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ABSTRACT

Secure collaborative analytics (SCA) enable the processing of ana-
lytical SQL queries across multiple owners’ data, even when direct
data sharing is not feasible. Although essential for strong privacy,
the large overhead from data-oblivious primitives in traditional
SCA has hindered its practical adoption. Recent SCA variants that
permit controlled leakages under differential privacy (DP) show a
better balance between privacy and efficiency. However, they still
face significant challenges, such as potentially unbounded privacy
loss, suboptimal query planning, and lossy processing.

To address these challenges, we introduce SPECIAL, the first
SCA system that simultaneously ensures bounded privacy loss, ad-
vanced query planning, and lossless processing. SPECIAL employs
a novel synopsis-assisted secure processing model, where a one-time
privacy cost is spent to acquire private synopses (table statistics)
from owner data. These synopses then allow SPECIAL to estimate
(compaction) sizes for secure operations (e.g., filter, join) and index
encrypted data without extra privacy loss. Crucially, these estimates
and indexes can be prepared before runtime, thereby facilitating
efficient query planning and accurate cost estimations. Moreover,
by using one-sided noise mechanisms and private upper bound
techniques, SPECIAL ensures strict lossless processing for complex
queries (e.g., multi-join). Through a comprehensive benchmark, we
show that SPECIAL significantly outperforms cutting-edge SCAs,
with up to 80× faster query times and over 900× smaller memory for
complex queries. Moreover, it also achieves up to an 89× reduction
in privacy loss under continual processing.

1 INTRODUCTION

Organizations, such as hospitals, frequently hold sensitive data
in separate silos to comply with privacy laws, despite the valu-
able insights that could be gained from sharing this information.
Recent advancement of Secure Collaborative Analytics (SCA) [8–
10, 26, 35, 46, 57, 58, 61, 72, 73] provides an exciting solution to
tackle this dilemma. These systems leverage advanced multi-party
secure computation (MPC) [78] primitives to empower multiple
data owners, who previously could not directly share data, to col-
laboratively process analytical queries over their combined data
while ensuring the privacy of each individual’s data.

While MPC can effectively conceal data values [78], its security
guarantees do not immediately extend to the protection of execu-
tion transcripts. Consequently, data-dependent processing patterns
such as memory traces and read/write volumes can still reveal crit-
ical information, risking privacy breaches [12, 16, 31, 40, 53, 64, 80]
even when the core data remains encrypted. To ensure strong pri-
vacy, modern SCA systems also utilize data-oblivious primitives that
exhaustively pad query processing complexities to a worst-case,
data-independent upper bound [8, 46, 57]. However, such stringent
protections can largely reduce system efficiency and hinder the
generalization of conventional optimization techniques to SCA,

which are typically data-dependent [46]. To address this, recent
efforts [9, 58, 72, 73] have introduced differentially private SCA (DP-
SCA). This approach allows controlled information leakage under
differential privacy [24] to mitigate constant worst-case overhead.
For instance, systems under this model can dynamically compact
intermediate query sizes to a noisy estimate close to actual sizes,
avoiding exhaustive padding. As such, queries under DPSCA ex-
perience largely boosted efficiencies (e.g., up to 105× faster [73])
compared to their “no leakage” counterparts. Despite these substan-
tial performance gains, existing DPSCAs still face critical limitations
that impede their practical uses, as elaborated below:
• L-1. Unbounded privacy loss.Most DPSCA systems utilize a per-
operator privacy expenditure model [9, 17, 20, 58, 72, 73], meaning
each query operator (e.g., join, filter) independently consumes a
portion of the privacy budget. This approach can lead to either
unbounded privacy loss or the forced cessation of query responses
upon budget exhaustion. To mitigate this, some studies [14, 59,
79] propose private, locality-sensitive grouping, incurring a one-
time privacy cost to pre-group data based on specific attributes.
Subsequent queries on those attributes can be directly applied to
a smaller subset and need no additional privacy budget. However,
this method only supports simple queries (e.g., point and range);
complex queries like joins still suffer from unbounded privacy loss.
• L-2. Suboptimal execution plan. Conventional query planners can
pre-estimate sizes for equivalent plans of a given query and select
the most efficient plan with minimized intermediate sizes before
execution [13, 65]. In contrast, SCA systems lack this capability,
and even DPSCA designs [9, 10, 58, 71, 73, 79] can only reactively
determine plan sizes during runtime. This inherent limitation of-
ten forces existing systems to settle for less efficient query plans,
such as suboptimal join orders, which lead to significantly inflated
intermediate sizes (§ 7.2) and substantially hinder performance.
• L-3. Lossy processing. Noise from randomized mechanisms in
DPSCA also introduces a unique accuracy issue (e.g., losing tuples
after compaction), and unfortunately, no existing design can provide
deterministic accuracy guarantees for complex queries [30, 71–
73, 79]. Furthermore, stronger privacy settings can further increase
noise variance, which amplifies errors, significantly impacting the
utility of SCA systems.

1.1 Overview of SPECIAL.

In this work, we introduce SPECIAL, an innovative SCA system
designed to address all these challenges simultaneously through a
new paradigm called synopsis-assisted secure processing. At its core,
SPECIAL incurs a one-time privacy cost to gather DP synopses
(statistics of base tables) from owners’ data. These synopses are
then used to compact query intermediate results, index encrypted
data, and enhance SCA query planning. Notably, SPECIAL is the
first system to provide all of the following benefits: (1) Bounded pri-
vacy—it manages complex queries, such as multi joins, within strict
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privacy limits; (2) Advanced query planning—it builds an advanced
SCA planner that can exploit plan sizes before runtime; and (3)
Lossless processing—it ensures exact results with no data omissions.
An overview of SPECIAL’s architecture is shown in Figure 1.

Figure 1: Overview of SPECIAL workflow.

SPECIAL operates under a standard server-aidedMPCmodel [39]
with three key participants: data owners, at least two SPECIAL
servers, and a vetted analyst. The process starts with data owners
securely outsourcing their data (e.g. using secret sharing [39, 72, 73,
79]), and privately release a set of DP synopses (table statistics) to
the servers. Once the data and synopses are ready, analysts can then
submit queries on the outsourced data. To process queries, SPECIAL
uses synopses to privately estimate tight result compaction bounds
or build private indexes for faster access, thus avoiding exhaustive
padding. Crucially, this information is exploit before runtime, so
that SPECIAL can pre-identify an optimal secure execution plan
that minimizes intermediate sizes and overall costs. Finally, the
optimized plan is executed via MPC across the secret-shared data,
and the results are securely returned to the analyst.

In the SPECIAL prototype, we adopt the same privacymodel used
in existing DPSCA designs, assuming a computationally bounded,
“honest-but-curious” adversary [27] who can compromise up to𝑛−1
out of 𝑛 owners and𝑚 − 1 out of𝑚 servers. SPECIAL ensures that
such an adversary can only learn a limited leakage profile Lkg about
honest parties’ data, which strictly adheres to DP constraints. Note
that, SPECIAL’s core components, including synopses management
and query planning do not leverage raw data at all. Thus, any of
the servers, alone or jointly, can manage these tasks. Also, once
analysts are authorized by data owners, they are considered trusted,
and additional randomization of query results is not required. It is
worth mentioning that SPECIAL’s corruption model (e.g. all except
one) is entirely determined by the underlying MPC, and SPECIAL’s
design does not modify them at all. Hence, one may also opt to a
weaker corruption model, such as a supermajority of owners and
servers must remain uncorrupted [46, 67], to enhance efficiency.

1.2 Unique challenges and key contributions

LeveragingDP synopses in SCAholds significant promise for achiev-
ing our desired objectives. However, this also introduces unique
challenges. Below, we highlight the key challenges and summarize
our non-trivial contributions to address them:
• C-1. How to select proper synopses? Even a single relation can have
numerous options for generating synopses, such as using different
attributes or their combinations. However, improper selection can
lead to large errors (e.g. using too many synopses or leverage high-
dimensional attributes [81]), or reduced functionalities (e.g., using
only simple attributes [79]). Hence, a key challenge is selecting

a limited set of DP synopses to optimize the privacy budget for
complex query processing. Our approach is informed by two obser-
vations: (i) secure joins are resource-intensive and need prioritized
acceleration, and (ii) synopses for common filtering predicates are
vital as they allow pre-built indexes on base relations for fast access.
Consequently, we propose a focused strategy (§ 4) that targets low-
dimensional (1D and 2D) attributes frequently involved in joins and
filters within a representative workload.
• C-2. How to enforce lossless processing? Private synopses do not
immediately implies lossless guarantees. Thus, a second challenge
is designing practical approaches to achieve lossless results without
violating privacy goals. To address this, we employ one-sided DP
noise (either strictly positive or negative, § 4) for generating syn-
opses and design novel primitives (§ 5) based on them to pessimisti-
cally estimate filter cardinalities and intervals of index structures.
This enable us to efficiently discard unnecessary records during
processing without breaking privacy and lossless guarantees. To
ensure lossless processing of complex joins, we extend upon cutting-
edge join upper bound techniques [36] to privately estimate join
compaction sizes using available synopses. To our knowledge, this
is the first study to support private join upper bound estimation.
• C-3. How DP synopses can empower efficient query processing?

The use of DP synopses in SCA is largely underexplored, leav-
ing a knowledge gap regarding their potential to enhance query
efficiency. To navigate this potential, we explore various use of syn-
opses in accelerating secure processing including private indexes
SPEidx (§ 5.2), and compacted oblivious operations SPEop (§ 5.3).
We then develop a Selinger-style query planner (§ 6) that supports
both standard secure operators and SPEop. Employing a customized
cost model and tailored heuristics, this planner efficiently generates
optimal execution plans for queries using a mix of standard and
SPEop operators. This in essence, also address the limitations of
sub-optimal execution plans inherent in standard DPSCA.
• C-4. How to systematically evaluate SPECIAL? A major challenge
in SCA design evaluation is the absence of open-source bench-
marks. We address this by initiating an open-source evaluation
platform accessible to the public, utilizing public Financial data [1]
(1.1M rows and 59 columns), and designing eight test queries rang-
ing from simple linear to complex 5-way joins. We evaluated our
prototype SPECIAL alongside the state-of-the-art DPSCA system,
Shrinkwrap [9], and conventional SCA, SMCQL [8]. Results indicate
that SPECIAL outperforms Shrinkwrap, reducing query latency by
up to 80.3×, and SMCQL, with at least a 114× reduction in query
latency. Additionally, SPECIAL improves memory efficiency in com-
plex join processing by more than 900× compared to both systems.
Moreover, scaling experiments show that SPECIAL can effectively
scale linear and binary joins up to 8× (8.8M rows) and 5-way joins
up to 4× (4.4M rows) workloads. All benchmarks, including our
prototype implementation, are open-sourced and available at [47].

The remainder of the paper is structured as follows: We begin
with essential background in § 2 and a formal definition of our pri-
vacymodel in § 3 before delving into design details. § 4 discusses the
SPECIAL catalog design, including synopses selection and genera-
tion. § 5 details novel synopses-assisted secure database operators,
and § 6 describes our planner design. Benchmark evaluations are
presented in § 7, followed related works and conclusions.
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2 BACKGROUND

General notations.We consider the logical databaseD to contain
multiple private relations {𝐷1, 𝐷2, ...}, where each relation 𝐷𝑖 is
belongs owned by a specific party 𝑃𝑖 , where 𝐷 ∈ D is owned by a
specific owner and has a set of attributes as 𝑎𝑡𝑡𝑟 (𝐷). The domain
for attribute 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝐷) is given by 𝑑𝑜𝑚(𝐴), and the combined
domain for a collection of attributes A = {𝐴1, 𝐴2, ...} ⊆ 𝑎𝑡𝑡𝑟 (𝐷)
is denoted as 𝑑𝑜𝑚(A) = ∏

𝐴∈A 𝑑𝑜𝑚(𝐴). For a tuple 𝑡 ∈ 𝐷 , and
A ⊆ 𝑎𝑡𝑡𝑟 (𝐷), we denote 𝑡 .A as the attribute value of A in 𝑡

Frequency (count). Given 𝐷 , and A ⊆ 𝑎𝑡𝑡𝑟 (𝐷), and v ∈ 𝑑𝑜𝑚(A),
the frequency (count) of v in 𝐷 is the total number of tuples 𝑡 ∈ 𝐷
with 𝑡 .A = v. In addition, the max frequency moments (MF) of A is
defined as mf(A, 𝐷) = maxv∈𝑑𝑜𝑚 (A) |{𝑡 ∈ 𝐷 | 𝑡 .A = v}|.
Histograms. Given 𝐷 , and A ⊆ 𝑎𝑡𝑡𝑟 (𝐷), the (equal-width) his-
togram h(A, 𝐷) = (𝑐1, 𝑐2, ..., 𝑐𝑚) is a list of counts for the attribute
values in A. Specifically, h partitions1 𝑑𝑜𝑚(A) into𝑚 “equal-sized”
domain intervals (𝐵1, ..., 𝐵𝑚), and each count 𝑐𝑖 ∈ h corresponds
to the total number of 𝑡 ∈ 𝐷 such that 𝑡 .A fall within 𝐵𝑖 .
Multi-party secure computation (MPC).MPC [11, 28, 48, 78] is a
cryptographic techniques to allow a group of participants 𝑃1, 𝑃2, ...
to jointly compute a function 𝑓 (𝑥1, 𝑥2, ...) over their respective
private input 𝑥𝑖 . MPC ensures that no unauthorized information
is revealed to any involved party, excepted the desired output of
function 𝑓 , emulating a computation as if performed by a trusted
third party. Earlier MPC typically require all parties to participate
in intensive computations. Recent schemes [39, 51, 63] allow these
computations to be offloaded to multiple powerful servers without
sacrificing original security guarantees, known as the server-aided
MPC. In this approach, each party, say 𝑃𝑖 , secretly shares their
inputs, 𝑥𝑖 to servers. These servers then jointly evaluate an MPC
that functionally replicates the logic of first reconstructing the
secrets 𝑥1, 𝑥2, . . . and then evaluating 𝑓 (𝑥1, 𝑥2, . . .). Depending on
designs, the result may be directly returned to the parties or re-
shared among the servers for later retrieval. By default, SPECIAL
considers server-aided MPC with two non-colluding servers.
Secret sharing and secure array. SPECIAL uses the 2-out-of-2
boolean secret share [5] over ring Z232 for securely outsourcing
owners’ data and storing query execution results. Specifically, each
data, 𝑥 , is divided into two shares: 𝑥1, 𝑥2 that are uniformly dis-
tributed over the ring Z232 such that 𝑥 = 𝑥1 ⊕ 𝑥2. Each server
𝑆𝑖 receives one secret shares, 𝑠𝑖 , where 𝑖 ∈ {0, 1}. By retrieving
shares from any two servers, an authorized party can successfully
reconstruct the value of 𝑥 . However, a single server alone learns
nothing about 𝑥 . For clarity and to abstract out the lower-level
details, we leverage a logically unified data structure, namely the
secure array [9, 73], denoted as ⟨x⟩ = (⟨𝑥1⟩, ⟨𝑥2⟩, ...), which is a
collection of secret-shared relational tuples.
Oblivious (relational) operators.Oblivious operators are specific
MPC protocols, applied over secure arrays, that implement data-
base operator functionalities such as filter, join, and aggregation.
Specifically, an oblivious operator ⟨o⟩ ← op(⟨a⟩, ⟨b⟩, ...) accepts
one or more secure arrays as inputs, performs database operations
over the inputs, and then writes the result to an output secure ar-
ray. Moreover, the oblivious property stipulates that absolutely no

1We use a condensed notation that omits arguments when A and 𝐷 are obvious.

memory access pattern information is disclosed [18, 46, 60] (or in
other words, the memory access is fully independent from input
data) during the protocol’s execution. Since revealing output size
can also enable numerous reconstruction attacks, recent designs
of oblivious operators also consider hiding output volumes, i.e., by
padding the outputs to their maximum sizes. Thus, unless other-
wise stated, we assume that all the subsequent oblivious operators
mentioned have considered volume-hiding.
Differential privacy [24]. DP ensures that modifying a single
input data tuple to a mechanism produces only a negligible change
in its output. To elaborate, consider 𝐷 and 𝐷′ as two databases
differing by just one tuple—termed as neighboring databases. Then:

Definition 2.1 ((𝜖, 𝛿)-differential privacy). Given 𝜖 > 0, and 𝛿 ∈
(0, 1). A randomized mechanism M is said to be (𝜖, 𝛿)-DP if for

all pairs of neighboring databases 𝐷, 𝐷′, and any possible output

𝑜 ⊂ 𝑅𝑎𝑛𝑔𝑒 (M), the following holds:
Pr [M(𝐷) ∈ 𝑜] ≤ 𝑒𝜖Pr

[
M(𝐷′) ∈ 𝑜

]
+ 𝛿

3 PRIVACY MODEL

In this section, we formally define the privacy definitions of SPE-
CIAL and explain the corresponding semantics. Similar to previ-
ous work on DPSCA [73, 79], we follow computational DP (SIM-
CDP) [49] framework for privacy model formulation.

Definition 3.1 (Secure protocol with DP leakage). Given a party

(owner) 𝑃 with private data 𝐷 and a randomized mechanism Lkg(𝐷),
referred to as the leakage profile of 𝑃 ’s data. Consider Π a secure

query processing protocol applied to 𝐷 . The protocol Π is said to be

secure with DP leakage if, for any honest party 𝑃 with data 𝐷 and

any probabilistic polynomial time (p.p.t.) adversary A:

• Lkg(𝐷) satisfies (𝜖, 𝛿)-DP (definition 2.1).

• There exists a p.p.t. simulator S with only access to public param-

eters pp and the output of Lkg(𝐷) that satisfies:

Pr
[
A

(
VIEW

Π (D, pp) = 1
)]

≤ Pr
[
A

(
VIEW

S (𝐹 (D), pp)
)
= 1

]
+ negl(𝜅)

(1)

where VIEW
Π
, and VIEW

S
denotes the adversary’s view against

the protocol execution and the simulator’s outputs, respectively. And

negl(𝜅) is a negligible function related to a security parameter 𝜅.

Simply put, Definition 3.1 specifies that as long as there is at least
one honest owner, the knowledge any p.p.t. adversary can obtain
about this owner’s data from observing Π execution transcripts
is bounded to what can be inferred from the outputs of an (𝜖, 𝛿)-
DP mechanism Lkg. By default, we define Lkg within (𝜖, 𝛿)-tuple
level DP [23], that’s said primary privacy objective is to protect
individual tuples. However, due to group-privacy properties [42, 77]
of DP, privacy can extend across multiple tuples and to user-level,
as long as a user owns a limited number of tuples. Throughout this
paper, our focus remains on developing algorithms that guarantee
tuple-level privacy, while upholding all stated privacy guarantees,
albeit with potentially different privacy parameters.

Theorem 3.2. The privacy of SPECIAL adheres to Definition 3.1

Proof. Due to space concerns, we defer the complete privacy
proof of SPECIAL to Appendix A. □
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4 SPECIAL SYNOPSES

SPECIAL maintains independent DP synopses for all outsourced
data. Each synopsis holds noisy statistics that reflect the corre-
sponding data’s distributional traits. As per our core design idea,
these statistics will be used to dynamically optimize query pro-
cessing—for example, by estimating tight compaction bounds or
enabling fast access to eliminate unnecessary tuples, which signif-
icantly compacts intermediate query sizes, all without any extra
privacy cost.
Challenges. Amajor design challenge is selecting proper synopses
to achieve our design goals. This involves decisions such as at-
tribute selection, combinations thereof, and the types of statistics
used (e.g., histograms, min/max/avg, frequency counts, etc.). Using
too many attributes or leveraging complex (high-dimensional) com-
binations can introduce significant noise [81] and increase storage
costs. Another challenge involves privately releasing synopses to
aid in lossless processing, such as result compaction and private
indexing. Ensuring lossless compaction requires consistently over-
estimating the output sizes of subplans. Supporting lossless indexes
is even more complex: for a given indexed range 𝐷 [lo, hi], we need
to overestimate the upper index hi and underestimate the lower
index lo. Unfortunately, traditional DP methods, which typically
use symmetric additive noises, struggle to ensure these conditions.
Key ideas.We observe that joins are more resource-intensive than
any other operations. For instance a 𝑘-way oblivious join can incur
a𝑂 (𝑛𝑘 ) complexity if without optimisations [8, 9, 26, 73, 82]. Hence,
joins require prioritized acceleration. Moreover, synopses available
for frequently queried filter attributes on base relations are vital [73]
as well. These statistics not only help to compact input data at an
early stage before heavy joins, but also enable fast indexing (§ 5.2)
for quick data access. Hence, to address the first challenge, our key
idea is to focus on commonly queried join and base relation filter
attributes, as well as their low-dimensional combinations.

To tackle the second challenge, our key idea is twofold. First,
to ensure lossless result compaction of filters and indexing, we
employ one-sided DP noise to generate private histograms that
either overestimate or underestimate attribute distributions consis-
tently. Second, to achieve lossless compaction of join outputs, we
integrate noisy max frequency moments (MF) into the synopses.
This integration enables us to extend upon advanced join upper
bound techniques [36] to privately estimate join compaction sizes
without losing data (§ 5.2).

4.1 Synopses generation

Steered by our key ideas, we now elaborate on our synopsis gener-
ation details. The general process is outlined as follows: Initially,
the SPECIAL servers selects appropriate attributes to generate pri-
vate synopses, which are then distributed to owners. The owners
create the synopses using a DP mechanism and upload them to SPE-
CIAL servers. Finally, the server applies post-processing to these
synopses to aid in query processing.
Attributes selection (servers). The first step is to identify a
smaller set of attributes for deriving synopses. In general, we con-
sider the existence of a representative workload, 𝑄R [44], which
can be sourced from a warm-up run of SPECIAL or annotated by

the administrator. Note that this process do not incur any private
data thus is leakage-free. The servers first identify representative
attribute pairs, pair = {pair𝑘 }𝑘≥1, for each private relation 𝐷 ∈ D
via𝑄R. The designated pairs include: (i) 2-way attribute pairs, which
correspond to frequently queried filter-join key combinations; (ii)
frequently queried individual attributes not covered by these pairs.
By default, each pair𝑘 = (𝐴

ft
, 𝐴j) contains two valid attributes (case

i), but either 𝐴
ft
or 𝐴j may be empty (case ii).

Synopses release (owners). Next, servers pushes the identified
pairs to each owner, and subsequently, the owner independently dis-
patches a private synopsis and returns it to servers. In what follows,
we focus on the DP synopses generation mechanism evaluated by
each owner, Algorithm 1 illustrates the overall flow.

Algorithm 1 DP synopsis generationMsynop (in the view of 𝑃 )

Input: pair = {pair𝑘 }𝑘≥1 from servers; private data 𝐷 .
1: 𝑃 self-determines privacy parameters 𝜖, 𝛿 , and init synop← ∅
2: for each pair𝑘 do

3: h(pair𝑘 , 𝐷) ← HistGen(pair𝑘 , 𝐷)
DP histograms:

4: h+ (pair𝑘 , 𝐷) ← h + Lap+ (𝜖, 𝛿, h.shape)
5: h− (pair𝑘 , 𝐷) ← h + Lap− (𝜖, 𝛿, h.shape)

⊲ adding independently sampled noise to every bin of h+, h−

DP max frequencies:
6: if 𝐴j ∈ pair𝑘 = ∅ or 𝐴j is unique valued then MF𝑘 = ∅
7: else if 𝐴

ft
∈ pair𝑘 ≠ ∅ then

⊲ assuming h partitions 𝑑𝑜𝑚(𝐴
ft
) into {𝐵1, ..., 𝐵𝑚}

8: 𝐷ℓ ← 𝜎𝐴ft∈𝐵ℓ
(𝐷) for ℓ = 1, 2, ...,𝑚

9: compute noisy MF table, MF𝑘 = {m̂f(𝐴j, 𝐷
ℓ )}1≤ℓ≤𝑚

10: else MF𝑘 = m̂f(𝐴j, 𝐷)
11: synop← synop ∪ (pair𝑘 , {h+, h−}, MF𝑘 )
12: release synop, 𝜖 , 𝛿 to servers
Generally, we expect owners to set a desired privacy budget for

their data (using parameters 𝜖 and 𝛿) before initiating the synop-
sis generation. For each pair𝑘 , the owner first creates a histogram
h(pair𝑘 , 𝐷). By default, we assume there exist global parameters,
i.e. bin sizes of each attribute, which guide all owners to partition at-
tributes consistently. Next, the owner derives two noisy histograms,
h+ (pair𝑘 , 𝐷), and h− (pair𝑘 , 𝐷) by adding independently sampled
one-sided Laplace noises to every bin of h(pair𝑘 , 𝐷).

Definition 4.1 (One-sided Laplace variable). Lap
+ (𝜖, 𝛿) = max(0, 𝑧)

(resp. Lap
− (𝜖, 𝛿) = min(0, 𝑧)) is a one-sided Laplace random variable

in the range of [0,∞) (resp. (−∞, 0]) if 𝑧 is drawn from a distribution

with the following density function

Pr [𝑧 = 𝑥] = 𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖 |𝑥−𝜇 | (2)

where 𝜇 = 1 − 1
𝜖 ln(𝛿 (𝑒𝜖 + 1)) (resp. 𝜇 = 1

𝜖 ln(𝛿 (𝑒𝜖 + 1)) − 1).
The one-sided Laplace noise can be strictly positive (Lap+) or

negative (Lap−). This ensures that h+ always overestimates the
actual histogram, while h− consistently underestimates it. For the
ease of description, we refer H(pair𝑘 , 𝐷) = {h+, h−} as the bound-
ing histogram of attribute pair𝑘 , with h+, and h− to be the upper
and lower histograms, respectively.

We continue with the details of the (noisy) MFs generation. As-
sume both𝐴

ft
, 𝐴j ≠ ∅, and the h(pair𝑘 , 𝐷) partitions 𝑑𝑜𝑚(𝐴ft

) into
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{𝐵1, ..., 𝐵𝑚}. ThemechanismMsynop generates a table of noisyMFs,
{m̂f(𝐴j, 𝐷

ℓ )}ℓ≥1, where each entry m̂f(𝐴j, 𝐷
ℓ ) is an independent

MF statistic for 𝐴j over specific filtered data on 𝐴
ft
, such that

m̂f(𝐴j, 𝐷
ℓ ) ← m̂ax𝜖

(
Gcount(𝐴j )

(
𝜎𝐴ft∈𝐵ℓ

(𝐷)
) )

(3)

here Gcount(𝐴j ) is a group-by-count operation over 𝐴j, and m̂ax𝜖
is a report noisy max mechanism [24]. It first adds i.i.d. noise from
the exponential distribution Exp( 2𝜖 ) to each grouped count, then
outputs the largest noisy count. We stress thatMsynop will not
generate noisy MFs for non-join key attributes, and when 𝐴

ft
is

empty, a global MF will be generated instead of MF tables (Alg 1:10).
Moreover, since SPECIAL enables owners to label attributes as
unique-valued, if 𝐴j is known to be unique-valued, then m̂f(𝐴j, ·)
is always 1. Nevertheless, as exponential noises are non-negative,
thus m̂f ≥ mf holds for all cases. Given the discussion so far, we
summarize SPECIAL synopses as:

Definition 4.2 (SPECIAL synopses). Given representative workload

𝑄R, we consider for each relation 𝐷 , its corresponding synopsis synop
to be the collection of {(pair𝑘 ,H(pair𝑘 , 𝐷), MF𝑘 )}𝑘≥1, such that

• pair𝑘 is a frequently queried attribute (pair) over 𝐷 found in 𝑄R.

• H is the private bounding histogram for pair𝑘 over 𝐷 .

• MF𝑘 represents a collection of privately overestimated join key MFs

that corresponds to a group of tuples in h, categorized by pair𝑘 .𝐴ft
.

Theorem 4.3. Given |pair| = 𝑐 , 𝜖, 𝛿 > 0, the synopsis generation
(Algorithm 1) is (𝜖, 𝛿)-DP where 𝜖 ≤ 6𝜖

√︁
𝑐 ln(1/𝛿), and 𝛿 = (𝑐 + 1)𝛿

For space concern, we move the complete proof to Appendix A.
In a sketch, adding Lap

+ (or Lap
−) to a single bin is (𝜖, 𝛿)-DP.

By parallel and sequential composition, generating H is (2𝜖, 2𝛿)-
DP. Moreover, each report noisy max is (𝜖, 0)-DP, and by parallel
composition, the generation of the entire MF table is also (𝜖, 0)-DP.
In this way, we know that the generation of each (pair𝑘 ,H, MF𝑘 ) is
at most (3𝜖, 𝛿)-DP. Given there are in total 𝑐 such pairs, and thus
the total privacy loss is subject to 𝑐-fold advanced composition [24].
Synopsis transformations.We say that one can perform trans-
formations on released synopses without incurring extra privacy
loss, per the post-processing theorem of DP [24]. Now, we briefly
outline key synopsis transformations relevant to the SPECIAL de-
sign. First, given any (2d) bounding histogramH(pair, 𝐷) with both
𝐴
ft
, 𝐴j ∈ pair are non-empty, one can derive the (1d) bounding

histograms, i.e. H(𝐴j, 𝐷) and H(𝐴
ft
, 𝐷), for any single attribute

𝐴
ft
or 𝐴j by marginal sums h+, h− ∈ H(pair, 𝐷) over 𝐴j or 𝐴ft

,
respectively. This enables the creation of statistics on individual
attributes, even when 𝐴

ft
and 𝐴j are not included as a standalone

synopsis attribute. Moreover, it’s possible to derive relevant join
key statistics even following a selection on the base relation. For
example, given 𝐴

ft
, 𝐴j ∈ pair ≠ ∅, and let 𝐷′ ← 𝜎𝐴ft∈𝑣𝑎𝑙𝑠 (𝐷), one

can obtain the (1d) bounding histogram H(𝐴j, 𝐷
′) by conducting

a selective marginal sum of h+, h− ∈ H(pair, 𝐷) over bins of 𝐴
ft

that intersect with 𝑣𝑎𝑙𝑠 . Beyond bounding histograms, join key MFs
over pre-filtered data can also be computed by

m̂f(𝐴j, 𝐷
′) = min

(∑
𝐵ℓ∩𝑣𝑎𝑙𝑠≠∅ m̂f(𝐴j, 𝐷

ℓ ), m̂f(𝐴j, 𝐷)
)

(4)

Note that m̂f(𝐴j, 𝐷) exists if 𝐴j is also included as a standalone
synopsis attribute; otherwise, Eq 4 yields only the first term.

5 SPECIAL PRIMITIVES

We now outline key secure database operations offered by SPE-
CIAL. A major challenge in designing synopsis-assisted secure
processing is the evident knowledge gap on how private synopses
could potentially accelerate oblivious query processing. To bridge
this gap, we explore various uses of synopses, such as creating
private indexes (SPEidx 5.2) and designing compacted oblivious
operations (SPEop 5.3). Moreover, as discussed earlier, joins are
the most intensive operations. Hence, we extensively optimize join
algorithms, synergizing both private indexing and compaction tech-
niques to develop a novel, parallel-friendly oblivious join (§ 5.3).
Another challenge in primitive design arises from ensuring lossless
guarantees. To address this, we integrate mechanisms into our de-
signs that pessimistically estimate selection cardinalities, indexing
ranges, and complex join sizes, using a combination of available
synopses and advanced upper bound techniques [36]. For clarity,
we’ll assume, WLOG., that all input relations below are of size 𝑛
and all 1d histograms contain𝑚 bins.

5.1 Basic Operations

SPECIAL supports conventional fully-oblivious operators [8]. In
general, these operators function logically the same as non-private
ones, but their execution transcripts are completely data indepen-
dent, with results consistently padded to the worst-case maximum.

Default data access SeqACC. By default, all query executions pro-
ceed with a standard data access, loading all data into a secure
array using a sequential scan2. Additionally, each loaded tuple gets
a secret bit (initially ‘0’), ret, used to mark tuple validity.

SELECT. is the secure version of filter 𝜎𝑝 (𝑅). It conducts a linear
scan over secure array ⟨𝑅⟩ for relation 𝑅 and updates the ret bit: ‘1’
for tuples satisfying predicate 𝑝 and ‘0’ for others. Every tuple’s ret
bit is updated, regardless of whether it matches the predicate.

PROJECT. discards irrelevant attributes for relation stored in ⟨𝑅⟩.
Note that the secret bit ret cannot be discarded by a PROJECT.

JOIN. implements the secure version of 𝜃 -join, 𝑅0 Z𝜃 𝑅1. It pro-
cesses two secure arrays ⟨𝑅0⟩ and ⟨𝑅1⟩, computing their cartesian
product ⟨𝑅0 ×𝑅1⟩ and then using SELECT to mark the joined tuples.
It’s important to note that JOIN expands output, always padding it
to the worst-case max (product of input sizes).

COUNT, SUM, MIN/MAX are the aggregation primitives. The operators
linearly scan a secure array and continuously update a secret-shared
aggregation value after each tuple access.

ORDER-BY, DISTINCT, GROUP-BY(AGG). are built on the oblivious
sort primitive [7]. Specifically, ORDER-BY obliviously sorts a secure
array according to a given attribute. DISTINCT sorts a secure array
first, then performs a linear scan to identify unique tuples. For
instance, among consecutively sorted identical tuples, it sets the ret
bit of the last tuple to ‘1’ and the rest to ‘0’. GROUP-BY(AGG) starts
by using DISTINCT to identify unique tuples. For each distinct tuple
(ret set to ‘1’), it appends an aggregation value derived from the
tuple and a dummy attribute (e.g., ‘-1’) for non-distinct tuples.

2In the context of a secret-shared array ⟨𝐷 ⟩, this step can be each server sequentially
load the respective secret shares of 𝐷 into memory, readying them for MPC.
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5.2 SPECIAL Index SPEidx

In conventional databases, indexes are powerful data structures that
map attribute values to positions within a sorted array, enabling fast
data access. However, generalizing such feature to SCA remains
largely underexplored with existing solutions facing significant
limitations such as high data loss [61], dependence on complex data
structures filled with dummy tuples [14, 79], and limited query capa-
bilities (i.e., linear queries across fixed attributes). Moreover, these
methods only index base relations. SPEidx innovatively overcomes
these issues by enabling the creation of lossless indexes directly on
outsourced data or query intermediate results, without the need
for additional structures or dummy injections.

In general, SPEidx builds upon the typical indexing model that
utilizes cumulative frequencies (CF) [45]. Specifically, given𝐷 sorted
by 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝐷), all records 𝑡 ∈ 𝐷 where 𝑡 .𝐴 = 𝑥 can be indexed
by the interval [𝑔(𝑥 − 1), 𝑔(𝑥)], where 𝑔(𝑥) = |{𝑡 | 𝑡 .𝐴 ≤ 𝑥}| is
the CF function. For better illustration, we show an example index
lookup in Figure 2: to get all records with an attribute value of
24, one may compute [𝑔(23), 𝑔(24)] = [217, 248] and access the
relevant data from the subset 𝐷 [217 : 248]. To make this indexing
method private and lossless, the key idea of SPEidx is to derive
two noisy CF curves from synopses (e.g. bounding histograms).
One curve, 𝑔+ (𝑥), consistently overestimates 𝑔(𝑥), while the other,
𝑔− (𝑥), consistently underestimates it. Then for any attribute value
𝑥 , we can now derive a private interval [𝑔− (𝑥 − 1), 𝑔+ (𝑥)] that
losslessly indexes all desired records. For instance, as illustrated in
Figure 2, the SPECIAL index might estimate the index range for
attribute value 24 as [𝑔− (23), 𝑔+ (24)] = [198, 267].
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Figure 2: True index (left) vs. SPECIAL index (right) for 𝑥 = 24
In what follows, we provide the formal explanations on how

SPEidx derives indexes from DP synopses. Specifically, SPEidx
first determines the bounding histograms H(𝐴, 𝐷), which may be
either transformed from an available 2D histogram H(pair, 𝐷) with
𝐴 ∈ pair, or sourced directly if H(𝐴, 𝐷) is already included in the
synopses. It then constructs the noisy mapping as follows:

Definition 5.1 (SPECIAL index). Given𝐷 sorted by𝐴, the bounding

histogram H(𝐴, 𝐷) = {h+, h−}, and assume h+ = (𝑐+1 , ..., 𝑐
+
𝑚), h− =

(𝑐−1 , ..., 𝑐
−
𝑚) partitions𝑑𝑜𝑚(𝐴) into {𝐵1, ..., 𝐵𝑚}. We say SPEidx(𝐴, 𝐷) =

{idx𝑖 = [lo𝑖 , hi𝑖 ]}1≤𝑖≤𝑚 is the SPECIAL index of 𝐷 over 𝐴 with:

• ∀ 𝑖 ≥ 1, hi𝑖 = min( |𝐷 |,∑𝑖
𝑘=1 𝑐

+
𝑘
).

• lo1 = 0, and ∀ 𝑖 ≥ 2, lo𝑖 =
∑𝑖−1
𝑘=1max(0, 𝑐−

𝑘
).

By this construction, all tuples 𝑡 ∈ 𝐷 such that 𝑡 .𝐴 ∈ 𝐵𝑖 will
be organized into the subset 𝐷 [idx𝑖 ] ⊆ 𝐷 . This subset can be
quickly accessed if 𝐷 is already sorted, without the need for special
data structures or inclusion of dummy tuples. Depending on how

bounding histograms are constructed, SPEidx(𝐴, 𝐷) can support
indexing lookups with varying granularity. This can range from
indexing individual attribute values (where each 𝐵𝑖 corresponds
to a single domain value) to indexing a range of of values. The
bounding histogram’s pessimistic estimation ensures that all tuples
where 𝑡 .𝐴 ∈ 𝐵𝑖 are accurately contained within 𝐷 [idx𝑖 ], thereby
achieving lossless indexing. In contrast to existing methods that are
limited to indexing base relations [14, 61, 79], SPEidx extends its
capabilities to create private indexes on query intermediate results.
For instance, consider 𝐷′ ← 𝜎𝐴∗∈𝑣𝑎𝑙𝑠 (𝐷) where the attribute pair
(𝐴∗, 𝐴) is included in synop. Here, SPEidx can derive H(𝐴, 𝐷′)
from H(𝐴∗, 𝐷) and subsequently build indexes on 𝐷′. Importantly,
since index creation is a post-processing activity using available
DP synopses, it incurs no additional privacy loss.
Indexed store and fast data access IdxAcc. SPEidx enables the
exploration of a new storage layout for organizing outsourced
data, namely indexed datastore, that facilities private data access.
Specifically, by analyzing a representative workload 𝑄R, one may
identify the “hottest” attribute per base relation, sort them according
to the “hottest” attribute, and then build indexes over the sorted
data. This storage layout enables fast indexed access (IdxAcc) to
retrieve a compact subset of data from the outsourced relations,
thereby eliminating the need for a full table sequential scan (SeqAcc)
potentially bypassing selection operations (§ 5.3). We emphasize
that the SPECIAL design does not require replicating the outsourced
datastore to accommodate multiple query types [14, 79]. However,
creating compact replicas (e.g., column replicas [37] over frequently
queried attributes) can be optionally employed to enhance query
processing speed. Moreover, the generation of all aforementioned
objects (indexed store and column replicas) requires only three
primitives: projection, oblivious sorting, and SPEidx, all achieved
without extra privacy loss. In other words, this implies that one
can selectively adjust these objects to align with dynamic query
workloads, without incurring any privacy costs.

5.3 SPECIAL Operators SPEop

We introduce SPEop, a set of novel synopsis-assisted operators
that maintain full obliviousness (e.g., operators’ execution cause no
privacy loss) while enabling lossless compaction. To our knowledge,
SPEop is the first primitive of its kind in any SCA system.

Oblivious compaction: OPAC. We first introduce the fundamental
operation of oblivious compaction, a key component for many
SPEop primitives. Given input ⟨𝑅⟩, OPAC sorts it based on the secret
bit ret, moving tuples with ret = ‘1’ to the front. Then, OPAC retains
only the first 𝑘 tuples from the sorted array. The compaction is
lossless if 𝑘 is greater than or equal to the number of tuples with
ret = ‘1’; otherwise, it is lossy.

SPECIAL selections: (OP)SELECT, (SP)SELECT, (DC)SELECT. Let
𝑅 to be a relation and 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝑅), we now introduce three ad-
vanced selections that implements 𝜎𝐴∈𝑣𝑎𝑙𝑠 (𝑅).

(OP)SELECT. is mainly implemented based on the oblivious com-
paction (OPAC) operation. Specifically, the operation first conducts
a standard SELECT on the input secure array ⟨𝑅⟩ to label selected
tuples, followed by an OPAC to to eliminate a large portion of non-
matching tuples. To determine the compaction size 𝑐𝑠 , (OP)SELECT
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Algorithm 2 CardEst(𝜎𝐴∈𝑣𝑎𝑙𝑠 (𝑅), synop)
1: h = ∅, 𝑐 = 0
2: if H(𝐴, 𝑅) ∈ synop then h← h+ ∈ H(𝐴, 𝑅)
3: else if ∃ pair ∈ synop, s.t. 𝐴 ∈ pair then
4: h← marginal sum h+ ∈ H(𝐴, 𝑅) over (pair \𝐴).
5: else return 𝑐𝑠 = |𝑅 |
6: return 𝑐𝑠 = min( |𝑅 |,∑𝑚

𝑖=1 𝑐𝑖 ∈ h : (𝐵𝑚 ∩ 𝑣𝑎𝑙𝑠 ≠ ∅))

examines the synopsis of 𝑅 and pessimistically estimates the car-
dinality of 𝜎𝐴∈𝑣𝑎𝑙𝑠 (𝑅) as shown in Algorithm 2. Since 𝑐𝑠 never
underestimates the actual cardinality, and thus, the compaction is
lossless with no missing tuples. Moreover, as OPAC is fully oblivi-
ous and 𝑐𝑠 is determined completely from post-processing over DP
synopsis, thus, (OP)SELECT causes no privacy loss.

(SP)SELECT. The running complexity of (OP)SELECT depends on
OPAC, which is typically linearithmic (see § 6.1 or [62]). However,
when CardEst(𝜎𝐴∈𝑣𝑎𝑙𝑠 (𝑅), synop) is relatively small, oblivious se-
lection can be achieved without necessarily incurring linearithmic
cost. Specifically, we consider (SP)SELECT, which first creates an
empty output array ⟨𝑅𝑜 ⟩ with size equals to 𝑐𝑠 before any compu-
tations. Next, it evaluates two linear scans over ⟨𝑅⟩, where the first
scan obliviously marks all selected tuples, and in the second scan,
it privately writes all marked tuples into ⟨𝑅𝑜 ⟩. Specifically, in the
second scan, (SP)SELECT internally maintains the last actual write
position idx in ⟨𝑅𝑜 ⟩. Then for every newly accessed tuple ⟨𝑡⟩ in
⟨𝐷⟩, a write action occurs on all tuples in ⟨𝑅𝑜 ⟩. If ⟨𝑡⟩ is selected,
then an actual write is made that writes ⟨𝑡⟩ to ⟨𝑅𝑜 [idx + 1]⟩ and a
dummy write

3 is made to elsewhere. If not, dummy writes are made
throughout ⟨𝑅𝑜 ⟩. Similarly, (SP)SELECT does not yield additional
privacy loss, and the complexity is linear in its input.

(DC)SELECT. Finally, if the underlying data is already indexable
on 𝐴, a direct selection over the data can be applied that bypasses
secure computations. The operator simply looks up SPEidx(𝐴, 𝑅),
and accesses 𝑅 [𝑎, 𝑏], where 𝑎 = min𝑖 (idx𝑖 .lo), 𝑏 = max𝑖 (idx𝑖 .hi),
where idx𝑖 dentoes the index in SPEidx(𝐴, 𝑅) where 𝐵𝑖 ∩ 𝑣𝑎𝑙𝑠 ≠ ∅.

SPECIAL join: (MX)JOIN. We now introduce a novel MF-Index
based oblivious join operation. The advancements of (MX)JOIN
stand out in two key aspects compared to existing oblivious joins.
First, compared to the standard JOIN, (MX)JOIN stands out for its
ability to significantly compact the output size, coupled with a
highly parallelizable fast processing mode. Second, existing oblivi-
ous joins with DP leakages typically require additional privacy bud-
get to learn join sensitivity [22] or necessitate truncations on joined
tuples [9, 73]. Moreover, (MX)JOIN is unique as the first oblivious
join that enables lossless output compaction without extra privacy
loss. We illustrate the construction details in Algorithm 3.

In general, (MX)JOIN can be applied to two types of data: the base
and pre-filtered relations where the join key attribute is contained
by the synopses. Specifically, (MX)JOIN starts with computing the
join key MFs (Alg 3:4) and constructing private indexes (Alg 3:5)
for both inputs. All these operations are conducted through “pri-
vacy cost-free” transformations using available DP synopses. Once
these objects are obtained, the algorithm employs oblivious sort to

3In the context of the secret-shared secure array ⟨a⟩, a dummy write to ⟨a[𝑖 ] ⟩ is
simply a re-sharing of a[𝑖 ] through secure protocols without changing its value.

Algorithm 3 (MX)JOIN (base and pre-filtered relations)
Input: relations 𝑅0, 𝑅1; join attribute 𝐴j.

1: if MXReady(𝑅0, 𝑅1) == True then BucketJoin(𝑅0, 𝑅1, 𝐴j)
2: else if 𝑅0, 𝑅1 are either base or pre-filtered relation then

3: for 𝑏 ∈ {0, 1} do
4: derive m̂f(𝐴j, 𝑅𝑏 ) from synop𝑏 (§ 4)
5: build index SPEidx(𝐴j, 𝑅𝑏 ) = {idx𝑖 }𝑖=1,..,𝑚 (§ 5.2)
6: if ∀𝑏 , m̂f(𝐴j, 𝑅𝑏 ), and SPEidx(𝐴j, 𝑅𝑏 ) ≠ null then

7: oblivious sort 𝑅0, 𝑅1 on 𝐴j, BucketJoin(𝑅0, 𝑅1, 𝐴j)
8: else assert “not applicable for (MX)JOIN”

BucketJoin(𝑅0, 𝑅1, 𝐴j):
9: for 𝑖 = 1, 2, ...,𝑚 do

10: compute 𝑂𝑖 ← (𝑅0 [idx𝑖 ] Z𝐴j
𝑅1 [idx𝑖 ]) via basic JOIN

11: 𝑐𝑠𝑖 ← min
(
|𝑅0 [idx𝑖 ] |
m̂f(𝐴j,𝑅0 )

,
|𝑅1 [idx𝑖 ] |
m̂f(𝐴j,𝑅1 )

)
× m̂f(𝐴j, 𝑅0) · m̂f(𝐴j, 𝑅1)

12: 𝑅out ← 𝑅out ∪ OPAC(𝑂𝑖 , 𝑐𝑠𝑖 )
13: return 𝑅out

rearrange both inputs (Alg 3:6,7), rendering them indexable with
tuples logically distributed into independent buckets by join key
values. Next, (MX)JOIN simply adopts standard JOIN to join tuples
exclusively within the same buckets (Alg 3:10). Finally, (MX)JOIN
performs per-bucket output compaction, where it first determines
the MF join bound [36] for each bucket join and invokes OPAC to
compact the output according to the learned size (Alg 3:11,12). As
bucket-wise operations are independent, the aforementioned steps
lend themselves well to parallelized processing. For better illustra-
tion, we visualize (MX)JOIN’s processing flow in Figure 3.

Figure 3: Example processing flow of (MX)JOIN.

Since (MX)JOIN derives join compaction sizes completely from
post-processing of DP synopses, it thus incurs no extra privacy loss.
Moreover this design choice also eliminates the need for computing
join sensitivities — a major hurdle in existing — as accurate join
sensitivity estimation is hard and typically requires a significant
privacy budget [22]. Additionally, the noisy MF bounds guaran-
tee that compaction sizes are consistently overestimated, ensuring
lossless compaction of join results.

6 SPECIAL PLANNER

A major limitation of existing DPSCA designs is sub-optimal exe-
cution planning. Without the ability to pre-estimate intermediate
result sizes, traditional methods cannot identify the most efficient
execution strategies. To address this, SPECIAL employs an innova-
tive query planner that leverages available synopses for plan size
estimation, enabling optimal execution planning.
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At a high level, our planner is modeled on the Selinger-style
(cost-based) optimizer [13]. It uses a bottom-up, dynamic program-
ming approach to enumerate all equivalent secure execution plans
for a given query and estimate their costs to select the optimal one.
However, challenges in the design space still remain. First, the in-
troduction of SPECIAL primitives can significantly impact the cost
modeling for oblivious operations, rendering existing models [9, 46]
ineffective. Additionally, the equivalent plan search space is exten-
sive, requiring further strategies to simplify the search space. To
address these challenges, we first conduct a comprehensive analysis
of the complexities of SPECIAL primitives and develop a new cost
model (§ 6.1) for SPECIAL planner. Next, we design protocol-specific
heuristics (§ 6.2) tailored for the SPECIAL planner to simplify the
plan search space. Note that existing features of the Selinger-style
optimizer, such as plan enumerations, are not within our contribu-
tions. For detailed understanding of these features, we encourage
readers to explore the original IBM System R paper [13].

6.1 Cost Model

Similar to the cost model proposed by Shrinkwrap [9], we view
the cost of a secure execution plan cost as a combination of each
operator’s I/O and secure evaluation costs. In addition, we formulate
these costs as functions over their processed data sizes. Specifically,
given a plan with ℓ operators, op1, ..., opℓ , and let I = {𝐼1, ..., 𝐼ℓ },
O = {𝑂1, ...,𝑂ℓ }, to be the input and output sizes of each operators.
The plan cost is formulated as:

Cost =
∑ℓ
𝑖=1𝐶

op𝑖

in
(𝐼𝑖 ) +𝐶

op𝑖

eval
(𝐼𝑖 ) +𝐶

op𝑖

out
(𝑂𝑖 ) (5)

Here, 𝐶in represents the data access cost (input I/O), primarily cap-
turing the expenses when moving data from persistent storage to
an in-memory secure array. If the accessed data has already loaded
into memory, 𝐶in becomes negligible. 𝐶out denotes the output I/O
cost, modeling the expenses when writing operator results into out-
put arrays. 𝐶

eval
accounts for the secure computing expenses for

evaluating each operators, typically constituting the dominant cost.
Note that, in practice, the exact formulas for 𝐶in,𝐶out, and 𝐶

eval

can vary depending on the specific secure protocol employed (gar-
bled circuits [78], secret sharing [48], etc.) as well as the particular
hardware configurations in use. Nonetheless, the understanding of
the asymptotic costs is adequate for comprehending the principles
of our query planning and optimization strategies [9, 46]. In what
follows, we provide detailed analysis on the asymptotic costs for
each SPECIAL operator. Similarly, we assume that all input data
sizes mentioned henceforth in this section are of size 𝑛, and all 1D
histograms have𝑚 bins. Table 1 summarizes the operator costs.

Oblivious sorting and compaction. Oblivious sorting and com-
paction (OPAC) are crucial for many SPEop operators, so we will
begin our analysis with these two primitives. While oblivious sort-
ing algorithms with optimal𝑂 (𝑛 log𝑛) complexity exist, they often
necessitate either impractically large constants [3, 29] or client-side
memory [6], both do not fit with SCA scenario. Consequently, we
will consider the well-established bitonic sorting based implemen-
tation for oblivious sort, which come with 𝑂 (𝑛 log2 𝑛) complexity.
Nonetheless, efficient OPAC implementations with 𝑂 (𝑛 log𝑛) com-
plexity remain achievable [62]

Table 1: Asymptotic costs for secure operators

Operator Input I/O (𝐶in) Eval. (𝐶
eval

) Output I/O (𝐶out)

PROJECT 𝑂 (𝑛) N/A 𝑂 (𝑛)
Agg. 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (1)

Group & Order 𝑂 (𝑛) 𝑂 (𝑛 log2 𝑛) 𝑂 (𝑛)
SELECT 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)

(OP)SELECT 𝑂 (𝑛) 𝑂 (𝑛 log𝑛) hist_bound
(SP)SELECT 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (1)
(DC)SELECT idx_bound N/A N/A

JOIN 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)
(MX)JOIN 𝑂 (𝑛) 𝑂 (𝑛2)∗ mf_bound

∗Assuming the maximum size of the indexed buckets is bounded by𝑂 ( 𝑛
log𝑛 ) .

Projection, grouping and aggregation. The PROJECT accesses
private relations and discards unnecessary columns independently
on each server, without secure computations. Thus, I/O costs domi-
nate this operation, with both input and output costs bounded by
𝑂 (𝑛). The costs of ORDER-BY, DISTINCT, and GROUP-BY are primar-
ily due to oblivious sorting, resulting in a complexity of𝑂 (𝑛 log2 𝑛).
Additionally, as these operators do not reduce output sizes, both
𝐶in and𝐶out are bounded by𝑂 (𝑛). Finally, the cost of aggregations,
i.e. COUNT, SUM, and MIN/MAX subjects to a oblivious linear scan,
typically outputting a single secret-shared value. Hence, its 𝐶

eval
is

bounded by 𝑂 (𝑛), with 𝐶in at 𝑂 (𝑛) and 𝐶out at 𝑂 (1).
Selections. The primary cost of SELECT stems from an oblivi-
ous linear scan, making 𝐶

eval
within 𝑂 (𝑛). Since SELECT does

not shrink the output size, both 𝐶in and 𝐶out are within 𝑂 (𝑛).
(OP)SELECT requires an oblivious compaction (OPAC) before writing
outputs, where OPAC usually yields an 𝑂 (𝑛 log𝑛) complexity [62].
Consequently, its 𝐶

eval
is bounded by 𝑂 (𝑛 log𝑛) with input I/O

cost same as SELECT. However, as (OP)SELECT compacts output
size, 𝐶out is reduced to hist_bound = 𝑂

(∑
𝐵𝑖∩𝑣𝑎𝑙𝑠≠∅ |𝐵𝑖 |

)
, where

𝐵𝑖 ∩ 𝑣𝑎𝑙𝑠 ≠ ∅ are bins in the synopsis histogram intersecting with
selection conditions. If

∑
𝐵𝑖∩𝑣𝑎𝑙𝑠≠∅ |𝐵𝑖 | ∼ 𝑂 (1), (SP)SELECT be-

comes preferable, with its running cost dominated by a two-phase
linear scan, and thus 𝐶

eval
is now 𝑂 (𝑛), and the output cost is

𝑂 (1). (DC)SELECT is the most efficient selection, though it requires
indexable input data. It simply loads indexed data into secure ar-
rays without secure computations or result write-backs. As such,
both 𝐶

evals
and 𝐶out are negligible, with 𝐶in within idx_bound =

𝑂 (max𝑖 (idx𝑖 .hi) −min𝑖 (idx𝑖 .lo)). Here, idx𝑖 are indexed regions
that intersect with selection conditions.
Joins. Both JOIN and (MX)JOIN have 𝑂 (𝑛) data access costs, but
differ in 𝐶

eval
and 𝐶out. JOIN, using a Cartesian product approach,

doesn’t reduce output size, so both𝐶
eval

and𝐶out are within𝑂 (𝑛2).
Compared to JOIN, in the worst-case scenario where the join keys
follow a highly biased distribution, i.e. max bucket size reaches
𝑂 (𝑛), (MX)JOIN’s asymptotic cost is at most 𝑂 (𝑛2 log𝑛). However,
when join keys are distributed more uniformly, the cost can be
asymptotically better. For instance, with𝑚 = log𝑛 and assuming a
max bucket size of𝑂 ( 𝑛

log𝑛 ), each bucket join costs𝑂 (
𝑛2

log𝑛 ), leading
to a total cost of𝑂 (𝑛2), equivalent to JOIN. Recall that bucket joins
in (MX)JOIN can be executed concurrently, hence, the processing
latency is indeed dominated by the bucket-wise cost, i.e. 𝑂 ( 𝑛2

log𝑛 ).
Additionally, the output cost is lowered from 𝑂 (𝑛2) to the sum of
per-bucket MF upper bounds (Alg 3:11), which can be substantially
less if the join key MFs are relatively low.



SPECIAL: Synopsis Assisted Secure Collaborative Analytics

6.2 Heuristics

H-1. Filter push down. Filter pushdown is a widely used optimiza-
tion technique in conventional databases, where it involves moving
the selection operation to the earliest stage in the data process-
ing pipeline, such as directly to the base relation. This reduces the
amount of data that needs to be loaded, transferred, and processed,
by following operators especially complex joins. However, in SCA
designs, data obliviousness typically necessitates padding selec-
tion sizes to the worst-case scenario, rendering filter pushdown
ineffective [26, 46, 57, 82]. With SPEop selections, the selection
outputs can be significantly compacted, making filter pushdown
effective again. Therefore, we include filter push down as one of
the optimization heuristic for SPEplan.
H-2. Predicates fusion. Let 𝑅 to be any relation, 𝐴1, 𝐴2, ..., 𝐴𝑘 ⊆
𝑎𝑡𝑡𝑟 (𝐷), and v = {𝑣1, 𝑣2, ..., 𝑣𝑘 }. We say that for multiple selection
over 𝑅 such that 𝜎𝐴1∈𝑣1 (...𝜎𝐴𝑘 ∈𝑣𝑘 (𝑅)), one can always fuse them
into one selection 𝜎A⊂v (𝑅). This can reduce the number of secure
computation invocations from 𝑘 rounds to just one. Additionally,
the selection size can be estimated asmin𝐴𝑖

(
CardEst(𝜎𝐴𝑖 ∈𝑣𝑖 (𝑅))

)
.

H-3. Join statistics propagation. A key property of SPECIAL
join, (MX)JOIN, is that the output is already indexed and bucketized
by the join key. Therefore, for any output 𝑅 of (MX)JOIN comput-
ing 𝑅0 Z𝐴j

𝑅1, a new index SPEidx(𝐴j, 𝑅) across 𝑅 can be easily
derived. Moreover, as per [36], one can also update the MF for 𝑅
by computing m̂f(𝐴j, 𝑅) = m̂f(𝐴j, 𝑅0) × m̂f(𝐴j, 𝑅1). As a result, we
say that the output of (MX)JOIN as MF-and-index-ready, enabling
direct application of another (MX)JOIN on the same join attribute.

7 EVALUATION

In this section, we present evaluation results of our proposed frame-
work. Specifically, we address the following questions:

• Question-1: Does SPECIAL offer efficiency advantages over
current SCA approaches? To what extent can SPECIAL enhance
efficiency compared to existing state-of-the-arts (SOTAs)?

• Question-2: For the DP-based SPECIAL design, is there a trade-
off between privacy and efficiency? Canwe adjust privacy levels
to achieve various efficiency objectives?

• Question-3: Can SPECIAL scale complex analytical (e.g. multi-
way join) queries to large-scale (multi-million rows) datasets?

7.1 Experimental setups

We briefly outline our experimental setup, covering the baseline
systems, prototype SPECIAL implementation, workloads, datasets,
and default configurations.

Baseline systems and SPECIAL prototype. We compare SPE-
CIALwith two baseline systems: Shrinkwrap [9], the SOTA DPSCA,
and SMCQL [8], a typical SCA system using exhaustive padding
for leakage hiding, also used as a baseline for Shrinkwrap. For con-
sistency, we consider the same circuit-model implementations for
both baseline systems and the SPECIAL prototype. While some
works [46, 57] similar to SMCQL use exhaustive padding but im-
prove efficiency through protocol-level optimizations, we exclude
them from our benchmarks for fair comparison concerns. However,
it’s important to note that these optimizations are orthogonal to

Table 2: Query workloads

Query No. Type Description

Q1 Linear Point query with single predicate.
Q2 Linear Range query with conjunctive predicates.
Q3 Binary Join Non-expanding binary join.
Q4 Binary Join Expanding binary join.
Q5 Multi Join 3-way mixed non-expanding and expanding joins.
Q6 Multi Join 3-way all expanding joins.
Q7 Multi Join 4-way mixed non-expanding and expanding joins.
Q8 Multi Join 5-way mixed non-expanding and expanding joins.

both the baseline systems and our designs. We re-implement impor-
tant query features for the two baseline systems, and built SPECIAL
using the same MPC package, specifically the sh2pc-0.2.2 proto-
col within EMPtoolkit-0.2.5. Since managing DP synopses and
generating indexes do not involve secure computations, thus we
implement the related features using Python (3.7) scripts. All im-
plementations are open-sourced [47].

Datasets and workloads. Although SMCQL and Shrinkwrap use
the HealthLNK dataset, it is not public data and thus not acces-
sible to the broader research community. Hence, we developed a
new benchmark based on a publicly available dataset, and mimic
Shrinkwrap’s workload to create a set of testing queries. Specifi-
cally, we use the Czech Financial Dataset [1], an anonymized Czech
bank transaction dataset for loan applications. This dataset com-
prises 8 relational tables with a total of 55 columns and 1.1 million
rows. For scaling experiments, we use the raw data and schema to
generate synthetic data with up to 10 million rows. Shrinkwrap’s
benchmark evaluates four queries: a range query, two 2 binary
joins, and a 3-way join. Mirroring this approach, we designed eight
query workloads based on the Financial data. All workloads are
selection-projection-join (SPJ) queries followed by statistical aggre-
gations such as count, count distinct, and group by. The workloads
range from simple linear queries to complex multi-way joins. Due
to space limitations, a brief summary of the workloads is provided
in Table 2, with the full specification in Appendix B.

Default configurations. For SPECIAL, each relational table is
assigned a fixed privacy budget with 𝜖 = 1.5 and 𝛿 = 0.00005 to
release synopses. This setup ensures that the total privacy loss per
table does not exceed 𝜖 = 1.5. For all equal-width histograms gen-
erated in SPECIAL, we configure them to have at most 8 bins. For
Shrinkwrap, we use a privacy budget of 𝜖 = 1.5 and 𝛿 = 0.00005 for
each query processing, as specified in [9]. However, Shrinkwrap
does not provide bounded privacy loss guarantees, so the privacy
guarantee of Shrinkwrap will be no better than SPECIAL. We con-
duct all experiments on bare-metal Mac machines with M2 Max
CPUs and 96GB unified memory. In addition, we consider Q2, Q4,
Q8 are default testing queries in each query type, and are used
as the representative workload to guide synopses. Moreover, for
baseline systems, as they do not have join ordering optimizations,
thus we will assume a random join order for them.

7.2 End-to-end performance comparisons

To address Question-1, we first conduct an end-to-end perfor-
mance comparison of SPECIAL, Shrinkwrap, and SMCQL across
the full benchmark workloads (Q1-Q8). We use two typical perfor-
mance metrics, query execution time and memory usage in our
evaluations. The results are summarized in Figure 5 and Figure 6.
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Figure 4: In-depth comparisons in execution plans: (i) The exhaustive padding in SMCQL can lead to significant memory blowup;

(ii) Both SMCQL and Shrinkwrap suffer from suboptimal join ordering; (iii) Although Shrinkwrap reduces intermediate sizes, it

still requires substantial memory to materialize the Cartesian-style standard oblivious join; (iv) SPECIAL effectively identifies

optimal join orders and significantly reduces intermediate materialization sizes; (v) The IdxAcc method in SPECIAL not only

bypasses secure selections but also directly reduces input I/O costs.

Due to significant memory consumption, SMCQL cannot complete
the full benchmark and stops at Q4. Therefore, we only include full
statistics up to Q3, and for Q4, we provide a projected performance
evaluation using 10% of the input data.
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Figure 5: End-to-end comparison: query latency
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Figure 6: End-to-end comparison: memory usage

Observation 1. SPECIAL significantly outperforms all base-

line systems in query latency, achieving performance gains

of up to 3618.3× for linear queries, 114× for binary joins, and

80.3× for multi-joins. Figure 5 shows significant performance
gains of SPECIAL in contrast to Shrinkwrap and SMCQL. For linear
queries, SPECIAL exhibits substantial performance gains, achieving
up to 3618.3× improvement (Q2), primarily due to its index-based
fast data access. This approach not only reduces large I/O costs
but also eliminates the need for secure computation by enabling
direct data retrieval via DP indexes. We observe that in binary joins,
SPECIAL has a less pronounced advantage over Shrinkwrap. This is
because Shrinkwrap do not have sub-optimal planning issue when
dealing with binary join—as there is only one join order. Hence, the

performance gains for SPECIAL in Q3 and Q4 stem solely from fast
data access and the efficient (MX)Join method. However, for more
complex multi-way joins, SPECIAL’s advantage becomes more pro-
nounced again due to its ability to select the optimal join order. For
instance, Shrinkwrap shows more than 80× slow down in query
latency than SPECIAL in group Q7.

Observation 2. SPECIAL shows profound improvement in

memory usage (Figure 6) against baseline systems, especially

in complex multi-way joins. This is primarily due to two factors:
First, the (MX)JOIN used by SPECIAL is more memory-efficient
compared to the joins implemented by Shrinkwrap and SMCQL.
Second, SPECIAL’s capability to identify optimal execution plans
significantly reduces total intermediate sizes, which is particularly
beneficial for complex joins that suffer from sub-optimal or exhaus-
tive padding in other systems. To better understand the substantial
improvements SPECIAL achieves—for instance, up to 928.2× over
Shrinkwrap and more than 105× over SMCQL—we will zoom into
a specific query, Q6, and compare the detailed execution plans of
the three systems. The choice of Q6 is strategic because its com-
plexity sufficiently highlights the differences in execution plans,
yet it remains simple enough for clear visual representation. Our
comparison features four execution plans: a plaintext optimal plan
derived directly from the logical plan using actual cardinalities,
illustrating the ground truth optimal execution; a hypothetical SM-
CQL plan (since Q6 cannot be completed by SMCQL so we project
the cardinalities); and two actual execution plans from our experi-
ments with Shrinkwrap and SPECIAL. The detailed comparisons
and observations are summarized in Figure 4.

7.3 Privacy comparisons

Continue to addressQuestion-1, we now compare the privacy guar-
antees between Shrinkwrap and SPECIAL, with the results detailed
in Figure 7. As privacy loss is independent of query types, our anal-
ysis will focus on comparing the privacy composition curves under
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continual query answering for both Shrinkwrap and SPECIAL. We
consider two privacy composition models: advanced composition
(Adv.)[24] and concentrated DP composition (CDP)[15].
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Figure 7: End-to-end comparison privacy loss.

Observation 3. Under continual query answering, SPECIAL

demonstrates significantly lower privacy loss compared to

Shrinkwrap, achieving up to 89.01× and 38.91× improvements

in the Adv. and CDP modes, respectively. The privacy loss
of SPECIAL is bounded to the initial synopsis release stage, so
continual query answering does not incur additional privacy loss.
In contrast, Shrinkwrap’s privacy loss accumulates over time as
each new query allocates a fresh privacy budget. Consequently, its
privacy loss exhibits a logarithmic growth, as shown in Figure 7.
This accumulation can result in significant privacy degradation
when processing a large number of queries. For example, answering
100 queries in Shrinkwrap could result in a privacy loss of 𝜖 > 100 in
Adv. and 𝜖 ≈ 60 in CDP., respecitvely, even if each query only uses
a small privacy budget of 𝜖 = 1.5. As such, SPECIAL demonstrate
significant improve in privacy guarantees towards SOTA DPSCA.

7.4 Privacy efficiency tradeoffs

We address Question-2 by evaluating SPECIAL at various privacy
levels and observing the performance impacts. Specifically, we
maintain 𝛿 constant while varying 𝜖 from 0.1 to 10 and assess the
performance across default testing queries (Q2, Q4, Q8). The results
are shown in Figure 8 and Figure 9.
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Figure 8: Privacy vs. Performance (query time)
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Figure 9: Privacy vs. Performance (memory)

Observation 4. The privacy-efficiency tradeoff generally ex-

ists but exhibits varying trends at different privacy levels.

For instance, SPECIAL shows a clear tradeoff at higher pri-

vacy levels (𝜖 < 1), while at lower privacy levels (𝜖 > 1), the
tradeoff becomes less pronounced.When 𝜖 increases from 0.1

to 1, both memory usage and query latency for all test queries
significantly decrease. However, increasing 𝜖 from 1 to 10 shows
no significant performance gains. This may indicate that once 𝜖
exceeds 1, the impact of noises on cardinality estimation or index
building is alredy minimal, and further reductions in 𝜖 do not lead
to notable improvements. Therefore, if high privacy protection is
required, practitioners should carefully fine-tune privacy param-
eters to optimize performance. Conversely, if performance is the
priority, setting 𝜖 near 1 is typically sufficient.

Observation 5. Different queries exhibit varying performance

sensitivities to changes in privacy levels.Multi-join queries are
significantly affected when privacy levels change. For instance, the
performance overhead of Q8 at 𝜖 = 0.1 is more than 3× higher than
at 𝜖 = 1. In contrast, linear query (Q2) and binary join (Q4) overhead
increases to only about 1.5× under the same privacy settings. This
difference stems from the error amplification inherent in multi-join
operations, which frequently reuse synopses and require multi-
ple cardinality estimations. Therefore, practitioners dealing with
complex multi-join workloads may need careful fine-tune privacy
parameters, as performance impacts can be substantial.

7.5 Scaling experiments

To address Question-3, we stress SPECIAL with scaled workloads
by duplicating the raw financial dataset to sizes of 2×, 4×, and 8×.
We then evaluate the default testing queries on these scaled datasets
to assess SPECIAL’s efficiency. The results are shown in Figure 10.
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Figure 10: End-to-end comparison privacy loss.

Observation 6. SPECIAL demonstrates significant potential

to scale up to multi-million records, even when handling

complex 5-way joins. Figure 10 shows SPECIAL’s effective scaling:
up to 8× data for linear queries and binary joins, and up to 4× data
for complex 5-way joins like Q8. For instance, Q2 can be completed
within 290ms under 8×, and in fact, since selection is bypassed (due
to index access), thus the cost is mainly on I/O costs. Q4 finishes in
289 minutes at the same scale 8×, while the more complex 5-way
join Q8 takes less than 280 minutes for 4× data. As a reference,
Shrinkwrap would require over 1035 minutes to complete Q8 even
with unscaled data (Figure 5). This result can, from another angle,
showcase the significant performance improvements of SPECIAL
over current SOTA DPSCA designs.

8 DISCUSSION

In this section, we discuss potential extensions to accommodate
broader data models and possible adaptations of SPECIAL designs
to other secure primitives.

Supporting growing data. In general SPECIAL considers read-
intensive analytical workloads and and a static data model, which
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is the same as current SOTA SCA efforts [9, 46, 57, 69]. In this
section, we will briefly discuss how SPECIAL could be extended
to support the growing data model where new records are con-
tinuously added to the logical database [72, 73, 79]. One possible
strategy involves segmenting the large logical database into dis-
crete, non-overlapping time intervals, each represented by its own
database with independent synopses. Specifically, for new incom-
ing data, SPECIAL will initially cache it until a designated time
interval concludes. After this period, SPECIAL will batch all the
cached data into a new database corresponding to the past time
interval and release synopses for this database. As the data within
these intervals is disjoint, queries can be easily partitioned and inde-
pendently optimized and executed across corresponding databases
in parallel, before being aggregated. Note that prior to releasing
new synopses, all cached data will be processed using standard
SCA processing (e.g. SMCQL). Since each synopses release covers
only newly inserted data, the total privacy loss adheres to parallel
composition [24], and thus the bounded privacy loss still hold.

Adaptability to other secure primitives. Beyond MPC-based
SCA, the key design insights from SPECIAL are transferable to
other secure outsourced databases such as the TEE-based analyti-
cal systems [26, 58, 59, 82] or searchable encryption based private
key-value store [4, 19, 30]. This is because SPECIAL’s core compo-
nents, including synopses management, indexing, query planning,
and compaction estimation, can all be executed without relying
on secure computation primitives. For example, in TEE databases,
one may conduct a similar query planning outside the TEE, with
the optimal plan then executed within the TEE for fast oblivious
processing. Similarly, SPECIAL’s design principles could be applied
to searchable encryption to construct private indexes in advance
on sorted data, enable fast and private information retrieval.

9 RELATEDWORK

SCA systems. Two main approaches exist for designing MPC-
based SCA systems. The first is peer-to-peer paradigm [2, 52, 57, 69,
76], where the goal is to improve efficiency by decomposing ana-
lytical queries and pushing them to data owners, so that they can
either directly process in clear or running MPCs across a smaller
group of parties. Unfortunately, this approach burdens data owners
with heavy computational overheads, particularly for complex op-
erations like joins. Moreover, given real-world data owners often
lack robust computing resources and reliable service capabilities,
these methods are difficult to scale and promise consistent SCA ser-
vices to external analysts. On the other hand, the server-aided-MPC

model [9, 10, 39, 43, 46, 51, 61, 67, 72, 73, 79] offers a more practical
solution. It allows data owners to outsource both expensive MPC
computations and secure data storage to a set of capable cloud
service providers (CSPs), who then jointly evaluate MPC to provide
reliable SCA services. For the SPECIAL prototype, we focus on the
server-aided-MPC model under a strong corruption assumption,
allowing up to 𝑛 − 1 of 𝑛 servers to be compromised and collate
with others. While, as we discussed before, SPECIAL’s core de-
sign principles are protocol-agnostic. This enables interoperability
with various MPC models, including the peer-to-peer settings or
a weaker corruption setting (for performance purpose) where a
supermajority of servers need to be honest [43, 46, 67].

DP leakages. Leakage-abuse attacks [12, 16, 31, 40, 53, 64, 80], ex-
ploit data-dependent processing patterns, are persistent threats to
SCA systems. To mitigate these risks, oblivious computation tech-
niques [6, 18, 21, 38, 41, 50, 55, 56, 62, 66, 68, 74, 75] have become
the de facto solution—processing data such that the entire execution
transcript (e.g. memory traces and read/write volumes) is padded to
a worst-case constant. While these techniques ensure the strongest
privacy guarantees by eliminating data-dependent leakages, they
also introduce a fundamental contention with modern database
optimizations, which often rely heavily on data-dependent opera-
tions [9, 71–73]. To this end, many recent efforts seek a practical
balance in the privacy-performance trade-off by allowing controlled
leakage under DP [9, 17, 20, 30, 34, 54, 58, 59, 70–73, 79]. However, a
common issue of these approaches is unbounded privacy loss.While
some works propose to address this [14, 59, 79], their approaches
are restricted to only simple linear queries. Furthermore, existing
DP leakage designs also lack lossless guarantees for complex query
processing. The inherent randomness of DP noises [30, 72, 73] and
uncertainty in complex join sensitivities [9, 20, 73] often lead to
improper output compaction and lose tuples. SPECIAL addresses all
these limitations together, and to our knowledge, is the first system
to ensure both bounded privacy and lossless results for securely
processing complex queries.

SCA query planning. Query planning [65] is crucial in conven-
tional databases. A few studies [8, 46, 57, 69] explored query plan-
ning within SCA frameworks. Unlike conventional planners, which
exploit size disparities across different execution plans to choose
the most efficient one with minimized plan sizes [25, 32, 33], these
methods typically prohibit the use of such data-dependent infor-
mation. Consequently, they primarily rely on data-independent
metrics for planning. For example, [8, 46, 69] optimize based on
the MPC execution costs, while [57] focuses on decomposing large
MPC tasks into smaller 2/3PC ones. Since these methods do not
optimize or compact intermediate sizes, significant query execution
overhead from these large sizes remains evident, especially when
processing complex multi-joins [9, 46]. Shrinkwrap [9] uses DP
leakage models and allows planner to optimize query intermediate
sizes in a privacy-preserving manner. However, it cannot estimate
cardinalities before runtime, mandating a random selection of plan
structures (e.g. join order) before execution. Consequently, plan-
ning focuses solely on optimally allocating privacy budgets across
the chosen plan, which often result in suboptimal query executions.
In contrast, SPECIAL offers an advanced query planner capable
of pre-estimating plan sizes and comparing costs among different
plan structures before execution.

10 CONCLUSION

We introduce SPECIAL, the first SCA system that simultaneously
supports: (i) handling complex queries with bounded privacy loss;
(ii) advanced query planning that effectively exploit plan interme-
diate sizes before runtime; and (iii) delivering exact query results
without missing tuples. This is achieved through a novel synopses-
assisted SCA design, where a set of private table statistics are re-
leased with one-time privacy cost to guide subsequent secure SCA
planning and processing. The benchmark results demonstrate that
SPECIAL significantly outperforms SOTA SCA systems and scales
complex multi-join queries to multi-million datasets
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A PRIVACY PROOF

Theorem A.1. The one-sided Laplace mechanism as described in

Definition 4.1 satisfies (𝜖, 𝛿)-DP.

Proof. WLOG. we illustrate proof details by assuming posi-
tive mechanism, Lap+, and by symmetric, the properties proved
here also holds for Lap− . In general, we write the mechanism as
M(𝐷) ← 𝑓 (𝐷)+Lap+ (𝜖, 𝛿), where 𝑓 is a counting query. Note that
the sensitive for counting query is 1, and thus we will implicitly
omit the sensitivity notations.

Given any two neighboring databases 𝐷 and 𝐷′, and let 𝑐 ←
𝑓 (𝐷) and 𝑐′ ← 𝑓 (𝐷′), WLOG. we will assume 𝑐 ≤ 𝑐′. Now we will
evaluate three disjoint output domains for 𝑓 , namely 𝑂1 = (−∞, 𝑐),
𝑂2 = [𝑐, 𝑐′], and 𝑂3 = (𝑐′, +∞). Since the noise is non-negative,
thus it’s clear that Pr[M(𝐷) ∈ 𝑂1] = 0 and Pr[M(𝐷′) ∈ 𝑂1] = 0.
Next, we evaluate the domain𝑂3 and consider an auxiliary domain
𝑂∗ = {𝑥 − 𝑐′ : 𝑥 ∈ 𝑂3}. We compute the following ratio:

Pr[M(𝐷) ∈ 𝑂3]
Pr[M(𝐷′) ∈ 𝑂3]

=
Pr[𝑐 + Lap+ (𝜖, 𝛿) ∈ 𝑂3]
Pr[𝑐′ + Lap+ (𝜖, 𝛿) ∈ 𝑂3]

=
Pr[Lap+ (𝜖, 𝛿) ∈ 𝑂∗]

Pr[Lap+ (𝜖, 𝛿) ∈ 𝑂∗ + (𝑐′ − 𝑐)]

=
𝑒−𝜖 |𝑥−𝜇 |

𝑒−𝜖 |𝑥−(𝑐′−𝑐 )−𝜇 |

= 𝑒𝜖 ( |𝑥−(𝑐
′−𝑐 )−𝜇 |− |𝑥−𝜇 | )

≤ 𝑒𝜖 ( |𝑐
′−𝑐 ) | ) (triangle inequality)

= 𝑒𝜖

(6)

Then we evaluate the last output domain𝑂2, and we can see that
Pr[M(𝐷′) ∈ 𝑂2] = 0 and Pr[M(𝐷) ∈ 𝑂2] ≥ 0, and thus there
will be unbounded privacy loss within the domain of 𝑂2 = [𝑐′, 𝑐].
However, we can bound this probability by 𝛿 , which is equivalent
to prove that with density function

Pr[𝑧 = 𝑥] = 𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖 |𝑥−𝜇 | ,

where 𝜇 = 1− 1
𝜖 ln(𝛿 (𝑒𝜖 + 1)), the probability of sampling a value 𝑧

within the range (−∞, 1] is less than or equal to 𝛿 . Since we consider
a discrete distribution, thus we compute the following

Pr[𝑧 < 1] =
0∑︁

𝑥=−∞

𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖 (𝜇−𝑥 )

=
𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖𝜇
0∑︁

𝑥=−∞
𝑒𝜖𝑥

=
𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖𝜇 1
1 − 𝑒−𝜖 (geometric series sum of 𝑒𝜖𝑥 )

=
𝑒𝜖 − 1
𝑒𝜖 + 1 𝑒

−𝜖 (1− 1
𝜖
ln(𝛿 (𝑒𝜖+1) )) 1

1 − 𝑒−𝜖 (substitute 𝜇)

=
𝑒𝜖

𝑒𝜖 + 1𝑒
−𝜖+ln(𝛿 (𝑒𝜖+1) )

=
𝑒𝜖

𝑒𝜖 + 1𝑒
−𝜖𝛿 (𝑒𝜖 + 1)

= 𝛿.

(7)

Combining all these we obtain the following
Pr[M(𝐷) ∈ 𝑂] = Pr[M(𝐷) ∈ (𝑂1 ∪𝑂2 ∪𝑂3)]

= Pr[M(𝐷) ∈ 𝑂2] + Pr[M(𝐷) ∈ 𝑂3]
≤ 𝛿 + 𝑒𝜖Pr[M(𝐷′) ∈ (𝑂2)]

(8)

The claim thus holds. □

Next we prove Theorem 4.3.

Proof. (Theorem 4.3) We prove this theorem by analyzing
privacy loss using composition theorems. Generating noisy his-
tograms with one-sided noise is equivalent to releasing multiple
counting queries across disjoint datasets. Therefore, by the parallel
composition theorem [24], each histogram release is (𝜖, 𝛿)-DP. The
release of the maximum frequency via a noisy max mechanism is
(𝜖, 0)-DP. Given 𝑐 pairs, the sequential composition theorem [24]
applies, resulting in a total privacy loss under 2𝑐-fold advanced
composition. Consequently, the entire process adheres to (𝜖, 𝛿)-DP,
with 𝜖 ≤ 6𝜖

√︁
𝑐 ln(1/𝛿).

□

Theorem A.2. The privacy of SPECIAL adheres to Definition 3.1

Proof. Since the entire DP synopses releasing satisfies DP. Thus,
we prove this theorem by constructing a simulator, S, which takes
only the DP synopses as input and can simulate execution tran-
scripts that are indistinguishable from those of the actual protocol.
For ease of notation, we abstract SPECIAL as a composed secure
protocol 𝜋 .

We first examine a hybrid protocol, 𝜋1, differing from 𝜋 in that
the secure outsourcing procedure—where owners upload secret
shares of their data to two servers—is replaced by a simulator, S1.
This simulator, which takes no input, simulates secret shares with
randomly sampled data (𝑥1, 𝑥2)

rd←−− Z232 . We say that a S1 must ex-
ist that produces results indistinguishable from the secret shares in
𝜋 , as the absence of such a simulator would imply the non-existence
of secure secret sharing techniques. Next, we consider another hy-
brid protocol, 𝜋2, which differs from 𝜋1 only in that the query
planning function is replaced by a simulator S2. This simulator
takes as inputs all synopses and a set of random values (simulated
secure outsourced data) generated by S1, and produces a simulated
execution plan for every requested query. We say that an S2 should
also exist with outputs indistinguishable from 𝜋 ’s execution plans.
Given that Selinger optimizers can pre-generate execution plans
using only table statistics, the non-existence of such a simulator,
S2, would imply the non-existence of Selinger optimizers, which
is contradictory. Finally, we construct S = (S1,S2), where S1 sim-
ulates secure data outsourcing and S2 simulates query planning.
S executes the query plan using randomly generated values from
S1 through MPC computation. Since both the execution plans and
input data are indistinguishable from those in 𝜋 , the MPC execu-
tion must also be indistinguishable. Otherwise, it would violate the
security guarantees of MPC. □

B QUERYWORKLOADS

We illustrate the benchmark query workloads as follows:
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Listing 1: Benchmark query workload

-- Q1 Range query

SELECT * FROM financial.loan WHERE financial.loan.duration = 36;

-- Q2 Range query 2

SELECT * FROM financial.order WHERE financial.order.amount > 10000 and
financial.order.amount < 20000 and financial.order.k_symbol = 'LEASING ';

-- Q3 Binary join 1 - non -expaanding join

SELECT count(distinct b.account_id) FROM financial.client a, financial.disp b

where a.client_id = b.client_id and
a.district_id = 18 and b.type = 'DISPONENT ';

-- Q4 Binary join 2 - expanding join (group by)

SELECT a.date , count(a.date) FROM financial.account a, financial.trans b

where a.account_id = b.account_id and
b.operation = 'VYBER␣KARTOU ' and a.district_id = 18

group by a.date
order by count(a.date);

-- Q5 3 way join , mixed expanding and non -expanding

SELECT count(distinct a.account_id) FROM financial.account a, financial.trans b, financial.order c

where a.account_id = b.account_id and a.account_id = c.account_id and
b.operation = 'VYBER␣KARTOU ' and a.district_id = 18 and c.k_symbol = 'LEASING ';

-- Q6 3 way join , all expanding

SELECT sum(a.amount) FROM financial.order a, financial.trans b, financial.disp c

where a.account_id = b.account_id and b.account_id = c.account_id and
b.operation = 'VYBER␣KARTOU ' and a.k_symbol = 'LEASING ';

-- Q7 4 way join I

SELECT min(c.amount) FROM financial.account a, financial.trans b, financial.order c, financial.disp d

where a.account_id = b.account_id and a.account_id = d.account_id and c.account_id = d.account_id and
b.operation = 'VYBER␣KARTOU ' and a.district_id = 18 and c.k_symbol = 'LEASING ';

-- Q8 5 way join II

SELECT max(c.amount) FROM financial.account a, financial.trans b, financial.order c, financial.disp d, financial.loan e

where a.account_id = b.account_id and b.account_id = c.account_id and c.account_id = d.account_id and
b.operation = 'VYBER␣KARTOU ' and c.k_symbol = 'LEASING ' and a.district_id = 18 and e.duration = 36;
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