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A CHARACTERISATION OF SEMIGROUPS WITH ONLY

COUNTABLY MANY SUBDIRECT PRODUCTS WITH Z

ASHLEY CLAYTON, CATHERINE REILLY, AND NIK RUŠKUC

Abstract. Let Z be the additive (semi)group of integers. We prove that for a finite
semigroup S the direct product Z×S contains only countably many subdirect products
(up to isomorphism) if and only if S is regular. As a corollary we show that Z×S has
only countably many subsemigroups (up to isomorphism) if and only if S is completely
regular.

1. Introduction

For two semigroups S and T , a subsemigroup U ≤ S×T of their direct product is called
a subdirect product if it projects onto both S and T , i.e. if {s : (s, t) ∈ U for some t} = S
and {t : (s, t) ∈ U for some s ∈ S} = T . Subdirect products are one of the fundamental
concepts in general algebra (e.g. see [4, Section II.8 ff.]), and have been extensively used
in combinatorial group theory (for examples see [1, 2, 3, 9, 13]), with more recent work
in combinatorial semigroup theory [5, 6, 7] and elsewhere [8, 12].

Let N denote the additive semigroup of positive integers. In [7, Theorem E] an intriguing
link is established between the number of subdirect products inside N × S, where S is
finite, and algebraic properties of S. Specifically, it is shown that the following are
equivalent: (i) N × S contains only countably many subdirect products; (ii) N × S
contains only countably many non-isomorphic subdirect products; and (iii) for every
s ∈ S there exists t ∈ S such that at least one of st = s or ts = s holds.

The main result in this paper concerns the same situation, but with the (semi)group Z of
additive integers replacing N, and featuring one of the fundamental semigroup-theoretic
properties.

Main Theorem. The following are equivalent for a finite semigroup S:

(i) S is regular;

(ii) Z× S contains only countably many subdirect products;

(iii) Z× S contains only countably many subdirect products up to isomorphism.

Recall that a semigroup S is said to be regular if each x ∈ S is regular, which means
that xyx = x for some y ∈ S. This y can in fact be chosen to also satisfy yxy = y, in
which case it is called a generalised inverse of x. For background on regularity see [11,
Section 3.4] or any other standard monograph on semigroup theory.
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It is perhaps curious to contrast the above results with the situation in groups. Due
to the equivalence between subdirect products in G×H and fiber products (Goursat’s
Lemma, [10, Theorem 5.5.1]), if G and H are finitely generated groups with only count-
ably many subgroups, then G × H also has only countably many subdirect products
(and even subgroups). Fleisher’s Lemma [4, Lemma IV.10.1] vastly extends the scope
of Goursat’s Lemma to arbitrary congruence permutable varieties, and so the previous
observation holds for many algebraic structures beyond groups, e.g. rings, associative
and Lie algebras, loops, etc., but not for semigroups.

The brunt of the paper is devoted to the proof of the Main Theorem. Specifically:

• (ii)⇒(iii) is obvious.

• (i)⇒(ii) is proved in Section 3: it is an immediate consequence of Theorem 3.1 which
asserts that, when S is finite and regular, every subdirect product in Z×S is finitely
generated.

• (iii)⇒(i) is proved in Section 4, by considering an arbitrary finite non-regular S and
constructing an uncountable family of pairwise non-isomorphic subdirect products of
Z× S.

As a corollary of the Main Theorem we show that Z × S has only countably many
subsemigroups (up to isomorphism) if and only if S is completely regular, i.e. a union
of groups (Corollary 5.1).

2. Preliminaries

The paper does not require much background in semigroup theory. However, we will
make extensive use of Green’s J -relation, which in a natural way reflects the ideal struc-
ture of a semigroup. We review the basic definitions and properties that we require, and
for a more systematic account refer the reader to any standard textbook on semigroup
theory, such as [11].

Let S be a semigroup, and denote by S1 the semigroup S with an identity element
adjoined to it if S does not already have one. For elements x, y ∈ S we say that x ≤J y
if the ideal generated by x is contained within that generated by y. This is equivalent
to u1yu2 = x for some u1, u2 ∈ S1. The relation ≤J is reflexive and transitive, but
not necessarily symmetric, i.e. it is a pre-order. Associated to the pre-order ≤J is the
equivalence J defined by xJ y if and only if x ≤J y and y ≤J x. The equivalence class
of an element x ∈ S is called the J -class of x and is denoted by Jx. The pre-order ≤J

also induces a partial order on the set S/J of J -classes via Jx ≤ Jy if and only if x ≤J y.

We will not require other Green’s equivalences, but we will use some facts about J -
classes on a finite semigroup S, which follow because it is equal to Green’s equivalence D
in this case [11, Proposition 2.1.4]. Specifically, assuming S is finite, we have:

(J1) Any J -class of S either consists entirely of regular elements, or else entirely of
non-regular elements [11, Proposition 2.3.1]. (Thus we will talk of regular and
non-regular J -classes.)

(J2) A regular J -class contains an idempotent [11, Proposition 2.3.2].
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(J3) For a regular J -class J and any x, y ∈ J there exist u1, u2, v1, v2 ∈ J such that
u1xu2 = y and v1yv2 = x [11, Propositions 2.3.2, 2.3.3].

(J4) If J is a non-regular J -class and if x, y ∈ J then Jxy < J [11, Theorem 3.1.6].

(J5) S has a unique minimal ideal, which is a regular J -class [11, Proposition 3.1.4,
Theorem 3.3.2].

3. Regular S

As explained in the Introduction, the pathway to establishing the implication (i)⇒(ii)
in the Main Theorem, is via the following:

Theorem 3.1. If S is a finite regular semigroup then every subdirect product in Z× S
is finitely generated.

The proof of Theorem 3.1 is the content of the remainder of this section. We proceed
via a series of lemmas. Throughout, S is assumed to be finite and regular, and T is a
subdirect product in Z× S. For x ∈ S we let

Tx := {n ∈ Z : (n, x) ∈ T}.

Notice that Tx 6= ∅ because T is subdirect, and that T =
⋃

x∈S Tx. For sets A,B we
write A ⊆cf B to mean A ⊆ B and |B \ A| < ∞. We use N0 to denote the set of
non-negative integers.

Lemma 3.2. If e ∈ S is an idempotent then Te is a subsemigroup of Z, and hence
precisely one of the following holds:

(i) Te = {0};

(ii) Te = dZ for some d > 0;

(iii) Te ⊆cf dN0 for some d > 0;

(iv) Te ⊆cf −dN0 for some d > 0.

In particular, Te is finitely generated.

Proof. For m,n ∈ Te we have (m, e), (n, e) ∈ T , hence

T ∋ (m, e)(n, e) = (m+ n, e2) = (m+ n, e),

which implies m + n ∈ Te, and therefore Te is indeed a subsemigroup of Z. That one
of (i)–(iv) holds now follows from well known facts about subsemigroups of Z. Indeed,
if Te contains both positive and negative numbers then Te is in fact a subgroup of Z,
and so Te = dZ for d := gcd(Te). If Te contains no negative numbers, but does contain
some positive numbers, then Te is in fact a non-trivial subsemigroup of N0, and it is
well known that Te ⊆cf dN0 with d := gcd(Te); see [14, Proposition 2.2]. The case
where Te contains some negative numbers but no positive numbers is dual, and we
get Te ⊆cf −dN0. Finally, when Te contains neither positive nor negative numbers then
Te = {0}. That Te is finitely generated in each of the four alternatives is straightforward;
see [15] or [14, Theorem 2.7] for the cases (iii), (iv). �

Lemma 3.3. Let x ∈ S be arbitrary, let y ∈ S be any generalised inverse of x, and let
e := xy. Then there exists r ∈ Tx such that one of the following holds:

(i) Te = {0} and Tx = {r};

(ii) Te = dZ (d > 0) and Tx = r + dZ;
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(iii) Te ⊆cf dN0 (d > 0) and Tx ⊆cf r + dN0;

(iv) Te ⊆cf −dN0 (d > 0) and Tx ⊆cf r − dN0.

Proof. As we already observed, Tx 6= ∅, and hence there exists some r ∈ Tx. From
ex = xyx = x we have Te + Tx ⊆ Tx. In particular,

r + Te = Te + r ⊆ Tx. (1)

From xy = e it follows that Tx + Ty ⊆ Te. In particular, fixing any s ∈ Ty, we have

s+ Tx = Tx + s ⊆ Te. (2)

Now we examine in turn each of the cases (i)–(iv) arising from Lemma 3.2.

(i) If Te = {0}, then |Tx| = 1 by (2), i.e. Tx = {r}.

(ii) Suppose Te = dZ. Then (1) implies r + dZ ⊆ Tx. For the reverse inclusion, let
r1 ∈ Tx. By (2) we have s+ r, s+ r1 ∈ Te = dZ, and hence s+ r ≡ 0 ≡ s+ r1 (mod d).
Therefore r ≡ r1 (mod d), and so r1 ∈ r + dZ, as required.

(iii) Suppose Te ⊆cf dN0. Note that (2) implies that Tx is bounded below. So, in this
case we will take r := min(Tx). Now, Tx ⊆ r + dN0 is proved in exactly the same way
as in (ii). From Te ⊆cf dN0 it follows that r+Te ⊆cf r+ dN0, which, combined with (1),
implies Tx ⊆cf r + dN0, as required.

(iv) This is dual to (iii). �

Lemma 3.4. With x and e as in Lemma 3.3, the set Tx \ (r + Te) is finite.

Proof. We examine each of the cases (i)–(iv) from Lemma 3.2, together with the match-
ing case from Lemma 3.3. For (i) and (ii) we have Tx \ (r + Te) = ∅, for (iii)

Tx \ (r + Te) ⊆ (r + dN0) \ (r + Te) ⊆ r + (dN0 \ Te),

which is finite because Te ⊆cf dN0, and (iv) is dual. �

Lemma 3.5. For every x ∈ S there exists a finite set A ⊆ T such that Tx ×{x} ⊆ 〈A〉.

Proof. By Lemma 3.2 there exists a finite set B ⊆ Z such that Te = 〈B〉. As Te ×{e} ∼=
Te, we have Te × {e} = 〈B × {e}〉. Let F := Tx \ (r + Te), which is a finite set by
Lemma 3.4. Then Tx = F ∪ (r + Te), and hence

Tx × {x} = F × {x} ∪ (Te × {e}) · (r, x) ⊆
〈

{(r, x)} ∪ (F × {x}) ∪ (Te × {e})
〉

=
〈

{(r, x)} ∪ (F × {x}) ∪ (B × {e})
〉

.

Since the set {(r, x)} ∪ (F × {x}) ∪ (B × {e}) is finite, the lemma is proved. �

Proof of Theorem 3.1. The theorem follows immediately from T =
⋃

x∈S Tx, finiteness
of S, and the fact that each Tx is contained in a finitely generated subsemigroup by
Lemma 3.5. �

Corollary 3.6. If S is a finite regular semigroup, then Z × S contains only countably
many subdirect products.
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Proof. The semigroup Z× S is countable, and each subdirect product contained in it is
generated by a finite set by Theorem 3.1. �

4. Non-regular S

This section is entirely devoted to proving the following:

Proposition 4.1. If S is a finite non-regular semigroup then Z×S contains uncountably
many pairwise non-isomorphic subdirect products.

Proof. Recall the natural partial order on the set S/J of J -classes of S introduced in
Section 2. Let K be a minimal non-regular J -class of S. By (J5), K is not the minimal
J -class of S, i.e. the set

I := {x ∈ S : Jx < K}

is non-empty. It is easy to see that I is an ideal of S. By the choice of K, all elements
of I are regular. Next let

L := S \ (I ∪K).

Note that L may or may not be empty, may contain regular and non-regular elements,
and that it is a union of J -classes. In this way, we have decomposed S into the disjoint
union

S = L ∪̇K ∪̇ I.

For any set M ⊆ N0 with 0 ∈ M , let

PM := ({0} × L) ∪ (M ×K) ∪ (Z× I).

We will prove the proposition by showing the following:

(1) PM is a subdirect product of Z and S; and

(2) If PM1

∼= PM2
then M1 = M2.

Since for the remainder of the proof we will be simultaneously working with the J
relations on different semigroups, we will distinguish them by means of superscripts.
Specifically, for a semigroup U , we write J U for the J relation on U , and JU

u for the
J U -class of u ∈ U .

(1) To prove that PM ≤ Z × S, let α, β ∈ PM . We split our considerations into cases
depending on which constituent part of PM each of α, β belongs to.

Case 1: at least one of α or β is an element of Z × I. Then αβ ∈ Z × I, since I is an
ideal of S.

Case 2: α, β ∈ {0} × L. Then αβ ∈ {0} × S ⊆ PM .

Case 3: α, β ∈ M ×K. Suppose α = (m1, k1), β = (m2, k2). Since K is a non-regular
J S-class, we have JS

k1k2
< K by (J4), i.e. k1k2 ∈ I. Therefore

αβ = (m1 +m2, k1k2) ∈ Z× I ⊆ PM .

Case 4: one of α or β belongs to {0} × L, and the other to M × K. Let us assume
that α = (0, l) ∈ {0} × L and β = (m,k) ∈ M × K; the other case is symmetrical.
Then αβ = (m, lk). Note that JS

lk ≤ JS
k = K, and hence lk ∈ K ∪ I. If lk ∈ K then

(m, lk) ∈ M ×K ⊆ PM , while if lk ∈ I then (m, lk) ∈ Z× I ⊆ PM .
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Hence indeed PM ≤ Z× S, and it remains to show that PM is subdirect. Every integer
appears as the first coordinate of some pair of PM , because Z × I ⊆ PM . Similarly,
every element of S appears as the second coordinate of some pair of PM , because S is
the disjoint union of L, K, and I. This completes the proof of (1).

(2) We begin by characterising the J PM -classes:

Claim 1. For (a, x), (b, y) ∈ PM we have

(a, x)J PM (b, y) ⇔ xJ Sy and (a = b or x, y ∈ I).

Proof. (⇒) Suppose (a, x)J PM (b, y). Identifying P 1
M with PM∪{(0, 1)}, where 1 denotes

the identity element of S1, we can write

(c1, z1)(a, x)(c2, z2) = (b, y) and (d1, u1)(b, y)(d2, u2) = (a, x),

with (c1, z1), (c2, z2), (d1, u1), (d2, u2) ∈ P 1
M . Equating the second components we obtain

xJ Sy. If a = b there is nothing further to prove. Otherwise, suppose without loss that
a > b. Then from c1 + a + c2 = b we have that at east one of c1 or c2 is negative.
Suppose without loss that c1 < 0. This means that z1 ∈ I. Since I is an ideal, it follows
that y = z1az2 ∈ I. Finally, xJ Sy now implies that x ∈ I as well.

(⇐) Since xJ Sy we can write z1xz2 = y and u1yu2 = x with z1, z2, u1, u2 ∈ S1. First
suppose a = b. Note that (0, z1), (0, z2), (0, u1), (0, u2) ∈ P 1

M , and that

(0, z1)(a, x)(0, z2) = (b, y) and (0, u1)(b, y)(0, u2) = (a, x),

implying (a, x)J PM (b, y). Now suppose that x, y ∈ I. Recall that this means that
JS
x = JS

y < K. Since K is a minimal non-regular J S-class it follows that JS
x is a regular

J S-class. By (J3) we have that z1, z2, u1, u2 can be chosen to be in JS
x as well, which in

turn implies that (b− a, z1), (0, z2), (a − b, u1), (0, u2) ∈ PM . Now we have

(b− a, z1)(a, x)(0, z2) = (b, y) and (a− b, u1)(b, y)(0, u2) = (a, x).

and thus (a, x)J PM (b, y), completing the proof of the claim. �

Now suppose that φ : P1 → P2 is an isomorphism, where for brevity we write Pi := PMi
.

We proceed via a sequence of claims, in which we analyse how φ maps elements of P1

of different forms.

Claim 2. φ({0} × S) = {0} × S.

Proof. {0} × S is precisely the set of elements of finite order in both P1 and P2. �

Claim 3. φ(Z × I) = Z× I.

Proof. By Claim 1, Z× I is precisely the set of elements whose J -classes are infinite in
both PM1

and PM2
. �

Claim 4. φ
(

(M1 \ {0}) ×K
)

= (M2 \ {0}) ×K.

Proof. Claim 3 implies that

φ
(

({0} × L) ∪ (M1 ×K)
)

= ({0} × L) ∪ (M2 ×K).
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But, for i = 1, 2, the set of elements of infinite order in ({0}×L)∪ (Mi×K) is precisely
(Mi \ {0}) ×K. �

Claim 5. For every x ∈ I and every k ∈ Z we have

φ(k, x) = (ǫk, x′) for some ǫ = ±1, x′ ∈ I.

Proof. Let x ∈ I be fixed. We will analyse the effect of φ on the J P1-class of (0, x),
which, by Claim 1, is equal to Z× JS

x . Certainly, by Claims 2, 3, we have

∀y ∈ Js
x : ∃y

′ ∈ I : φ(0, y) = (0, y′). (3)

Since JS
x ⊆ I and I consists solely of regular elements, it follows by (J2) that JS

x must
contain an idempotent e. By (3) we have φ(0, e) = (0, e′) for some idempotent e′ ∈ I.
Now suppose that φ(1, e) = (a, e′′), where a ∈ Z and e′′ ∈ I. Consider an arbitrary
y ∈ JS

x and k > 0. Write y = uev with u, v ∈ JS
x , which can be done by (J3). By (3) we

have

φ(0, u) = (0, u′), φ(0, v) = (0, v′) for some u′, v′ ∈ I.

Then

φ(k, y) = φ
(

(0, u)(k, e)(0, v)
)

= φ
(

(0, u)(1, e)k(0, v)
)

= φ(0, u)
(

φ(1, e)
)k
φ(0, v)

= (0, u′)(a, e′′)k(0, v′) = (0, u′)
(

ak, (e′′)k
)

(0, v′) = (ak, y′),
(4)

where y′ := u′(e′′)kv′. If k < 0, a similar reasoning proceeding from φ(−1, e) instead of
φ(1, e), yields

φ(k, y) = (bk, y′′), (5)

for some b ∈ Z and y′′ ∈ I.

Now, (3), (4), (5) entirely describe the effect of φ on the J P1-class Z× JS
x . By Claim 1,

its image must be of the form Z × JS
z for some z ∈ I. Hence, looking at the first

components of the right-hand sides in (3), (4), (5) we must see all integers. This can
happen only if {a, b} = {±1}. The claim follows by setting y = x in (3), (4), (5), and
setting ǫ to be a or b depending on whether k ≥ 0 or k < 0. �

Claim 6. For every m ∈ M1 and every x ∈ K we have

φ(m,x) = (m,x′) for some x′ ∈ S.

Proof. Suppose φ(m,x) = (a, x′). By choice ofK, we have x2 ∈ I. Therefore φ(2m,x2) =
(2m,x′′) for some x′′ ∈ I by Claim 5. Now we have

(2m,x′′) = φ(2m,x2) = φ
(

(m,x)2
)

=
(

φ(m,x)
)2

= (a, x′)2 =
(

2a, (x′)2
)

,

from which a = m, as claimed. �

Claims 4 and 6 together give M1 = M2, completing the proof of (2), and of the propo-
sition. �
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5. Conclusion

In proving that there are countably many subdirect products in Z×S when S is regular
in Section 3, the assumption that the subsemigroup T is a subdirect product was only
used to establish that all the sets Tx are non-empty. One may therefore wonder whether
perhaps a stronger property is also satisfied, namely that Z × S has only countably
many subsemigroups. This, however, is not true. For if S is a regular semigroup with
a non-regular subsemigroup S0, then, by our Main Theorem, there are uncountably
many pairwise non-isomorphic subdirect products in Z×S0, and they are all, of course,
subsemigroups of Z× S.

In fact, we can give a characterisation for when Z×S has only countably many subsemi-
groups. To state it, we need the notion of semigroups that are unions of groups (a.k.a.
completely regular semigroups). These are semigroups in which every element belongs
to a subgroup; for more details see [11, Section 4.1]. Certainly, every union of groups is
a regular semigroup.

Corollary 5.1. The following are equivalent for a finite semigroup S:

(i) S is completely regular;

(ii) Z× S contains only countably many subsemigroups;

(iii) Z× S contains only countably many subsemigroups up to isomorphism.

Proof. (i)⇒(ii) Suppose S is completely regular. It is again sufficient to prove that
every subsemigroup U of Z × S is finitely generated. Let Z ′ and S′ be the projections
of U to Z and S respectively. Then Z ′ ≤ Z, S′ ≤ S, and U is a subdirect product in
Z ′ × S′. We consider different options for Z ′. If Z ′ = {0} then U is finite. If Z ′ is a
non-trivial subgroup of Z then it is isomorphic to Z, and hence U is finitely generated
by Theorem 3.1. Suppose now that Z ′ ≤ N0. If 0 6∈ Z ′ then in fact Z ′ ≤ N, and hence U
is finitely generated by the proof [7, Theorem D, (iii)⇒(i)]. If 0 ∈ Z ′ then U = U0 ∪U1,
where U0 := U ∩ ({0} × S) and U1 = U ∩ (N × S). But U0 is finite, and U1 is finitely
generated by the above argument, and hence U itself is finitely generated. Finally, if
Z ≤ N0 then the assertion follows from the previous case and −N0

∼= N0.

(ii)⇒(iii) This is obvious.

(iii)⇒(i) We prove the contrapositive. Suppose S is not completely regular. Let s ∈ S be
an element of S that does not lie in a subgroup of S. This means that s 6∈ {sk : k ≥ 2},
and hence the monogenic subsemigroup 〈s〉 ≤ S is not regular. Therefore, the Main The-
orem gives that there are uncountably many pairwise non-isomorphic subdirect products
in Z× 〈s〉. All of them are subsemigroups of Z× S, and the proof is complete. �

Putting side by side Corollary 5.1 and [7, Theorem D] we obtain the following curious
fact:

Corollary 5.2. Let S be a finite semigroup. Then N × S has only countably many
subsemigroups (up to isomorphism) if and only if Z × S has only countably many sub-
semigroups (up to isomorphism). �
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The analogous statement for subdirect products instead of subsemigroups is not true:
compare again the Main Theorem and [7, Theorem E].

Based on our findings in this paper, as well as those of [7], we ask the following questions:

• Is it true that if S is a finite regular semigroup, then there are only countably many
subdirect products in any G× S, where G is a finitely generated abelian group.

• Characterise all finite semigroups S with the property that for every finitely generated
commutative semigroup C there are only countably many subdirect products in C×S.

• Let U be the bicyclic monoid or the free monogenic inverse monoid. Describe all finite
semigroups S such that there are only countably many subdirect products in U × S.
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