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Abstract
TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element.
Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element
allows us to express the domain and codomain of a relation. This enables several applications
in program logics, such as proving under-approximate specifications or reachability properties of
imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as
having a decidable equational theory, it is incomplete with respect to relational models. In other
words, there are properties that hold true of all relational TopKATs but cannot be proved with
the axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which
relational models play a key role.

In this paper, we further investigate the completeness properties of TopKAT with respect to
relational models. We show that TopKAT is complete with respect to (co)domain comparison of
KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since
the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the
aforementioned incompleteness results have a limited impact when using TopKAT to reason about
such specifications.

2012 ACM Subject Classification Theory of computation → Formal languages and automata the-
ory; Theory of computation → Programming logic

Keywords and phrases Kleene algebra, Kleene Algebra With Tests, Kleene Algebra With Domain,
Kleene Algebra With Top and Tests, Completeness, Decidability

Funding Cheng Zhang: National Science Foundation Grant No. 2040249 and No. 2314324.
Arthur Azevedo de Amorim: National Science Foundation Grant No. 2314323.
Marco Gaboardi: National Science Foundation Grant No. 2040249 and No. 2314324.

1 Introduction

Kleene algebra with tests (KAT) is an algebraic framework that extends Kleene algebra
with an embedded Boolean algebra to model control structures like if-statement and while-
loops [20]. This extension enables us to reason about several properties of imperative pro-
grams. For example, one of the key early results in the area was that KAT can encode Hoare
logic, in the sense that any proof in the logic’s propositional fragment can be carried out
faithfully using KAT equations [27, 21].

Some applications, however, require us to look beyond KAT. For example, Zhang et
al. [41] recently proved that KAT alone cannot be used to encode incorrectness logic [31, 7]—
a close cousin of Hoare logic with applications in bug finding [25, 36]. A similar result was
proved by Struth [39], who showed that KAT cannot encode weakest liberal preconditions. If
we view a program as a relation between its input and output states, both of these limitations
arise from KAT’s lack of power to encode the (co)domain of a relation. Indeed, Möller et
al. [30] proved that incorrectness logic could be encoded by extending KAT with a codomain
operation. Independently, Zhang et al. provided a similar encoding [41] by extending KAT
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2 Domain Reasoning in TopKAT

with a top element, which can be used to express inequalities between codomains. They
dubbed the resulting algebraic structure a TopKAT.

The present paper investigates the expressive power of TopKAT as a tool for (co)domain
reasoning. As noted by Zhang et al. [41], one limitation of TopKAT is that it is not expressive
enough to derive all valid equations between relations. More precisely, Zhang et al.’s encoding
of incorrectness logic interprets the top element of the algebra as the complete relation,
which relates all pairs of program states. Under this interpretation, the inequality p⊤p ≥ p

is valid, but unprovable using the theory of TopKAT [41]. This a potential issue when using
TopKAT to reason in incorrectness logic: though Zhang et al.’s encoding covers all the rules
of propositional incorrectness logic, there could be inequalities about (co)domain that fall
outside this fragment and cannot be established solely by the theory of TopKAT.

Pous et al. [34, 35] were able to make some progress on the issue, by showing we can
obtain a complete axiomatic system for relational models TopKATs by adding in the in-
equality p⊤p ≥ p as an additional axiom. In this paper, we look at the question from a
different angle, instead of working with a more complex theory, we show that the original
theory of TopKAT is complete with respect to relational models for (co)domain comparisons,
namely the inequalities of the form ⊤t1 ≥ ⊤t2 or t1⊤ ≥ t2⊤ where t1, t2 are KAT terms.
Since these inequalities suffice to encode incorrectness logic, this completeness result lays
a solid foundation for encoding program logics in TopKAT. We have also showed that this
completeness result is tight, in the sense that it does not extend to the case where t1 and
t2 contain the top element, by explicitly constructing two TopKAT terms that witness the
incompleteness.

The result above is enabled by the homomorphic structure of the reduction [41, 33] from
TopKAT to KAT. This discovery also let us shorten the proofs of previous results [41], and
enables systematic generation of TopKAT complete interpretations from complete interpret-
ations of KAT. We believe that this new representation of the reduction technique could
also be of independent interest.

Structure of this paper and contributions: In Section 2, we present several previous
results on KAT and TopKAT. Inspired by universal algebra [4], we characterize fundamental
concepts, like interpretation and completeness, using homomorphisms. In Section 3, we
uncover additional structure of the reduction technique [24, 33] in the case of TopKAT: the
reduction from TopKAT to KAT is a TopKAT homomorphism. This discovery not only
allows us to simplify several previous results [41] by avoiding tedious induction proofs; but
also enables the techniques used in the later section. Section 4 presents the completeness
results of TopKAT with respect (co)domain comparison. The codomain completeness result
is proven by an equality that connects codomain operation with the language interpretation,
and the domain completeness is then proven by applying the codomain completeness result
to the opposite TopKAT.

2 Preliminaries

2.1 Extensions of Kleene algebra And Their Models
A Kleene algebra is an idempotent semiring with a star operation, written p∗, that satisfies
the following unfolding, left induction, and right induction rules:

p∗ = 1 + pp∗ = 1 + p∗p, pr + q ≤ r =⇒ p∗q ≤ r, rp + q ≤ r =⇒ qp∗ ≤ r;

the ordering here is the conventional ordering in idempotent semirings: p ≤ q ≜ p+q = q. It
is known that the right-hand version of unfolding and induction rule can be removed while
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preserving the same equational theory [23]. Yet, we will focus on the standard definition of
KA in this paper.

▶ Lemma 1. Following are well-known facts in Kleene algebra
All the Kleene algebra operations preserve order.
The following equations are true for the star operation:

p∗ · p∗ = p∗ (p∗)∗ = p∗.

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded Boolean
algebra, where the conjunction, disjunction, and identities in the Boolean algebra coincide
with the addition, multiplication, and the identities of Kleene algebra. We refer to elements
of this embedded Boolean algebra as tests.

Given an algebraic theory, we can construct its free model over a finite set Σ, called
the alphabet [4]. The free model consists of all the terms formed by Σ modulo provable
equivalences of the algebra. The operations of the free model are obtained by lifting the
term-level operations to equivalence classes.

The above construction can be extended to the case of KAT and TopKAT, suppose
that we are given two disjoint finite sets K (the action alphabet) and B (the test alphabet).
Elements of K and B are called primitive actions and primitive tests, respectively. KAT
terms over the alphabet K, B are defined with the following grammar:

t ≜ b ∈ B | p ∈ K | 1 | 0 | t1 + t2 | t1 · t2 | t∗ | tb,

where tb does not contain primitive actions. The free KAT over K, B, written KATK,B ,
consists of terms over K, B modulo provable KAT equivalences. The tests of the free KAT
are Boolean terms, i.e. terms formed by primitive tests and Boolean operations modulo
Boolean axioms. A similar construction applies to TopKAT, where an additional symbol ⊤
was added as the largest element in the theory; we denote the free TopKAT over K, B as
TopKATK,B . We sometimes omit the alphabets K and B when they are irrelevant or can
be inferred.

In the paper, we frequently consider terms modulo provable equalities, i.e. in the context
of its corresponding free model. For example, given t1, t2 ∈ KAT, we will say t1 = t2 when
they are provably equal using the theory of KAT. Although the free model seems trivial, it
leads to simpler and more modular proofs of some properties of algebraic theories, as we
will see in Section 3.

Other important models that we will use in this paper are language (Top)KATs and
relational (Top)KATs, which we review here. An atom (short for “atomic test”) over a test
alphabet B = {b1, b2, . . . , bn} is a sequence of the form

b̂1 · b̂2 · · · · · b̂n where b̂i ∈ {bi, b̄i}.

We denote atoms as α, β, γ, . . . and the set of all atoms as At.
A guarded string (or guarded word) over K, B is an alternation between atoms and

primitive actions that starts and ends in atoms:

α0p1α1 · · · pnαn where pi ∈ K, αi ∈ At;

where each action is “guarded” by an atom. A guarded string is similar to a program trace,
where each program state is denoted by an atom; and primitive actions will cause a transition
between program states. We denote the set of all guarded strings over alphabet K, B as
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GSK,B , and we will omit the alphabet K, B when it is irrelevant or can be inferred from
context. The notation αs denotes a guarded string starting with atom α with the rest of
the string s; similarly, sα denotes a guarded string that ends with atom α with rest of the
string being s.

▶ Definition 2 (Language/trace KAT [24]). The language KAT (also called “trace KAT”)
over an alphabet K, B is denoted as GK,B, or simply G if no confusion can arise.

The elements are sets of guarded strings (called guarded languages), and the tests are
sets of atoms. The additive identity 0 is the empty set, and the multiplicative identity 1
is the set of all the atoms At. The addition operator is set union, and the multiplication
operator is defined as follows:

S1 ⋄ S2 ≜ {s1αs2 | s1α ∈ S1, αs2 ∈ S2}.

The star operation is defined non-deterministically iterating the multiplication operator:

S∗ ≜
⋃
i∈N

Si where S0 = At, Sk+1 = S ⋄ Sk.

Another useful type of KAT are relational ones, where each element is a relation R ⊆
X × X over a fixed set X. In applications, the set X typically represents the set of all
possible program states, and each relation R represents a program by relating each possible
input to the corresponding output.

▶ Definition 3 (Relational KAT). A relational KAT is a KAT R consists of relations over
a fixed set X (though R need not contain every relation over X), and it is closed under the
following operations. The tests are all the relations that are subsets of the identity relation.
The additive identity 0 is the empty set, and the multiplicative identity is the identity relation:

1 ≜ {(x, x) | x ∈ X}.

The addition operator is set union, and the multiplication operation is relational composition:

R1; R2 = {(x, z) | ∃y ∈ X, (x, y) ∈ R1, (y, z) ∈ R2}.

Finally, the star operation is defined as:

R∗ ≜
⋃
i∈N

Ri where R0 = 1, Rk+1 = R; Rk.

We denote the class of all relational KATs as REL.

TopKAT extends the theory of KAT with the largest element ⊤, i.e. ⊤ ≥ p for all ele-
ments p. The language TopKAT over an alphabet K, B has the same carrier and operations
as GK⊤,B , where K⊤ is the set K joined with a new primitive action ⊤; and the largest
element is the full language GSK⊤,B .

The relational TopKAT is a relational KAT that contains the complete relation:

⊤ ≜ {(x, y) | x, y ∈ X};

we denote the set of all relational TopKATs as TopREL. It is known that there are equations
that are valid in relational TopKAT, but are not derivable by the axioms of TopKAT [41];
however, by adding the axiom p⊤p ≥ p, the theory becomes complete over relational Top-
KATs [34, 35]. In this paper, instead of working with a more complex theory, we will show
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that TopKAT without any additional axiom already suffices for the purpose of encoding
domain comparisons. Indeed, TopKAT is complete with respect to domain comparison
inequalities, which can be used to encode both incorrectness logic and Hoare logic.

In this paper, we will use dom and cod to denote the conventional (co)domain operators
on relations, namely, for any relation R:

dom(R) ≜ {x | ∃y, (x, y) ∈ R} cod(R) ≜ {y | ∃x, (x, y ∈ R)}.

To demonstrate how TopKAT models (co)domain comparisons, we take any relational Top-
KAT R and two relations R1, R2 ∈ R, and we denote the complete relation as ⊤:

▶ Lemma 4 (TopKAT encodes (co)domain comparison).

R1⊤ ⊇ R2⊤ ⇐⇒ dom(R1) ⊇ dom(R2) ⊤R1 ⊇ ⊤R2 ⇐⇒ cod(R1) ⊇ cod(R2)

If we regard R1 and R2 as the input output relation of two programs, which is typically
encoded by KAT terms, we can see that R1⊤ ⊇ R2⊤ reflects that the domain of R1 is
larger than the domain of R2; and similarly for the inequality ⊤R1 ⊇ ⊤R2. Thus, given
two KAT terms t1, t2 ∈ KATK,B , we call inequalities like t1⊤ ≥ t2⊤ domain comparison
inequalities, and ⊤t1 ≥ ⊤t2 codomain comparison inequalities. Notice that the term ⊤t1 is
a shorthand for ⊤ · i(t1), where i is the inclusion function KATK,B ↪→ TopKATK,B . In the
rest of the paper, we will sometimes leave this inclusion function implicit. These two forms
of inequalities will be the focus of our completeness results in Section 4.

We also know another class of TopKATs named general relational TopKATs, which is
denoted as TopGREL. The top element of general relational TopKAT is not necessarily
the complete relation, but the largest relation in the model. All equations in the general
relational TopKAT can be derived using the theory of TopKAT.

However, the completeness of TopGREL came at the cost of expressive power: every
predicate that is expressible using general relational TopKAT is already expressible using
relational KAT [41], so the extension with top, in the case of general relational TopKAT,
does not grant any extra expressive power. In Theorem 13, we show that this result is a
simple corollary of our new reduction result.

We are also interested in maps between models: A KAT homomorphism f is a map
between two KATs K and K′ s.t. it preserves the sorts and operations: given a test b in
K then f(b) is a test in K′; and all the KAT operations (complement, identities, addition,
multiplication, and star) are preserved:

f : K → K′

f(b̄) = f(b)
f(1) = 1
f(0) = 0

f(p + q) = f(p) + f(q)
f(p · q) = f(p) · f(q)

f(p∗) = f(p)∗.

Similarly, a TopKAT homomorphism is a KAT homomorphism that preserves the largest
element.
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2.2 Interpretation, Completeness, and Injectivity
Consider a KAT equation such as p · b · b̄ = 0. To determine its validity in a particular KAT
K, we need to assign meaning to it by interpreting each primitive as an element in K; that
is, by defining a map Î of type K + B → K. Such a map Î : K + B → K induces a unique
KAT homomorphism I : KATK,B → K inductively defined on the term as follows:

I(p) ≜ Î(p) where p ∈ K + B

I(tb) ≜ I(tb) tb does not contain primitive actions
I(t1 + t2) ≜ I(t1) + I(t2)
I(t1 · t2) ≜ I(t1) · I(t2)

I(t∗) ≜ I(t)∗

(1)

In fact, every KAT homomorphism from a free model arises this way: there is a bijection
between functions of type K + B → K and KAT homomorphisms of type KATK,B → K, for
any KAT K. Because the homomorphism I and the function Î are equivalent, we will refer
to them interchangeably as KAT interpretations and denote both of them as I.

The above result enables us to define a homomorphism from the free KAT just by defining
its action on the primitives; saving us time to check the equations that a homomorphism
must satisfy. It also allows us to prove that two interpretations are equal by arguing that
they map the primitives to equal values.

Given a KAT K, and two terms t1, t2 ∈ KATK,B we say that K |= t1 = t2 if

∀I : KATK,B → K, I(t1) = I(t2).

In particular, for two terms in the free model t1, t2 ∈ KATK,B , KATK,B |= t1 = t2 is
equivalent to t1 = t2. For a collection of models K, we say that K |= t1 = t2 if for all K ∈ K,
K |= t1 = t2. For example, REL |= t1 = t2 means that t1 = t2 is valid in all relational KATs.
All the above notations and terminologies can be similarly extended to TopKAT.

Theories like KAT and TopKAT are designed to model practical programs, so it is
important to know if they can model all the desirable equations between programs. If the
theory of KAT can derive all the equalities for a particular interpretation I, namely:

KATK,B |= t1 = t2 ⇐⇒ I(t1) = I(t2),

we say that the theory of KAT is complete with respect to I. Recall that KATK,B |= t1 = t2
is equivalent to t1 = t2; thus, by definition, an interpretation I is complete if and only if it
is injective. One of such interpretation is the guarded string interpretation G : KATK,B →
GK,B [24], defined by lifting the following action on the primitives:

G(b) = {α | b appears positively in α}, G(p) = {αpβ | α, β ∈ At}.

In several previous works, the term “free model” refers to the range (set of reachable
elements) of a complete interpretation. Since a complete interpretation is an injective ho-
momorphism, such interpretation induces an isomorphism on its range, thus our definition
of free model is equivalent to these definitions.

Many previous proofs can also be explained by seeing complete interpretations as inject-
ive homomorphisms: the proof for completeness of relational KATs constructs an injective
homomorphism h from a language KAT into a relational KAT [24]. Since both G and h
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are injective homomorphisms, h ◦ G is also an injective homomorphism, hence a complete
interpretation. Since h ◦ G is a relational interpretation:

KATK,B |= t1 = t2 =⇒ REL |= t1 = t2 =⇒ h ◦ G(t1) = h ◦ G(t2);

then the completeness of h ◦ G implies (h ◦ G)(t1) = (h ◦ G)(t2) ⇐⇒ KATK,B |= t1 = t2.
Hence,

KATK,B |= t1 = t2 ⇐⇒ REL |= t1 = t2,

i.e. the theory of KAT is complete with respect to relational KAT.
Besides using composition of injective homomorphisms, another technique commonly

used to prove injectivity is to construct a left inverse: if a (Top)KAT homomorphism f :
K → K′ has a left inverse homomorphism g : K′ → K i.e. g ◦ f = idK, then f is injective.
Notice that g does not need to be a homomorphism for f to be injective, however, in the
case where f is an interpretation, g being a homomorphism makes the equality g ◦ f = idK
easier to check. Because both g ◦ f and idK are all interpretations, they are equal if and
only if they have the same action on all the primitives.

Finally, we provide a shorthand for domain reasoning. For two terms t1, t2 ∈ KAT, we
write

REL |= dom(t1) ≥ dom(t2),

when dom(I(t1)) ⊇ dom(I(t1)) for all relational KAT interpretations I; and similarly for
relational TopKAT and general relational TopKAT. Then Lemma 4 implies the following:

▶ Lemma 5. For two KAT terms t1, t2 ∈ KATK,B:

TopREL |= t1⊤ ≥ t2⊤ ⇐⇒ REL |= dom(t1) ≥ dom(t2)
TopREL |= ⊤t1 ≥ ⊤t2 ⇐⇒ REL |= cod(t1) ≥ cod(t2)

3 Reduction, A New Perspective

Our goal in this section is to construct a complete interpretation for TopKAT, by reducing
its theory to that of plain KAT. In other words, any equation between two TopKAT terms is
logically equivalent to another equation between a pair of corresponding KAT terms. While
this result is not new [41, 42, 34], we present a more streamlined proof that hinges on
the universal properties of free KATs and TopKATs, without relying explicitly on language
models. Similar to previous works, we obtain the decidability of the equational theory of
TopKAT as a corollary of reduction. However, because of the new notion of reduction,
our decidability result no longer depends on the completeness of the language TopKAT.
Moreover, our technique helps us to construct complete models and interpretations simply
by computation, as well as simplifying proofs of other results about TopKAT.

3.1 Reduction on free models
We first note that any free KAT over an alphabet K, B is also a TopKAT, where the largest
element is (

∑
K)∗. This fact can be seen by straightforward induction.

▶ Lemma 6. Every free KAT over alphabet K, B forms a TopKAT.
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Proof. Since KATK,B is a KAT, we only need to show the term (
∑

K)∗ is the largest element
of KATK,B , i.e.

(
∑

K)∗ ≥ t, ∀t ∈ KATK,B .

The above fact can be shown by induction on t; some algebraic manipulations below use
facts in Lemma 1:

(
∑

K)∗ ≥ 1 (by unfolding rule), thus (
∑

K)∗ is larger than 0, 1 and every Boolean term.
(
∑

K)∗ is larger than
∑

K, which is larger than every primitive action.
Given two terms t1 and t2, assume (

∑
K)∗ is larger than both. Because (

∑
K)∗ =

(
∑

K)∗ + (
∑

K)∗ and addition preserves order,

(
∑

K)∗ = (
∑

K)∗ + (
∑

K)∗ ≥ t1 + t2

Given two terms t1 and t2, assume (
∑

K)∗ is larger than both. Because (
∑

K)∗ =
(
∑

K)∗ · (
∑

K)∗ and multiplication preserves order,

(
∑

K)∗ = (
∑

K)∗ · (
∑

K)∗ ≥ t1 · t2.

Given a term t, if (
∑

K)∗ ≥ t, then (
∑

K)∗ ≥ t∗. Since (
∑

K)∗ = ((
∑

K)∗)∗ and star
preserves order:

(
∑

K)∗ = ((
∑

K)∗)∗ ≥ t∗. ◀

Since every free KAT is a TopKAT, every KAT interpretation I : KAT → K induces a
sub-KAT Im(I) ⊆ K, and this sub-KAT happens to be a TopKAT. Specifically, the image
of (

∑
K)∗ in K is the largest element of Im(I), and the restricted I : KAT → Im(I) is a

TopKAT homomorphism.
This gives us a powerful tool to construct complete TopKAT interpretations. Since we

already know that the KAT interpretations G : KAT → G and h ◦ G : KAT → Im(h) are
injective TopKAT homomorphisms, we can construct complete TopKAT interpretations by
composition, if we can construct an injective TopKAT interpretation r of type TopKATK,B →
KATK⊤,B :

TopKATK,B
r−→ KATK⊤,B

G−→ GK⊤,B , TopKATK,B
r−→ KATK⊤,B

G−→ GK⊤,B
h−→ Im(h).

In fact, such an injective homomorphism can be obtained by lifting the embedding map
K + B ↪→ KATK⊤,B :

r : K + B → KATK⊤,B

r(p) ≜ p.

This homomorphism coincides with the reduction maps of the same name in previous
works [41, 35]. More concretely, we can picture r as simply replacing the symbol ⊤ in
a TopKAT term with (

∑
K⊤)∗, the largest element in KATK⊤,B .

We will show that r is injective by constructing a left inverse for it. In fact, the left
inverse [−]⊤ simply interprets the ⊤ primitive in KATK⊤,B as the largest element.

▶ Lemma 7. The map [−]⊤ : KATK⊤,B → TopKATK,B, where each term is mapped to its
corresponding equivalence class, is defined by lifting the following action on the primitives:

[p]⊤ ≜ p if p ∈ K + B

[⊤]⊤ ≜ ⊤.

The map [−]⊤ is a TopKAT homomorphism.
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Proof. Because this map defined by lifting on the primitives, it is automatically a KAT
homomorphism. All we need to show is that [−]⊤ preserves the top element, that is
[(

∑
K⊤)∗]⊤ = (

∑
K⊤)∗ is the largest element in TopKATK,B .

By construction of TopKATK,B , ⊤ is the largest element in TopKATK,B . Thus, to prove
that (

∑
K⊤)∗ is also the largest element in TopKATK,B , it suffices to prove (

∑
K⊤)∗ ≥ ⊤:

(
∑

K⊤)∗ ≥
∑

K⊤ = ⊤ +
∑

K ≥ ⊤. ◀

▶ Theorem 8 (Reduction). [−]⊤ is the right inverse of r: [−]⊤ ◦ r = idTopKATK,B
. More

explicitly for all t ∈ TopKATK,B:

TopKATK,B |= [r(t)]⊤ = t.

Proof. Since [−]⊤◦r : TopKATK,B → TopKATK,B is a TopKAT interpretation, the action on
the primitives uniquely determines the interpretation: because both r and [−]⊤ are identity
on the primitives, therefore [−]⊤ ◦ r is the identity interpretation on TopKATK,B . ◀

The above theorem matches one of the soundness condition of reductions in previous
works [41, 24, 33], which was typically proven by a monolithic induction on the structure
of terms. Our approach, on the other hand, relies on establishing fine-grained algebraic
properties, like Lemmas 6 and 7; then the theorem follows simply by computing the action
of [−]⊤ ◦ r on primitives.

Since r has a right inverse, it is indeed the injective interpretation we desired, and it is
also a complete interpretation:

TopKATK,B |= t1 = t2 ⇐⇒ r(t1) = r(t2),

With the completeness of r, we can already show the complexity of TopKAT. The com-
plexity results echos previous proofs [41, 35], but we are able to obtain this result without
completeness of TopKAT language interpretation, which is essential in previous proofs.

▶ Corollary 9 (Complexity). Given two terms t1, t2 ∈ TopKATK,B, deciding whether these
two terms are equal is PSPACE-complete.

Proof. Deciding KAT equality is a sub-problem of deciding TopKAT equality, and KAT
equality is PSPACE-hard [6]; therefore TopKAT equality is PSPACE-hard.

To decide the equality of t1, t2, we first remove all the redundant primitives that do not
appear in t1, t2 from the alphabet K, B. Then we compute r(t1) and r(t2), each taking
polynomial space (of |t1| + |t2|) to store; and we use the standard algorithm [6] to decide
whether r(t1) = r(t2) in KATK⊤,B , this will also take polynomial space. Hence, the decision
procedure for TopKAT equality in PSPACE.

Thus deciding TopKAT equality is PSPACE-complete. ◀

3.2 Computing the complete interpretations
Designing complete interpretations and models was not always easy. In fact, in previous
works [42], the authors made a mistake in the definition of language TopKAT, which was
fixed later [41] by suggestion of Pous et al. [34]. However, with the results in Section 3.1, we
can construct the complete interpretation just by composition, and compute the complete
model by computing the range of the complete interpretation.
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We already know that there are two complete interpretations of TopKAT defined as
follows:

TopKATK,B
r−→ KATK⊤,B

G−→ GK⊤,B , TopKATK,B
r−→ KATK⊤,B

G−→ GK⊤,B
h−→ Im(h),

with a complete language model GK⊤,B , and a complete model consisting of relations Im(h).
The operations in these models can be recovered by computing these maps. For example,

the multiplication operation in the language TopKAT can be computed as follows:

G ◦ r(t1 · t2) = G(r(t1) · r(t2)) = G(r(t1)) ⋄ G(r(t2)).

Since r does not change the multiplication operation, the multiplication in the language
TopKAT is the same as in language KAT. In fact, as r does not change any operation in
KAT, most operations in language TopKAT are the same as language KAT. Thus, we only
need to compute the top element in language TopKAT.

The top element in language TopKAT can be computed in the same fashion:

G ◦ r(⊤) = G((
∑

K⊤)∗) = GSK⊤,B ,

i.e. the top element is just the complete language.

▶ Corollary 10. The language TopKAT inherits all the operations in language KAT, except
the top element, which is defined as the full language. And such models are complete with
G ◦ r as a complete interpretation.

In the same way, we know that complete models consisting of relations (a.k.a. general
relational TopKAT) will have the same operations as relational KATs. However, in this case
the characterization of the computed top: h ◦ G ◦ r(⊤) is not as simple as the full language,
but we know it is the largest relation in the range of h ◦ G ◦ r:

▶ Corollary 11. The general relational TopKAT inherits all the operations in relational
KAT, except the top element is the largest relation. And such models are complete with
h ◦ G ◦ r as a complete interpretation.

Finally, to investigate whether we can use general relational TopKAT to encode incorrect-
ness logic, we will provide a short proof that general relational TopKATs are as expressive as
relational KATs [41]; that is, every property on relations that can be encoded using general
relational TopKAT, is already encodable in the relational KAT. Hence, adding a top element
does not give extra expressive power in general relational TopKAT.

The original proof [41, Lemma 2] encodes every TopKAT term using a KAT term, and
then uses two pages to prove the soundness of this encoding. Here we show the aforemen-
tioned encoding is simply the reduction r.

▶ Definition 12. Given two terms t1, t2 ∈ TopKAT, and n primitives p1, p2, . . . , pn ∈ K +B,
we say that an n-ary predicate P is expressible by equation t1 = t2 for a class of TopKATs
K when for all interpretations I into TopKATs in K, the following equivalence holds:

I(t1) = I(t2) ⇐⇒ P (I(p1), I(p2), . . . , I(pn)).

▶ Theorem 13 (Expressiveness of general relational TopKAT). Given an alphabet K, B, an n-
ary predicate P on relations, the predicate P over primitives p1, p2, . . . , pn ∈ K is expressible
in general relational TopKAT if and only if it is expressible in relational KAT.
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Proof. A predicate expressible in relational KAT is also expressible in general relational
TopKAT using the same pair of terms, we only need to show the converse. Assume a
predicate P is expressible in general relational TopKAT, then there exists two TopKAT
terms t1, t2 ∈ TopKATK,B s.t. for all general relational TopKAT interpretations I⊤:

I⊤(t1) = I⊤(t2) ⇐⇒ P (I⊤(p1), I⊤(p2), . . . , I⊤(pn));

We take an arbitrary relational KAT interpretation I from KATK⊤,B . Notice Im(I), the
range of I, is a relational KAT with the largest element I((

∑
K)∗), i.e. Im(I) is a general

relational TopKAT. Because I is a KAT interpretation, it preserves all the KAT operations
and the largest element. Hence, I is a TopKAT homomorphism from KATK⊤,B to Im(I).

Then we can construct I ◦ r : TopKATK,B → Im(I), a general relational interpretation:

I(r(t1)) = I(r(t2)) ⇐⇒ I ◦ r(t1) = I ◦ r(t2)
⇐⇒ P (I ◦ r(p1), . . . , I ◦ r(pn)) I ◦ r is a TopGREL interpretation
⇐⇒ P (I(p1), . . . , I(pn)) r(pi) = pi

Thus the two KAT terms r(t1), r(t2) ∈ KATK⊤,B also can express the predicate P . ◀

Since the image of I is not necessarily a relational TopKAT, where the top element is
interpreted as the complete relation, the above trick does not work for relational TopKAT.
It is also known that relational TopKAT is strictly more expressive than general relational
TopKAT, since relational TopKAT can encode incorrectness logic, where general relational
TopKAT cannot [41].

4 (Co)domain Completeness

In general, TopKAT is not complete over relational models, which are crucial for applications
in program logics [41]. However, it was later showed that we can obtain a complete theory
for relational models by simply adding the axiom p⊤p ≥ p to the theory of TopKAT [35].

In this paper, we take a different approach than Pous et al. [35]: instead of extending the
TopKAT framework, we will restrict the completeness result. In particular, the encoding of
incorrectness logic and Hoare Logic in TopKAT [41] relies only on the ability of TopKAT
to compare the domain and codomain of two relations. This raises the question of whether
TopKAT suffices for proving such properties; that is, whether the following completeness
results hold: for t1, t2 ∈ KATK,B (i.e. ⊤ does not appear in t1 and t2)

REL |= cod(t1) ≥ cod(t2) ⇐⇒ TopKAT |= ⊤t1 ≥ ⊤t2 codomain completeness
REL |= dom(t1) ≥ dom(t2) ⇐⇒ TopKAT |= t1⊤ ≥ t2⊤ domain complete

In this section, we prove that these equivalences hold, even without the additional axiom.
However, they do not hold if we allow terms that contain top. For example, let t1 ≜ p⊤p,
and t2 ≜ p. Since p⊤p ≥ p holds in relational TopKAT, thus dom(p⊤p) ≥ dom(p). However,
p⊤p⊤ ≥ p⊤ is not provable in TopKAT, because the inequality is not valid with the language
interpretation. The incompleteness of codomain comparison can also be shown using the
same example.

4.1 Codomain completeness
The core insight to prove the domain completeness result is to construct a specific rela-
tional interpretation h ◦ i ◦ G, where its codomain is equivalent to the complete TopKAT
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interpretation G ◦ r:

cod(h ◦ i ◦ G(t)) = G ◦ r(⊤t),

where i is the natural inclusion homomorphism i : GK,B ↪→ GK⊤,B , that maps every language
to itself; and h is the classical embedding of language KAT into relational KAT [24], which
we will recall as follows:

h(L) = {(s, s ⋄ s′) | s ∈ GS, s′ ∈ L}.

Although i will not change the outcome of G, it will add a new primitive action ⊤ to the
alphabet, hence changing the outcome of h. Such addition will equate the codomain of
h ◦ i ◦ G(t) with the complete TopKAT interpretation G ◦ r of ⊤t. The proof of this equality
is by simply computing both sides of the equation.

▶ Lemma 14. For any term t ∈ KATK,B,

cod(h ◦ i ◦ G(t)) = G ◦ r(⊤t).

Proof. We explicitly write out the domain and codomain of the functions in the relational
KAT interpretation h ◦ i ◦ G for the ease of the reader:

KATK,B
G−→ GK,B

i−→ GK⊤,B
h−→ P(GK⊤,B × GK⊤,B).

In this case, h is a KAT homomorphism from GK⊤,B :

h(S) = {(s, s ⋄ s1) | s ∈ GSK⊤,B , s1 ∈ S}.

Since the reduction r preserves terms without ⊤, let t ∈ KATK,B (i.e. t does not contain
⊤),

G ◦ r(⊤) = GSK⊤,B G ◦ r(t) = G(t).

Therefore, for any term t ∈ KATK,B

cod(h ◦ i ◦ G(t)) = {sαs1 | sα ∈ GSK⊤,B , αs1 ∈ G(t)}
= GSK⊤,B ⋄ G(t)
= (G ◦ r(⊤)) ⋄ (G ◦ r(t))
= G ◦ r(⊤t). ◀

Lemma 14 established a connection between the codomain operator and the language
interpretation of TopKAT. Then by completeness of the language interpretation, we will
obtain the completeness of codomain comparison.

▶ Theorem 15 (Codomain completeness). Given two terms t1, t2 ∈ KATK,B (i.e. terms
without ⊤), then codomain comparison is complete:

REL |= cod(t1) ≥ cod(t2) ⇐⇒ TopKAT |= ⊤t1 ≥ ⊤t2.

Proof. Given the natural inclusion homomorphism: i : KATK,B → KATK⊤,B , we show that
the following are equivalent:
1. REL |= cod(t1) ≥ cod(t2).
2. cod(h ◦ i ◦ G(t1)) ≥ cod(h ◦ i ◦ G(t2)).
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3. TopKAT |= ⊤t1 ≥ ⊤t2.

We first show that 1 =⇒ 2, by definition, REL |= cod(t1) ≥ cod(t2) implies cod(I(t1)) ≥
cod(I(t2)) for all relational KAT interpretations I. Because h ◦ i ◦ G is a relational KAT
interpretation, so 1 =⇒ 2.

We show 2 =⇒ 3, which uses the equality discussed above, and proved in Lemma 14:

cod(h ◦ i ◦ G(t1)) ≥ cod(h ◦ i ◦ G(t2))
⇐⇒ G ◦ r(⊤t1) ≥ G ◦ r(⊤t2) Lemma 14
⇐⇒ TopKAT |= ⊤t1 ≥ ⊤t2. Completeness of G ◦ r

Finally, we show 3 =⇒ 1, by Lemma 5:

TopKAT |= ⊤t1 ≥ ⊤t2 =⇒ TopREL |= ⊤t1 ≥ ⊤t2 =⇒ REL |= cod(t1) ≥ cod(t2). ◀

4.2 Domain completeness

The domain completeness result can be derived from codomain completeness by observing
properties of opposite TopKAT and the converse operator (−)∨, both of which we will recall
below.

For every TopKAT K, we can construct the opposite TopKAT Kop by reversing the
multiplication operation, keeping the sorts and other operations unchanged:

p ·̂ q ≜ q · p,

where ·̂ is multiplication in Kop and · is multiplication in K. By definition, (−)op is a
involution, that is (Kop)op = K. Furthermore, (−)op is a TopKAT functor, this means all
TopKAT homomorphisms h : K → K′ can be lifted to a TopKAT homomorphism on the
opposite TopKAT hop : Kop → K′op. The lifting hop is point-wise equal to h:

∀p ∈ K, hop(p) ≜ h(p).

The fact that hop is a TopKAT homomorphism can be proven by unfolding the definition,
and the functor laws are satisfied because hop is point-wise equal to h.

There are two important homomorphisms involving opposite TopKAT:

(−)∨ : (X × X)op → (X × X) op : TopKATK,B → TopKATop
K,B

(R)∨ = {(b, a) | (a, b) ∈ R}, ∀p ∈ K + B, op(p) = p.

The (−)∨ is the relational converse operator, the rules of homomorphism can simply be
proven by unfolding of definitions. The crucial property of (−)∨ is that it flips the domain
and codomain:

dom(R∨) = cod(R). (2)

Hence, allowing us to flip the result about codomains and apply it to domains.
op is a homomorphism from free TopKAT to its opposite TopKAT; it can be defined

by lifting the embedding function K + B ↪→ TopKATK,B on primitives. Intuitively, given a
term t ∈ TopKAT, op(t) will flip all the multiplications in t recursively.
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▶ Lemma 16. the left inverse of op can be obtained by lifting itself through the (−)op functor,

opop : TopKATop → (TopKATop)op = TopKAT.

Recall opop is pointwise equal to op, thus opop ◦ op : TopKAT → TopKAT is the identity
interpretation because it preserves all the primitives. Thus, op has a left inverse, hence it is
injective:

t1 = t2 ⇐⇒ op(t1) = op(t2).

Finally, since the elements in TopKATop are the same as TopKAT, which are TopKAT
terms modulo provable TopKAT equalities, theorems about TopKAT terms are also true for
elements in TopKATop. In particular, codomain completeness (Theorem 15) also holds in
TopKATop: for all terms t1, t2 ∈ TopKAT,

⊤ · op(t1) ≥ ⊤ · op(t2) ⇐⇒ REL |= cod(op(t1)) = cod(op(t2)). (3)

▶ Theorem 17 (Domain Completeness). For all terms t1, t2 ∈ KAT, the following equivalence
hold:

REL |= dom(t1) = dom(t2) ⇐⇒ TopKAT |= t1⊤ ≥ t2⊤.

Proof. ⇐= direction is trivial by Lemma 5; and =⇒ direction can be derived as follows:
let I be some relational interpretation, then Iop(op(−))∨ is also a relational interpretation:

Iop(op(−))∨ : TopKAT op−→ TopKATop Iop

−−→ (X × X)op (−)∨

−−−→ (X × X).

Thus, we let I range over all relational interpretations:

REL |= dom(t1) ⊇ dom(t2)
=⇒ ∀I, dom(I(t1)) ⊇ dom(I(t2))
=⇒ ∀I, dom(Iop(op(t1))∨) ⊇ dom(Iop(op(t2))∨) specialize I as Iop(op(−))∨

=⇒ ∀I, cod(Iop(op(t1))) ⊇ cod(Iop(op(t1))) Equation (2)
=⇒ ∀I, cod(I(op(t1))) ⊇ cod(I(op(t1))) Iop is pointwise equal to I

=⇒ ⊤ · op(t1) ≥ ⊤ · op(t2) Equivalence (3)
=⇒ op(⊤ · t1) ≥ op(⊤ · t2) Definition of op
=⇒ t1⊤ ≥ t2⊤ Lemma 16

◀

▶ Remark 18. Alternatively, Theorem 17 can also be proven by constructing the following
h′:

h′ : GK,B → P(GK,B × GK,B)
h′(S1) ≜ {(s1αs, αs) | s1α ∈ S1, αs ∈ GSK,B}.

Then the proof would mirror that of Theorem 15, replacing h with h′ and replacing cod with
dom. However, the proof of Theorem 17 reveals more properties of maps like (−)∨ and op,
thus we choose to present the current proof of Theorem 17 instead of the alternative proof.
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5 Related Works

Extensions of Kleene algebra and reduction: soon after the completeness of Kleene
algebra was proven [18], it was realized that adding an embedded Boolean algebra can help
reasoning about control structures, such system is referred to as Kleene algebra with tests
(KAT) [24, 6]. Later KAT was further extended to reason about failure [26], indicator
variables [13], domain [9], networks [1], and relational reasoning [3]. Kleene algebra has
also been extended to reason about concurrency, as concurrent Kleene algebra [14, 17] and
concurrent Kleene algebra with observations [16]. Many of these extensions can be seen as
Kleene algebra with extra hypotheses [5, 11]. Although many hypotheses make the theory
undecidable [19, 22, 11], many useful hypotheses can be eliminated via reduction [33]. Thus,
our new perspective on reduction could potentially lead to streamlining of various previous
proofs, and more general proofs of completeness results.

Top element: Tarski’s relational algebra [40] contains the addition, mulitiplication, and
identity operation of KA; in addition, relational algebra also include a top element. Hence
attempts to incorporat Kleene star into relational algebra effectively create a super theory
of TopKAT. Unfortuantly, several attempts at these algebras turn out to be undecidable
because of the presence of intersection and converse operations [2, 32]. With the intersection
and converse operators removed, top element is proven to be individually useful in Kleene
algebra: for example, Mamouras [26] uses the top element to forget program states, and
Antonopoulos et al. [3] uses top to design forward simulation rules for relational verification,
and claim that relational incorrectness logic [29] can be encoded using BiKAT extended
with top. The completeness and decidability of TopKAT was first studied by Zhang et
al. [41], and concluded that TopKAT is not complete with relational models. Later, Pous et
al. [34, 35] showed that both TopKA and TopKAT is complete with relational model with
one additional axiom: p⊤p ≥ p, and the theory remains PSPACE-complete, like KAT and
TopKAT. In this paper, we showed that TopKAT without the additional axiom is complete
for a specific form of inequalities, namely when top only appears in the front or the end of
the term. Although this form of inequalities seem restrictive, they are enough to encode
both Hoare and incorrectness logic [41].

Domain in KAT: The study of axiomatizing (co)domain in KAT has a long and rich
history. Domain semiring [10] and Kleene algebra with domain [9] were two popular yet
different axiomatizations of (co)domain in Kleene algebra with tests. These two axiomit-
izations turn out to coincide in a large class of semirings [12]. Various applications for
domain in KAT have been discovered, including modeling program correctness, predicate
transformers, temporal logics, termination analysis, and many more [8]. Many of these
applications can even be efficiently automated [15]. However, although the free relational
model of these theories has been characterized [28], the search for general complete inter-
pretation remains unfruitful. The complexity of these theories was recently shown to be
EXPTIME-complete [37], a worse complexity class than PSPACE-complete for TopKAT.

6 Conclusion And Open Problems

In this paper, we exploit the homomorphic structure of reduction to simplify the proof of
various previous results [41]. We have also showed that TopKAT is complete with respect
to (co)domain comparison in the relational models, which lays a solid foundation for the use
of TopKAT in (co)domain reasoning.

However, there are still several interesting unsolved problems about TopKAT. Most of
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the incorrectness logic rules are written using hypotheses, for example, the sequencing rule:

[a] p [b] [b] q [c]
[a] p · q [c]

corresponds to the implication ⊤ap ≤ ⊤b ∧ ⊤bp ≤ ⊤c =⇒ ⊤apq ≤ ⊤c. Although each
individual inequality in the implication fits the desired form ⊤t1 ≥ ⊤t2. it is unclear whether
implications of the form

⊤t11 ≤ ⊤t12 ∧ ⊤t21 ≤ ⊤t22 ∧ · · · ∧ ⊤tn1 ≤ ⊤tn2 =⇒ ⊤t1 ≤ ⊤t2

are complete with relational TopKAT or decidable.
Recently, there is an efficient fragment of KAT proposed, named Guarded Kleene algebra

with tests [38] or GKAT. This fragment not only enjoys nearly-linear time equality checking,
but also soundly models probabilistic computations as well. It would be interesting to see
whether the completeness and decidability result of TopKAT can be extended to GKAT,
and whether the efficiency of GKAT will persist with the addition of top.
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