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Abstract

The relevance of shallow-depth quantum circuits has recently increased, mainly due to their
applicability to near-term devices. In this context, one of the main goals of quantum circuit
complexity is to find problems that can be solved by quantum shallow circuits but require more
computational resources classically.

Our first contribution in this work is to prove new separations between classical and quantum
constant-depth circuits. Firstly, we show a separation between constant-depth quantum circuits
with quantum advice QNC0/qpoly, and AC0[p], which is the class of classical constant-depth
circuits with unbounded-fan in and (mod p) gates. In addition, we show a separation between
QAC0, which additionally has Toffoli gates with unbounded control, and AC0[p]. This establishes
the first such separation for a shallow-depth quantum class that does not involve quantum fan-
out gates.

Secondly, we consider QNC0 circuits with infinite-size gate sets. We show that these circuits,
along with (classical or quantum) prime modular gates, can implement threshold gates, showing
that QNC0[p] = QTC0. Finally, we also show that in the infinite-size gateset case, these quantum
circuit classes for higher-dimensional Hilbert spaces do not offer any advantage to standard qubit
implementations.
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1 Introduction

In the current landscape dominated by NISQ (Noisy Intermediate-Scale Quantum) devices [34],
understanding the computational power of shallow-depth quantum circuits has both practical and
theoretical relevance. From a practical perspective, given the noisy aspect of near-term devices,
focusing on tasks that achieve quantum advantage in low depth is fundamental. From a theoretical
perspective, (classical) constant-depth circuits have been crucial in the development of lower bound
techniques, e.g. [39]. Thus, the combination of these techniques, along with the computational ca-
pabilities of constant-depth quantum circuits, enables the discovery of new quantum-classical sep-
arations and, furthermore, allow a more comprehensive understanding of quantum computational
complexity classes [40, 24, 19].

The holy-grail in quantum circuit complexity is to find problems that can be solved by shallow-
depth quantum circuits and that cannot be solved by polynomial-time classical computation. Unfor-
tunately, there are several caveats in the current approaches. Firstly, the current super-polynomial
quantum advantage proposals rely on computational assumptions, offering no unconditional proof
of quantum superiority. Secondly, some of these results even require quantum gates with arbitrary
accuracy, which cannot be implemented in practice in real-world devices. This problem is amplified
when infinite gate sets are assumed [9, 3], since it has been shown that even if precise quantum op-
erations were feasible, the computational overhead for classical control could destroy any quantum
advantage [23].

More recently, there is a new line of research that has addressed some of these issues, at the
cost of achieving weaker statements. More concretely, the seminal work of [6] has shown a problem
that can be solved by constant-depth quantum circuits (QNC0), and which cannot be solved by
constant-depth classical circuits with bounded fan-in (NC0). We would like to highlight that while
this separation is weaker (since the lower bound is only against constant depth circuits), it is
unconditional, which is rather rare in complexity theory. Moreover, these proposals also have
practical interest with their extension to include fault-tolerance [7].

The result of [6] has also been extended to achieve better quantum/classical separations: We
currently have separations between quantum constant-depth circuits and constant-depth classical
circuits with unbounded fan-in (AC0), even if the classical circuit has access to (mod 2) gates
(AC0[2]) [44].1 In these results, showing the quantum upper bound is fairly easy and the main
difficulty is in the classical lower bound. The main challenge lies in finding new classical lower
bounds techniques that allow us answer the question:

What is the largest class of classical circuits that we can separate from constant-depth quantum
circuits?

The main contribution of this work is to prove new separations between constant-depth quantum
circuits and constant-depth classical circuits. Additionally, we revisit quantum circuits with infinite
gateset and prove new collapses of different quantum circuit classes.

1.1 Our contributions

Our first contribution is showing that a set of relation problems for which we have constant-depth
quantum circuits on qudits with quantum advice and is not contained in AC0[p].

Result 1. (Informal; see Theorem 17) For all primes p, there exists a finite gate set on qudits
of dimension p such that constant-depth quantum circuits with quantum advice can solve relation
problems that are intractable for any polynomial-size AC0[p] circuit, i.e., QNC0

p/qpoly ⊈ AC0[p].

1We notice that in order to prove the separation against classical circuits with parity gates, the quantum circuit
has access to quantum advice.
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This result extends the AC0[2] separation from [44] to general primes. To prove it, we generalize
the relation problems on modular operations that have been used in [6, 44]. Roughly, our modular
relation problems with parameters p, q ∈ N consist of a pair of bit strings (x, y) such that |x|
(mod p) = 0 iff |y| (mod q) = 0. Here, |x| and |y| represent the Hamming weights of the respective
bit strings. We show that by exploiting higher-dimensional gate sets, we can solve these problems
in constant-depth quantum circuits with a copy of a high-dimensional GHZ state. At the same
time, we expand the classical lower bound to AC0[p]. However, this separation achieves only
a quantum/classical distinction regarding error probabilities, which differ by a constant value.
In order to improve these separations, we then consider the parallel repetition of these modular
problems as proposed in [44, 13]. In our results, we simplify the proof of [44] by considering the
one-sided error of the quantum circuits and using “seminal results” in circuit complexity such as
the Vazirani XOR lemma [16] and Razborov-Smolensky separations [41].

We follow by showing that QAC0 circuits, without quantum fanout gates but permitting the
fanout of classical information, can generate high-dimensional GHZ states. For this, we employ
optimal depth and size methods for GHZ state creation, which is based on poor-man’s cat states
and balanced binary trees as the resource state entanglement structure. This gadget, along with
Result 1, allows us to show that for every prime p, there exists a constant-depth quantum circuit
employing Toffoli gates of dimension p that computes a relation unattainable by any polynomial-size
AC0[p] circuit. Moreover, when Toffoli gates of arbitrary arity can implement any qubit operation,
we attain an unconditional separation between this complexity class and all AC0[p] classes simul-
taneously. It is worth noting that this aligns with the standard definition of QAC0 as outlined
in existing literature [32, 38, 14, 4] while including classical and excluding quantum fanout, and
that recent research and practical demonstrations have suggested that some platforms quantum de-
vices inherently support multi-qubit operations which would enable the construction of multi-qubit
Toffoli gates [28, 20, 21, 8].

Result 2. (Informal; see Theorem 18) For every prime p, there is a relation problem that can
be solved by QAC0 circuits without quantum fanout, whereas any AC0[p] circuit of polynomial size
solves it with a negligible probability. Therefore, QAC0 ⊈ AC0[p] holds for all prime p.

This establishes the first separation between QAC0 and AC0[p] for any prime p, which was
recently asked in [38]. We notice that in order to achieve such a result with our techniques, it is
crucial to consider qudits of higher dimensions. Additionally, we remark that QAC0 can generate a
GHZ state without the need for unbounded parity gates, as proposed in [38]. Our QAC0 circuits use
quantum measurements and adaptive operations to generate the quantum states. Surprisingly, the
capability to produce this state does not imply the capability to compute the parity function. We
conjecture that generating the GHZ state through a unitary procedure (i.e. without measurements)
would require quantum fanout or parity gates. Thus, the question of whether the parity function
can be computed in QAC0 without fanout gates remains open for further investigation [30].

Next, we provide some limitations on our techniques by showing a classical upper bound on the
modular relation problems that we consider.

Result 3. (Informal; see Lemma 19) For every primes p, q, the modular relation problem on strings
(x, y) such that |x| (mod p) = 0 iff |y| (mod q) = 0 can be solved by NC0[q] circuits. 2

We notice that this result was unknown even for p = 2 and it characterizes AC0[p] as the largest
constant-depth classical circuit class for which a quantum-classical separation can be identified using
our proposed relation problems. To achieve separations against classes like TC0 (or larger classes),
one needs to consider a different class of problems such as [19]. However, it is conjectured that
this particular set of modular relation problems is sufficient to achieve unconditional separations

2These circuits are composed of bounded fan-in gates, as in NC0, but additionally contain a single unbounded
fan-in MODp gate.
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between the aforementioned AC0[p] classical circuit classes and less powerful quantum circuit classes,
such as QNC0.

We then switch gears and consider the class of constant-depth quantum circuits with an infinite
gateset and multi-qudit fanout.3 In this setting, we show that for any prime p, we have the collapse
of the constant-depth quantum hierarchy for quantum circuits with p-dimensional qudits, extending
the qubit case [42].

Result 4. (Informal; see Theorem 27) For all prime p, there exists an infinite gate set on qudits of
dimension p such that constant depth quantum circuits built with this gate set and unbounded fan-in
MODp gates implement quantum threshold gates in constant depth, i.e., i-QNC0

p[p] = i-QTC0
p.

4

This result establishes computational equivalence across shallow-depth quantum circuits when
implemented on systems over prime-dimensional Hilbert spaces. Specifically, our quantum circuits
are constructed using Fourier transforms over Abelian groups and this approach allows the creation
of circuits for functions over finite fields of the form Fn

p → Fp. These circuits allow the execution
of multi-qubit controlled logical operations.

Subsequently, we show that constant-depth quantum circuits implemented in higher prime
dimensions can be implemented with qubits with a multiplicative overhead. This highlights that
for any algorithm falling within these classes, employing qudits instead of qubits offers no substantial
computational benefits—except perhaps for more straightforward hardware implementations and
better error-correcting schemes in Hilbert spaces of varying dimensions.

Result 5. (Informal; see Theorem 30). For all primes p and q, any constant depth quantum circuit
with gates on qudits of dimension p and quantum threshold gates can be replicated by a constant-
depth quantum circuit over qubits, with access to classical MODq gates, i-QTC0

p ⊆ i-QNC0
2[q]c.

This result is achieved by mapping qudit operations onto tensor products of qubits. The qudit
operations are produced using exact unitary decomposition methods, as previously demonstrated
for qubits [37, 2]. Specifically, this theorem implies that the qubit-specific hierarchy can be collapsed
using any arbitrary classical modular prime gate — a capability previously believed to require either
quantum fanout or multi-qubit parity gates. Consequently, we have that QNC0[p]c = QACC0 holds
for all primes p. This significantly contrasts with classical analog circuit classes, where adding
different modular gates results in different complexity classes.

From a practical standpoint, it also demonstrates that quantum circuits with fixed-depth qubits,
when augmented with unbounded fan-in classical prime modular operations MODp, can implement
the quantum subroutines of algorithms like factoring, which have been conjectured to convey ex-
ponential quantum advantage [22, 10].

Finally, we leave as future work to extend Result 5 and show that any i-QTC0
p circuit can be

simulated by i-QNC0
q circuits with additional classical modular gates, for arbitrary primes p and q.

This would establish the equivalence between all constant-depth quantum circuits over qudits of
different prime dimensions.

1.2 Organization

Section 2 delves into the study of shallow-depth quantum circuits with finite-size gate sets. In
this section, we introduce the concept of modular relation problems and elucidate how quantum
circuits can solve these problems. Additionally, we establish the AC0[p] lower bounds for the circuit
classes addressing these problems and conclude the section by defining the NC0[p] classical upper

3For any prime p, multi-qudit fanout for p-dimensional qudits is equivalent to MODp gates.
4As we describe later, in our notation, the prefix i− denotes that the gate set is infinite, and the subscript p denotes

that the qudits have dimension p. Additionally, [p] means access to a quantum and [p]c to a classical unbounded
fan-in modular p gate.
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bounds for the relation problems under consideration. In Section 3, we shift our focus to constant-
depth quantum circuits over qudits. This section explores the implications of employing infinite-
size gate sets and unbounded fan-in modular gates, demonstrating both hierarchical collapses and
computational equivalences between qubit and qudit formulations.

We assume readers have a basic understanding of qudit quantum computation, types of com-
putational problems (such as decision, search, and sampling), and classical constant-depth circuits.
For additional information, refer to Appendix A for an overview.
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2 Shallow depth quantum circuits with finite-size gate sets

In this section, we show new separations between quantum shallow circuits and classical ones. More
precisely in Section 2.1, we introduce the classes of quantum circuits considered in our work. Then,
in Section 2.2, we prove the quantum upper bounds, and in Section 2.3, we prove the classical lower
bounds. We combine these results in Section 2.4 in order to achieve our new separations. Finally,
in Section 2.5, we discuss the limitations of our techniques.

2.1 Definitions

The initial circuit class under examination comprises a gate set defined by a finite collection of
gates and is restricted to single qudit control gates, encompassing standard universal gate sets like
the Clifford+T gate set.

Definition 1 (QNC0
d). For d ∈ N, let Hd denote a d-dimensional Hilbert space. Gd being a finite

set of quantum gates that operate on Hd, while Cd represents a fixed number of gates that act on one
qudit, controlled by another qudit. We define QNC0

d as the class of quantum circuits with constant
depth and polynomial size, employing a gate set compiled from the combination of Gd and Cd.

The subsequent class to be analyzed will supplement the finite number of qudit gates with
their multi-qudit controlled variants. This introduces an alternative characterization for the quan-
tum counterpart of AC0 that has not been addressed in prior literature and guarantees a fairer
comparison between the quantum and classical constant-depth circuit classes.

Definition 2 (QAC0
d). For d ∈ N, let Hd denote a d-dimensional Hilbert space. Let Gd represent

a finite set of gates acting on Hd, which are permitted unbounded classical fanout—defined as
the ability to replicate a gate’s output indefinitely, allowing its use as input for numerous other
gates—when these gates are characterized as maps from basis states to basis states with classical
inputs. Let Td denote a fixed number of multi-qudit controlled gates acting on a single qudit. We
define QAC0

d as the class of quantum circuits with a constant depth and polynomial size, using a
gate set drawn from the combination of Gd and Td.

In this work, we also consider the complexity classes i-QNC0
d and i-QAC0

d. These variants of
QNC0

d and QAC0
d incorporate the full set of one-qudit unitaries. We will provide a formal definition

of these classes in Section A.3.

5



Additionally, we consider access to quantum advice, which is a quantum state that depends on
the input size but not on the input. In particular, we consider QNC0

d/qpoly, which consists of QNC0
d

with a polynomial-size quantum advice.
We also examine extensions of certain constant-depth circuit classes, including unbounded fan-in

modular operations. For example, the class i-QNC0
d[p] integrates i-QNC

0
d circuits with an additional

quantum modular gate defined as follows,

qMODp |x0, x1, . . . , xn⟩ := |x0 + (x1 + . . .+ xn) mod p, x1, . . . , xn mod p⟩ . (1)

Finally, we use the suffix [p]c to denote the inclusion of a classical unbounded fan-in modular gate
MODp in these circuit classes.

We now define the notion of modular relation problems.

Definition 3 (Modular relation problem). The modular relations problem Rm
q,p : {0, 1}n → {0, 1}m

is defined as

Rm
q,p(x) =

{
y
∣∣ y ∈ Fm

2 , |y| (mod q) = 0 iff |x| (mod p) = 0
}
. (2)

This class of problems subsumes the relation problem used in [6, 44], which uses Ro(n2)
2,4 for the

NC0 and the AC0 separations, and [44], that uses Ro(n2)
2,3 for their AC0[2] separation.

In this work, we also consider the parallel repetitions of these relation problems.

Definition 4 (Parallel-k modular relation problem). A modular relation problems k-Rm
q,p : {0, 1}n·k →

{0, 1}m·k are defined as,

k-Rm
q,p(x1, ..., xk) =

{
(y1, ..., yk)

∣∣∣∀xi ∈ Fn
2 , yi ∈ Fm

2 , |yi| (mod q) = 0 iff |xi| (mod p) = 0
}
.

Finally, we also define two key orthogonal bases for qudit states that will be used in our works.
The first one is an extension of the qubit X-basis for qudits.

Definition 5 (Qudit orthogonal X-basis). The qudit orthogonal X-basis can be described by the set
of states,

|Xm
d ⟩ = 1√

d

d−1∑
j=0

ωj·m |j⟩ (3)

with ω = e
i2π
d and m ∈ {0, 1, ..., d− 1}.

The second orthogonal basis is tailored specifically for qudit GHZ states and will be necessary
for the analysis of the quantum circuits we will present.

Definition 6 (Qudit-GHZ orthogonal X-basis). The qudit-GHZ orthogonal X-basis can be defined
by the set of states,

|GHZm
d,n⟩ =

1√
d

d−1∑
j=0

ωj·m |j⟩⊗n (4)

with ω = e
i2π
d and m ∈ {0, 1, ..., d− 1}.

Finally, we state two technical lemmas regarding these bases that are needed in our results.

Lemma 7. ⟨Xm
d |Xn

d ⟩ = ⟨GHZm
d |GHZn

d ⟩ = δm,n.

6



Proof. All the elements of the qudit orthogonal X-basis can be represented as,

|Xm
d ⟩ = 1√

d

d−1∑
i=0

ωi·m |i⟩ = Fd |m⟩ . (5)

This yields that,
⟨Xm

d |Xn
d ⟩ = ⟨m|FdF†d |n⟩ . (6)

Combining this with the fact that the F†dFd |m⟩ = |m⟩, we obtain that ⟨Xm
d |Xn

d ⟩ = δm,n. The same
result holds for the qudit-GHZ orthogonal X-basis, given that the bases are simply a tensor product
over n elements of the same bases as in the qudit X-basis.

Lemma 8. F⊗n
d |GHZm

d,n⟩ = 1√
dn−1

∑
x∈Fn

d
|x| mod d=−m

|x⟩.

Proof. By considering the effect of the operator on the basis states we determine that,

F⊗n
d |GHZm

d ⟩ = 1√
d

d−1∑
i=0

(
ωi·mF⊗n

d |i⟩⊗n ) (7)

=
1√
d

d−1∑
i=0

ωi·m( 1√
dn

∑
x∈{0,1,...,d−1}n

ωi·|x| |x⟩
)

(8)

=
1√
dn+1

∑
x∈{0,1,...,d−1}n

d−1∑
i=0

ωi·(m+|x|) |x⟩ (9)

with |x| =
∑n−1

i=0 xi mod d. This implies that for all the inputs x for which m + |x| mod d = 0
the value of ωi·(m+|x|) = 1. In contrast, for inputs x for which m+ |x| mod d ̸= 0 we will use the
geometric progression to demonstrate first that the sum of all roots of unity is equal to zero,

d−1∑
i=0

ωi =
1− ωd

1− ω
= 0 . (10)

Then, with one more step, we can show that the same is true for the amplitudes of the inputs
considered,

d−1∑
i=0

ωi·(m+|x|) =
1− ωd·(m+|x|)

1− ωm+|x| = 0 . (11)

Finally, this implies that only for values that m+ |x| mod d = 0 the amplitude of the respective
basis states |x⟩ are non-zero. This produces exactly the states,

1√
dn−1

∑
x∈X

|x⟩ , with X =
{
y | y ∈ {0, 1, ..., d− 1}n, |y| mod d = −m

}
. (12)

2.2 Quantum upper bounds

In this subsection, we introduce lower bounds for the probability that QNC0 circuits with quantum
advice and QAC0 circuits can solve the modular relation problems.
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2.2.1 Shallow depth quantum circuits with advice

In this subsection, we will introduce quantum circuits with a quantum advice that compute Rq·n
q,p

with a one-sided error.

Theorem 9. For all fixed and distinct primes p and q, Rq·n
q,p can be solved in QNC0

q/qpoly with

one-sided error at most
1−cos( 2π

p
)

q .

Proof. The circuit for Rq·n
q,p problem is described in Figure 1.

The initial state is |x⟩ |GHZ0
q,n⟩, where the GHZ state is the quantum advice of the circuit.

Then, we apply a layer of n control-Z rotations on the n qubits with a phase equal to 2π
p . The i-th

bit of the input x acts as the control qubit to the control-Z with the target being the i-th qubit of
the GHZ state.

The first register is then

|ψ(1)⟩ = 1
√
q

( q−2∑
i=0

|i⟩⊗n + e
i
2π|x|

p |q − 1⟩⊗n
)
=

q−1∑
i=0

ci |GHZi
q,n⟩ , (13)

with the second equality being the decomposition of |ψ(1)⟩ in the qudit-GHZ orthogonal X-basis.
If we apply F⊗n

q to |ψ(1)⟩, we have

|ψ(2)⟩ = F⊗n
q |ψ(1)⟩ =

q−1∑
i=0

ci (F
⊗n
q |GHZi

q,n⟩) =
q−1∑
i=0

ci
∑

z∈[q]n
|z| mod q=−i

|z⟩ ,

where the last equality comes from Lemma 8.
Our goal is to compute the probability of measuring this state and get an output y such that

|y| (mod p) = 0. For that, notice that c0 is:

⟨GHZ0
q,n|ψ(1)⟩ = 1

√
q

q−1∑
i=0

⟨i|⊗n 1
√
q

( q−2∑
i=0

|i⟩⊗n + e
i
2π|x|

p |q − 1⟩⊗n
)
=
q − 1 + cos(2π|x|p )

q
. (14)

We then divide that analysis into two cases:

1. If |x| mod p = 0, (c0)
2 equals 1. Consequently, measuring |ψ2⟩ leads to a string y such that

|y| mod q = 0.

2. If |x| mod p ̸= 0, we have c20 ≤
q−1+cos(

2π|x|
p

)

q . This implies that with a probability of least
1−cos( 2π

p
)

q , it holds that |y| mod q ̸= 0.

The remaining step consists of mapping y ∈ [q]n to bit-strings y′ ∈ {0, 1}q·n such that the
Hamming weight is preserved. This can be done with extra ancilla qubits by mapping each yi ∈ [q]
to the bit-string 1yi0q−yi . We denote the circuit that performs such an operation as C(q, 2).

2.2.2 Shallow depth quantum circuits with Toffoli gates

We show now that quantum circuits of constant depth built with multi-qudit controlled operations
along with intermediate measurements can generate qudit-GHZ states, demonstrating that QAC0

q

(without advice) can solve Rq·n
q,p with a one-sided error.

To achieve these qudit GHZ states, we use a specialized entanglement structure built upon
“poor-man’s cat states,” as referenced in [44, 3, 25]. Specifically, poor-man’s cat states are for-
mulated using graphs where the number of vertices is equal to the state’s qubit count, and the
edge configuration guarantees a unique path between all vertices. In our work, we fix this graph to
balanced binary trees Bn and extend these quantum states to higher dimensions.

8



Figure 1: Parameterized quantum circuit class for values q, p, and n, incorporating the advice
quantum state |GHZ0

q,n⟩, which solves the Rq·n
q,p with bounded one-sided error.

Definition 10 (Binary tree-structured poor-man’s qudit state).). Let q be a prime. We consider
the balanced binary tree Bn = (V,E), where V = {1, ..., n} and E = {{i,

⌊
i
2

⌋
} : i ∈ {2, ..., n}}. As

an example, we depict B6 in Figure 2.
We define a binary tree-structured poor-mans qudit state |BPMq,n⟩ as follows

|BPMq,n⟩ =
1√
qn

∑
e2,...,en,v1∈Fq

|e2, ..., en⟩ |v1, v2, v3, . . . , vn⟩ , (15)

where each vi, i ∈ {2, ..., n} is recursively defined as

vi = ei − v⌊ i
2
⌋. (16)

1

2

4

e3

5

e4

e1

3

6

e5

e2

Figure 2: Representation of B6.

We now show that these states can be created using constant-depth quantum circuits.

Lemma 11. For n ∈ N, |BPMq,n⟩ can be prepared in QNC0
q.

Proof. For creating this state, we start with a single qudit for each vertex and edge in Bn, i.e., we
have |V |+ |E| qudits, where the i-th qudit, for 1 ≤ i ≤ n− 1 corresponds to the edge {i+1, ⌊ i+1

2 ⌋}
and the i-th qudit, for n ≤ i ≤ 2n− 1 corresponds to the vertex i−n+1. We label qudits by their
corresponding vertices/edges.

9



We start by applying the Fourier gate Fq to each of the vertex qudits and then, for edge
e = {u, v} ∈ E we apply a SUMu,e

5 and SUMv,e. The overall state after these operations is:∑
v1,...,vn∈Fq

1√
qn

|(v1 + v2), (v1 + v3)..., (vn + vn
2
)⟩ ⊗ |v1, v2, v3, . . . , vn⟩ (17)

=
∑

e1,v1,v3...,vn∈Fq

1√
qn

|e1, (v1 + v3)..., (vn + vn
2
)⟩ ⊗ |v1, e1 − v1, v3, . . . , vn⟩ (18)

=
∑

e1,e2,v1,v4...,vn∈Fq

1√
qn

|e1, e2..., (vn + vn
2
)⟩ ⊗ |v1, e1 − v1, e2 − v1, v4, . . . , vn⟩ (19)

... (20)∑
e1,...,en−1,v1∈Fq

1√
qn

|e1, ..., en−1⟩ ⊗ |v1, e1 − v1, e2 − v1, . . . , en−1 − vn
2
⟩ (21)

= |BPMq,n⟩ , (22)

where all operations are (mod q) and all the equalities hold by rewriting the elements in Fq.
Finally, given that the Fq gates are all applied in parallel to the vertex qudits, and the chromatic

number of a balanced binary tree is equal to 3, all the SUMi,j gates can be parallelized in order to
be implemented in constant depth.

We now show that these states can be easily converted to GHZ states.

Lemma 12. There is a QAC0
q circuit Cn that maps |BPMq,n⟩ to the n-qudit state |GHZ0

q,n⟩.

Proof. In the circuit Cn, we first measure the edge qudits leading to the output string e1...en−1 ∈
Fn−1
q . The collapsed quantum state is

|e1, ..., en−1⟩ ⊗
1
√
q

∑
v1∈Fq

|v1, v2, ..., vn⟩ . (23)

where vi = ei − v⌊ i
2
⌋. Notice that by opening this recurrence relation, we have that

vi =

depth(i)−1∑
j=0

(−1)depth(i)−depth(qj(i))eqj(i) + (−1)depth(i)+1v1, (24)

where depth(i) denotes the depth of node i in the tree and qj(i) denotes the j-th predecessor of i
in the tree.

We notice that for each i, the value ci :=
∑depth(i)−1

j=0 (−1)depth(i)−depth(qj(i))eqj(i) can be computed

by poly(n)-size AC0 circuits on input, since it depends on at most log(n) values ej . In this case, a
poly(n)-size AC0 exists that computes c1...cn. Given these corrections, we can apply the gate Xci

to the i-th vertex qubit (which is a classically-controlled X gate), and the resulting state is:

|e1, ..., en−1⟩ ⊗
1
√
q

∑
v1∈Fq

n⊗
i=1

|(−1)depth(i)v1⟩ . (25)

Finally, we can apply the following operation to the qudits corresponding to the vertex of odd
depth: V |m⟩ = |p−m⟩ and the result state is

|e1, ..., en−1⟩ ⊗
1
√
q

∑
v1∈Fq

|v1⟩⊗n .

5The SUMi,j gate serves as the qudit equivalent of the CNOT gate and operates according to SUMi,j |n⟩i |m⟩j =
|n⟩ |n+m⟩.
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The reduction we previously discussed cannot be achieved using QNC0 or i-QNC0 circuits since
they cannot implement the essential corrections needed to transition from the poor man’s cat states
to the GHZ states. In contrast, we explore the additional computational power of QAC0 circuits
and show that they can produce the qudit GHZ states through a process involving mid-circuit
measurements. As a consequence, we can show the following.

Theorem 13. For any distinct primes p and q, a QAC0
q circuit can solve Rq·n

q,p with one-sided error

at most
1−cos( 2π

p
)

q .

Proof. Combining Lemma 11 and Lemma 12, we obtain that QAC0
q circuits can create qudit GHZ

states of the type |GHZ0
q,n⟩. In addition, all the QNC0

q circuits of Theorem 9 are contained in QAC0
q .

Therefore, all modular relation problems of the form Rq·n
q,p fixed prime numbers p and q can be

solved by QAC0 circuits.

2.3 Classical lower bounds

In this subsection, we prove the classical lower bounds for Rq·n
p,q . For that, we reduce it to computing

MODp function and use the Razborov-Smolensky separations (Theorem 35) for AC0[q]. Then, we
consider the k-Rq·n

q,p problem, and we show that AC0[q] circuits can solve them with only a negligible
probability at best by using the Vazirani-XOR lemma.

Lemma 14. Let p and q be two distinct primes. Any depth d circuit in AC0[q] that solves the Rq·n
q,p

problem with one-sided error probability at most 1/nΩ(1) has size exp(n1/(2d−Θ(1)).

Proof. Let us suppose, for the purpose of a contradiction, that there exists a circuit C in AC0[q] of
depth d−3 and size equal to exp(n1/(2d−Θ(1))) that computes Rq·n

q,p , with one-sided error probability
at most 1

no(1) . We will assume here that C computes the yes-instance with probability 1, and the
arguments follow analogously if C computed the no-instances with probability 1.

We will now prove that if such a C exists, then there exists a AC0[q] circuit C ′ that computes
the MODp function correctly with probability 1− negl(n). C ′ consists of running O(n2) times the
circuit C in parallel and then applying a MODq gate to each output string, and then applying a
NOR gate to the output of this layer of MODq gates. Figure 3 provides a representation of C ′.

If |x| mod p = 0, after running C on x, the resulting strings yi are such that |yi| mod q = 0.
Thus, the MODq gates to each of these strings lead to output 0. Therefore, after the NOR gate,
the result for this final bit will always be 1.

On the other hand, if |x| mod p ̸= 0, with probability 1/no(1), the strings yi after running C
have the desired property |yi| mod q ̸= 0. Therefore, with the same probability, the MODq gate
applied to this string will result in the Boolean value 1, and the probability of at least one of them
being equal to 1 is at least 1−negl(n). Therefore, the output of the NOR gate is 0 with probability
1− negl(n).

This leads to a depth-d circuit and size exp(n1/(2d−Θ(1))), that computes MODp in AC[q], con-
tradicting Theorem 35. Thus, circuit C with such properties cannot exist.

Subsequently, we show that polynomial-sized AC0[q] circuits solve the parallel repetition of the
modular relation problems with probability close to zero. To obtain this bound, we focus on the
success of AC0[q] circuits in computing the MOD2 function with one-sided error.

Corollary 15. The MOD2 function can not be solved by any one-sided error AC0[q] circuit with q
prime q ̸= 2 with a probability higher than 1/2 + 1/nΩ(1).

Proof. Let’s assume there exists an AC0[p] circuit that can solve the Yes instances of the MOD2

perfectly, then we know by Lemma 14 that the No instances can almost be solved correctly with
probability 1/no(1). This implies any circuit of this type solves the MOD2 function over a random
input w.p. at most 1/2 + 1/no(1).

11
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Figure 3: Representation of a classical AC0[q] circuit, parameterized by q and n, that reduces a
solution to the Rq·n

q,2 problem to a solution of MOD2(x), where x is the initial input string of size n.

Using all these tools, we can show that the class of AC0[q] fails to compute completely parallel
modular relation problems with a one-sided error for some parameter regimes.

Lemma 16. Let q ̸= 2 be a prime and k ∈ Θ(log(n)). No AC0[q] circuit can solve k-Rq·n
q,2 on at

least 1
2 +

1−cos( 2π
p
)

2q fraction of the parallel instances with one-sided errors and a probability higher

then n−Ω(1).

Proof. Let us suppose that there exists a circuit C ∈ AC0[q], where q ̸= 2, can solve the k-Rq·n
q,2

with the properties of the statement. Then, we can construct a circuit C ′ that solves the following
search problem

k-D2,2(x1, ..., xk) =
{
(y′1, ..., y

′
k)
∣∣∣∀xi ∈ Fn

2 , y
′
i ∈ F2, y

′
i + |xi| (mod 2) = 0

}
, (26)

with the same success, where C ′ is equal to C with an extra layer of MODq gates, thereby trans-
forming the outcome strings from k-Rq·n

q,2 into bits using the mapping MODq(yi) = y′i.

The circuit C ′ induces a probability distribution X on {0, 1}k, corresponding on picking random
x1, ..., xk ∈ {0, 1}n and outputting k output bits as follows,

(|x1|+ C ′
1(x1, . . . , xn) (mod 2), ..., |xk|+ C ′

k(x1, . . . , xn) (mod 2)). (27)

Our goal now is to prove that X is close to a uniform distribution {0, 1}k on half of its bits,
either for all xi with even or odd Hamming weight, if we assume one-sided error. For that, we
notice that we can describe for all S ⊆ [k] the following expectation value as∣∣∣Ez∈X [(−1)χS(z)]

∣∣∣ = 1

2|S|·n

∑
x1,...,xk∈Fn

2

(−1)⊕i∈S(|xi|+C′
i(x1,...,xn) (mod 2)) (28)

=
1

2|S|·n

∑
x1,...,xk∈Fn

2

(−1)(
∑

i∈S |xi|+
∑

i∈S C′
i(x1,...,xn)) (mod 2), (29)

where χS(z) = ⊕i∈Szi.
This allows us to bind the previous value for all the subsets S based on the number of times

the following equation is fulfilled for uniformly selected strings xi,∑
i∈S

|xi| ≡
∑
i∈S

C ′
i(x1, . . . , xn) mod 2. (30)

We observe that determining the values for the outcome bits i ∈ S such that the condition
of Equation (30) is satisfied by an AC0[q] circuit C ′ is as hard as computing the parity function

12



across the concatenated input strings ||i∈Sxi. This assertion is supported by the fact that a circuit,
which, if capable of determining valid outcome bits under the given condition, can be reduced to
one that does compute the parity of the concatenated input strings ||i∈Sxi with a polynomial-size
AC0[q] circuit. The latter follows from the fact that polynomial size AC0[q] circuits can effectively
compute the parity of a string of length log(n). Consequently, the probability that Equation (30)
is satisfied is directly related to the probability that an AC0[q] circuit computes the parity function
across the concatenated input strings ||i∈Sxi, albeit with a one-sided error. This condition is met
with a maximum probability of 1/2+n−Ω(1)/2, as inferred from Corollary 15. Therefore, we deduce
that for any characteristic function χS , the value of |Ex∈D[(−1)χS(x)]| is limited by 1

nΩ(1) , for all
input strings of either even or odd Hamming weight.

Now, we can apply Vazirani’s XOR Lemma (Lemma 38) to demonstrate that the distribution
X is at most 1/nΩ(1) · 2k/2 deviated in total variational distance from the uniform distribution,
on those inputs. Then, we can show by using the Chernoff bound that the event X described as

sampling a string with at least 1/2 +
1−cos( 2π

p
)

2q of 0’s from this distribution, has a probability that
decreases with,

Pr
(
X
)
< e

−2·(4/
1−cos( 2πp )

2q
)2(1/2)2/(k2)

< e−Ω(k2) . (31)

Thus, we obtain that the distribution X contains the same string with probability at most,

n−Ω(1) · 2k/2 + e−Ω(k2) = n−Ω(1)+k/(2 log(n)). (32)

Finally, we conclude that the previous value is bounded by nΩ(1), given that k = log(n).

2.4 Separations

In this section, we combine the results from Section 2.2.1 and Section 2.3 to achieve unconditional
separation between the classical and quantum circuit classes.

Theorem 17. For each fixed prime q, there exists a relation problem that cannot be solved by
polynomial-size circuits AC0[q] with success probability at least n−Ω(1), whereas there is a QNC0

q/qpoly

circuit and a QAC0
p circuit that can solve it with probability of least 1− o(1).

Proof. For the case where q = 2, the result is derived from Theorem 6 in [44]. For all q ̸= 2,
we apply the lower bounds and the respective instances of the parallel modular relation problems
k-Rq·n

q,2 discussed in Lemma 16. These instances establish that AC0[q] circuits solve this set of

problems with a probability of at most n−Ω(1).
In contrast, the QNC0

q/qpoly circuit, described in Theorem 9, can solve each instance of the

parallel repetition game with a one-sided error of
1−cos( 2π

p
)

q . Similarly, QAC0
p circuits achieve the

same success probability, as detailed in Theorem 13. By combining these individual solutions, we
deduce that the resulting global strategies effectively solve the k-Rq·n

q,2 problems, as outlined in
Lemma 16, with a probability of at least 1 − o(1). This follows by considering their respective
individual success probabilities and applying the Chernoff bounds.

Remark: We implicitly used the fact that the MOD2 operation is not contained in any other
AC0[q] class with q ̸= 2, which simplifies the proof since it allowed us to uniquely use Vazirani’s
XOR Lemma. However, we notice that the proof could follow with any other prime values and
modular functions.

One drawback of the previous results is that we need to pick a different qudit dimension for
each modular relation problem. However, if we consider infinite-size gatesets, we can show that all
the previous quantum circuits can be implemented with qubits and prove the separation for AC0[p]
for all primes p.
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Theorem 18. For all p prime, i-QAC0
2 ⊈ AC0[p].

Proof. From [37] and [2], we have that QNC0
p circuits can be implemented using single and two-

qubit operations contained in i-QNC0
2. Furthermore, all quantum operations in QAC0

p used for the
creation of the qudit-GHZ state in Lemmas 11 and 12 are controlled on a constant number of qudits
and therefore these operations can be implemented i-QNC0

2.
Finally, we need to show that corrections needed to transform the poor man’s cat states into

qudit-GHZ states can be executed in i-QAC0
2. As described in the proof of Lemma 12, these correc-

tions can be realized using a classical AC0 circuit, which is encompassed by i-QAC0
2. Consequently,

all quantum circuits from Theorems 13 and 17, for any prime p, can be constructed using i-QAC0
2

circuits.

2.5 Classical upper bounds for modular relation problems

In this subsection, we consider the classical upper bound on the modular relation problems, which
indicates the limitations on the quantum/classical separations using our techniques.

Lemma 19. For any fixed primes q,p and fixed k1, k2,m ∈ N, Rm
qk1 ,pk2

can be solved by an NC0[p]
circuit.

Proof. We start by showing that there exists an NC0[p] circuit that computes MODpk1 for any

k1 ∈ N. We use the AC0[p] circuits described in [17] and argue that they can be implemented in
NC0[p].

We prove this statement by induction on the exponent k1, showing that any MODpj gate can
be computed if we have access to MODpj−1 gates. The circuit construction from [17] is as follows:

1. For each i ∈ [n], compute yi = MODpj−1(x).

2. For all i ∈ 2, . . . , n, compute zi = AND(yi−1,¬yi).

3. Compute bj = AND(MODpj−1(
∑

i∈2,...,n zi),MODp(|x|)) = MODpj (x).

Given that the final value bj = MODpj (x) [17], in order to show that MODpj is in NC0[p], we only

need to show that each of these three steps can be implemented in NC0[p]. Let’s evaluate these
steps:

• The first step is inherently within NC0[p] due to inductive reasoning; given the prior case
produced an MODpj−1 gate, only the next steps need validation.

• The second step can be achieved with an NC0 circuit since it solely relies on bounded fan-in
AND gates.

• The third step follows since both modular gates are within NC0[p] from our induction, com-
bined with the AND gate having bounded fan-in.

Thus, any MODpk1 gate can be implemented within NC0[p] provided that k1 is a constant, which
determines the depth of the previously proposed circuit.

Finally, to prove our statement, i.e., to output a valid string for the modular relation problem
Rm

qk1 ,pk2
, one needs to use the NC0[p] circuit to compute the value of MODpk1 (x) and then append

it to a string like 0m−1. We have that |bk10m−1| (mod qk2) = 0 iff |x| (mod pk1) = 0.

Given the containment of the NC0[p] circuit classes within the AC0[p] classes, we have that all
modular relation problems are solvable by TC0 circuits.

Corollary 20. For any primes q,p and k1, k2,m ∈ N, Rm
qk1 ,pk2

can be solved in TC0.
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3 Shallow depth quantum circuits with infinite-size gate sets

This section considers constant-depth quantum circuits utilizing qubits and qudits, employing in-
finite gate sets and modular gates with unbounded fan-in while exploring their equivalences.

3.1 Constant-depth qudit circuits with quantum modular operators

In this subsection, we extend [42] and [29], and prove that the hierarchy of constant-depth quan-
tum circuits with an infinite gateset over qudits collapses when we have access to a multi-qubit
quantum/classical modular gate with unbounded fan-in gates.

We start by focusing on the quantum OR function, defined over Hilbert spaces of prime dimen-
sion p as follows,

qOR |x1, x2, . . . , xn⟩ := |x1 + OR(x2, x3, . . . , xn) (mod p), x2, . . . , xn⟩ . (33)

with the classical OR operating over strings in Fp defined as follows6,

OR(x) =

{
1 if

∑n
i=1 xi > 0,

0 otherwise.
. (34)

We first claim that a qudit analog of Høyer’s and Špaleks OR reduction [22], which allows us to
reduce the problem of computing qOR on an arbitrary state to the evaluation of qOR on another
state with exponentially fewer qudits.

Lemma 21. Let p be a prime. There exists a i-QNC0
p[p] circuit C, such that for every n qudit state

|ψ⟩ =
∑

x∈Fn
p
αx |x⟩, we have

C |ψ⟩ |0⟩⊗t =
∑

x∈Fn
p , y∈F

logp(n)
p

αxβy,x |y⟩ |x⟩ |0⟩⊗t′ = |ψ∗⟩ |0⟩⊗t′ , (35)

where and qOR |0⟩ |ψ⟩ = qOR |0⟩ |ψ∗⟩ with respect to the first qudit, while the second qOR does
operate uniquely over the first log(n) qudits of |ψ∗⟩.

Proof. We describe now our circuit C. In the first step of this proposed circuit, we have a layer of
n fanout gates, which are defined as follows

fanoutp |x1, x2, . . . , xn⟩ := |x1, (x1 + x2) mod p, . . . , (x1 + xn) mod p⟩ . (36)

The k-th fanoutp gate is applied to the k-th qudit of |ψ⟩ and a fresh logp(n)-qudit state initialized

on |0⟩⊗ log(n)7.
In parallel to these fanoutp gates, we create logp(n) copies of n-qudit GHZ states. These can

be created by an QNC0
p[p] circuit using the method proposed in [33]. We have the following state

|ψ(1)⟩ = Cstep 1 |ψ⟩ |0⟩⊗t =
∑
x∈Fn

p

αx |x⟩⊗ logp(n) |GHZ0
p,n⟩

⊗ logp(n) |0⟩⊗t′ . (37)

For each 1 ≤ k ≤ logp(n), we apply n controlled rotations, where the j-th rotation of the k-th
block will have as control the j-th qudit of the k-th copy of |x⟩ and its target is the j-th qudit of
the k-th GHZ state. The amplitude for all rotations in the k-th block is set to a fixed value of 2π

pk
.

Importantly, these operations can be implemented in constant depth due to the parallel copies of
|x⟩.

6The intuition behind the AND and OR functions over strings in Fp is that, similar to the binary case, the AND
function discriminates against only one string, while the OR function includes all strings except one.

7Note that this fanout gate can be equally created from the qMODp gate, fanoutp = (Fp)
⊗nqMODp(Fp)

⊗n.
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For a fixed x, this process modifies the k-th GHZ state to(
n⊗

i=1

Rp
Z

(
2πxi
pk

))
|GHZ0

p,n⟩ =
∑
x∈Fn

p

αx

(
1
√
p

p−1∑
j=0

e
i·
(
j· 2π

p
· |x|
pk

)
|j⟩⊗n

)
(38)

=
∑
x∈Fn

p

αx

p−1∑
j=0

cj,k,x |GHZj
p,n⟩ , (39)

with (cj,k,x)
2 = e

i
(
j
(

2π
p
(1− |x|

pk

))
.

Note that for |x| = 0, all these GHZ states remain unchanged and are equal to |GHZ0
p,n⟩.

However, in contrast, we will now prove that for all basis states |x⟩ with |x| ≥ 1, one of the logp(n)
GHZ states we started with ends up in the form |GHZm

p,n⟩, where m ̸= 0. In other words, for each
nonzero x, there exists one value of k for which cj,k,x equals 1 for a single value of j and 0 for all
others. Meanwhile, for the same value of x and all other values of k, cj,k,x takes non-unitary values
for all values of j. To establish this, we utilize the fact that any integer number |x| can always be
decomposed as

|x| = pax(p · bx +mx), (40)

with ax, bx ∈ N and mx ∈ [1, 2, . . . , p− 1]. Hence, if |x| > 0, then we have that(
n⊗

i=1

Rp
Z

(
2πxi

p(ax+1)

))
|GHZ0

p,n⟩ = |GHZmx
p,n⟩ , (41)

with mx ̸= 0 by definition. Therefore, cj=mx,k=ax,x = 1 and cj ̸=mx,k=ax,x = 0, while for all the

other GHZ states, these coefficients cj,k ̸=ax,x are non-unital as 2π
p (1 − |x|

pk

)
is not a multiple of 2π.

Thus, the state resulting from this set of controlled rotations is the following form,

|ψ(2)⟩ =Cstep 2

( ∑
x∈Fn

p

αx |x⟩⊗ logp(n) |GHZ0
p,n⟩

⊗ logp(n)
)
⊗ |0⟩⊗t′ (42)

=

(
α0n |0⟩⊗n logp(n) |GHZ0

p,n⟩0 |GHZ
0
p,n⟩1 . . . |GHZ

0
p,n⟩logp(n) +

∑
x∈Fn

p\0n
αx |x⟩⊗ logp(n) (43)

. . .

p−1∑
j=0

cj,ax,x |GHZj
p,n⟩

 |GHZmx
p,n⟩(ax+1)

p−1∑
j=0

cj,(ax+2),x |GHZj
p,n⟩

 . . .

)
⊗ |0⟩⊗t′ . (44)

We then apply Fourier gates F⊗n
p to the qudits initially entangled in GHZ states. Employing

Lemma 8, we deduce that when |x| = 0, the resultant states form a superposition of strings with a
Hamming weight congruent to zero modulo p. Conversely, for |x| ≥ 0, at least one state transitions
into a superposition of strings congruent modulo p to the inverse of mx. It is important to note
that since mx mod p is invariably non-zero, its additive inverse −mx mod p is likewise non-zero.
Subsequently, we apply a qMODp gate with each of these states as control and as a target a new
single qudit in a freshly initialized computational basis state |0⟩ in our third register. The existence
of the state described earlier ensures the qOR’s intended effect, as at least one qudit in the third
register will deterministically shift to a basis different from |0⟩. For |x| ≥ 0, since the GHZ states
prior to the Fourier gates are superpositions in the Qudit-GHZ orthogonal X-basis, these strings
after the Fourier gates are superpositions that align modulo p with potentially any value in Fp.
Consequently, in the third register, all other qudits assume superpositions dependent on the input,
yet they do not influence the qOR operation.
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Afterward, we apply a layer of the inverses of the Fourier gates F⊗n
p to exactly the same qudits

in the second register as before, and consequently, they revert to the same states as described in
Equations 43 and 44, being for all k ∈ {1, . . . , log(n)} of the form

∑
x∈Fn

p

αx

(
1
√
p

p−1∑
j=0

e
i·
(
j· 2π

p
· |x|
pk

)
|j⟩⊗n

)
=
∑
x∈Fn

p

αx

p−1∑
j=0

cj,k,x |GHZj
p,n⟩ . (45)

This is possible because previously, we simply applied a qMODp with these states as control
and did not change the target qudits. Thus, these states return to the same bases and states after
the use of the inverse Fourier gates. Therefore, after these operations, we obtain the subsequent
state, for which we do not represent the qudits of the third register in its position but next to each
GHZ state that generated each one of them for a simpler representation.

Cstep 3 |ψ(2)⟩ |0⟩⊗t′ =

(
α0n |0⟩⊗(n·logp(n)) |GHZ0

p,n⟩0 |GHZ
0
p,n⟩1 . . . |GHZ

0
p,n⟩logp(n) |0⟩

⊗ logp(n) (46)

+
∑

x∈Fn
p\0n

αx |x⟩⊗ logp(n) . . .

p−1∑
j=0

cj,ax,x |GHZj
p,n⟩ |−j⟩

 |GHZmx
p,n⟩(ax+1)

|−mx⟩ (47)

p−1∑
j=0

cj,(ax+2),x |GHZj
p,n⟩ |−j⟩

 . . .

)
⊗ |0⟩⊗t′′ . (48)

At this stage, all the qudits in the three registers are entangled. However, we can disentangle
the first and third registers from the second, which contains the GHZ states. This disentanglement
can be achieved using the third register that retains the phase information of the equivalent of the
GHZ states, creating the entanglement between these two registers. For that, we use generalized
controlled rotations, with the control based on the qudits of the third register, applied to one qudit
of the respective GHZ state of amplitude 2π

pk
. For simplicity, we will consider first the effect on a

single basis of |x⟩,

αx |x⟩⊗ logp(n) . . .

p−1∑
j=0

cj,ax,x

(
CGR

(
2π

pk

)
|GHZj

p,n⟩ |−j⟩
) . . . (49)

= αx |x⟩⊗ logp(n) . . .

 1
√
p

p−1∑
j=0

e
i·
(
j· 2π

p
· |x|
pk

) (
CGR

(
2π

pk

)
|j⟩⊗n |−j⟩

) . . . (50)

= αx |x⟩⊗ logp(n) . . .

 1
√
p

p−1∑
j=0

e
i·
(
j· 2π

p
· |x|
pk

)
e
i·
(
−j· 2π

p
· |x|
pk

)
|j⟩⊗n |−j⟩

 . . . (51)

= αx |x⟩⊗ logp(n) . . .

p−1∑
j=0

|GHZ0
p,n⟩ |−j⟩

 . . . . (52)

Now as the previous transformation is independent of the respective basis |x⟩, we obtain the fol-
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lowing state,

Cstep 4 |ψ(3)⟩ |0⟩⊗t′′ =

(
α0n |0⟩⊗(n·logp(n)) |GHZ0

p,n⟩0 |GHZ
0
p,n⟩1 . . . |GHZ

0
p,n⟩logp(n) |0⟩

⊗ logp(n) (53)

+
∑

x∈Fn
p\0n

αx |x⟩⊗ logp(n) . . . |GHZ0
p,n⟩

p−1∑
j=0

cj,ax,x |−j⟩

 |GHZ0
p,n⟩(ax+1)

|−mx⟩ (54)

|GHZ0
p,n⟩

p−1∑
j=0

cj,(ax+2),x |−j⟩

 . . .

)
⊗ |0⟩⊗t′′ . (55)

Consequently, we end up with logp(n) GHZ states of the form |GHZ0
p,n⟩, which are no longer

entangled with the other registers, as intended. These states and the repetitions of the initial state
can be easily removed using the fanout gates and their inverses8 obtaining the following state,

|ψ(5)⟩ = Cstep 5 |ψ(4)⟩ =

(
α0n |0⟩⊗(n+logp(n)) +

∑
x∈Fn

p\0n
αx |x⟩ . . .

p−1∑
j=0

cj,ax,x |−j⟩

 |−mx⟩ (56)

p−1∑
j=0

cj,(ax+2),x |−j⟩

 . . .

)
⊗ |0⟩⊗t′′′ =

∑
x∈Fn

p , y∈F
logp(n)
p

αxβy,x |x⟩ |y⟩ ⊗ |0⟩⊗t′′′ . (57)

Finally, if we take |ψ∗⟩ as |ψ5⟩ with the first and second register swapped, we obtain that the
former state satisfies the property qOR |0⟩ |ψ⟩ = qOR |0⟩ |ψ∗⟩ on the first qudit, with the second

qOR applied only to the first log(n) qudits. This is justified by that fact that the basis |0⟩⊗ logp(n)

in |ψ∗⟩ has the same amplitude as the basis |0⟩⊗n in |ψ⟩. The same principle forcefully applies to
set all the bases orthogonal to the previously described, as demonstrated in Equations 56 and 57.
Therefore, the effect of the qOR function on the first qudit state is equal for both cases considered
completing the proof.

The second step shows an exponential-size i-QNC0
p circuit for qOR. For that, we use the following

theorem on the representation of functions as a multi-linear polynomial over Fp, expanding previous
uses of these objects over F2 and F3 [29, 31, 27].

Theorem 22. [26] Every function f : Fn
p → R can be expressed as a polynomial

f(x) =
∑

k1,k2,...,kn∈Fp

f̂(χk1,k2,...,kn) · χk1,k2,...,kn(x), (58)

with f̂(χk1,k2,...,kn) being a real coefficient, and χk1,k2,...,kn(x) multi-linear function in Fp.

We now extend the techniques of [42] to show that our exponential-size circuit for qOR.

Lemma 23. For any prime p, qOR can be implemented on an n-qudit state using O(n · pn) oper-
ations in i-QNC0

p[p].

Proof. Let us describe the i-QNC0
p circuit that computes qOR. The first layer of the circuit consists

of n− 1 fanout gates, where the i-th gate is controlled by the (i+1)-th qudit of the initial state to

a new register initialized to |0⟩⊗pn−1

. This maps the initial state |0⟩ |ψ⟩ |0⟩⊗t to

|0⟩
∑

x∈Fn−1
p

αx |x⟩ (|x2, . . . , xn⟩)⊗pn−1 |0⟩⊗t′ . (59)

8The inverse of the fanoutp gate is simply (fanoutp)
p−1.
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We then apply pn−1 parallel qMODp gates, where the i-th gate is applied on the i-th block of the
previous state, and the qMODp computes a different χk1,k2,...,kn leading to

|0⟩
∑
x∈Fn

p

αx |x⟩

 ⊗
k1,...,kn−1∈Fp

|x2, . . . , xn⟩ |χk1,k2,...,kn−1(x2, ..., xn)⟩

 |0⟩⊗t′ . (60)

We then create a |GHZ0
p,pn−1⟩ state and we apply generalized controlled rotations as follows. The

i-th rotation has as control the register where χk1,k2,...,kn(x2, ..., xn) is computed and the target is

the i-th qudit of the GHZ state. The angle of the rotation is f̂OR(χk1,k2,...,kn). These angles are
defined by the OR function which is defined as follows,

OR(x) =

{
p− 1 if

∑n
i=1 xi > 0,

0 otherwise.
(61)

and that we decompose, according to Theorem 22 as

OR(x) =
∑

k1,k2,...,kn∈Fp

f̂OR(χk1,k2,...,kn) · χk1,k2,...,kn(x) (62)

to obtain the following state on this last register,

|OR⟩ =
∑
x∈Fn

p

αx

(
1
√
p

p−1∑
j=0

e
j·π

p

(∑
k1,k2,...,kn−1∈Fp f̂OR(χk1,k2,...,kn−1

)·χk1,k2,...,kn−1
(x2...xn)

)
|j⟩⊗pn−1

)

=
∑
x∈Fn

p

αx

(
1
√
p

p−1∑
j=0

e
j·π·OR(x2...xn)

p |j⟩⊗pn−1

)
=
∑
x∈Fn

p

αx |GHZOR(x2,...,xn)
p,pn−1 ⟩ .

In the last step, we apply the Fourier gate to all the qudits in the newly created state in the
third register and a single use of the quantum modular gate qMODp from all the qudits to the first
qudit in the state |0⟩. Using Lemmas 7 and 8, we obtain the state

∑
x∈Fn

p

αx |OR(x2 . . . xn)−1⟩ |x1, x2, . . . , xn⟩ ⊗
k1,...,kn−1

|x2, . . . , xn⟩ |χk1,k2,...,kn−1(x2, ..., xn)⟩

 (
1√
pn−2

∑
z∈Fn−1

p

|z| mod p=−OR(x2,...,xn)

|z⟩

)
.

Next, we apply a SUM gate to the first qudit, with the first qudit from the initial state |ψ⟩.
This ensures we obtain the expected output state from applying qOR function on the input state
|ψ⟩ given that −OR(x2, . . . , xn) = OR(x2, . . . , xn). Finally, we execute the inverse operations on
the auxiliary qudits to decouple these from the input state. We can do this because all operations
acting on the input state and auxiliary qudits are unitary. In addition, the inverse operations of
fanoutp, qModp, and of the controlled rotations—are all within QNC0

p[p]. See Appendix A.2.1 for
details on the first two operations.

We now prove our first collapse of the different classes on constant-depth quantum circuits.

Theorem 24. i-QNCp[p] = i-QACp[p], for any p prime.
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Proof. To prove this collapse, we need only to show that qOR and the qAND operation can be
implemented by an i-QNCp[p] circuit. The latter gate is already the Toffoli X gate, which we can
use to obtain any other multi-qudit Toffoli gate.

To implement qOR, we integrate circuits C1 and C2 from Lemmas 21 and 23, respectively.
Circuit C1 effectively reduces the number of qudits in the state |ψ⟩, generating a new state |ψ∗⟩ that
preserves the qOR output alongside a fresh |0⟩, and C2 performs the actual qOR computation. By
applying C1 to all qudits of |ψ⟩ except the first, and subsequently feeding |0⟩ |ψ∗⟩ to C2. The global
output is generated by applying the SUM gate to the first qudit

∑
x∈[pn−1] αx2,...,xn |OR(x2, . . . , xn)⟩

resulting from C2 and the first qudit of the initial |ψ⟩ state.
To conclude the proof, we return all auxiliary qudits to their initial state, |0⟩⊗t. Initially, we

observe that log(n) auxiliary qudits arise from the OR reduction. We then apply the exponentially
large qOR operator, described in Lemma 23, to these logp(n) qudits. Importantly, this step does
not introduce additional auxiliary qudits. Thus, our goal now is to reverse the state of these log(n)

auxiliary qudits to |0⟩⊗ logp(n), without impacting the result obtained from the qOR operation. We
notice that undoing the operation on the log(n) qubits is possible since the operations of Lemma 21
can be reverted even if the first and second registers are entangled with the qubit where the qOR was
applied. This implies that the log(n) qudits were unnecessary to achieve the intended final state.
Hence, we can reversibly return these qudits to their initial state without losing any information.

The reversal process is straightforward. We follow the steps used to generate these logp(n)
qudits but omit the application of the qMOD operator, as delineated in Lemma 21. Instead, we
employ the qMODp−1 operator. This ensures that all qudits are restored to the |0⟩ state, completing
the process unitarily.

For the next collapse, we need to demonstrate that the quantum threshold gate is in i-QNC0
p[p].

For that, we first demonstrate that the quantum version of the Exactk function is contained in the
same circuit class.

Definition 25. Exactk. The Exactk function is defined as follows,

Exactk(x) =

{
1 if

∑n
i=1 xi = k

0 otherwise
, (63)

and its quantum analog as the following operation over Hilbert spaces of prime dimension p

qExactk |x1, x2, . . . , xn⟩ := |x1 + Exactk(x2, x3, . . . , xn) (mod p), x2, . . . , xn⟩ . (64)

Lemma 26. For any prime p, qExact can be implemented in i-QNC0
p[p].

Proof. We approach this problem once again using a constructive method, retaining most elements
from the circuit used for the qOR function. The qOR function fundamentally discerns whether a
computational basis state has a Hamming weight of zero. However, the initial step involving the
qOR reduction will be modified. Previously, this reduction applied controlled rotations to GHZ
states, effectively implementing a rotation with an amplitude proportional to the Hamming weight
of the computational basis states, denoted as 2π|x|

pi
. The new circuit introduces additional rotations

to each i-th GHZ state with an amplitude of−2πk
pi

respectively. This supplemental rotation emulates
the behavior of the original circuit, equating the effects of a string with a Hamming weight of zero
to those of a string with a Hamming weight of k. As a result, when these modified states are
subsequently processed by the remaining qOR circuitry, the outcome will precisely compute the
qExactk function.

Using Lemma 26, we push the collapse of Theorem 24 further to constant-depth quantum
circuits with threshold gates.

Theorem 27. For any prime p, i-QNCp[p] = i-QTCp.
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Proof. To prove this statement, it is sufficient to show that qTHk can be implemented in i-QNCp[p].
The circuit for qTHk is composed of n− k qExactt operations (described in Lemma 26) for which t
will range from k to n. In this setup, the fanout gate is employed to parallelize the application of the
qExactt operations. As a result, we generate states of the form

∑
x∈Fn−1

p
αx |Exactk(x2 . . . xn)⟩ |x⟩

based on the input state |ψ⟩ =
∑

x∈Fn
p
αx |0⟩⊗(n−k) |x⟩.

Subsequently, the qOR gate will be applied to all these states, and a computational basis state
|0⟩, obtained with the following state,∑

x∈Fn
p

αx |OR(Exactk(x2 . . . xn),Exactk+1(x2 . . . xn), . . . ,Exactn(x2 . . . xn))⟩ (65)

|Exactk(x2 . . . xn)⟩k . . . |Exactk(x2 . . . xn)⟩n |x⟩
⊗(n−k) (66)

=
∑
x∈Fn

p

αx |THk(x1 . . . xn)⟩ . . . |x⟩⊗(n−k) . (67)

It requires only applying the SUM gate between the first qudit and the first qudit of the state
|ψ⟩, and we obtain the state resulting from applying the qTHk on the input state |ψ⟩. The last
step resumes applying all the inverse unitaries on the auxiliary qudits to detangle those from the
resulting state. Lastly, we apply the inverse unitaries to all auxiliary qudits, disentangling them
from the final state while preserving the desired output.

3.2 Constant-depth qudit circuits with classical modular operators

In this section, we consider the collapse of constant-depth circuits with infinite-size quantum gate
sets and classical modular gates.

We first show that quantum modular gates can be implemented with constant depth measure-
ment patterns and classical modular gates.

Lemma 28. The qMODp gate can be implemented in i-QNC0
p[p]c.

Proof. Our first step in this proof is to show that a circuit in i-QNC0
p[p]c can implement the fanoutp

gate over an arbitrary quantum state, |ψ⟩ =
∑

x∈{0,1,...,p−1}n αx |x⟩.
For that, we first create an |GHZ0

p,n⟩ state and apply a SUM where the control-qudit is the first
qudit of |ψ⟩ and the target is the first qudit of the GHZ state. This leads to the state,

|ψ(1)⟩ =
∑
x∈Fn

p

αx(I
⊗n ⊗ (Xp)

x1 ⊗ I⊗(n−1)) |x⟩ |GHZ0
p⟩ . (68)

Subsequently, we measure the first qudit of the second register with outcome m1 ∈ {0, 1, . . . , p−1}.
The post-measured state will then be

|ψ(2)⟩ =
∑
x∈Fn

p

αx |x1, x2 . . . xn,m1, (x1 +m1) mod p, . . . , (x1 +m1) mod p⟩ . (69)

We then apply (Xp)
−m1 to each of the n− 1 qudits of the second register, leading to the state

|ψ(3)⟩ =
∑
x∈Fn

p

αx |x1, x2, . . . , xn,m1, x1, . . . , x1⟩ . (70)

Using this state, we can apply a layer of n− 1 parallel SUM gates where the control gate is one
of the n − 1 last qudits, and the target is one of the qudits from the 2nd to the n-th qudit in the
first register. Resulting in the following state

|ψ(4)⟩ =
∑
x∈Fn

p

αx |x1, (x2 + x1) mod p, . . . , (xn + x1) mod p,m1, x1, . . . , x1⟩ , (71)
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which is equivalent to applying the fanoutp gate on state |ψ(3)⟩.
The last step is to remove the entanglement between the first n qudits and the last n− 1 ones.

For that, we apply the Fourier gate to the last n− 1 qudits, and we have

|ψ(5)⟩ = 1√
pn

∑
m2...mn∈Fn−1

p

∑
x∈Fn

p

αx · ei
−2πx1(

∑n
i=2 mi)

p (72)

|x1, (x2 + x1) mod p, . . . , (xn−1 + x1) mod p,m1, . . . ,mn⟩ . (73)

We can then measure the last n− 1 qudits with outcome m2, ...,mn ∈ Fp to determine the value of
ϕ = −

∑n
i=2mi (mod p) and apply a controlled generalized rotation CGRp

Z with control on x1 and
parameterized by ϕ to remove the relative phase introduced by the Fourier gates9. Tracing out the
measured states, we have the state

|ψ(6)⟩ =
∑
x∈Fn

p

αx |x1, (x2 + x1) mod p, . . . , (xn + x1) mod p⟩ . (74)

which corresponds to state (fanoutp |ψ⟩), as intended.
Finally, we only need to use the circuit that translates the fanoutp gate to the qMODp gate,

using simply the standard translation presented by qubits [22] in higher dimensions with the Fourier
gates. This and the fact that all the sub-processes described previously are contained in i-QNC0

p[p]c
completes the proof.

Using this lemma and the results in the previous subsection we can prove the following.

Lemma 29. For any prime p, i-QNCp[p]c = i-QTCp.

Proof. It follows from Lemma 28 that i-QNCp[p]c = i-QNC0
p[p]. The result follows since i-QTCp =

i-QNC0
p[p] from Theorem 27.

Lemma 29 shows that the implementation of constant-depth MBQC over prime dimensional
qudits is capable of the same type of circuit collapses as all the ones that have been demonstrated
for qubits. Now we show how these circuit classes compare to each other.

Theorem 30. For any p and q prime. i-QTC0
p ⊆ i-QNC0

2[q]c.

Proof. The proof proceeds in two steps. Firstly, we show that i-QNC0
q and i-QNC0

p are contained

in i-QNC0
2 for any primes p and q. To establish this, we need a mapping from the qudit basis to

the qubit basis for both prime dimensions, p and q. For example, qutrits can be mapped to qubits
using the following correspondence: |0⟩ → |00⟩ , |1⟩ → |01⟩ and |2⟩ → |11⟩, utilizing only a subspace
of the Hilbert space of dimension 4. Consequently, any qudit can be translated into 2⌈p/2⌉ qubits.
Additionally, any unitary operator over a Hilbert space of dimensions p and 2p can be mapped to a
unitary operator over a Hilbert space of dimensions 2⌈p/2⌉ and 4⌈p/2⌉. This new operator applies
the same transformation over the encoded qubit basis as the original did over the qudits, while the
basis ignored by the encoding is operated by the identity locally.

This argument can be augmented with the demonstration that all such fixed sizes can be
constructed in constant depth using single and two-qubit gates, as described in [37] and [2]. These
methods prove that any unitary operator on k qubits can be synthesized using at most O(k34k)
two-qubit gates. This further suggests that all operations in i-QNC0

q and i-QNC0
p can be executed

by an i-QNC0
2 circuit with a specific encoding for each prime dimension.

Given that all operations in i-QNC0
q can be achieved within i-QNC0

2, it follows that all operations

in i-QNC0
q [q]c also belong to i-QNC0

2[q]c. This implies that i-QNC0
2[q]c contains the MODp gate.

9The value of ϕ is classical and can be determined using the classical MODp gates with a binary outcome in the
form of p bits, with only one of them being equal to 1, determining the value ϕ.
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Coupled with the fact that i-QNC0
2 can implement all the operations in i-QNC0

p, we deduce that

i-QNC0
2[q]c can execute all operations in i-QNC0

p[p]c for any given prime p. The final piece to consider
is Lemma 29, which allows us to arrive at the desired result.

Building on this result, we can also extend the quantum-classical separations illustrated by [18]
and [42], which separated i-QNC0

2[2] from the classical AC0[p] classes.

Corollary 31. For all p and q prime, i-QNC0
2[q]c ⊈ AC0[p].

Proof. The i-QNC0
2[q]c class contains all the operations of i-QNC0

q ; therefore, it contains all the

operations in i-QTC0
q , which include all the MODk operations, with k prime. This is combined with

Razborov-Smolensky separations (Theorem 35), which states that all AC0[p] classes fail to compute
any MODk gate other than the MODp gate with p and k being two distinct prime numbers finishes
the proof.
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[9] Jop Briët, Harry Buhrman, Davi Castro-Silva, and Niels MP Neumann. Noisy decoding by
shallow circuits with parities: classical and quantum. arXiv preprint arXiv:2302.02870, 2023.

[10] Dan Browne, Elham Kashefi, and Simon Perdrix. Computational depth complexity of
measurement-based quantum computation. In Wim van Dam, Vivien M. Kendon, and Si-
mone Severini, editors, Theory of Quantum Computation, Communication, and Cryptography,
pages 35–46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[11] Dan Browne, Elham Kashefi, and Simon Perdrix. Computational depth complexity of
measurement-based quantum computation. In Wim van Dam, Vivien M. Kendon, and Si-
mone Severini, editors, Theory of Quantum Computation, Communication, and Cryptography,
pages 35–46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

23



[12] Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Generalized flow and
determinism in measurement-based quantum computation. New Journal of Physics, 9(8):250,
aug 2007.

[13] Matthew Coudron, Jalex Stark, and Thomas Vidick. Trading locality for time: certifiable
randomness from low-depth circuits. Communications in mathematical physics, 382:49–86,
2021.

[14] M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang. Quantum lower bounds for fanout.
Quantum Info. Comput., 6(1):46–57, jan 2006.

[15] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical systems theory, 17(1):13–27, 1984.

[16] Oded Goldreich. Three xor-lemmas—an exposition. Studies in Complexity and Cryptogra-
phy. Miscellanea on the Interplay between Randomness and Computation: In Collaboration
with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kauf-
man, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi
Wigderson, David Zuckerman, pages 248–272, 2011.

[17] Oded Goldreich. On teaching the approximation method for circuit lower bounds. Eletronical
Colloquium on Computational Complexity, 2023.

[18] Frederic Green, Steven Homer, Cristopher Moore, and Christopher Pollett. Counting, fanout
and the complexity of quantum acc. Quantum Info. Comput., 2(1):35–65, dec 2002.

[19] Daniel Grier and Luke Schaeffer. Interactive shallow clifford circuits: Quantum advantage
against nc¹ and beyond. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, page 875–888, New York, NY, USA, 2020. Association for
Computing Machinery.

[20] Koen Groenland, Freek Witteveen, Kareljan Schoutens, and Rene Gerritsma. Signal processing
techniques for efficient compilation of controlled rotations in trapped ions. New Journal of
Physics, 22(6):063006, 2020.

[21] Nikodem Grzesiak, Andrii Maksymov, Pradeep Niroula, and Yunseong Nam. Efficient quantum
programming using ease gates on a trapped-ion quantum computer. Quantum, 6:634, 2022.
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A Preliminaries

A.1 Classical circuit classes

Circuit classes form a crucial aspect of computational theory, helping to categorize and understand
the computational capabilities of various models. Certain classical circuit classes emerge as espe-
cially relevant when studying constant-depth quantum circuits. This subsection will list and define
the main classes of interest while also summarizing pertinent theorems associated with them.

Definition 32 (NCk class). The NCk class is defined as the computational problems that can be
solved in poly-logarithmic depth log(n)k using polynomially-many gates. The gate set for this class
comprises the following bounded fan-in gates,

AND , OR , NOT } .{

Definition 33 (ACk class). The ACk class is defined as the computational problems that can be
solved in poly-logarithmic depth log(n)k using polynomial-many gates. The gate set for this class
comprises the following unbounded fan-in gates,

AND , OR , NOT } .{

Definition 34. (ACk[p] class). The ACk[p] class is defined as the computational problems that can
be solved in poly-logarithmic depth log(n)k using polynomial-many gates. The gate set for this class
comprises the following unbounded fan-in gates,

AND , OR , MODp
, NOT } ,{

with MODp gate defined as follows,

MODp(x) =

{
1 if

∑n
i=1 xi mod p = 0

0 if
∑n

i=1 xi mod p ̸= 0
. (75)

The Razborov-Smolensky separations between all the AC0[p] classes will be fundamental to
establishing new separations between these and quantum constant depth circuit classes.

Theorem 35. [41] Let p be a prime number, and q is not a power of p, then computing MODp

with a depth d, AC0[q] circuit, requires exp(Ω(n1/2d)) size.

Furthermore, it should be noted that this theorem implies that when we construct a graph using
the AC0[q] classes as vertices and draw edges between pairs of classes that are not subsets of each
other, we obtain a complete graph. Thus, for each edge, at least two problems distinguish one class
from the other (see Figure 4).
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Figure 4: Graph representation of AC0[p] classes with p prime. Each edge denotes that the connected
classes are distinct, without one being a subset of the other. Along the edges, examples highlight
problems that are in one class but excluded from the other.

Definition 36 (TCk class). The TCk class is defined as the computational problems that can be
solved in poly-logarithmic depth log(n)k using polynomial-many gates. The gate set for this class
comprises the following unbounded fan-in gates,

AND , OR , THt
, NOT } ,{

with THk gate defined as follows,

THt(x) =

{
1 if

∑n
i=1 xi ≥ t

0 if
∑n

i=1 xi < t
. (76)

We introduce a class that is not standard in circuit complexity literature but holds significance
for the discussions and results presented in this text.

Definition 37. (NC0[p] class). The NCk[p] class is defined as the computational problems that can
be solved in poly-logarithmic depth log(n)k using polynomial-many gates. The gate set for this class
comprises the bounded fan-in AND, OR, NOT gates, and a single unbounded fan-in Mod p gates.

A considerable number of important results in computational complexity pertain to the circuit
classes we have defined, as well as their interrelations [15, 41, 39, 1]. Consequently, we will present
the established containments for these classes,

NC0 ⊊ AC0,NC0[p] ⊊ AC0[p] ⊊ TC0 ⊆ NC1. (77)

This knowledge is crucial for comprehending the capabilities of each circuit class and discerning
the position of quantum circuit classes relative to them.

Lastly, we will present the Vazirani-XOR lemma, which is of great interest to the study of
parallel repeated games. This lemma is of particular interest for the analysis of constant-depth
circuits and will be used to improve our classical hardness results.

Lemma 38. (Vazirani’s XOR Lemma [16]). Let D be a distribution on Fm
2 and χS denote the

parity function on the set S ⊆ [m], defined as χS(x) = ⊕i∈Sxi. If |Ex∈D[(−1)χS(x)]| ≤ ϵ for every
nonempty subset S ⊆ [m], then D is ϵ · 2m/2-close in statistical distance to the uniform distribution
over Fm

2 .

A.2 Quantum computation with qudits

We first review the basic operations on qudits, and then explain the qudit MBQC model.
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A.2.1 Qudit operations

In this preliminary section, we present the qudit gates that will be employed in subsequent sections
of the text to construct the quantum circuits essential for our main proofs.

The first qudit operation that we will define will be a generalized version of the qubit X gate.

Definition 39 (X qudit gate). The X gate for qudits is defined as follows,

Xd |m⟩ := |m+ 1 mod d⟩ . (78)

Then a rotation about the Z axis will be defined as follows,

Definition 40 (Rotation Z qudit gate). The rotation Z operator for qudits is defined as follows,

Rd
Z(ϕ) :=

d−1∑
j=0

ei(1−sgn(d−1−j)ϕ) |j⟩ ⟨j| . (79)

In addition, we will define and make use of a more complex rotation Z operator.

Definition 41 (Generalized rotation Z qudit gate). The generalized rotation Z operator for qudits
is defined as follows,

GRd
Z(ϕ) :=

d−1∑
j=0

ei(ϕj) |j⟩ ⟨j| . (80)

The last single qudit operation will be the qudit Hadamard gate.

Definition 42 (Fourier gate). The Fourier gate is defined as follows

Fd |m⟩ = 1√
d

∑
n∈Zd

wmn |n⟩ , (81)

with w = ei
2π
d .

Now the respective two qudit gates of interest are the qudit CNOT gate and the controlled
rotation Z gate.

Definition 43 (SUM gate). The SUM gate is defined as follows,

SUM |n⟩ |m⟩ = |n⟩ |n+m⟩ . (82)

Definition 44 (Controlled generalized rotation Z qudit gate). The CGRd
Z gate is defined as follows,

CGRd
Z |n⟩ |m⟩ = |n⟩ (GRd

Z)
n |m⟩ . (83)

The last two multi-qudit operations are the following.

Definition 45 (fanout−1
p ). The fanout−1

p gate is defined as follows,

fanout−1
p |x0, x1, . . . , xn⟩ := |x0, (p− x0) + x1 mod p, . . . , (p− x0) + xn mod p⟩ , (84)

and can be implemented with (fanoutp)
p−1.

Definition 46 (qMOD−1
p ). The qMOD−1

p gate is defined as follows,

qMOD−1
p |x0, x1, . . . , xn⟩ := |x0 + (p− x1 + . . .+ xn) mod p, x1, . . . , xn mod p⟩ , (85)

and can be implemented with (qMODp)
p−1.
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A.2.2 Qudit MBQC

The measurement-based quantum computation (MBQC) model was first introduced in [35, 36]. Un-
like the standard circuit model, MBQC operates by performing measurements on universal quantum
resource states [43]. Although these two models have a very different nature, they are computa-
tionally equivalent modulo a polynomial overhead. In this work, the generalization of MBQC to
qudits [5] is especially relevant, since the circuits arising from this model exactly characterize the
circuit classes, which we will analyze in detail.

In qudit MBQC, quantum algorithms are commonly referred to as measurement patterns. These
patterns are defined by both a resource state and a distinct set of measurement operators for each
qudit in the resource state. A noteworthy aspect is the existence of adaptivity, defined by the
interdependencies between the measurement operators and their resulting outcomes. These inter-
dependencies guide the information flow within the quantum state, which experiences decoherence
due to the measurements; this guiding principle is termed ’flow.’ This flow can be succinctly rep-
resented as a directed graph, denoted as G = (V,E), where the vertices are associated with the
measurement operators, and the update conditions between operators and results are represented
by the edges of the graph [12]. The steps for executing a measurement pattern are detailed below,

1. Initialize a set of qudits, the number of which matches the count of vertices |V | in the graph,
all set to the state Fp |0⟩;

2. Apply the entangling gates Evi,vj between the necessary qudits to produce the resource state.

3. For each temporal layer ti in the flow, sequentially:

(a) Implement the Pauli corrections for each vertex in ti, based on prior measurement out-
comes Mj<i as dictated by the edges of graph G.

(b) Conduct the qudit measurement M b
ti(θ) within the same temporal layer ti of the flow

graph, for every time step i.

This model has been both the focus and inspiration for various works in studying the complexity
of constant-depth quantum circuits [19, 11, 40]. However, a detailed analysis exploring the com-
putational differences within the model, especially concerning the utilization of higher-dimensional
resource states and measurement operators, remained to be delved into [5].

A.3 Quantum circuit classes with infinite gatesets

Definition 47 (i-QNC0
d). For a given positive integer d, let Ud represent the set of all unitary oper-

ators on a d-dimensional Hilbert space Hd, and let Cd denote the set of single qudit controlled gates
from Ud. We define i-QNC0

d as the class of quantum circuits with constant depth and polynomial
size, using a gate set drawn from the combination of Ud and Cd.

Definition 48 (i-QAC0
d). For a given positive integer d, let Ud represent all unitary operators on

a d-dimensional Hilbert space Hd, and let T k
d denote a multi-qudit controlled gate selected from Ud.

We define i-QAC0
d as the class of quantum circuits with a constant depth and polynomial size, using

a gate set drawn from the combination of Ud and T k
d with unbounded classical fanout.
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