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Abstract
Cellular structures found in nature exhibit remarkable properties such as high strength, high energy absorption,
excellent thermal/acoustic insulation, and fluid transfusion. Many of these structures are Voronoi-like; therefore
researchers have proposed Voronoi multi-scale designs for a wide variety of engineering applications. However,
designing such structures can be computationally prohibitive due to the multi-scale nature of the underlying
analysis and optimization. In this work, we propose the use of a neural network (NN) to carry out efficient
topology optimization (TO) of multi-scale Voronoi structures. The NN is first trained using Voronoi parameters
(cell site locations, thickness, orientation, and anisotropy) to predict the homogenized constitutive properties.
This network is then integrated into a conventional TO framework to minimize structural compliance subject to
a volume constraint. Special considerations are given for ensuring positive definiteness of the constitutive matrix
and promoting macroscale connectivity. Several numerical examples are provided to showcase the proposed
method.

Keywords Topology Optimization · Voronoi Structures · Neural Network

1 Introduction

Topology optimization is a powerful engineering tool employed
to optimize the distribution of material within a given design do-
main to achieve optimal performance under specified constraints
[1, 2]. Traditionally, single-scale topology optimization focuses
on determining the optimal layout of material within a structure
at a single scale, aiming primarily at maximizing stiffness [1]
for a given set of loading conditions. However, engineering
applications often demand more than just structural efficiency
[3]. Features such as structural robustness [4], high strength [5],
superior energy absorption [6], fluid circulation [7], thermal and
acoustic insulation [8] capabilities are crucial. These attributes
not only enhance the overall performance of structures but also
facilitate multifunctionality, making them indispensable across
various industries, ranging from aerospace [9, 10], biomedical
[11, 12], and more [13].

Many natural structures, such as bones [14], wood [15], and
insect wings [16] exhibit remarkable combinations of strength,
energy absorption, fluid circulation, and insulating properties.
These features are often achieved through the intricate arrange-
ment of porous structures, which possess desirable properties
such as stochasticity [17], anisotropy [18, 19], and connectivity
[20]. For instance, consider the calcaneus (heel bone) and its
associated loading conditions during walking, as depicted in
fig. 2. This scenario can be effectively modeled as a simple
cantilever beam as in fig. 3a [19]. The growth of bone entails a

continuous self-optimization process, where its internal structure
adapts to maximize mechanical efficiency under varying external
conditions. This behavior can be modeled through topology op-
timization, by formulating the problem of maximizing stiffness
[21, 19].

The heel bone topology optimization problem is idealized fig. 3a.
An optimal design that maximizes stiffness using single-scale
topology optimization is presented in fig. 3b. Although this
design is optimal for stiffness, it lacks the porosity essential for
fluid movement. In bones, pores play a vital role in blood and
interstitial fluid movement, enabling the exchange of oxygen and
nutrients between tissues [7]. A hypothetical porous structure
that sacrifices stiffness for porosity [22, 23, 24] is depicted in
fig. 3c.

Systematic computation of such structures poses significant
computational challenges due to their multiscale nature [25, 26].
Theoretically, one can use high-resolution single-scale topology
optimization to arrive at such structures, but this is not viable
in practice [26]. Here, we present a neural network (NN) based
computationally efficient multiscale topology optimization ap-
proach for computing such structures. Furthermore, we use
Voronoi microstructures to represent porosity as they offer high
design freedom [27], exhibit anisotropy, and often resemble the
porous structures found in bone [28, 29]. A parametric represen-
tation of the microstructures is used to train an NN, facilitating
the mapping of microstructure parameters to homogenized prop-
erties. Special attention is given to the parametric representation

ar
X

iv
:2

40
4.

18
30

0v
1 

 [
cs

.C
E

] 
 2

8 
A

pr
 2

02
4



Homogenization

M
ic

ro
st

ru
ct

ur
e

Pa
ra

m
et

er
s

C
on

st
itu

tiv
e

pa
ra

m
et

er
s

N
eu

ra
l

N
et

w
or

k

Microstructures

Offline Computation

Tr
ai

ne
d

ne
tw

or
k

Multiscale TO

Optimize
 microstructure

 parameters

Figure 1: Graphical abstract: Offline computation: Given a dataset containing Voronoi microstructure parameters and homogenized
constitutive properties, a neural network is trained offline. Multiscale TO: The trained network is used as a surrogate during
topology optimization to derive optimized Voronoi structures.

Figure 2: Heel bone and loading conditions.

to promote macroscale connectivity, addressing a limitation [30]
not inherently present in unit cell-based multiscale topology
optimization approaches [31, 32].

(a)

(b)

(c)

Figure 3: (a) Topology optimization problem. (b) Single scale
design. (c) A multiscale porous design.

1.1 Topology optimization of porous structures

Topology optimization of porous structures has gained consid-
erable attention, with two primary approaches [30]: full-scale

and multi-scale. The full-scale approach employs geometrical
constraints such as pattern repetition [33, 34] and local volume
constraints [35, 36, 37] to generate optimized porous structures.
Recent enhancements include incorporating length scale con-
straint [38] and parametrized porous structures [39]. Although
these approaches can generate optimized porous structures, the
incorporation of additional geometrical constraints often results
in reduced performance when compared to traditional topol-
ogy optimization methods [40]. Furthermore, these approaches
can be computationally expensive because of the need for high-
resolution topology optimization of fine porous structures [26].

Multi-scale approaches separate the optimization problem into
macro and micro scales, enabling customization of local material
properties and macroscale structural behavior [30, 41]. It has
yielded materials with exceptional properties, such as micro-
modules with high Young’s modulus [42]. Advanced techniques
such as clustering [43] and level-set-based [44] optimization
are used to enhance structural properties and to obtain designs
with smooth boundaries respectively. Fixed types of parametric
cells were used to design porous structures such as planar rod
networks [45], or TPMS (triply periodic minimal surfaces) based
[46, 47, 48]. These approaches reduce computational costs in
generating foams with valid geometry but have a limited design
space [49]. For a comprehensive review of these approaches,
please see [30].

1.2 Voronoi based porous structure optimization

Traditionally, regular shapes such as diamond [50] and honey-
comb [51] have been used to represent porous structures. How-
ever, these regular structures are susceptible to stress shielding
and often exhibit limited permeability for fluid movement [52].
Consequently, there is growing research interest in irregular
porous structures, specifically, Voronoi tessellation [53, 27], to
model the complex shapes of bone structures. Voronoi tessel-
lations offer high design freedom [27], exhibit anisotropy, and
often resemble the porous structures found in nature [28, 29].

Various stochastic methods based on Voronoi tessellations have
been proposed [54, 55, 26], but these lead to extensive data oc-
cupancy and are computationally intensive [56]. An alternative
method involves utilizing seed positions and beam radii as de-
sign parameters, enabling them to conform to freeform shapes
while maintaining geometric connectivity. However, this does
not facilitate the generation of anisotropic designs [49]. Another
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technique employs an iterative process of removing and adding
site points to achieve a desired stress distribution on the porous
structure, but it lacks the capability for optimizing a Voronoi
structure through continuous sensitivity analysis [57]. A multi-
scale approach was introduced for designing Voronoi-graded cel-
lular structures for heat transfer problems. This method adapts
offline computation to reduce computational expenses [58]. Nev-
ertheless, the resulting design lacks anisotropy and has a constant
Voronoi strut thickness across the entire design domain.

1.3 Contributions

This paper presents a novel framework for generating optimized
Voronoi multiscale designs with spatially varying thickness and
anisotropy. In contrast to full-scale approach for Voronoi design
generation [39], we leverage a multiscale design paradigm, uti-
lizing an offline-trained NN that maps Voronoi microstructure
parameters to homogenized constitutive microstructure proper-
ties. Key contributions of this work include:

• Design space: We consider anisotropic Voronoi cells
of varying thickness in our design space, enhancing
performance [29].

• Connectivity: In the process of designing Voronoi
microstructures, neighboring cell sites are taken into
account to promote connectivity.

• Physically valid: We ensure that the stiffness matrix
predicted by the network is positive definite, i.e., phys-
ically valid.

• End-to-end differentiability: Our methodology is end-
to-end differentiable, enabling automated sensitivity
analysis for gradient-based optimization.

2 ProposedMethod

2.1 Voronoi Diagram and Structure

Our objective here is to design porous structures using Voronoi
diagrams. A Voronoi diagram is a geometric structure that par-
titions space into regions or cells based on the proximity to a
specified set of points called sites [59, 60, 61]; see fig. 4. The
shape of the Voronoi cell associated with a site is only influenced
by that site and nearby sites. Voronoi diagrams are valuable for
representing and analyzing complex spatial relationships, mak-
ing them essential in computational geometry [62, 63], modeling
of porous structures [53], and design problems [39].

Using the Voronoi diagram as a basis, we will now define a
Voronoi structure. Let the domain contain S̃ sites (points), de-
noted by (x̄s, ȳs); s = 1, 2, ..., S̃ ; this results in S̃ cells. We now
associate 3 parameters with each cell: (1) βs to create a thickness
to the cells, (2) αs to control the degree of anisotropy, and (3)
θs to control the orientation. These parameters are essential to
obtain an optimal distribution of porous material. The resulting
Voronoi structure is defined using a density function as follows.
Given any point (x, y) we define an anisotropic [64, 65] and
oriented distance [66] of (x, y) to any cell site s as:

ds(x, y) =
√
αs(δx

s)2 + (δys)2/αs (1)

where, (
δx

s
δ

y
s

)
=

[
cos θs − sin θs
sin θs cos θs

] (
x − x̄s
y − ȳs

)
(2)

Then the density field associated with a site s is defined via a
soft-max function [39]:

ρ̂s(x, y) =
( e−kds(x,y)

S∑
s=1

e−kds(x,y)

)βs
(3)

where the parameter k controls the sharpness of the soft-max
function [39]. Observe that ρ̂s(x̄s, ȳs) = 1 when the point (x, y)
is closest to site s, and approximately 0 far away from it. Finally,
we can compute the total density field at (x, y) as:

ρ(x, y) = 1 −
S̃∑

s=1

ρ̂s(x, y) (4)

A typical density field is illustrated in fig. 5. While the sites
control the topology of the Voronoi structure, the parameters βs,
αs, and θs control its shape; additional examples are provided
later.

2.2 Single Scale Voronoi Structure Optimization

In principle, one can now optimize the location of the S̃ cell
sites (x̄s, ȳs), the thicknesses βs, anisotropies αs and orientations
θs to design optimal Voronoi structures. For example, one may
pose a compliance minimization problem, subject to a volume
constraint as:

minimize
x̄,ȳ,β,θ,α

J = f T u (5a)

subject to Ku = f (5b)
and V ≤ Vmax (5c)

xmin ≤ x̄s ≤ xmax , ∀s (5d)
ymin ≤ ȳs ≤ ymax , ∀s (5e)
βmin ≤ βs ≤ βmax , ∀s (5f)
αmin ≤ αs ≤ αmax , ∀s (5g)
θmin ≤ θs ≤ θmax , ∀s (5h)

where K is global stiffness matrix, f is the applied load. For
example, the authors of [39] illustrate optimizing Voronoi struc-
tures by varying cell site locations, thickness, and anisotropy
to minimize compliance. However, this is computationally pro-
hibitive for designing fine-scale porous structures since it will
require a large number of cell sites S̃ , but, more importantly,
it will entail a dense finite element mesh to capture the thin
features. In other words, a single-scale optimization is not a
viable strategy for achieving porous structures. Instead, we will
pursue a multi-scale framework, discussed in the next section.

2.3 Proposed Method: Overview

To achieve a multi-scale design, we discretize the domain into
a finite number of macro elements, where each element e con-
tains a small number of S cell sites, (x̄(e)

s , ȳ
(e)
s ); s = 1, 2, ..., S ;
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Figure 4: Voronoi diagram defined by a set of sites (points). The shape of cell (⋆) is influenced by its immediate neighbors (•).

Figure 5: A typical density field defining a Voronoi structure.

S = 4 in this paper. Furthermore, each element will be asso-
ciated with 3 additional parameters: the thickness parameter
β(e), the anisotropy parameter α(e), and the orientation parameter
θ(e). Observe that the parameters associated with an element
are common to all sites within the element. By optimizing all
parameters over all elements (as discussed in the remainder of
the paper), one can design a multi-scale porous structure; this is
schematically illustrated in fig. 6. However, direct optimization
will still be computationally prohibitive due to the need for high
resolution finite element analysis.

To reduce the computational cost we propose a two-stage strat-
egy (see the graphical abstract fig. 1):

1. Offline Computation: This involves generating numer-
ous representative Voronoi microstructures, computing
their homogenized properties and training of NNs (see
section 2.4).

2. Multi-Scale Optimization: Exploiting the trained
NNs to carry out efficient multi-scale Voronoi structure
generation (see section 2.5).

2.4 Offline Computation

We now describe various steps in the offline computation.

2.4.1 Voronoi Microstructure Generation

The first step is to create a large, representative set of Voronoi
microstructures associated with the macro elements. A naive
approach is to generate S random sites (points) within a macro
element and generate the corresponding Voronoi microstructure.
However, this would not represent a typical microstructure since
points in the neighboring macro elements also influence the

Voronoi microstructure. For example, the naive approach would
fail to generate solid material on the element’s boundary. We
therefore consider a macro element and its 8 neighboring macro
elements, and generate random cell sites in all 9 elements; see
fig. 7a. Then, a Voronoi microstructure is generated in the central
element using all the cell sites, and a random set of parameters
[67] β, α and θ, that are generated uniformly over a pre-defined
range, as described in numerical experiments; see fig. 7b for a
typical Voronoi microstructure.

Further, to ensure that the points are sufficiently separated from
one another, we model the points as a perturbation (∆x,∆y) from
grid points; see fig. 8.

2.4.2 Homogenization

Once these Voronoi microstructures are generated, the macro
element is discretized into a grid of 120 × 120 micro elements;
see fig. 9a. The mesh is then used for numerical homogenization
to compute the elasticity matrix C and the volume fraction v;
see fig. 9b and fig. 9c. Without a loss of generality, we assume a
Young’s Modulus E = 1 and a Poisson’s ratio ν = 0.3; see [68]
for details on numerical homogenization.

2.4.3 Cholesky Decomposition

In the subsequent sections, we employ a NN to establish a map-
ping between the Voronoi parameters, and the corresponding
homogenized elasticity matrix components (and volume frac-
tion). However, a direct mapping might lead to the prediction
of stiffness matrices that are not positive definite [69]. To avoid
this, we first carry out a Cholesky decomposition of C:

C = LLT (6)

where,

L =

L00 0 0
L10 L11 0
L20 L21 L22


The components of L, i.e., {L00, L10..., L22} are then used for
training the NN, as discussed next.

2.4.4 Neural Network Training

Following the data generation and Cholesky decomposition, we
use NNs [70] to establish a mapping between the Voronoi pa-
rameters and computed data. NNs have been utilized for various
material modeling applications, including modeling the plastic
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Figure 6: Given a discretized domain, we wish to populate each element with Voronoi cells. All cells in a particular microstructure
have the same thickness (β), and are anisotropic (α) with an orientation (θ).

(a) (b)

Figure 7: Data generation involves (a) distributing Voronoi cell site locations for the central microstructure element (1) and its
neighbors (8), (b) generating Voronoi microstructures based on cell locations, thickness, degree of anisotropy and rotation values
for the central microstructure element (c) extracting the central microstructure design.

Figure 8: The cell sites (•) within a microstructure are obtained
as a perturbation to a grid of points (⋆).

response of metal [71], to construct a relation between macro-
scopic stress and crack opening responses [72], homogenization
of composite structures [73, 74], constitutive modeling of elas-
tomeric foams [75], and nonlinear response of carbon nanotubes
[76]. In addition, NNs have been utilized in the context of
multi-scale topology optimization [77].

For the design of microstructures using NNs pixel-based rep-
resentations have been employed [78, 79, 80]. This method
assumes designs can be constructed using solid or void elements
in space. While this allows extensive design flexibility, it has
drawbacks [81]. There is a considerable computational burden
for both design evaluation and machine learning due to limi-

tations in scalability with respect to resolution [81]. Second,
efficient exploration of the design space requires the utilization
of constraints to achieve desired design attributes [82]. Many
studies [83, 84, 85, 86] employing NNs trained on pixel-based
representations to predict microstructure properties typically
optimize the networks to minimize the difference between the
predicted design and a ground truth solution using loss func-
tions such as mean squared error (MSE), mean absolute error
(MAE), or binary cross-entropy. However, this approach may
result in inaccurate predictions as structurally similar designs in
a pixelated format can exhibit significantly different properties
[81, 87].

Here, NNs are employed to predict the homogenized elastic re-
sponse (and volume fraction) as a continuous and differentiable
mapping of microstructure parameters, facilitating gradient-
based optimization [88]. The proposed NN architecture consists
of the following components (see fig. 10):

1. The input consists of the (x, y) location of the sites
(points) from all 9 macro elements (the elements are
ordered bottom to top, then left to right, and the pa-
rameters β, α and θ, associated with the center element,
i.e., the input is a (9 × 2 × S + 3) dimensional vector,
where S is the number of cell sites per element.

2. The NN is a fully connected network consisting of four
hidden layers, each comprising 50 neurons with ReLU
activation functions.

3. The output layer consists the 6 components of L̂ (the
predicted values of L) and the volume fraction v̂ (the
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(c)

C =

⎡
⎣

C00 C01 C02

C11 C12

symm C22

⎤
⎦

v

(b)(a)

Figure 9: Numerical homogenization:(a) Discretization of the density field onto a mesh, (d) employing numerical homogenization
to determine the (c) constitutive properties of the microstructure.

predicted value of v), i.e., it is a 7 dimensional vector
denoted as Ψ̂ (the predicted value of Ψ). To ensure that
the element stiffness matrix remains positive definite,
the predicted diagonal components {L̂(e)

00 , L̂
(e)
11 , L̂

(e)
22 } are

clipped, from below, to a small positive value (of 10−6).

D
ense 50

D
ense 50

D
ense 50

D
ense 50

Figure 10: Proposed surrogate neural network architecture.

The NN is then trained on the (Nd) generated data, i.e., the NN
minimizes the mean squared difference between the actual and
predicted microstructure properties. The loss function is defined
here to be:

LNN =
1

Nd
(||Ψ̂ −Ψ||22) (7)

2.5 Multi-Scale Optimization

We now consider the proposed multi-scale optimization frame-
work illustrated in fig. 11. Recall that each macro element is
associated with S cell cites and 3 geometric parameters β(e),
θ(e) and α(e). These cell sites and geometric parameters will
be optimized to meet a desired objective. To avoid expensive
homogenization, the trained NN can be exploited to predict the
elasticity response of each element. Specifically, at each step
of the optimization process, the current locations of the cell
sites of e and its 8 neighbors, together with the current values

of 3 geometric parameters of e are extracted. We then apply
a smoothing radial filter on the three parameters, i.e., at each
element, a weighted average of every parameter about the neigh-
borhood of that element is computed. This filtering process
helps promote connectivity by smoothing out abrupt changes
across neighboring microstructures.

Using these smoothed parameters, the trained NN is used to
estimate L̂(e), and therefore Ĉ(e). Given the elasticity matrix Ĉ(e)

of a macro element, recall that the element stiffness matrix is
defined as [89]:

[K(e)] =
∫
Ω(e)

[∇N(e)]T [Ĉ(e)][∇N(e)]dΩ(e) (8)

where [∇N(e)] is the gradient of the shape matrix. Once the
element stiffness matrices are computed, the global stiffness
matrix K and force vector f are assembled, followed by the
solution of the displacement field u = K−1 f . The objective,
etc, are then computed followed by an update of all design
parameters. These steps are discussed in detail in the remainder
of this section.

2.5.1 Optimization Problem

We now describe the multi-scale optimization formulation.

Design Variables: The design variables for each element are
represented by ζ(e) = {∆

(e)
x ,∆

(e)
y , β

(e), α(e), θ(e)}. The complete
set of design variables is represented as ζ = {ζ(1), ζ(2), ...., ζ(n)}.
where n is the number of macro elements.

Objective: We consider a simple compliance minimization
objective:

J(ζ) = f T u (9)

where u the nodal displacements, and f is the imposed load.

Volume Constraint: A global volume constraint is imposed:

gV (ζ) ≡
1
n

n∑
e=1

v̂(e)

vmax
− 1 ≤ 0 (10)

where v̂(e) is the predicted volume fraction, and vmax is the im-
posed upper bound on the global volume fraction.
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Figure 11: The multiscale topology optimization framework utilizes the cell site locations of the microstructure and its neighboring
microstructures, along with the microstructure’s thickness, degree of anisotropy, and orientation to predict the constitutive properties.
This prediction is achieved using the trained neural networks, facilitating finite element analysis in multiscale optimization. Note:
Each microstructure element comprises S sites, and for a neighborhood of 9 elements, the neural network is provided with an
input of 9S sites.

Consequently, the optimization problem can be formulated as
follows:

minimize
ζ={ζ1,ζ2,...ζn}

J(ζ) = f T u (11a)

subject to K(ζ)u = f (11b)

and gV (ζ) ≡

n∑
e=1

v̂(e)

nvmax
− 1 ≤ 0 (11c)

(11d)

2.5.2 Loss Function

The constrained minimization problem eq. (11) is transformed
into an unconstrained loss function minimization, using the
penalty scheme [90]. Specifically, the loss function is defined
as:

L(ζ) =
J(ζ)
J0 + γgv(ζ)2 (12)

where J0 is the initial compliance. The constraint penalty param-
eter γ begins with an initial value of γ = 0.1 and is subsequently
incremented by ∆γ = 0.25 after each epoch. The gradient-based
Adam optimizer [91] is used to minimize eq. (12).

2.5.3 Sensitivity

A critical aspect of gradient-based optimization is determining
the sensitivity, or derivatives, of both the objective function and
constraints with respect to the optimization parameters. Here,
we harness the automatic differentiation (AD) capabilities of the
PyTorch framework [92] to avoid manual sensitivity calculations
[93]. In practical terms, we only need to define the forward
expressions, and PyTorch’s computational library will compute
all necessary derivatives with machine precision [94].

3 Numerical Experiments

In this section, we conduct several experiments to illustrate the
method. Without loss of generality, the default parameters are
as follows:

1. We assume the domain to consist of 40 × 20 elements,
where each element is assumed to be of unit area.

2. The material is assumed to have Young’s modulus of 1
and Poisson’s ratio of 0.3.

3. The force is assumed to be 1 unit.
4. Termination criteria include an optimization loss toler-

ance of 10−3 or a maximum of 300 iterations.
5. All experiments were conducted on a MacBook M2

Air with 16 GB RAM.

Other parameters are provided in the corresponding section.

3.1 Offline Experiments

3.1.1 Dataset Generation

To establish a mapping between microstructure element param-
eters and microstructure properties using a surrogate NN, the
first step involves acquiring training data. This process entails
allowing the 4 seed points per microstructure element (x̄, ȳ) to be
uniformly distributed within a unit-length element. This distri-
bution is achieved by varying the perturbation from the base grid
points (∆x,∆y) within the range of [−0.225, 0.225], ensuring a
minimum separation of 0.1 between neighboring cell sites.

Additionally, the parameters thickness (β), anisotropy (α) and
orientation (θ) are considered to be in range [0.3, 3], [1, 3.5] and
[0, π] respectively. These ranges are chosen to encompass a wide
variation of volume fractions observed across 12000 samples
of microstructure elements (as depicted in fig. 12 (a)) and to
account for anisotropic homogenized elasticity matrix (as shown
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in fig. 12 (b)). The thickness (β), anisotropy (α) and orientation
(θ) were filtered using a filter radius of 3.

Volume fraction
(a)

(b)

Fr
eq

ue
nc

y

Vo
lu

m
e 

fr
ac

tio
n

C00

C
1
1

Figure 12: Distribution of (a) volume fraction and (b) constitu-
tive matrix components C00 and C11 as a function of microstruc-
ture density.

3.1.2 NN Training

The training data generated in the previous section serves as
input for the surrogate NN, which consists of an architecture
outlined in section 2.4.4. The network’s output comprises the
microstructure volume fraction and Cholesky factors of the ho-
mogenized elasticity matrix. The data is split into three sets:
training (Nd = 10000 data points), validation (1000 data points),
and testing (1000 data points). During training, the NN aims
to minimize the mean squared error between its predicted and
actual microstructure properties. This training process is per-
formed for a maximum of 300 iterations, with a learning rate of
5 ∗ 10−5 and a batch size of 64. The training process is stopped
at the maximum iteration number or when the validation loss
starts to increase, thus preventing over-fitting. Following this
approach, we observe convergence in training, test, and vali-
dation loss between actual and predicted volume fraction and
homogenized elasticity matrix, as depicted in fig. 13.

Epoch

Lo
ss

0.000

0.025

0.050

0.075

0.100

0 50 100 150 200 250

training testing validation

Figure 13: Convergence of the training, testing, and validation
loss.

3.2 Multi-Scale Optimization Experiments

Next, we demonstrate multi-scale optimization through several
experiments.

3.2.1 Validation: Tensile Bar

Consider the tensile bar problem in fig. 14(a). The objective
is to find the optimal topology that minimizes compliance sub-
jected to a volume fraction v = 0.4 as described in [89]. The
compliance of single-scale optimized design reported in refer-
ence [89] is 183. Here, we obtain a multiscale optimized design,
illustrated in fig. 15 (c). As one can observe the porous struc-
ture resembles an ideal tensile bar, while meeting the minimum
porosity imposed (via the parameter β). Furthermore, near the
transition, the porous structures are oriented along the axis, as
expected. The compliance of the porous structure is 209.

2L

L 0.4L

(a)

(b)

Figure 14: Validation of the multiscale framework: (a) tensile
bar boundary conditions, (b) multiscale design [89] and (c)
multiscale porous design.

3.2.2 Comparison

Next consider the mid-cantilever problem in fig. 15(a). The
objective is to find the optimal topology that minimizes com-
pliance subject to a volume fraction v = 0.6. The single-scale
optimized design achieved using the code from [95] is illus-
trated in fig. 15(b); the final compliance is 61.05. In [96], by
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imposing a local volume constraint of v = 0.6, an optimized
porous structure with compliance of 76.86 was reported. Here,
we obtain a multiscale optimized design, illustrated in fig. 15 (c),
with a compliance of 68.3. The computation took 13.7 seconds.
Once again, the computed structure resembles the single-scale
structure but deviates from it to meet the porosity constraints.

To evaluate the accuracy of the NN mapping, we reconstructed
the microstructures of the optimized design. We then computed
the actual homogenized matrices via FEA of each macro element.
Subsequent global analysis yielded a compliance of 74.6 and a
volume fraction of 0.65. This translates to an error of 8.4% and
6.1% for the compliance and volume fraction, respectively.

L

2L

(c)

(b)

(a)

Figure 15: Validation of the multiscale framework: (a) mid
cantilever boundary conditions, (b) single scale design and (c)
multiscale porous design.

3.2.3 Convergence against Single-Scale

We illustrate the typical convergence of the proposed algorithm
for the mid-cantilever problem in fig. 15(a). The compliance and
volume constraint is illustrated in fig. 16. Similar convergence
behavior was observed for all other examples.

3.2.4 Parameter Variations

A central hypothesis of our current work is that better multiscale
designs can be obtained with a broader range of parameters:
thickness, anisotropy, and orientation. To validate these hypothe-
ses, we revisit the problem depicted in fig. 15(a), enforcing a
volume constraint of 0.5 but considering various restrictions on
the parameters.

Thickness Parameter: β
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Figure 16: Convergence of the objective and constraint during
optimization.

In this numerical experiment, we set the lower bound of the
thickness parameter at 0.3 and analyze the impact of thickness
on both the objective function and computational time by set-
ting its upper bound to 1., 2., and 3.. The resulting topologies,
illustrated in fig. 17, confirm our expectations: the objective
function improves with an increasing range of thickness param-
eters. Furthermore, the computational time was approximately
13.7s, regardless of the range of thickness parameter.

J : 150.2, βmax : 1

J : 93.4, βmax : 2

J : 83.2, βmax : 3

Figure 17: Impact of thickness parameter on compliance.

Anisotropy Parameter: α

In this numerical experiment, we set the lower bound for the de-
gree of anisotropy at 1 and investigate the influence of anisotropy
on both the objective function and computational time by set-
ting its upper bound to 1.5, 2.5, and 3.5. The resulting topolo-
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J : 114, αmax : 1.5

J : 93.3, αmax : 2.5

J : 83.2, αmax : 3.5

Figure 18: Varying maximum degree of anisotropy with mini-
mum degree of anisotropy = 1

gies, as depicted in fig. 18, align with our anticipated outcomes:
the objective decreases with increasing maximum degrees of
anisotropy. Once again, the computational time was unaffected
by the change in upper bound.

Orientation Parameter: θ

Next, we kept the orientation fixed at θ = 0 and optimized the
design. As expected, our observations, fixing the orientation
results in lower performance as seen in fig. 19.

J : 111.4, θ fixed

J : 83.2, θ varying

Figure 19: Impact of orientation on compliance.

Volume Fraction Variation

Finally, we consider the trade-off between the objective (compli-
ance) and constraint (volume fraction) through exploration of
the Pareto front is crucial for making informed design choices.
In this study, we examined the heel bone problem depicted in
fig. 3 (a). We determined the optimal topologies for various
volume fraction constraints. The results are illustrated in fig. 20;
as expected, the compliance increases as the volume fraction
decreases. To evaluate the accuracy of the NN mapping, we
recomputed the actual values using a macroscale FEA/ homoge-
nization approach. The error in compliance and volume fraction
was less than 10% in all cases.

J : 621, v : 0.25

J : 181, v : 0.5

J : 128, v : 0.75

Figure 20: Trade-off between compliance and volume fraction.

3.3 Is Offline Computation Justified?

The offline homogenization and data generation of 12000 mi-
crostructures required 26.4 minutes, while the training of the
surrogate NN required 2 minutes. Thus, the total one-time over-
head amounted to 28.4 minutes. Subsequently, the optimization
of the mid-cantilever, for example, (using a grid size of 40 × 20)
consumed 0.24 minutes.

Now, let’s consider two hypothetical scenarios. The first sce-
nario is a brute-force fine-scale optimization. We note that the
grid size of 40 × 40 microscale elements is required for each
homogenization of the microstructure element. For the single-
scale optimization of the mid-cantilever (using a grid size of
40 × 20 of microstructure elements), one requires a grid of
40×40×40×20, which is 1600×800 elements. One iteration of
single-scale optimization with 1600 × 800 elements takes 16.62
minutes. Consequently, the anticipated total optimization time
amounts to 16.62 × 300, equating to 4986 minutes.

Next, consider a scenario where we carry out multiscale opti-
mization but do not rely on offline training, i.e., we carry out con-
current homogenization-based multiscale optimization. Observe
that the time required for each homogenization is 26.4/12000,
i.e., 0.132 seconds. Now, for concurrent homogenization of
the mid-cantilever, the task entails homogenization across ev-
ery element within a 40 × 20 grid over 300 iterations. As a
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result, the projected optimization duration can be estimated as
0.132 × 800 × 300/60, which equals 528 minutes.

Thus, the proposed offline NN-based multiscale optimization is
computationally far superior. Furthermore, the loss in accuracy
in predicted compliance and volume fraction was found to be
less than 10% in all experiments.

4 Conclusion

In this paper, we introduced a novel multi-scale topology op-
timization framework using Voronoi microstructures. Our ap-
proach involves an offline homogenization process coupled with
NN training to establish a continuous and differentiable mapping
of microstructural geometric parameters to constitutive proper-
ties. Subsequently, we carried out multiscale optimization to
minimize compliance subject to volume constraints.

Our numerical results illustrate that the proposed method offers
significant computational advantages over concurrent homog-
enization, with minimal loss in accuracy. Additionally, we
observe that Voronoi microstructures, along with parameters
such as thickness anisotropy and orientation, expand the design
space. Furthermore, considering neighboring microstructure
cell sites during NN training facilitates macroscopic connectiv-
ity. Finally, training the NN with Cholesky factors ensures the
positive definiteness of the constitutive matrix.

Future research avenues include extending the framework to
encompass Voronoi structures found in natural systems, which
often serve multiple functions. For example, in bone infills,
pores act as conduits for transport while the material provides
structural integrity. This could involve a multi-objective formula-
tion integrating compliance and diffusivity to generate bone-like
porous structures. In natural porous materials, the density of
Voronoi cell sites varies, whereas in the present formulation, the
number of cell sites in a region remains constant. Extending the
framework to three dimensions is also a crucial area for future
investigation. Additionally, the proposed framework focused on
a singular class of microstructures derived from Turing patterns,
but the potential for generating a broader spectrum of patterns
exists through the application of reaction-diffusion equations
[97].
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