . . . , Cs) be the decomposition
of CFLin(w) into its non-increasing maximal chains for the prefix order. Let w1, . . . , ws be words such that
CFLin(wj) = Cj , 1 ≤ j ≤ s. Then ICFL(w) is the concatenation of the sequences ICFL(w1), . . . , ICFL(ws),
that is,

ICFL(w) = (ICFL(w1), . . . , ICFL(ws)) (9.1)

PROOF :

Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let (C1, C2, . . . , Cs) be the decomposition of CFLin(w) into its non-
increasing maximal chains for the prefix order. Let w1, . . . , ws be words such that CFLin(wj) = Cj , 1 ≤ j ≤ s. Let
ICFL(w) = (m1, . . . ,mk). The proof is by induction on |w|. If |w| = 1, then w is an inverse Lyndon word and by
Proposition 7.3 we are done. Therefore assume |w| > 1. If k = 1, by Definition 6.2, w = m1 is an inverse Lyndon
word and by Proposition 7.3 we are done. Assume k > 1, thus w is a word which is not an inverse Lyndon word.

By Proposition 7.1, there are indexes i2, . . . , is, 1 < i2 . . . < is ≤ k such that

w1 = m1 · · ·mi2−1, w2 = mi2 · · ·mi3−1, . . . , ws = mis · · ·mk

We actually prove more, namely we prove Eq. (9.2) below:

ICFL(w1) = (m1, . . . ,mi2−1), ICFL(w2) = (mi2 , . . . ,mi3−1), . . . , ICFL(ws) = (mis , . . . ,mk) (9.2)

Notice that if w1 is an inverse Lyndon word, then w1 = m1. Otherwise, since m1 ≪ m2 and by item (2) in Lemma
2.1, we would have w1 = m1 · · ·mi2−1 ≪ m2 · · ·mi2−1, a contradiction. By a similar argument, if w1 is an inverse
Lyndon word, then w1w2 is not an inverse Lyndon word. Indeed, let ℓ the last element in C1 and ℓ′ the first element in
C2. The word ℓ is a prefix of w1 and by ℓ ≪ ℓ′ we get w1w2 ≪ w2.

Let (p, p) be the canonical pair associated with w and let v ∈ Σ∗ be such that w = pv. If w1 is not an inverse Lyndon
word, let (q, q) be the canonical pair associated with w1. The word qq is a prefix of w which is not an inverse Lyndon
word. Since pp is the shortest prefix of w which is not an inverse Lyndon word, we have |pp| ≤ |qq|, hence pp is a
prefix of w1. In turn, since qq is the shortest prefix of w1 which is not an inverse Lyndon word, we have |qq| ≤ |pp|.
In conclusion, pp = qq and, looking at Proposition 6.1, we see that p = q and p = q. If w1 is an inverse Lyndon word,
the same reasoning applies to the canonical pair (q, q) associated with w1w2.

Let ICFL(v) = (m′

1, . . . ,m
′

k) and let r, s ∈ Σ∗, a, b ∈ Σ such that p = ras, p = rb with a < b. By Definition 6.2
one has

ICFL(w) =

{

(p, ICFL(v)) if p = rb ≤p m′

1

(pm′

1,m
′

2, . . . ,m
′

k) if m′

1 ≤p r
(9.3)

By Proposition 7.2, there is g, 1 ≤ g ≤ h, such that p = ℓ1 · · · ℓg. Let w′

1 ∈ Σ∗ be such that w1 = pw′

1. If w′

1 6= 1, let
C′

1 = CFLin(w
′

1). Since C′

1 is C1 after erasing ℓ1, . . . , ℓg, it is easy to see that C′

1 is a non-increasing maximal chain
for the prefix order. Hence the decomposition D of CFLin(v) into its non-increasing maximal chains for the prefix
order is

D =

{

(C′

1, C2, . . . , Cs) if w′

1 6= 1

(C2, . . . , Cs) if w′

1 = 1

Of course |v| < |w|, thus by induction hypothesis, we have

ICFL(v) =

{

(ICFL(w′

1), . . . , ICFL(ws)) if w′

1 6= 1

(ICFL(w2), . . . , ICFL(ws)) if w′

1 = 1
(9.4)

More specifically,
ICFL(w2) = (mi2 , . . . ,mi3−1), . . . , ICFL(ws) = (mis , . . . ,mk) (9.5)
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Moreover, if w′

1 6= 1 one has

ICFL(w′

1) =

{

(m2, . . . ,mi2−1) if m1 = p

(m′

1,m2, . . . ,mi2−1) if m1 = pm′

1

(9.6)

Notice that if m1 = p and w′

1 6= 1, then w1 is not an inverse Lyndon word (because w1 6= m1) and, by Definition 6.2,
(p, ICFL(w′

1)) = ICFL(w1) (because the canonical pair associated with w1 is equal to the canonical pair associated
with w). Furthermore, by Eqs. (9.3), (9.4), (9.5), ICFL(w) = (p, ICFL(v)) = (p, ICFL(w′

1), . . . , ICFL(ws)) =
(ICFL(w1), . . . , ICFL(ws)) Thus, Eqs. (9.1), (9.2) hold. Analogously, by Definition 6.2, if m1 = p and w′

1 = 1,
then w1 = p and clearly ICFL(w1) = (p) = (m1). Thus, by Eqs. (9.4), (9.5), ICFL(w) = (p, ICFL(v)) =
(p, ICFL(w2), . . . , ICFL(ws)) = (ICFL(w1), ICFL(w2), . . . , ICFL(ws)) and Eqs. (9.1), (9.2) hold.

Otherwise, if m1 = pm′

1, then w′

1 6= 1. By Definition 6.2 and Eq. (9.6), we have ICFL(w1) =
(pm′

1,m2, . . .mi2−1) = (m1,m2, . . .mi2−1). Thus, by Eqs. (9.3), (9.4), (9.5), (9.6), we have

ICFL(w) = (m1,m2, . . . ,mk)

= (pm′

1,m2, . . .mi2−1,mi2 . . .mi3−1, . . . ,mis · · ·mk

= (pm′

1,m2, . . .mi2−1, ICFL(w2), . . . , ICFL(ws))

= (ICFL(w1), ICFL(w2), . . . , ICFL(ws))

and Eqs. (9.1), (9.2) hold. This ends the proof.

Proposition 9.1 shows that to obtain ICFL(w) from CFLin(w) we can limit ourselves to the case in which CFLin(w)
is a chain with respect to the prefix order. Thus in the results that follow we will focus on these chains. In Proposition
9.2 we will prove that some products of consecutive elements in such a chain form an inverse Lyndon word. Then we
will prove some properties of such products in Propositions 9.3, 9.4. We will use these properties to establish which
of the aforementioned products can be elements of an inverse Lyndon factorization (Proposition 9.5).

Proposition 9.2 Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j ≤ h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1. Then, the word ℓ1ℓ2 · · · ℓi+1 · · · ℓj is an inverse Lyndon word.

PROOF :

Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j ≤ h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1. Let u, v be words such that

u = ℓi+1 · · · ℓj , ℓ1 = uv

Thus
ℓ1ℓ2 · · · ℓi+1 · · · ℓj = (uv)iu

Therefore the word ℓ1ℓ2 · · · ℓi+1 · · · ℓj is a sesquipower of the anti-Lyndon word ℓ1, hence, by Proposition 5.2,
ℓ1ℓ2 · · · ℓi+1 · · · ℓj is an inverse Lyndon word.

Proposition 9.3 Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, 1 ≤ i < h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

If there is j, i < j ≤ h, such that ℓi+1 · · · ℓj is a prefix of ℓ1, then |ℓ1| > |ℓi+1 · · · ℓj |.

13
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PROOF :

Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j ≤ h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1. Thus |ℓ1| ≥ |ℓi+1 · · · ℓj|. By contradiction, assume |ℓ1| = |ℓi+1 · · · ℓj|. Hence
ℓ1 = ℓi+1 · · · ℓj . In addition |ℓt| < |ℓ1|, i + 1 ≤ t ≤ j, because ℓt is a prefix of ℓt−1 and ℓ1 = ℓi 6= ℓi+1.
Consequently, ℓj would be a nonempty border of ℓ1, in contradiction with Proposition 3.1.

Proposition 9.4 Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, 1 ≤ i < h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

If there is j, i < j ≤ h, such that ℓi+1 · · · ℓj is a prefix of ℓ1ℓ2 · · · ℓi, then ℓi+1 · · · ℓj is a prefix of ℓ1.

PROOF :

Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j ≤ h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1ℓ2 · · · ℓi. If ℓi+1 · · · ℓj were not a prefix of ℓ1, then i > 1, j > i + 1 and there would
exist q, i+ 1 < q ≤ j, such that

ℓ1 = ℓi+1 · · · ℓ
′

q, ℓq = ℓ′qℓ
′′

q , ℓ′q 6= 1

If ℓ′′q = 1, then ℓq = ℓ′q would be a proper suffix of ℓ1 which is also a nonempty prefix of ℓ1, hence ℓq would be a
nonempty border of ℓ1, in contradiction with Proposition 3.1. Consequently ℓ′′q 6= 1 would be a proper suffix of ℓq
which is also a nonempty prefix of ℓ2 and therefore of ℓq. Hence ℓ′′q would be a nonempty border of ℓq, in contradiction
with Proposition 3.1.

Proposition 9.5 Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j < h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1. If ℓi+1 · · · ℓj+1 is not a prefix of ℓ1, then one has

ℓ1 ≪ ℓi+1 · · · ℓj+1

More specifically, there are words r, s, s′ ∈ Σ∗ and a, b ∈ Σ, a < b such that

ℓ1 = ℓi+1 · · · ℓjras, ℓj+1 = rbs′

PROOF :

Let ℓ1, . . . , ℓh be anti-Lyndon words that form a non-increasing chain for the prefix order, that is,

ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh

Let h ≥ 2 and let i, j, 1 ≤ i < j < h, be such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1

and ℓi+1 · · · ℓj is a prefix of ℓ1.

14
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By Proposition 9.3 one has |ℓ1| > |ℓi+1 · · · ℓj |, hence there is a nonempty word x such that ℓ1 = ℓi+1 · · · ℓjx. Notice
that x cannot be a prefix of ℓj+1 because ℓj+1 is a proper prefix of ℓ1 and ℓ1 is unbordered (Proposition 3.1). If
ℓi+1 · · · ℓj+1 is not a prefix of ℓ1, then ℓj+1 cannot be a prefix of x either.

Thus, there are words r, s, s′ ∈ Σ∗ and a, b ∈ Σ, a 6= b such that

ℓ1 = ℓi+1 · · · ℓjras, ℓj+1 = rbs′

The word ℓj+1 is a prefix of ℓi+1, hence ℓj+1 is a prefix of ℓ1 such that |ℓj+1| ≤ |ℓi+1|. Therefore, there is z ∈ Σ∗

such that ℓ1 = rbs′zras which yields a < b because ℓ1 is an inverse Lyndon word. Consequently,

ℓ1 = ℓi+1 · · · ℓjras ≪ ℓi+1 · · · ℓjrbs
′ = ℓi+1 · · · ℓj+1

In Propositions 9.6 - 9.8 we prove some properties of the factors in CFLin. At the end of this section we briefly discuss
how Propositions 9.7, 9.8 can be used to obtain ICFL from CFLin.

Proposition 9.6 Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a chain for the prefix order in CFLin(w). The word ℓ1 · · · ℓh is not
an inverse Lyndon word if and only if h > 2 and there are i, j, 1 ≤ i < j < h, such that

(1) ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1,

(2) ℓi+1 · · · ℓj is a prefix of ℓ1

(3) ℓi+1 · · · ℓj+1 is not a prefix of ℓ1

(4) We have
ℓ1 ≪ ℓi+1 · · · ℓj+1

More specifically, there are words r, s, s′ ∈ Σ∗ and a, b ∈ Σ, a < b such that

ℓ1 = ℓi+1 · · · ℓjras, ℓj+1 = rbs′

PROOF :

Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a chain for the prefix order in CFLin(w). Let h > 2 and let i, j, 1 ≤ i < j < h, be
such that items (1)-(4) in the statement are satisfied. We prove that ℓ1 · · · ℓh is not an inverse Lyndon word. Indeed, by
item (4)

ℓ1 ≪ ℓi+1 · · · ℓj+1

Thus, by item (2) in Lemma 2.1,
ℓ1ℓ2 · · · ℓh ≪ ℓi+1 · · · ℓj+1ℓj+2 · · · ℓh

therefore ℓ1ℓ2 · · · ℓh does not satisfy Definition 5.2.

Conversely, if ℓ1 · · · ℓh is not an inverse Lyndon word, then there is i, 1 ≤ i < h, such that

ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1,

otherwise ℓ1 · · · ℓh = (ℓ1)
h would be a sesquipower of the anti-Lyndon word ℓ1, hence, by Proposition 5.2, ℓ1 · · · ℓh

would be an inverse Lyndon word. Furthermore, there is j, i < j < h, such that ℓi+1 · · · ℓj is a prefix of ℓ1 but
ℓi+1 · · · ℓj+1 is not a prefix of ℓ1 since otherwise ℓi+1 · · · ℓh would be a prefix of ℓ1 and ℓ1 · · · ℓh would be an inverse
Lyndon word by Proposition 9.2. Thus, by Proposition 9.5,

ℓ1 ≪ ℓi+1 · · · ℓj+1

More specifically, there are words r, s, s′ ∈ Σ∗ and a, b ∈ Σ, a < b such that

ℓ1 = ℓi+1 · · · ℓjras, ℓj+1 = rbs′

and the proof is complete.

Proposition 9.7 Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a non-increasing maximal chain for the prefix order (PMC) in
CFLin(w), where ℓ1 is the first element in CFLin(w), and let ICFL(w) = (m1, . . . ,mk). If ℓ1 · · · ℓh is an inverse
Lyndon word, then

m1 = ℓ1 · · · ℓh
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PROOF :

Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a non-increasing maximal chain for the prefix order (PMC) in CFLin(w), where ℓ1 is
the first element in CFLin(w). If ℓ1 · · · ℓh is an inverse Lyndon word, then m1 = ℓ1 · · · ℓh. Otherwise, by Proposition
7.1, there would exist j, t, 1 ≤ j < t ≤ h, such that

ℓ1 · · · ℓj = m1 ≪ m2 = ℓj+1 · · · ℓt

and this would imply, by item (2) in Lemma 2.1,

ℓ1 · · · ℓh = (ℓ1 · · · ℓj)ℓj+1 · · · ℓh ≪ ℓj+1 · · · ℓh

in contradiction with Definition 5.2.

Proposition 9.8 Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a non-increasing maximal chain for the prefix order (PMC) in
CFLin(w), where ℓ1 is the first element in CFLin(w). If ℓ1 · · · ℓh is not an inverse Lyndon word, then h > 2 and there
are i, j, 1 ≤ i < j < h, such that

(1) ℓ1 = ℓ2 = . . . = ℓi 6= ℓi+1,

(2) ℓi+1 · · · ℓj is a prefix of ℓ1

(3) ℓi+1 · · · ℓj+1 is not a prefix of ℓ1

(4) We have

ℓ1 ≪ ℓi+1 · · · ℓj+1 (9.7)

More specifically, there are words r, s, s′ ∈ Σ∗ and a, b ∈ Σ, a < b such that

ℓ1 = ℓi+1 · · · ℓjras, ℓj+1 = rbs′ (9.8)

(5) We have

pp̄ = ℓ1 · · · ℓiℓi+1 · · · ℓjrb

where (p, p) is the canonical pair associated with w.

PROOF :

Let w ∈ Σ+, let (ℓ1, . . . , ℓh) be a non-increasing maximal chain for the prefix order (PMC) in CFLin(w), where ℓ1
is the first element in CFLin(w).

If ℓ1 · · · ℓh is not an inverse Lyndon word, then by Proposition 9.6, items (1)-(4) are satisfied. Set p1 = ℓ1 · · · ℓi,
p2 = ℓi+1 · · · ℓjrb. We claim that

p1p2 = ℓ1 · · · ℓiℓi+1 · · · ℓjrb = pp̄

where (p, p) is the canonical pair associated with w.

Indeed, by Eq. (9.8), we have
p1 = ℓ1 · · · ℓi ≪ ℓi+1 · · · ℓjrb = p2

which implies
p1p2 ≪ ℓi+1 · · · ℓjrb

where ℓi+1 · · · ℓjrb is a suffix of p1p2, that is, p1p2 is not an inverse Lyndon word.

Moreover, for each proper nonempty prefix u of p2, u is also a proper prefix of ℓ1, hence there is v ∈ Σ∗ such that
p1u = (ℓ1)

iu = (uv)iu is a sesquipower of the anti-Lyndon word ℓ1, hence, by Proposition 5.2, p1u is an inverse
Lyndon word. Moreover, by Lemma 5.1 and Proposition 9.2, the word p1 and all its nonempty prefixes are inverse
Lyndon words. This shows that p1p2 is the shortest prefix of ℓ1 · · · ℓh which is not an inverse Lyndon word, hence, by
Proposition 6.1, p1p2 = pp̄, where (p, p) is the canonical pair associated with w. This finishes the proof.

Proposition 9.1 shows that to obtain ICFL(w) from CFLin(w) we can limit ourselves to the case in which
CFLin(w) = (ℓ1, . . . , ℓh) is a chain with respect to the prefix order. Now, if ℓ1 · · · ℓh is an inverse Lyndon word,
then ICFL(w) can be easily obtained from CFLin(w) by Proposition 9.7. Otherwise, Proposition 9.8 allows us to
determine the canonical pair (p, p) associated with w from CFLin(w) and then, recursively, ICFL(w). Examples 9.1
and 9.2 should clarify this procedure.
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Example 9.1 Let Σ = {a, b} with a < b. Let us consider w = babaababaababab. The word w is not an inverse
Lyndon word because w = babaababaababab≪ babab. Moreover

CFLin(w) = (babaa, babaa, ba, ba, b) = (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5)

Of course, (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) is a non-increasing maximal chain for the prefix order in CFLin(w), where ℓ1 is the
first element in CFLin(w). Items (1)-(3) in Proposition 9.8 are satisfied with i = 2 and j = 4. As for Eq. (9.8) in
Proposition 9.8, we have

ℓ1 = babaa = ℓ3ℓ4a, ℓ5 = b

By item (5) in Proposition 9.8, for the canonical pair (p, p) associated with w, we have

pp̄ = ℓ1ℓ2ℓ3ℓ4ℓ5

We consider Proposition 6.2 to determine p and p̄. By item (2) in Proposition 6.2, p̄ is different from b because w does
not start with a, hence p̄ ends with ab and we have to look for the occurrences of the factor aa in pp. There are two
occurrences of aa as a factor of pp̄ and, by applying Proposition 6.2, we see that

p = babaababaa = ℓ1ℓ2, p̄ = babab = ℓ3ℓ4ℓ5

Finally, by Proposition 9.2, p̄ = babab is an inverse Lyndon word and, by Definition 6.2, we have

ICFL(w) = (p, p) = (babaababaa, babab)

Example 9.2 Let Σ = {a, b, c, d}, a < b < c < d, and y = dabadabdabdabdadac (see Example 7.2). We have

CFLin(y) = (daba, dab, dab, dab, dadac)

By Proposition 9.1,

ICFL(y) = (ICFL(dabadabdabdab), ICFL(dadac))

The word z = dabadabdabdab is not an inverse Lyndon word and, by Proposition 9.8, for the canonical pair (p, p)
associated with w, we have pp̄ = dabadabd. Thus p = daba, p̄ = dabd. Then, we compute ICFL(dabdabdab). By
Propositions 9.2 and 9.7, ICFL(dabdabdab) = ((dab)3). Therefore, m1 = p and

ICFL(dabadabdabdab) = (daba, ICFL(dabdabdab)) = (daba, (dab)3)

Of course ICFL(dadac) = dadac, hence ICFL(y) = (daba, (dab)3, dadac).

10 Conclusions

The Lyndon factorization and the canonical inverse Lyndon factorization play a crucial role in various applications
of sequence comparison and combinatorial pattern matching [6, 31, 32]. Although the two types of factorization are
related by the notion of the anti-Lyndon word, their connections still remained unexplored. This paper addresses this
open problem. More precisely, the main contribution is to show how to obtain the Lyndon factorizationCFLin(w) ofw
with respect to the inverse order from the canonical inverse Lyndon factorization ICFL(w) and vice versa how to group
factors of CFLin(w) to obtain ICFL(w). This result on the connection between the classical Lyndon factorization
and the unexplored inverse Lyndon factorization opens up new research directions. For instance, the search for new
bijective variants of the Burrows Wheeler Transform, based on multisets of inverse words instead of multisets of
Lyndon words. On the other hand the characterizations provided in the paper can be used to better explore whether
many results already known for CFL(w) can be easily extended to ICFL(w). Finally, an interesting question is
whether it is possible to find an alternative definition of the canonical inverse Lyndon factorization based directly only
on the grouping of CFLin(w). The current definition is based on the use of the pair (p, p̄) and is not immediate to
understand.
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