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Abstract. We build on a result stating that the frame SE(L) of strongly
exact filters for a frame L is anti-isomorphic to the coframe So(L) of fitted
sublocales. The collection E(L) of exact filters of L is known to be a sublo-
cale of this frame. We consider several other subcollections of SE(L): the
collections J (CP(L)) and J (SO(L)) of intersections of completely prime and
Scott-open filters, respectively, and the collection R(L) of regular elements
of the frame of filters. We show that all of these are sublocales of SE(L), and
as such they correspond to subcolocales of So(L), which all turn out to have
a concise description. By using the theory of polarities of Birkhoff, one can
show that all of the structures mentioned above enjoy universal properties
which are variations of that of the canonical extension. We also show how
some of these subcollections can be described as polarities and give three
new equivalent definitions of subfitness in terms of the lattice of filters.
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1 Introduction

The paper [Jak20] made the first exploratory steps in canonical extensions of frames.
Since then there has been a lot of development of different types of frame extensions
which, crucially, were based on complete lattices of sublocales build from closed [PPT19],
open [MPS20] or complemented [Arr21] sublocales. In this paper we revisit the approach
of [Jak20] in order to provide an organised manner of explaining and extending these
recent results from the point of view of canonical extensions.

Canonical extension is a type of completion of ordered structures, such as Boolean
algebras, distributive lattices, and posets which retains many properties of the original
structure. Canonical extensions were originally constructed by Jonssón and Tarski for
Boolean algebras [JT51, JT52], to give a topological semantics to modal logic. Over
the years their universal properties were identified and the construction was freed of the
use of Stone duality [GH01, GJ04]. Canonical extensions are invaluable when extending
Stone duality (and its variant) to algebras with additional operators, such as modalities.
For an overview, we refer the reader to [Geh18] and to the upcoming book [GF]. In
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[Jak20], canonical extensions are studied for locally compact frames, thus extending
the construction to the setting of pointfree topology. An application of the theory
of polarities by Birkhoff [Bir48] to frames enables us to systematically construct, for
any frame L, a concrete structure which enjoys a variation of the properties density
and compactness characterizing the canonical extension construction. This structures is
realized as the collection of intersections of Scott-open filters of L.

On the other hand, in frame theory, the collection S(L) of sublocales (i.e. pointfree
subspaces) has been viewed for many years as a suitable discretisation of the original
frame L. However, recently a few sublattices of S(L) have been studied that often have
many desirable properties that S(L) fails to have. Probably the most prominent exam-
ples are Sc(L) and So(L), the lattices of joins of closed sublocales and fitted sublocales,
respectively, see e.g. [PP17], [MPS20].

In this paper, we show that these and other collections of sublocales are all variations
of the canonical extension construction. Our starting point is a result in [MPS20] which
provides a useful link between fitted sublocales and filters. There, it is shown that So(L)
is isomorphic to the opposite of the frame SE(L) of the so-called strongly exact filters.
In this paper, we add to the picture the following collections.

• The collection E(L) of exact filters;

• The collection R(L) of regular filters, i.e. the regular elements of the frame Filt(L);

• The collection CP(L) of completely prime filters of L;

• The collection SO(L) of Scott-open filters of L.

We come to proving that we have for every frame L the following poset of sublocale
inclusions, where J denotes the closure under arbitrary intersections.

R(L) E(L)

SE(L) Filt(L)

J (CP(L)) J (SO(L))

(1.0.1)

We use the correspondence from [MPS20] and identify the distinguished classes of
fitted sublocales that these classes of filters correspond to. It turns out that all of these
structures are variations of the canonical extension construction, as explained above.
Particularly nice is the case where L is a fit frame; for such frames the poset above gives
the poset of subcolocale inclusions

Sc(L) = Sb(L)

So(L)

Ssp(L) Sk(L)

(1.0.2)
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where Sb(L) is the Booleanization of S(L), studied in [Arr21], Ssp(L) is the collection of
spatial sublocales, and Sk(L) that of joins of compact sublocales.

Lastly, we show that the theory of polarities often gives very concise abstract de-
scriptions of the structures above, which in some cases does not mention the notion of
sublocale. Thereby we arrive at three new equivalent definitions of subfitness in terms
of filters, see Propositions 5.13, 9.1, and 9.3, describe each of the given classes of sublo-
cales uniformly by a simple universal property and, also, characterise preservation of
distinguished meets for embeddings into the extensions.

2 Frame theory preliminaries

Our main reference is the book [PP12] (or the briefer and more recent [PP21a]). We will
be strictly using the following notation throughout the paper. For a function f : X → Y ,
we write f [A] = {f(a) | a ∈ A} for the forward image of the subset A ⊆ X and, similarly,
we write f−1[B] = {x ∈ X | f(x) ∈ B} for the preimage of B ⊆ Y .

Further, by a filter F of a lattice L we mean a non-empty upwards closed subset
F ⊆ L which is closed under finite meets. We say that F is proper when F 6= L and
principal if F = ↑a = {x | a ≤ x} for some a.

2.1 Frames

A frame is a complete lattice L satisfying the following distributivity law.

(∀A ⊆ L, b ∈ L) (
∨

A) ∧ b =
∨

{a ∧ b | a ∈ A}

This law implies that every frame is also a Heyting algebra, with the Heyting implication
obtained as the right adjoint to meets, i.e. a ∧ b ≤ c iff a ≤ b → c for any a, b, c ∈ L.
However, frame homomorphisms are only required to preserve infinite suprema and finite
infima, including 0 and 1, respectively. Heyting implication is typically not preserved.

Points of a frame L can be defined in three equivalent ways. They are given as

• frame homomorphisms L → 2, where 2 = (0 < 1) is the two-element frame,

• completely prime filters P ⊆ L, that is, proper filters on L which satisfy, for any
A ⊆ L, that

∨
A ∈ P implies that a ∈ P for some a ∈ A, or

• prime elements p ∈ L, that is, elements such that x∧ y ≤ p implies x ≤ p or y ≤ p.

Every completely prime filter P uniquely determines a frame homomorphism L → 2 as
the characteristic function of P and, on the other hand, the prime element p correspond-
ing to P is obtained by the join

∨
{a ∈ L | a /∈ P}.

The set of points pt(L) of L can be endowed with a topology consisting of opens of
the form {P | a ∈ P} for some a ∈ L. Conversely, given a topological space X = (X, τ),
its lattice of opens Ω(X) = τ ordered by set inclusion is a frame. Frames for which
Ω(pt(L)) ∼= L are called spatial. Conversely, spaces for which pt(Ω(X)) is homeomorphic
to X are called sober.
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2.2 Locales and sublocales

The category of frames and frame homomorphisms is dual to the category of topological
spaces in the sense that the operations Ω( - ) and pt( - ) extend to contravariant adjoint
functors. The geometric point of view is retained if, instead, we work with the category
of locales. Objects of this category are still frames (usually referred to as locales) and
morphisms are localic maps, that is, maps f : L → M such that their (unique) left adjoint
is a frame homomorphism h : M → L: we have h(a) ≤ b iff a ≤ f(b) for a ∈ M, b ∈ L.

The generalisation of the notion of a subspace of a space is that of a sublocale. Similarly
to subspaces, sublocales correspond to images of injective localic maps. Equivalently,
these are subsets S ⊆ L such that

(S1) S is closed under all meets in L, and

(S2) for every s ∈ S and a ∈ L, a → s ∈ S.

The collection S(L) of all sublocales of L is a complete lattice, with meets
∧

i Si given
by intersections

⋂
i Si and joins

∨
i Si given by {

∧
A | A ⊆

⋃
i Si}.

Every a ∈ L, induces the open sublocale o(a) corresponding to a and, its complement
in S(L), the closed sublocale c(a). Being defined by

o(a) = {a → b | b ∈ L} = {x ∈ L | a → x = x} and c(a) = ↑a,

they exhibit a lot of expected properties of open and closed subspaces, for example:

o(1) = L o(0) = O
∨

i o(ai) = o(
∨

i ai) o(a) ∩ o(b) = o(a ∧ b)

c(1) = O c(0) = L
⋂

i c(ai) = c(
∨

i ai) c(a) ∨ c(b) = c(a ∧ b)

Here O = {1} and L represent the smallest and largest sublocales of L, respectively.
This means that c(a) ∩ o(a) = O and c(a) ∨ o(a) = L.

2.3 Coframes, subcolocales, and supplements

We also make use of notions dual to those introduced above. For example, we say that
a poset C is a coframe (or colocale) if the same poset Cop but in the opposite order is a
frame. Similarly, S ⊆ C is a subcolocale if Sop is a sublocale of Cop.

The coHeyting implication in a coframe C, called difference and denoted arb, satisfies
ar b ≤ c iff a ≤ b ∨ c. Then, similarly to the pseudocomplement

a∗ = a → 0

of an a in a frame, the dual notion is called supplement of an a in a coframe and is
calculated as

a# = 1r a.

An important example of a coframe is S(L).
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2.4 Filters of frames

In this text we aim to prioritise the geometric point of view on filters and we think of a
filter F of L as a representative for the sublocale corresponding to the intersection

su(F ) =
⋂

a∈F

o(a) (2.4.1)

in S(L). Therefore, unless said otherwise, we always order the collection of all filters
Filt(L) of a frame L by the reverse inclusion order. To emphasise this, we denote the
filter order by ⊑. Under this order the correspondence from (2.4.1) gives a monotone
mapping from filters to sublocales:

F ⊑ G =⇒ su(F ) ⊆ su(G)

Then, Filt(L) is a complete lattice with joins and binary meets computed by:

⊔
A =

⋂
A and F ⊓G = {f ∧ g | f ∈ F g ∈ G}

In fact, Filt(L) is a coframe, with the difference given as follows.

H rG = {a ∈ L | ∀b ∈ G. b ∨ a ∈ H}

Indeed, H rG ⊑ F iff H ⊑ F ⊔G, see e.g. Section 5.1 in [MPS20].

2.4.1 Distinguished classes filters. In this paper we are looking at various classical
classes of filters on a frame. Namely, we consider

• completely prime filters CP(L), introduced already in Section 2.1,

• Scott-open filters SO(L), that is, filters F such that for any directed1 A ⊆ L, if∨
A ∈ F then a ∈ F for some a ∈ A,

• exact filters E(L), that is, filters F closed under exact meets which are the meets∧
M for some M ⊆ L such that, for any b, (

∧
M) ∨ b =

∧
a∈M (a ∨ b), and

• strongly exact filters SE(L), that is, filters F closed under strongly exact meets,
which are the meets

∧
M for some M ⊆ L such that

⋂
a∈M o(a) = o(

∧
M).

We view all classes of filters as subposets of Filt(L), in the ⊑ order. Crucially, Theo-
rem 4.5 in [MPS20] characterises strongly exact filters also in the following way.

Lemma 2.1. A filter F ⊆ L is strongly exact if and only if, for any b ∈ L,

⋂

a∈F

o(a) ⊆ o(b) =⇒ b ∈ F (2.4.2)

1Recall that a set A is directed if for any a, b ∈ A there is some c ∈ A such that a ≤ c and b ≤ c.
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3 Canonical extensions and polarities

3.1 Canonical extensions

The motivation for our work comes from canonical extensions of (bounded) distributive
lattices. Given such lattice D, its canonical extension is an embedding e : D →֒ Dδ into
a complete lattice Dδ such that:

(D) Every element of Dδ is a join of meets and a meet of joins of elements in the
image e[D].

(C) If
∧

e[F ] ≤
∨

e[I] for some filter F ⊆ D and ideal I ⊆ D, then F ∩ I 6= ∅.

The existence, unicity and universal properties of D →֒ Dδ follows from the theory of
polarities which we discuss in Section 3.2 below.

3.1.1 Canonical extensions of frames. The elements of the form
∧

e[F ] and
∨

e[I],
for a filter F ⊆ D and ideal I ⊆ D, play an important role in the definition above. In
fact, axiom (D) equivalently says that every element of Dδ is both a join of elements of
the form

∧
e[F ] and a meet elements of the form

∨
e[I].

Recall, from Stone duality for distributive lattices, that ideals correspond to opens
of the spectral space X dual to D, i.e. Idl(D) ∼= Ω(X) [Pri84]. Similarly, filters corre-
spond to compact saturated subsets of X. However, by the Hofmann–Mislove Theo-
rem [HM81], compact saturated subsets are in a correspondence with Scott-open filters
on the frame Ω(X), that is, filters F such that for any directed family {ai}i such that∨↑

i ai ∈ F there is some i such that ai ∈ F .
This inspired the frame-theoretic definition of canonical extensions of frames in [Jak20].

Given a frame L, we define its canonical extension to be a monotone mapping e : L → LSO

such that:

(DSO) Every element of LSO is a join of elements of the form
∧

e[F ] for some Scott-
open filter F ⊆ L and a meet of elements of the form e(a) for some a ∈ L.

(CSO) If
∧

e[F ] ≤ e(a) for some Scott-open filter F ⊆ L and a ∈ L, then a ∈ F .

Observe that by the above discussion we have that Dδ ∼= Idl(D)SO and so canonical
extensions of frames generalises canonical extensions for distributive lattices. Similarly
to distributive lattices, the canonical extension L → LSO always exists and is unique up
to isomorphism. In case when L = Ω(X) for some space X, e is simply the embedding
Ω(X) →֒ Up(X) where Up(X) is the poset of saturated subsets, that is, upsets in the
specialization order (cf. Example 3.5 in [Jak20]).

Remark 3.1. In the above discussion we omitted an important part of the theory
which concerns with extensions of (not necessarily monotone) maps between distributive
lattices D → E to maps between their canonical extensions Dδ → Eδ. The theory
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of these extensions is what makes canonical extensions useful for semantics. Similar
extensions theorems can be proved for canonical extensions of frames as well, cf. [Jak20].

3.2 Polarities

The theory of polarities goes back all the way to Birkhoff [Bir48, Chapter V]. It can be
used for presenting different types of completions of posets known from the literature.
We use polarities for generalisations of canonical extensions, and showing their existence,
uniqueness and universal properties. In this section we mostly follow the description
from [Geh06].

3.2.1 A polarity is a tuple P = (X,Y,Z) where Z ⊆ X ×Y is a relation between sets
X and Y . This data induces a pair of antitone functions between the powersets on X
and Y (both taken with the subset orders):

p : ℘(X) → ℘(Y ), M 7→ {y ∈ Y | ∀x ∈ M. xZy}

q : ℘(Y ) → ℘(X), N 7→ {x ∈ X | ∀y ∈ N. xZy}

Note that these maps are adjoint to each other, since N ⊆ p(M) iff M ⊆ q(N). There-
fore, q ◦p is a closure operator2 on the complete Boolean algebra ℘(X) and, dually, p◦ q
is a closure operator on ℘(Y ).

Recall that any closure operator δ : C → C on a complete lattice C induces a com-
plete lattice of fixpoints fix(δ) = {a ∈ C | δ(a) = a}, with the order derived from C.
Furthermore, joins and meets in fix(δ) are computed in C as follows.

∧
fix(δ) A =

∧C A and
∨

fix(δ) A = δ(
∨C A) (3.2.1)

3.2.2 For a polarity P , define G(P ) to be the complete lattice of Galois closed sets of
q ◦ p, that is, set

G(P ) = fix(q ◦ p) = {M ∈ ℘(X) | q(p(M)) = M}.

By (3.2.1), joins and meets in G(P ) are computed in ℘(X) as
∨
A = qp(

⋃
A) and∧

A =
⋂

A, respectively.
The embeddings of singletons, X → ℘(X) and Y → ℘(Y ), induces two maps into the

lattice of Galois closed sets:

iX : X → G(P ), x 7→ qp({x}), and iY : Y → G(P ), y 7→ q({y}).

A fundamental property of polarities is that these maps can be used to give an abstract
characterisation of G(P ).

2By a closure operator we mean a monotone mapping δ : P → P on a poset P such that a ≤ δ(a) and
δ(δ(a)) = δ(a) for any a ∈ P .
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Theorem 3.2. Let P = (X,Y,Z) be a polarity. Then the complete lattice C = G(P )
has the following properties.

1. For any u ∈ C,

u =
∨

{iX(x) | x ∈ X, iX(x) ≤ u} and u =
∧

{iY (y) | y ∈ Y, u ≤ iY (y)}.

2. For any x ∈ X and y ∈ Y , iX(x) ≤ iY (y) iff xZy.

3. For any i′X : X → C ′ and i′Y : Y → C ′ also satisfying the conditions (1) and (2)
there is a unique complete lattice isomorphism ι : C ′ → C such that ι ◦ i′X = iX
and ι ◦ i′Y = iY .

Proof. Item 1 is Proposition 2.10 and item 2 is Proposition 2.6 in [Geh06]. The isomor-
phism ι : C ′ → C in item 3 is obtained by extending the mapping i′X(x) 7→ iX(x) by
taking suprema. For details see [Wil82] and also Section 2 of [Geh06], by unwrapping
the characterisation of G(P ) as a Dedekind-MacNeille completion.

Example 3.3. The canonical extension Dδ of a distributive lattice D and LSO of a frame
L are given by G(Filt(D), Idl(D), Z) and G(SO(L), L, Z ′), respectively, where (F, I) ∈ Z
iff F ∩ I 6= ∅ and Z ′ = ∋ i.e. (F, a) ∈ Z ′ iff a ∈ F [GH01, Jak20].

Remark 3.4. It is a standard fact that the poset of fixpoints on one side of an adjunction
is isomorphic to the poset of fixpoints on the other side. In our case, G(P ) is isomorphic
to the lattice of subsets of Y which are the fixpoints of p ◦ q. However, the isomorphism
fix(q ◦ p) ∼= fix(p ◦ q) is antitone because the maps p and q are antitone. In order to
obtain a monotone isomorphism we have to order ℘(Y ) by the inverse subset order.

This point of view becomes important when we discuss concrete descriptions of polar-
ities on filters of a frame in Section 4.1.

Furthermore, we also make use of the following simple consequence of Theorem 3.2
which describes the upside-down version of G(P ).

Corollary 3.5. For sets X,Y and a relation Z ⊆ X × Y ,

G(X,Y,Z)op ∼= G(Y,X,Zop)

where Zop = {(y, x) | (x, y) ∈ Z}.

3.2.3 Polarities of posets. In the following, we fix a polarity P = (X,Y,Z) where
(X,≤) and (Y,≤) are posets. This situation is motivated by our applications where Y
is a frame and X is a poset of filters on Y .

The following simple but really useful facts demonstrate the power of the abstract
characterisation given by Theorem 3.2.

Lemma 3.6. Let iX and iY be as above. Then:

1. iX(x) ≤ iX(x′) iff, for every y ∈ Y , x′Zy implies xZy.

9



2. iX is monotone iff x ≤ x′ and x′Zy implies xZy.

3. iX is injective iff (for all y ∈ Y , x′Zy ⇐⇒ xZy) implies x = x′.

4. iX is order-reflecting iff whenever (∀y ∈ Y , x′Zy implies xZy) then x ≤ x′.

And dually:

5. iY (y) ≤ iY (y
′) iff, for every x ∈ X, xZy implies xZy′.

6. iY is monotone iff xZy and y ≤ y′ implies xZy′.

7. iY is injective iff (for all x ∈ X, xZy ⇐⇒ xZy′) implies y = y′.

8. iY is order-reflecting iff whenever (∀x ∈ X, xZy implies xZy′) then y ≤ y′.

Proof. For item 1 observe that, by Theorem 3.2.1, iX(x) ≤ iX(x′) iff, for every y ∈ Y ,
iX(x′) ≤ iY (y) implies iX(x) ≤ iY (y). The rest follows by Theorem 3.2.2.

Items 3 and 4 follow immediately from item 1. For item 2, fix x ≤ x′. By item 1, we see
that iX(x) ≤ iX(x′) iff x′Zy implies xZy. The second part is completely analogous.

Observe that if iX is both monotone and order-reflective then

x ≤ x′ iff, ∀y ∈ Y, x′Zy implies xZy

and similarly for iY .
In our examples, we often have that X is a ∨-semilattice with directed infima, for

example, when X is the set of Scott-open filters. To accommodate various types of join
and meet preservation requirements for iX we establish the following general lemma.

Lemma 3.7. Let A be a subset of X. Assuming the supremum
∨

A exists in X, then

1. iX(
∨

A) =
∨

iX(A) iff (for every a ∈ A, aZy) implies (
∨

A)Zy.

Further, assuming the infimum
∧

A exists in X

2. if iX is monotone and order-reflecting, then iX(
∧

A) =
∧

iX(A).

Proof. Observe that, by Theorem 3.2.1, iX(
∨

A) ≤
∨

iX(A) is equivalent to: for a
fixed y ∈ Y ,

(∀a ∈ A, iX(a) ≤ iY (y)) implies iX(
∨

A) ≤ iY (y).

However, by Theorem 3.2.2, this is equivalent to the claim.
For the second part, we want to show that

∧
iX(A) ≤ iX(

∧
A). Assume that iX(x) ≤∧

iX(A), i.e. iX(x) ≤ iX(a) for all a ∈ A. Since iX reflects the order, x ≤ a for every
a ∈ A, i.e. x ≤

∧
A. Then, since iX is monotone, also iX(x) ≤ iX(

∧
A). As x was

chosen arbitrarily, by Theorem 3.2.1, we obtain that
∧

iX(A) ≤ iX(
∧

A).

For future reference, we also mention the dual version of this fact.

Lemma 3.8. Let B be a subset of Y . Assuming the infimum
∧

B exists in Y , then

10



1. iY (
∧

B) =
∧

iY (B) iff (for every b ∈ B, xZb) implies xZ(
∧
B).

Further, assuming the supremum
∨

B exists in Y

2. if iY is monotone and order-reflecting, then iY (
∨

B) =
∨

iY (B).

We usually get monotonicity for free. On the other hand, checking that iX resp. iY
is order-reflective is not always immediate. We often get this for free by the following
simple fact about injective semilattice homomorphisms.

Lemma 3.9. Injective semilattice homomorphism are order-reflective.

Proof. Let f : S → S′ be an injective ∨-semilattice homomorphism. Assume f(s) ≤
f(s′). Then f(s′) = f(s)∨f(s′) = f(s∨s′) and by injectivity s ≤ s′ since s′ = s∨s′.

3.2.4 Computing inside complete lattices. We finish this overview of the general
theory of polarities by a result that allows us to give concrete description of G(P ) by
computing it as a certain closure within a complete lattice. To this end, given a subset
S of a complete lattice C, define the following closure and interior operators:

clS : C → C intS : C → C

c 7→
∧

{s ∈ S | c ≤ s} c 7→
∨

{s ∈ S | s ≤ c}

Furthermore, write
J (S) ⊆ C and M(S) ⊆ C (3.2.2)

for the closure of S under all joins and meets in C, respectively.

Proposition 3.10. For X,Y ⊆ C where C is a complete lattice and ≤ is the order of C,

G(X,Y,≤) ∼= intX [M(Y )] ∼= clY [J (X)]

and, consequently, also

G(X,Y,≤) ∼= G(X,M(Y ),≤) ∼= G(J (X), Y,≤) ∼= G(J (X),M(Y ),≤).

Proof. Recall from §3.2.2 that G(X,Y,≤) can be concretely computed as the image
q[℘(Y )] for p and q as in §3.2.1, induced by Z set to ≤. Therefore, q[℘(Y )] consists of
the sets of the form

{x ∈ X | x ≤
∧

N} for some N ⊆ Y.

Define α : q[℘(Y )] → intX [M(Y )] by sending S to
∨

S. Observe that this is a well-
defined map. Indeed, for any N ⊆ Y , we have α(q(N)) = intX(

∧
N) and, for N,N ′ ⊆ Y ,

we have that q(N) = q(N ′) if and only if, for any x ∈ X, x ≤
∧

N iff x ≤
∧
N ′.

Next we show that α is an isomorphism of posets. Since α is clearly monotone, it is
enough to show that it is onto and order-reflective. For the latter, assume α(q(N)) ≤
α(q(N ′) for some N,N ′ ⊆ Y and let x ∈ q(N). Then, by definition, x ≤ α(q(N)) ≤

11



α(q(N ′)) ≤
∧

N ′, giving us x ∈ q(N ′). Therefore q(N) ⊆ q(N ′). For surjectivity, it
is enough to observe that a typical element of intX [M(Y )] is of the form intX(

∧
N) =

α(q(N)) for some N ⊆ Y . We have shown that G(X,Y,≤) is isomorphic to intX [M(Y )].
From this it follows that G(X,Y,≤) ∼= G(X,M(Y ),≤). By Corollary 3.5 we also obtain

the dual statement as G(X,Y,≤)op ∼= G(Y,X,≥) ∼= clY [J (X)], viewed as a sub-poset
of Cop.

3.2.5 The isomorphism concretely. Observe that the proof gives us that the formula
for the isomorphism is given by the closure operation

clY : intX [M(Y )]
∼=

−−−→ clY [J (X)].

Indeed, for N = p(q(N)) i.e. N = {y ∈ Y | intX(
∧

N) ≤ y} and for the mapping
β : p[℘(X)] → clY [J (X)], S 7→

∧
S (the map defined dually to α), we have that

clY (α(q(N))) = clY (intX(
∧

N)) =
∧

N = β(N).
By a dual argument, the inverse map in the opposite direction is given by the interior

operation

intX : clY [J (X)]
∼=

−−−→ intX [M(Y )].

4 Filter extensions

Recent frame-theoretic constructions appearing in the literature, e.g. in [PPT19, MPS20,
Jak20], are examples of polarities specified by a class of filters F ⊆ Filt(L) on a frame L.
The induced polarity is of the form (F , L,∋), i.e. it is the polarity (F , L, Z) with Z
defined by: FZa ⇐⇒ a ∈ F .

Remark 4.1. Observe that the definition of Z aligns with our geometrical point of
view. Indeed, with the mapping from (2.4.1), FZa implies su(F ) ⊆ o(a). Furthermore,
if F is strongly exact (cf. §2.4.1) the converse also holds. In fact, all classes of filters we
consider in this text are subclasses of strongly exact filters.

We define the F-extension LF of L (or simply the filter extension if F is clear from
context) as the lattice of Galois closed sets for the polarity induced by F , that is,

LF = G(F , L,∋).

Similarly to [Jak20], we denote the induced maps iL and iF by

eF : L → LF and κF : F →֒ LF

respectively. Sometimes we simply write e and κ if F is clear from the context.
Then, Theorem 3.2 entails the following universal properties of eF inspired by (DSO)

and (CSO). Namely, items 1 and 2 in Theorem 3.2 imply that κF (F ) =
∧
eF [F ] and,

consequently, eF is the unique mapping e : L → LF into a complete lattice LF such that:
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(DF ) Every element of LF is a join of elements of the form
∧

e[F ] for some F ∈ F
and a meet of elements of the form e(a) for some a ∈ L.

(CF ) If
∧

e[F ] ≤ e(a) for F ∈ F and a ∈ L, then a ∈ F .

The fact that κF is an embedding as well as many of its and eF ’s desirable properties
follow automatically from the construction and our observations in §3.2.3. The following
is a generalisation of Propositions 3.6 and 5.1 in [Jak20].

Proposition 4.2. For a class of filters F ordered by ⊑, as indicated in Section 2.4, and
for κF defined as above we have that

1. κF is monotone, injective and order-reflective, and

2. κF preserves existing joins and meets in (F ,⊑).

Also, for eF defined as above we have that

3. eF is monotone,

4. eF preserves 0 and finite meets,

5. if eF is injective then it is a frame embedding, i.e. it is order-reflective and preserves
finite meets as well as arbitrary joins, and

6. eF is injective iff L is F-separable, i.e.

a = b in L iff ∀F ∈ F , a ∈ F ⇐⇒ b ∈ F.

Proof. First, we discuss consequences of Lemma 3.6 for the polarity (F , L, Z) where
Z = ∋. Observe that F ⊑ G, G Z a and a ≤ b implies F Z b, giving us that both κF
and eF are monotone. Injectivity of order-reflectivity of κF follows from the fact that
⊑ and equality of filters is determined by the Z relation. We have checked (1) and (3).
Observe that (6) also follows from the definition of Z. Similarly, (2) is a consequence of
Lemma 3.7, (1) and the definition of Z.

To check (4), we use Theorem 3.2. Assume κ(F ) ≤ e(0) for some F ∈ F . By (CF ),
0 ∈ F , i.e. F = ↑0 is the least filter in the ⊑ order. Since every element LF is a
join of elements of the form κ(F ), we have e(0) = 0. Preservation of finite meets is
a consequence of Lemma 3.8 and the definition of Z as ∋. Finally, (5) follows from
Lemma 3.9 and (4).

4.1 A concrete description

Up until now everything we proved about filter extensions followed from the abstract de-
scription given by Theorem 3.2. In order to make comparison with existing constructions
in the literature we need to have an exact description of the lattice LF . In Corollary 4.4
of [Jak20] it was shown that LSO can be identified with the poset of intersections of
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Scott-open filters. The same is true about general filter extensions. Recall from (3.2.2)
the operation J ( - ) which closes a subset of a complete lattice under all joins. Then, for
F viewed as a subset of the complete lattice Filt(L), ordered by ⊑,

J (F) = {
⋂

A | A ⊆ F} (4.1.1)

is the poset of intersections of filters from F since intersections of filters are precisely
joins in Filt(L).

Proposition 4.3. For any F , the filter extension LF is isomorphic to J (F).

Proof. This follows from Proposition 3.10. Observe that, for F ∈ Filt(L) and a, b ∈ L,
we have that FZa (i.e. a ∈ F ) iff F ⊑ ↑a in Filt(L) and a ≤ b iff ↑a ⊑ ↑b. Consequently,
for F and Pri(L) = {↑a | a ∈ L} both viewed as subsets of the complete lattice Filt(L),

LF ∼= G(F ,Pri(L),⊑) ∼= clPri(L)[J (F)] = J (F)

where the last equality holds because for every F ∈ Filt(L), we have that clPri(L)(F ) =d
{↑a | a ∈ F} = F .

Consequently, existing joins in LF are computed as intersections of filters in Filt(L).
In fact, it is a meet-sublattice of Filt(L). The mappings e and κ composed with the
isomorphism LF ∼= J (F) translate as follows.

κ : F → J (F) e : L → J (F)

F 7→ F a 7→
⋂

{F ∈ F | a ∈ F}
(4.1.2)

Observe that classes of exact and strongly exact filters are already closed under inter-
sections.

Lemma 4.4. J (SE(L)) = SE(L) and J (E(L)) = E(L).

Proof. If
⋂

j Fj is an intersection of (strongly) exact filters and
∧

i xi is (strongly) exact
meet such that {xi}i ⊆

⋂
j Fj then also

∧
i xi ∈

⋂
j Fj because each Fj contains

∧
i xi.

Consequently,
⋂

j Fj is also a (strongly) exact filter.

4.2 Specific cases of eF : L → LF

In this subsection we take a look at properties of eF depending on the class F . To reduce
clutter, instead of writing eSE(L), κSE(L) and LSE(L) we simply write eSE, κSE and LSE

and similarly for other classes of filters such as E(L),SO(L),CP(L) and those that we
introduce later on.

Our starting point is the following fact, where item 3 assumes the concrete description
LF = J (F) and (4.1.2).

Proposition 4.5. For a frame L and a collection F of its filters, the following are
equivalent:
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1. eF is injective;

2. The frame L is F-separable;

3. eF (a) = ↑a for all a ∈ L;

4. The collection J (F) contains all principal filters.

Proof. The equivalence of (1) and (2) is precisely item 6 of Proposition 4.2. Notice that
F-separability may be rephrased as having eF (a) ⊆ ↑a for all a ∈ L, and that the reverse
set inclusion always holds. Therefore, (2) and (3) are equivalent, too. Finally, if (3) holds
then (4) follows immediately. If (4) holds, then for each a ∈ L, the principal filter ↑a is
an intersection of filters in F . In particular, by (4.1.2), eF (a) =

⋂
{F ∈ F | a ∈ F} = ↑a

as it is the intersection of all filters containing a.

From item 5 in Proposition 4.2, Proposition 4.5 and the fact that principal filters are
automatically exact and strongly exact we deduce the following.

Corollary 4.6. For a frame L the following maps are always frame embeddings.

• eSE : L → LSE,

• eE : L → LE.

Furthermore, the following special cases are also easy to establish. Given our concrete
construction of LF , items 1 and 2 are very close to Theorems 2.2.2 and 3.4.2 in [MPP22].
Our proof uses only the universal properties of LF .

Proposition 4.7. The map eF preserves a meet
∧

i xi if and only if the filters of F are
closed under that meet, that is, if for all F ∈ F we have that xi ∈ F for all i ∈ I implies∧

i xi. In particular

• eF preserves strongly exact meets if and only if F ⊆ SE(L),

• eF preserves exact meets if and only if F ⊆ E(L),

• eF preserves all meets if and only if all filters of F are principal.

Proof. The left-to-right direction of all items follows directly from Lemma 3.8. Con-
versely, suppose that

∧
i e(xi) = e(

∧
i xi). If {xi}i ⊆ F for some F ∈ F then we get that∧

e[F ] ≤
∧

i e(xi) = e(
∧

i xi). However, then
∧

i xi ∈ F by (CF ).

Corollary 4.8. We have the following.

• The map e : L → LSE preserves a meet
∧

i xi if and only if
∧

i xi is strongly exact.

• The map e : L → LE preserves a meet
∧

i xi if and only if
∧

i xi is exact.

Finally, we look at some simple facts concerning Scott-open and completely prime
filters.
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Proposition 4.9.

1. If F ⊆ SO(L) then eF preserves directed joins.

2. If SO(L) ⊆ F and L is pre-spatial (i.e. SO(L)-separable) then eF is injective.

3. If CP(L) ⊆ F and L is spatial (i.e. CP(L)-separable) then eF is injective.

Proof. (1) We use (DF ) to show that e(
∨

D) ≤
∨

e(D) for any directed D ⊆ L. Let
F ∈ F be arbitrary, such that

∧
e[F ] ≤ e(

∨
D). By (CF ),

∨
D ∈ F and, since F is

Scott-open, there is a d ∈ D such that d ∈ F . Therefore,
∧

e[F ] ≤ e(d) ≤
∨

e(D) as
required. (2) and (3) follow directly from Proposition 4.2.6.

5 Comparing classes of filters

In this section, we look at the restrictions of strongly exact filters from the diagram
(1.0.1) in the Introduction. In particular, we study the joins (intersections) of regular,
exact, completely prime and Scott-open filters. Note that all these classes of the form
LF = J (F), that is, they are closed under joins in Filt(L). For exact and strongly exact
filters this follows from Lemma 4.4 and for the other classes it follows by definition.

Apart from proving the non-obvious inclusions between the classes of filters in the
diagram (1.0.1), Corollary 5.11 below shows that these are in fact subcolocale inclusions.

5.1 Scott-open filters

We start by remarking that joins of Scott-open filters are strongly exact. The base case
of this fact is due to Johnstone (Lemma 3.4 in [Joh85], see also [Esc03] and [Vic97]) who
showed that Scott-open filters are strongly exact.

Johnstone’s proof uses a transfinite induction on nuclei, whereas the proof in [Esc03]
uses Pataraia’s fixed-point theorem for pre-nuclei and [Vic97] is written in terms of
generalised points of powerlocales. We report here a simple explicit proof of the result
which, on the other hand, uses Zorn’s Lemma.

Lemma 5.1. In a frame L and for x, y, z ∈ L we have x → y = y if and only if z > y
implies z ∧ x � y.

Proof. Note that x → y = y if and only if z � y implies that z ∧ x � y. We claim
that this is equivalent to having z > y implying z ∧ x � y. It is clear that the first
condition implies the second. For the converse, if z � y, then we have z ∨ y > y. Since
the second condition holds, we have (z ∨ y) ∧ x = (z ∧ x) ∨ (y ∧ x) � y, and so we must
have z ∧ x � y.

Proposition 5.2. Scott-open filters are strongly exact.

Proof. Suppose that F is a Scott-open filter of a frame L, and that x /∈ F . Our argument
will show that x cannot be a strongly exact meet of elements in F. First, we claim that
there must be some y ∈ L which is maximal among the elements of ↑x which are not in
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F . If this were not the case, then by Zorn’s Lemma we could find an infinite ascending
chain x ≤ x1 < ... < xn < ..., outside of F but with supremum in F . This would
contradict Scott-openness of F . Then, let m ∈ L be such an element, and in particular,
observe ↑m ∩F = ↑m \ {m}. Suppose that x =

∧
i xi with {xi}i ⊆ F , we show that the

meet cannot be strongly exact. Observe that, for each i ∈ I, and for z > m, we must
have z∧xi � m, because z∧xi ∈ F and m /∈ F . Then, by Lemma 5.1, xi → m = m and,
consequently, m ∈

⋂
i o(xi). On the other hand, since x ≤ m, we have x → m = 1 6= m

and m /∈ o(x). Then, x can never be an exact meet of elements in F .

Because strongly exact filters are closed under intersection (Lemma 4.4), Proposi-
tion 5.2 entails the desired inclusion from (1.0.1).

Corollary 5.3. J (SO(L)) ⊆ SE(L).

5.2 Completely prime filters

The class CP(L) of completely prime filters is not, in general, closed under intersections.
It is clear that we have CP(L) ⊆ SO(L). In this special case we can actually describe
the filter extension in terms of the dual space pt(L) of the frame L. In the following, we
regard the points of pt(L) as completely prime filters CP(L).

Lemma 5.4. J (CP(L)) ∼= U(pt(L)) where, for a topological space X, U(X) is the lattice
of upsets in the specialisation order of X. The isomorphism is given by

P 7→ ↑P = {Q ∈ CP(L) | P ⊆ Q}.

Proof. First, we observe that every Q ∈ CP(L) is completely join prime in Filt(L), that
is, Q ⊑

⊔
i Fi (i.e.

⋂
i Fi ⊆ Q) implies Q ⊑ Fi (i.e. Fi ⊆ Q) for some i. Assume by

contradiction that, for every i, Q 6⊑ Fi i.e. there is some ai ∈ Fi \ Q. Then,
∨

i ai ∈⋂
i Fi ⊆ Q and so ai ∈ Q for some i, a contradiction.
Observe that this shows that the map described in the statement is a surjection: any

upset {Pi | i ∈ I} of completely prime filters is equal to {Q ∈ CP(L) |
⋂

i Pi ⊆ Q}. From
the definition, it is also clear that it is an injection which preserves and reflects order.
Therefore, it is an isomorphism.

5.3 Exact filters

The fact that exact filters are a special kind of strongly exact filters

E(L) ⊆ SE(L)

has been observed earlier (cf. Remark 3.5 in [MPS20]). We also make comparison of
exact filters with regular filters, which we introduce later on. For that we need the
following new characterisation of exact filters.
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Proposition 5.5. For a filter F ⊆ L is exact if and only if it is an intersection of filters
of the form

↑y r ↑x = {a ∈ L | y ≤ a ∨ x}

for some x, y ∈ L. In fact, F =
⋂
{↑y r ↑x | ∀f ∈ F y ≤ f ∨ x} which rewrites as

F = {a ∈ L | ∀x, y ∈ L (∀f ∈ F y ≤ f ∨ x) ⇒ y ≤ a ∨ x}. (ex)

Proof. From the right-to-left implication assume
∧

i ai is an exact meet with {ai}i ⊆ F .
Let x, y be such that for every f in F , y ≤ f ∨ x. Then, in particular, for every i,
y ≤ ai ∨ x. Therefore, y ≤

∧
i(ai ∨ x) = (

∧
i ai) ∨ x and so

∧
i ai ∈ F .

Conversely, denote by G the right-hand side of (ex) above. We wish to prove F = G.
Observe that F ⊆ G is immediate from the definition. For the converse inclusion, let
a ∈ G. In order to show a ∈ F , it is enough to prove that

(a) a =
∧

f∈F (f ∨ a), and

(b) the meet in (a) above is exact.

For (a) we only need to show
∧

f∈F (f ∨ a) ≤ a. Taking y =
∧

f∈F (f ∨ a) and x = a,
observe that we have y ≤ f ∨ a for every f ∈ F . Therefore, since a ∈ G, we have the
desired y =

∧
f∈F (f ∨ a) ≤ a ∨ x = a.

For (b) let b ∈ L be arbitrary. We need to show that

a ∨ b =
∧

f∈F

(f ∨ a) ∨ b ≥
∧

f∈F

(f ∨ a ∨ b)

where the first equality holds by (1). Set x = a ∨ b and y =
∧

f∈F (f ∨ a ∨ b). Observe
that trivially, for every f ′ ∈ F , y ≤ f ′∨x. Therefore, since a ∈ G, the desired inequality
follows: y =

∧
f∈F (f ∨ a ∨ b) ≤ a ∨ x = a ∨ b.

5.4 Closed and regular filters

Finally, we introduce a class of filters that (as we explain in Section 9) corresponds to
fittings of closed sublocales. Define

• closed filters C(L) as the filters of the form {x ∈ L | a ∨ x = 1} for some a ∈ L.

As usual, we order C(L) by the reverse inclusion order, denoted by ⊑. It turns out that
closed filters are the supplements of principal filters in Filt(L):

(↑a)# = {1} r ↑a = {x ∈ L | ∀a′ ≥ a. x ∨ a′ = 1} = {x ∈ L | x ∨ a = 1}. (5.4.1)

The class of intersections of closed filters has a very natural description. Let

• regular filters R(L) be the filters of the form {1} r F for some filter F ⊆ L.

Lemma 5.6. Regular filters coincide with intersections of closed filters: R(L) = J (C(L)).
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Proof. Recall from (5.4.1) that the closed filters are of the form {1}r↑a for some a ∈ L.
Then, for a subset A ⊆ L, since difference reverts meets in the second coordinate into
joins, we obtain that {1} r (

d
a∈A ↑a) =

⊔
a∈A({1} r ↑a). The result follows from the

fact that every filter G ∈ Filt(L) is equal to the meet
d

b∈G ↑b in Filt(L).

The Booleanization B(L) of a frame L is a standard construction in frame theory. It
is the sublocale B(L) ⊆ L consisting of all regular elements of L, that is, the elements
of the form a → 0. When we dualise the situation to coframes, the (co)Booleanization
B(C) of a coframe C consists of all supplements a#, i.e. elements of the form 1r a.

In case when the coframe is Filt(L), by definition R(L) is defined precisely asB(Filt(L)).
Therefore, from being a subcolocale, R(L) is closed under joins (intersections) in Filt(L)
and R(L) ∼= LR. Consequently, we obtain the following.

Corollary 5.7. For a frame L, LC and LR is isomorphic to the Booleanization of Filt(L).

Lastly, observe that, as a consequence of Proposition 5.5 and the fact that exact filters
are closed under intersections, by Lemma 4.4, we have the following inclusions.

C(L) ⊆ R(L) = J (C(L)) ⊆ E(L)

5.5 Subcolocale inclusions of filters

Recall that we view classes of filters in (1.0.1) as certain filter extensions. Consequently,
we give a general condition for a filter extension LF , viewed concretely as J (F) (cf.
Proposition 4.3), to be a subcolocale of Filt(L). Unlike in [Jak20] we do not have to
impose any requirements on L.

We show that, for any class F of filters, in order for LF ⊆ Filt(L) to be a subcolocale
inclusion it is enough for the following following simple property to hold.

∀F ∈ F ∀a ∈ L, F r ↑a = {x | x ∨ a ∈ F} ∈ F . (scl)

Note that all classes of filters that we’ve looked at so far satisfy this property.

Lemma 5.8. F satisfies (scl) if it is the class of

1. closed filters C(L),

2. Scott-open filters SO(L),

3. completely prime filters CP(L),

4. exact filters E(L), or

5. strongly exact filters SE(L).

Proof. (1) If Fd = {x | x∨ d = 1} is a closed filter, then Fd \ ↑c = {x | x∨ c ∈ F} = {x |
x ∨ c ∨ d = 1} = Fc∨d is a closed filter too. (2) If F is Scott-open and a directed join∨

i ai is in F \ ↑c then the directed join
∨

i(ai ∨ c) = (
∨

i ai)∨ c is in F . Hence, for some
i, ai ∨ c is in F , giving that ai ∈ F \ ↑c. (3) is proved analogously to (2).
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(4) Let F be an exact filter and assume that {xi}i ⊆ F \↑c has an exact meet. Observe
that

∧
i xi ∈ F \ ↑c because, for every i, xi ∨ c ∈ F and so (

∧
i xi) ∨ c =

∧
i(xi ∨ c) ∈ F

since F is exact and
∧

i(xi ∨ c) is an exact meet.
(5) Proposition 3.4 in [MPS20] says that if {xi}i has a strongly exact meet then so

has {xi ∨ c}i, for any c, and also
∧

i(xi ∨ c) = (
∧

i xi) ∨ c. The rest of the proof goes as
for (4).

The following fact about the closure of a subset of a coframe under joins is needed in
the theorem below.

Lemma 5.9. Assume that C is a coframe and S ⊆ C satisfies

∀c ∈ C ∀s ∈ S, sr c ∈ J (S) (5.5.1)

then J (S) ⊆ C is a subcolocale inclusion.

Proof. Recall that coHeyting difference r preserves joins in the first component. Hence,
J (S) is stable under ( - )r c since, for any A ⊆ S,

(
∨

A)r c =
∨

{ar c | a ∈ A}

and this is in J (S) by (5.5.1).

With this we easily see that (scl) suffices for LF to be a coframe. In fact we have
more, it is a subcolocale of Filt(L).

Theorem 5.10. For a frame L, if a collection F ⊆ Filt(L) satisfies (scl) then the
inclusion LF ⊆ Filt(L) is a subcolocale inclusion.

Proof. Recall that coHeyting difference reverses meets into joins in the second compo-
nent. Then, since joins of filters are intersections, for any G ∈ Filt(L) and F ∈ F ,

F rG =
⋂

{F r ↑a | a ∈ G}.

Therefore, by (scl) the assumptions of Lemma 5.9 are met for joins of F in Filt(L), i.e.
for LF = J (F).

Now by Lemma 5.8 and Theorem 5.10 we see that all classes of filters appearing in
the diagram in (1.0.1) are subcolocales of Filt(L). Furthermore, upon recalling that if
S, T ⊆ C are subcolocales of a coframe C and S ⊆ T then the inclusion S ⊆ T is a
subcolocale inclusion as well, we obtain the following.

Corollary 5.11. All classes of filters in (1.0.1) are coframes and, furthermore, all
inclusions therein are subcolocale inclusions.

20



5.6 Topological properties and classes of filters

We now show some characterizations of frame theoretical properties in terms of the
collections of filters we have discussed so far.

Recall that a frame L is subfit if a ≤ b whenever, for every c ∈ L, a ∨ c = 1 implies
b ∨ c = 1.

Proposition 5.12. For a frame L we have the following.

• L is pre-spatial (i.e. SO(L)-separable) iff J (SO(L)) contains all principal filters.

• L is spatial (i.e. CP(L)-separable) iff J (CP(L)) contains all principal filters.

• L is subfit iff R(L) contains all principal filters.

Proof. Notice that all three statements are special cases of Proposition 4.5, with F
chosen to be the collection SO(L) in the first case, the collection CP(L) in the second,
and the collection of filters of the form {x ∈ L : x∨ a = 1} in the third. Indeed, we have
J (C(L)) = R(L) by Proposition 5.6.

Proposition 5.13. A frame is subfit if and only if all exact filters are regular.

Proof. First, suppose that L is a subfit frame. By the characterization in Proposition 5.5,
it suffices to show that filters of the form

{x ∈ L | b ≤ x ∨ a}

are equal to the intersection of the closed filters above them. Consider, then, a filter F
of the form above. Suppose that we have z ∈ L such that z ∈ C whenever C is a closed
filter such that F ⊆ C. We show that z ∈ F . In order to show b ≤ z ∨ a, by subfitness,
it suffices to show that b∨ u = 1 implies that z ∨ a∨ u = 1 for all u ∈ L. Suppose, then,
that the antecedent holds. Consider the closed filter C = {x ∈ L : x ∨ a ∨ u = 1}. We
claim that F ⊆ C. If b ≤ x∨ a, then because we assumed the antecedent above we have
x ∨ a ∨ u = 1 and so x ∈ C. So, indeed F ⊆ C. By our assumptions, this means z ∈ C
or, in other words, z ∨ a ∨ u = 1.

If, conversely, all exact filters are regular, in particular all principal filters are, and the
frame is subfit by item (3) of Proposition 5.12.

We obtain a proof of Theorem 3.2 of [BMP20] and its converse, which can be thought
of as the filter-only version of Theorem 3.5 in [PPT19], without the detour to sublocales.

Corollary 5.14. A frame is subfit if and only if E(L) is Boolean.

Proof. We have seen above that all regular filters are exact for any frame. If L is subfit,
by Proposition 5.13 we also have E(L) = R(L), and so E(L) is Boolean. Conversely,
if E(L) is Boolean, R(L) ⊆ E(L) implies that R(L) = E(L), as the Booleanization is
maximal among the Boolean sub(co)locales.
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6 Relating fitted sublocales and filters

In this section we connect the constructions of Galois closed sets arising from polarities of
filters with recent important sublocale-based constructions of discretisations of a frame.
A common way (see e.g. in Section 4.2 of [MPS20]) to connect filters and sublocales of
a frame is via the adjunction

Filt(L) S(L)

su

⊤

fi

(6.0.1)

where fi(S) = {a ∈ L | S ⊆ o(a)} and su is defined as in (2.4.1). It is immediate to see
that fi ⊣ su, that is, fi is the left adjoint to su: fi(S) ⊑ F iff S ⊆ su(F ).

In the following we discuss how restrictions of this adjunction to different classes of
sublocales, on the right, lead to restrictions to different classes of filters, on the left.

6.1 Fitted sublocales

First we connect our constructions with a prominent recent result representing fitted
sublocales as strongly exact filters. In [MPS20] it is shown that the adjunction in (6.0.1)
restricts to the isomorphism between strongly exact filters and

• fitted sublocales So(L), that is, sublocales of the form
⋂

m∈M o(m) for some M ⊆ L,

The proof of the correspondence in [MPS20] is not complicated. However, we offer a
different one which makes use of the theory of polarities. We start with an observation.

Lemma 6.1. The mapping fi restricts to So(L) → SE(L) and, moreover, for S ∈ So(L)
we have su(fi(S)) = S.

Proof. Let S ⊆ L be a sublocale of the form
⋂

m∈M o(m) for some M ⊆ L. Since
M ⊆ fi(S) we have su(fi(S)) ⊆ S. The fact that fi is the left adjoint to su implies the
other inequality, that is, S = su(fi(S)).

With this and Lemma 2.1 we also show that fi(S) is strongly exact. For any b ∈ L
such that

⋂
a∈fi(S) o(a) ⊆ o(b) since the left-hand-side is equal to S we also have that

S ⊆ o(b). Therefore, b is in fi(S).

With these we immediately get the main result of [MPS20].

Theorem 6.2. The adjunction in (6.0.1) restricts to the isomorphism SE(L) ∼= So(L).

Proof. Consider the mapping o : L → So(L). Clearly, the image
∧
-generates So(L) and,

by the second part of Lemma 6.1, the elements of the form
∧
o[F ] for strongly exact

filter F
∨
-generates So(L). Finally, by (2.4.2), we have that su(F ) ⊆ o(a) iff a ∈ F iff

FZa. Hence, o : L → So(L) satisfies the axioms (DF ) and (CF ) for F = SE(L). As a
result SE(L) = J (SE(L)) ∼= LSE ∼= So(L) by Proposition 4.3 and Lemma 4.4.

22



6.1.1 Fitted joins. The lattice So(L) can be presented as the sublattice of S(L) of
fixpoints of the fitting operator

fit : S(L) → S(L),

which sends a sublocale S to
⋂
{o(a) | S ⊆ o(a)}. Since this is a closure operator, joins

and meets in So(L) can be computed in S(L) according to (3.2.1) as follows.

∧So(L)A =
∧S(L)A =

⋂
A and

∨So(L)A = fit(
∨S(L)A). (6.1.1)

To distinguish the joins in So(L) from those in S(L), we call the former ones fitted joins.
Then, for a set M ⊆ So(L), we write

FJ (M) = {
∨So(L) A | A ⊆ M}

for the closure of M under fitted joins in So(L).

6.2 Smooth sublocales

In [PPT19], the authors introduced the lattice

Sc(L) ⊆ S(L)

consisting joins of closed sublocales, i.e. sublocales of the form
∨

a∈M c(a) for some M ⊆
L. Among others, [PPT19] shows that that strongly exact filters correspond to Sc(L). In
fact, Theorem 6.2 above is inspired by this fact. However, the isomorphism E(L) ∼= Sc(L)
takes E(L) in the usual subset order ⊆.

Therefore, the isomorphism from [PPT19] cannot be obtained as a restriction of The-
orem 6.2 along the inclusion E(L) ⊆ SE(L). In fact, in [MPS20] it is proven that this
restriction gives us fittings of supplements of joins of closed sublocales on the other side,
i.e. Theorem 6.2 restricts to E(L) ∼= fit[(Sc(L))

#]. In the following lines we show that
sublocales in fit[(Sc(L))

#] are precisely fittings of smooth sublocales, from [Arr21].
Observe that the filters arising in Proposition 5.5 are the filters associated with locally

closed sublocales, i.e. sublocales of the form c(x) ∩ o(y). Indeed,

fi(c(x) ∩ o(y)) = {a | y ≤ a ∨ x} = ↑y r ↑x (6.2.1)

since c(x) ∩ o(y) = o(y) r o(x) ⊆ o(a) iff o(y) ⊆ o(a) ∨ o(x) = o(a ∨ x). Therefore, it is
justified calling filters of the form ↑y r ↑x locally closed filters. We denote by

LC(L) and Slc(L)

the class of locally closed filters and locally closed sublocales, respectively. By the same
proof as in the first paragraph of Proposition 5.5 we see that LC(L) ⊆ E(L). Therefore,
recalling (4.1.1) Proposition 5.5 immediately yields.

Lemma 6.3. Exact filters are the joins of locally closed filters, i.e. E(L) = J (LC(L)).
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On the other hand, since locally closed filters are in particular strongly exact filters
and since the adjunction fi ⊣ su restricts to an isomorphism on strongly exact filters, the
description of locally closed filters from (6.2.1) immediately yields the following.

Lemma 6.4. The isomorphism in Theorem 6.2 restricts to LC(L) ∼= fit[Slc(L)].

Observe that the isomorphism in Theorem 6.2 translates joins of strongly exact filters
to fitted joins of the fitted sublocales. Therefore, by the previous two lemmas, exact
filters correspond precisely to fitted joins of the fittings of locally closed sublocales. The
following significantly simplifies the description of sublocales arising this way.

Lemma 6.5. Given a class of sublocales A ⊆ S(L), fitted joins of fittings of sublocales
in A coincide with fittings of joins of sublocales in A, i.e. FJ (fit[A]) = fit[J (A)].

Proof. Given {Si}i ⊆ A, the fitted join
∨So(L)

i fit(Si) is just the meet of sublocales
fit(

∨
i fit(Si)) =

⋂
{o(a) |

∨
i fit(Si) ⊆ o(a)} and we have that

∨
i
fit(Si) ⊆ o(a) ⇐⇒ ∀i Si ⊆ o(a)

⇐⇒
∨

i
Si ⊆ o(a) ⇐⇒ fit(

∨
i
Si) ⊆ o(a).

Combining all the above we obtain that exact filters precisely correspond to fittings
of joins of locally closed sublocales. The latter class of sublocales has been studied
in [Arr21]. In fact, the sublocales of the form S =

∨
i (c(xi) ∩ o(yi)) for some set of xi’s

and yi’s, are called smooth sublocales and correspond precisely to joins of complemented
sublocales. Upon denoting the collection of smooth sublocales by Sb(L), we can conclude
the following.

Theorem 6.6. The isomorphism in Theorem 6.2 restricts to E(L) ∼= fit[Sb(L)].

6.3 Joins of closed sublocales

The results from the previous section, especially Theorem 6.6, naturally lead to further
questions about the nature of the frame Sc(L) of joins of closed sublocales. Observe
that we have Sc(L) ⊆ Sb(L) and so there must be a restriction of E(L) that corresponds
to fit[Sc(L)]. To this end, we appeal to the notion of closed filters which we have
introduced in Section 5.4. The reason why we call these filter closed is because they are
of the form fi(c(a)):

fi(c(a)) = {x ∈ L | c(a) ⊆ o(x)} = {x ∈ L | Lr o(a) ⊆ o(x)} = {x ∈ L | x ∨ a = 1}

(6.3.1)

Wee see that closed filters are a special kind of locally closed filters, which in turn are
a subclass of exact filters

C(L) ⊆ LC(L) ⊆ E(L).

Consequently, the following theorem is a genuine refinement of Theorem 6.6.
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Proposition 6.7. The isomorphism in Theorem 6.2 restricts to J (C(L)) ∼= fit[Sc(L)].

Proof. By (6.3.1) we know that a filter is closed if and only if it is the fi( - ) image of
a closed sublocale. Therefore, intersections of closed filters J (C(L)) are isomorphic to
fitted joins of fittings of closed sublocales by Theorem 6.6.

What is left to show is that these are precisely fittings of joins of closed sublocales.
This follows from Lemma 6.5.

Furthermore, Lemma 5.6 gives the following rephrasing of Proposition 6.7.

Theorem 6.8. The isomorphism in Theorem 6.2 restricts to R(L) ∼= fit[Sc(L)].

6.4 Joins of compact sublocales

The celebrated Hofmann-Mislove Theorem establishes a correspondence between com-
pact saturated subsets of a sober space and Scott-open filters on the frame of open of
the space. Johnstone gave a pointfree analogue of this result.

Proposition 6.9. The isomorphism in Theorem 6.2 restricts to the isomorphism be-
tween SO(L) and compact fitted sublocales of L, that is, sublocales S ∈ So(L) such that
S ⊆

∨
a∈A o(a) implies S ⊆ o(a1) ∨ · · · ∨ o(an) for some a1, . . . , an ∈ A..

Proof. This is Lemma 3.4 in [Joh85], see also [Esc03].

This theorem gives an alternative (and constructive) proof of Lemma 5.2 that SO(L) ⊆
SE(L). Indeed, since SE(L) are the fixpoints of the adjunction (6.0.1), by Proposition 6.9,
SO(L) is in the image of the mapping fi.

However, unlike exact and strongly exact filters, Scott-open filters are not necessar-
ily closed under intersection. Therefore, the arising filter extension LSO = J (SO(L))
induces a non-trivial extension of Johnstone’s theorem.

Proposition 6.10. The isomorphism in Theorem 6.2 restricts to an isomorphism be-
tween J (SO(L)) and fitted joins of compact fitted sublocales.

This proposition already gives an already quite intuitive topological description of
the sublocales corresponding to filters in J (SO(L)). However, we can specify these
sublocales in another slightly simpler way. To this end, set

• Sk(L) to be the poset of joins of compact sublocales in S(L).

Theorem 6.11. The isomorphism in Theorem 6.2 restricts to J (SO(L)) ∼= fit[Sk(L)].

Proof. First, observe that compact fitted sublocales are exactly the fittings of compact
sublocales. The inclusion from left to right is immediate. For the other direction, observe
that S ⊆ o(a) if and only if fit(S) ⊆ o(a) for any sublocale S and a ∈ L. Therefore, if
a sublocale is compact then its fitting is compact too.

From this and Lemma 6.5 we see that every fitted join of compact fitted sublocale is
in fact of the form fit(

∨
iKi) for some compact Ki’s.
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6.5 Spatial sublocales

In our final refinement of the adjunction (6.0.1) we further restrict Theorem 6.11 along
the inclusion CP(L) ⊆ SO(L) and describe the sublocales corresponding to the class of
completely prime filters.

To this end recall, e.g. from [APP23] or IX.3.3 in [PP21b], that an p ∈ L is prime iff
{p, 1} is a sublocale of L. When this is the case, we call {p, 1} a one-point sublocale and
denote it by b(p).

Moreover, we can define the spatialization operation on sublocales:

sp : S(L) → S(L), S ⊆ L 7→
∨

{b(p) | p ∈ pt(L), b(p) ⊆ S}

With this, define

• Ssp(L) as the poset of spatial sublocales of L, that is, sublocales S ⊆ L such that
S = sp(S).

Observe that sp is an interior operator which preserves finite joins. As a consequence,
sp is a coframe map S(L) → Ssp(L) and therefore Ssp(L) ⊆ S(L) is a subcolocale
inclusion. On the other hand, the following theorem is crucial in establishing that
fit[Ssp(L)] ⊆ So(L) is a subcolocale of So(L) in Section 6.6 below.

Theorem 6.12. The isomorphism in Theorem 6.2 restricts to J (CP(L)) ∼= fit[Ssp(L)].

Proof. First, observe that for a prime p ∈ L,

b(p) ⊆ o(a) ⇐⇒ a � p. (6.5.1)

Indeed, b(p) ⊆ o(a) iff a → p = p iff a � p where the last equivalence holds because
a → b = 1 iff a ≤ b and because p 6= 1 since p is prime.

With this, we show that a filter F is completely prime if and only if it is fi(b(p))
for some prime p ∈ L. For the left-to-right direction, suppose that we have a prime
p ∈ pt(L) and that

∨
i xi ∈ fi(b(p)), that is, b(p) ⊆ o(

∨
i xi). Then, by (6.5.1),

∨
i xi � p,

which implies that xj � p for some j ∈ I, that is, b(p) ⊆ o(xj). Therefore the filter
fi(b(p)) is completely prime.

For the converse, suppose that F ⊆ L is a completely prime filter. Consider the prime
element pF =

∨
(L\F ). We clearly have that f � pF for all f ∈ F which, by (6.5.1),

implies F ⊆ fi(b(pF )). Finally, notice that, by definition of pF , f � pF implies f ∈ F .
This gives us a poset isomorphism CP(L) ∼= {b(p) | p ∈ pt(L)}. Because su restricted

to SE(L) is an isomorphism of complete lattices (by Theorem 6.2) and because CP(L) ⊆
SE(L) (by Lemma 5.2), intersections of completely prime filters correspond to fitted joins
of one-point sublocales. Furthermore, since joins of one-point sublocales are precisely
spatial sublocales, we obtain that FJ ({b(p) | p ∈ pt(L)}) = fit[Ssp(L)] as required.
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6.6 The big picture

Corollary 5.11 together with Theorems 6.2, 6.6, 6.8, 6.11, and 6.12 allow us to rephrase
the subcolocale inclusions of classes of filters from (1.0.1) as the following inclusion of
classes of fitted sublocales.

fit[Sc(L)] fit[Sb(L)]

So(L)

fit[Ssp(L)] fit[Sk(L)]

(6.6.1)

Recall that So(L) itself is a sub-coframe of S(L) [MPS20]. Some of these results were al-
ready covered in the literature. In particular, the lattices So(L) and Sc(L)

op ∼= fit[Sb(L)]
are known to be coframes [PPT19, MPS20]. Whilst relying on non-trivial facts from
[PPT19], it is proved in [MPS20] that the sequence E(L) ⊆ SE(L) ⊆ Filt(L) is a sequence
of subcolocale inclusions. Separately, it is also known that fit[Sk(L)] is a coframe when
L is spatial or stably locally compact [Jak20]. And finally, in an unpublished note,
Joshua L. Wrigley has observed that LCP is a coframe too (private communication).

Furthermore, if a frame is fit, i.e. if all sublocales are fitted, we obtain the simplifi-
cation (1.0.2) of (6.6.1) from the Introduction. Note that Sc(L) = Sb(L) follows from
Proposition 5.13 and the fact that every fit frame is subfit.

7 Immediate consequences of the theory of polarities

In Section 6, we established a number of correspondences between classes of filters closed
under intersections and classes of sublocales. In fact, since LF ∼= J (F) (cf. Proposi-
tion 4.3), the main theorems in the previous section can be rephrased as

LF ∼= fit[C] (7.0.1)

for some class of filters F ⊆ Filt(L) and a class of sublocales C ⊆ S(L). Recalling that
the filter extension LF is given as G(P ) for the polarity of the form P = (F , L,∋) (cf.
Section 4), in this section we make use of the connections with the theory of polarities
to obtain new facts about filters and sublocales.

7.1 Isomorphisms with interiors of fitted sublocales

Observe that the operator fit( - ) on sublocales is simply the closure operator clo[L]( - )
for the class o[L] of open sublocales, in sense of §3.2.4. Furthermore, the classes of
sublocales in (7.0.1) in our examples are closed under joins in S(L). In fact they are of
the form J (D) for some smaller subclass of sublocales D of S(L). Namely,

• Sb(L) = J (Slc(L)) where Slc(L) is the class of locally closed sublocales,
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• Sc(L) = J (c[L]) where c[L] = {c(a) | a ∈ L} is the class of closed sublocales,

• Sk(L) = J (Sco(C)) where Sco(L) is the class of compact sublocales, and

• Ssp(L) = J (S∗(L)) where S∗(L) is the class of one-point sublocales, i.e. sublocales
b(p) for some prime p ∈ L.

This immediately puts us in the scope of Proposition 3.10 about polarities, which
reveals interesting new correspondences with the classes of sublocales defined dually.

Theorem 7.1. For a frame L,

1. fittings of smooth sublocales correspond to locally closed interiors of fitted sublocales,
i.e. fit[Sb(L)] ∼= intSlc(L)[So(L)],

2. fittings of joins of closed sublocales correspond to closed interiors of fitted sublocales,
i.e. fit[Sc(L)] ∼= intc[L][So(L)],

3. fittings of joins of compact sublocales correspond to compact interiors of fitted sublo-
cales, i.e. fit[Sk(L)] ∼= intSco(L)[So(L)], and

4. fittings of spatial sublocales correspond to spatializations of fitted sublocales,
i.e. fit[Ssp(L)] ∼= intS∗(L)[So(L)] = sp[So(L)].

The isomorphisms in each of the cases are described as in $3.2.5.

As we show in Section 6.6, all these classes of sublocales form a coframe. Before we
get to that we explore the universal properties that these classes admit, thanks to the
theory of polarities.

7.2 Universal properties

Coming back to (7.0.1), we see that Theorem 7.1 tells us that our example filter exten-
sions can be equivalently specified by a class of sublocales instead. Indeed, for a strongly
exact filter F ⊆ L and a ∈ L, su(F ) ⊆ o(a) iff a ∈ F . This gives us that the mapping
su : Filt(L) → S(L), when restricted to strongly exact filters, is order reflective and also
that, for a class F ⊆ SE(L),

LF ∼= G(su[F ], o[L],⊆).

Therefore, by Propositions 3.10, 4.3 and Theorems 6.6, 6.8, 6.11, and 6.12, we obtain a
corollary.

Corollary 7.2. For a frame L, we have:

LE ∼= LLC ∼= G(Slc(L), o[L],⊆) LC ∼= G(c[L], o[L],⊆)

LSO ∼= G(Sco(L), o[L],⊆) LCP ∼= G(S∗(L), o[L],⊆)
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Note that the first isomorphism LE ∼= LLC follows from Lemma 6.3.
As a result, we can reason about these classes of sublocales in terms of filters and vice

versa. Take for example the filter extension LE. The induced mapping

L
e

−−→ LE (7.2.1)

satisfies the universal properties (DF ) and (CF ) for F = E(L) and, by Corollary 4.8,
preserves exact meets. Now, by Propostion 3.10, we know that

LE ∼= G(Slc(L), o[L],⊆) ∼= fit[Sb(L)] ∼= intSlc(L)[So(L)].

We can now look at the concrete description of e from (7.2.1), as given in Section 4.1,
and compose it with the isomorphism from the proof of Proposition 3.10 and also §3.2.5.
We obtain maps

L −→ intSlc(L)[So(L)] and L −→ fit[Sb(L)]

with the first one given by a 7→
∨
{c(x)∩o(y) | c(x)∩o(y) ⊆ o(a)} and the second one as

a fitting of the result of the first. As a consequence, the same properties that hold for e
in (7.2.1) also hold for these maps. In particular, these two maps preserve exact meets.

In a completely analogous way the induced mappings

L → LSO L → LC L → LCP L → LSE

satisfy (DF ) and (CF ) with F taken to be the closed, completely prime and strongly exact
filters, respectively. Repeating the same procedure as above gives us that the mapping
o : L → So(L) obtained from L → LSE preserves strongly exact meets by Corollary 4.8.
This is precisely the Technical Lemma in [MPS20].

7.3 Exact filters in the subset order

Recall that [BMP20] shows that (E(L),⊆) ∼= Sc(L) (note the use of the subset order for
exact filters). By Corollary 3.5 we can describe the universal property giving (E(L),⊆)
in terms of the one describing (E(L),⊑):

(E(L),⊆) ∼= (E(L),⊑)op ∼= G(E(L), L,∋)op ∼= G(L,E(L),∈)

Note that the natural order of L and E(L) in (L,E(L),∈) are dual to what we are used
to. Indeed, if a ≥ b and b ∈ F for some F ⊆ G from E(L) then a ∈ G. This way the
mappings into G(L,E(L),∈) stay monotone by Lemma 3.6.

Consequently, consider the following pair of maps

Lop Sc(L) (E(L),⊆)c J

where J sends an exact filter F to
∨

f∈F c(f). In fact, J is the isomorphism of Sc(L) and
(E(L),⊆) from [BMP20]. Since c(a) ⊆ J(F ) iff a ∈ F (cf. [BMP20]) it is immediate that
these maps play the role of the mapping of iL and iE(L) into G(L,E(L),∈) and satisfy
the universal properties of Theorem 3.2.

As a consequence of this we see that, by Lemma 3.7, c( - ) transforms exact meets into
joins, i.e.

∨
a∈A c(a) = c(

∧
A) for any exact meet

∧
A.
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8 The Booleanization as a polarity

Recall from Corollary 5.11 that

R(L) →֒ E(L) →֒ SE(L) →֒ Filt(L) (8.0.1)

and also

fit[Sc] →֒ fit[Sb(L)] →֒ So(L) (8.0.2)

are all subcolocale inclusions. Furthermore, Lemma 5.6 establishes that R(L) = J (C(L))
is the Booleanization of Filt(L). From these fact we immediately obtain the following.

Theorem 8.1. We have

R(L) = J (C(L)) = B(E(L)) = B(SE(L)) = B(Filt(L))

and therefore also
fit[Sc(L)] = B(fit[Sb(L)]) = B(So(L)).

Proof. Recall that for any dense sublocale inclusion S ⊆ L it is the case that B(S) ⊆
B(L). If, furthermore, B(L) ⊆ S then also B(S) = B(B(S)) ⊆ B(L). Consequently,
from the subcolocale inclusions in (8.0.1) we obtain the first set of equalities since R(L) =
B(Filt(L)), which holds by definition of R(L). The second line of equalities is just a
translation of the first line along the adjunction (6.0.1).

We also use the closure operator cl( - ) on the lattice of all sublocales. For a sublocale
S it is defined as cl(S) =

⋂
{c(x) : S ⊆ c(x)}, i.e. in our notation cl(S) = clc[L](S). The

following is a standard result of pointfree topology.

Lemma 8.2. For a sublocale S ⊆ L of a frame L, we have cl(S) = ↑
∧

S.

Now we rephrase Booleanization of frames in terms of polarities. The following result
highlighting a symmetry between the Booleanization of L and that of So(L). In the
following, tot = {(x, y) ∈ L× L | x ∨ y = 1} and con = {(x, y) ∈ L× L | x ∧ y = 0}.

Corollary 8.3. Let L be a frame. We have

1. G(Lop, L, tot) ∼= G(c[L], o[L],⊆) ∼= fit[Sc(L)] = B(So(L)).

2. G(L,Lop, con) ∼= G(o[L], c[L],⊆) ∼= cl[o[L]] = B(c[L]op) ∼= B(L).

Proof. For the first item, the first isomorphism holds because it is a basic fact that the
collection of open sublocales is isomorphic to L whereas that of closed sublocales are
anti-isomorphic to it and (a, b) ∈ tot iff c(a) ⊆ o(b). The second isomorphism holds by
Proposition 3.10. Finally, the last equality holds by Theorem 8.1.

For the second item, the first two isomorphisms are shown similarly as in the first ex-
cept that we needed that (a, b) ∈ con iff o(a) ⊆ c(b). For the equality cl[o[L]] = B(c[L]op),
we note that the regular elements of c[L]op, i.e. the elements of its Booleanization, are
the closed sublocales of the form c(x∗) for some x ∈ L, as x 7→ c(x) determines an
isomorphism L ∼= c[L]op. But these are precisely the closures of open sublocales as for
each x ∈ L we have cl(o(x)) = ↑

∧
o(x) = ↑(x∗) = c(x∗), where we have used Lemma 8.2

for the first equality. The last isomorphism is once again from L ∼= c[L]op.
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9 Closed filters, open filters, sublocales and related facts

In this final section we would like to argue that the coframe Filt(L), importantly in the
⊑ order, in some ways resembles the coframe S(L) and is an interesting discretisation
of L as well.

Recall from (6.3.1) that closed filters arise from closed sublocales, i.e. they are of the
form fi(c(a)) = {x | x∨a = 1}. Similarly, we define open filters to be the principal filters
since we have that fi(o(a)) = ↑a. To make reasoning with filters more natural we write
cf(a) and of(a) for fi(c(a)) and fi(o(a)) and, furthermore, O = L and {1} for the smallest
and largest filters, respectively.

Perhaps surprisingly, we can transfer some facts about open and closed sublocales to
the setting of filters. For example, recall that a frame is subfit iff its open sublocales are
joins of closed sublocales (see e.g. Proposition V.1.4 in [PP12]). Analogously, we obtain
a new characterisation of subfitness in terms of open and closed filters.

Proposition 9.1. A frame L is subfit if and only if, for any a ∈ L,

of(a) =
⊔

{cf(x) | cf(x) ⊑ of(a)}.

Proof. First, observe that from the definitions cf(x) ⊑ of(a) iff fi(o(a)) ⊆ fi(c(x)) iff
a ∈ fi(c(x)) iff a ∨ x = 1. Since the ⊒ inequality in the above expression always holds,
the right-hand side of the equivalence can be rewritten in the subset order as follows.

⋂
{cf(x) | a ∨ x = 1} ⊆ ↑a

This inclusion can be further simplified to the first-order expression:

∀b (∀x. a ∨ x = 1 =⇒ b ∨ x = 1) =⇒ a ≤ b

We see that this is precisely the axiom for subfitness.

Since Filt(L) is morally closer to So(L) than to S(L), closed filters could be rather
thought of as fittings of closed sublocales. Therefore, we do not expect closed and open
sublocales and closed and open behave exactly alike. Some usual properties still hold.

Lemma 9.2. For any a ∈ L, we have of(a)# = cf(a) and of(a) ⊔ cf(a) = {1}.

Proof. The first equality follows directly from definitions and (5.4.1). The second is a
consequence of the first as {1}r of(a) = cf(a) implies {1} ⊑ of(a) ⊔ cf(a).

On the other hand, some of the expected facts about open and closed sublocales do not
transfer. For example, we do not in general have that supplements of closed filters are
open. On the other hand, requiring this property yields a new (and perhaps surprising)
characterisation of subfitness.

Proposition 9.3. For a frame L,

1. L is subfit iff, for every a ∈ L, cf(a)# = of(a); and
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2. L is a Boolean algebra iff, for every a ∈ L, of(a) ⊓ cf(a) = O.

Proof. For (1), as in Proposition 2.9.2 of [BMP20], observe that the supplement F#

of any filter F in Filt(L) is the filter {b | ∀x ∈ F. b ∨ x = 1} since F# = {1} r F
computed in the subset order is precisely as

∨
{↑b | ↑b ∩ F ⊆ {1}}. Furthermore,

cf(a)# = {1} r cf(a) ⊑ of(a) holds automatically since, from adjointness with ⊔, it is
equivalent to {1} ⊑ cf(a)⊔of(a) which in turn is equivalent to cf(a) = {1}rof(a) ⊑ cf(a).

Finally, the non-automatic inequality of(a) ⊑ cf(a)# translates as

{b | ∀x. x ∨ a = 1 =⇒ b ∨ x = 1} = {b | ∀x ∈ cf(a). b ∨ x = 1} ⊆ ↑a.

Clearly, requiring this to hold for every a is precisely subfitness.
For (2), observe that of(a) ⊓ cf(a) ⊑ O iff 0 ∈ of(a) ∩ cf(a) iff there are some x, a′

such that x ∨ a = 1 and a′ ≥ a and we have x ∧ a′ = 0. Clearly, the last statement is
equivalent to a being complemented.
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