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Abstract

The advents of Artificial Intelligence (AI)-driven models marks a paradigm shift
in risk management strategies for meteorological hazards. This study specifically
employs tropical cyclones (TCs) as a focal example. We engineer a perturbation-
based method to produce ensemble forecasts using the advanced Pangu AI
weather model. Unlike traditional approaches that often generate fewer than 20
scenarios from Weather Research and Forecasting (WRF) simulations for one
event, our method facilitates the rapid nature of AI-driven model to create thou-
sands of scenarios. We offer open-source access to our model and evaluate its
effectiveness through retrospective case studies of significant TC events: Hurri-
cane Irma (2017), Typhoon Mangkhut (2018), and TC Debbie (2017), affecting
regions across North America, East Asia, and Australia. Our findings indicate
that the AI-generated ensemble forecasts align closely with the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) ensemble predictions up
to seven days prior to landfall. This approach could substantially enhance the
effectiveness of weather forecast-driven risk analysis and management, providing
unprecedented operational speed, user-friendliness, and global applicability.
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1 Introduction

The integration of AI in weather forecasting is transforming various sectors, espe-
cially in the management of risks associated with meteorological hazards [1, 2].
This paper focuses on risk management prior to tropical cyclones (TCs). Accurate
and timely forecasts are crucial for making critical decisions related to emergency
resource distribution, rescue operations, public alerts, and evacuation plans [3–7].
Earlier knowledge of TC trajectories allows for more effective preparations, such as
pre-allocating resources for power systems to expedite recovery post-TC, or issu-
ing evacuation orders with greater precision for residents to safely relocate [8–10].
Although numerical weather prediction (NWP) models such as the Weather Research
and Forecasting (WRF) model produce advanced and physically-based predictions
for future meteorological hazards, their substantial computational requirements often
limit the exploration of multiple scenarios. [11–13].

An ensemble forecast in NWP generates multiple predictions using varied ini-
tial conditions or model parameters to address the uncertainty inherent in weather
forecasting [14]. This technique enhances the reliability of forecasts, improves decision-
making for weather-sensitive activities, and helps manage risks associated with severe
weather by providing a range of possible outcomes. Despite its benefits, ensem-
ble forecasting requires extensive computational resources, as each forecast iteration
requires multiple model runs, leading to significant data process and storage needs,
and increased operational costs.

Our research introduces a perturbation-based approach for generating ensemble
weather forecasts for Pangu AI weather model [15]. The AI-driven model rapidly
produces thousands of unique ensemble scenarios with ease of use, without the need
of fine-tune with expert knowledge of meteorology, making it accessible to a broader
range of decision-makers [16, 17].By fine-tuning the extent of the perturbation, we
adjust the ensemble prediction based on the Pangu model to achieve an uncertainty
level comparable to that of the European Centre for Medium-Range Weather Forecasts
(ECMWF) model.

This study analyzes three historical TCs: hurricanes—Irma (2017), Typhoon
Mangkhut (2018), and TC Debbie (2017) — representing diverse contexts across three
continents. The comparative analysis with the ECMWF ensemble forecasts [18] shows
that our AI-generated predictions maintain similar accuracy and spatial patterns up
to a week before landfall.

We have made our code publicly available to enable the community to replicate
and expand upon our work. The code facilitates tasks such as dataset preparation,
weather forecasting, and wind field visualization, and can be directly executed using
Colab in a web browser-based environment.

We believe AI-driven weather forecasts unlock the potential for more compre-
hensive risk analyses, augmenting the capacity of disaster management agencies to
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mitigate TC impacts [19]. The global scope of our study demonstrates the model’s
adaptability and scalability, offering an applicable solution.

2 Summarizing Recent AI-driven weather forecast
models

In recent years, AI-driven weather forecast models have rapidly evolved. We summa-
rize several open-source AI-driven weather forecast models in Table 1. These models
are typically trained on the ECMWF reanalysis dataset (ERA5) [20], which offers a
resolution of 0.25◦ (on a 721 × 1440 lattice) and is globally recognized for effective
medium-range weather forecasting, with similar accuracy as current Integrated Fore-
cast System(IFS) models. ERA5 contains 137 variables across various pressure levels;
however, these AI-driven models often utilize only 10-40 selected variables for one
time step to forecast the same variables for the next time step (for a fixed time inter-
val, for example, one day). This approach enables flexible future projections through
auto-regression. The open-source models are efficiently packaged, allowing predictions
to be executed with a single line of code once the input data matrix is prepared.
AI-driven models typically lack randomness or ensemble projections for the future
due to the deterministic nature of neural network strictures, with some models based
on Convolutional neural networks (CNNs) and others on transformers. Consequently,
these models might not be directly suitable for risk management, as the determin-
istic outcome produced by an AI-driven model cannot be assumed to represent the
ground truth. In response, this paper explores a perturbation-based method to gener-
ate ensemble forecasts using these AI-driven weather forecast models, enhancing their
ability in risk management scenarios.

The primary advantage of AI models lies in their rapid inference time, which is the
time required for a machine learning model to simulate a weather step given initial
conditions on specific hardware. The main challenge in utilizing AI-driven weather
forecast models is their high demand for GPU memory, often exceeding the capacity
of consumer-grade GPUs like the 4090(24GB,$1,500-$2,000); typically, a V100 GPU
(32GB,$8,000-$10,000) is necessary for efficient inference. For instance, inferring the
Pangu model on a CPU takes over 7 minutes per step, whereas it takes less than one
second on an A100 GPU(40GB-80GB,$10,000-$20,000).

In this project, we provide open-source code (https://github.com/kelvinfkr/
Perturbation AI weather) hosted on the Colab platform, a cost-effective online Python
execution environment offering access to an A100 GPU for approximately $10(USD)
per 20 hours, as of April 2024. This $10 enables more than 72,000 days, or over 20
years, of weather simulation, making AI-driven model a highly economical tool for
risk analysis. The code is web-compilable, allowing users to interact with the model at
minimal cost. The necessary ERA5 data can be downloaded from the official website
or through a Google storage image integrated into our code, which supports down-
loading 10 GB of data in just 10 seconds. Although the full ERA5 dataset is extensive
(∼ 5PB), the data required to simulate one day’s weather is less than 10 GB, which
our code can manage efficiently.

3

https://github.com/kelvinfkr/Perturbation_AI_weather
https://github.com/kelvinfkr/Perturbation_AI_weather


Recent studies have begun to cross-compare AI-driven weather forecast models,
such as Weatherbench 2 [21] project which compares the prediction quality between
multiple AI-driven models. Although Pangu is a leading model as of 2023, it may
not be the most advanced in all respects. Users may select models based on specific
needs; for example, Pangu does not offer precipitation data, whereas GraphCast does.
Selection may also be based on computational efficiency — among these models, FuXi
requires the least computational resource; or on the GPU model available - for those
short for GPU resources, SphericalCNN might be preferable due to its lower GPU
memory usage.

This paper employs Pangu as an illustrative example; however, the framework is
generalizable to any AI-driven model.

Table 1 List of Recent Open Source AI-Driven Weather Forecast Models

Model/ Dataset Type
Initial con-
ditions

∆x Levels
Training
data

Training re-
sources

Inference
time

Pangu-Weather[15] Forecast ERA5 0.25◦ 13
ERA5 (1979-
2017)

16 days; 192
V100 GPUs

several sec-
onds; single
GPU

GraphCast[22] Forecast ERA5 0.25◦ 37
ERA5 (1979-
2019)

4 weeks; 32
TPU v4

∼ 1 minute;
single TPU

FuXi[23] Forecast ERA5 0.25◦ 13
ERA5 (1979-
2017)

∼ 8 days; 8
A100 GPUs

several seconds;
single GPU

SphericalCNN[24] Forecast ERA5 1.4 × 0.7◦ 7
ERA5 (1979-
2017)

4.5 days; 16
TPU v4

∼ 1 minute;
single TPU

FourCastNet[25] Forecast ERA5 0.25◦ 20
ERA5 (1979-
2017)

16 hours; 64
A100 GPUs

several seconds;
single GPU

3 Weather Forecast

In this paper, we highlight the Pangu AI model as an example to show the potential
of AI-driven models in pre-hazard risk management. We employed the Pangu model
with ERA5 reanalysis data to forecast surface wind fields of TCs seven days before
landfall, following the methodology outlined in the Pangu paper [15]. As illustrated
in Fig. 1, this AI-driven approach not only accurately captures the trajectories and
intensification processes of TCs but also exhibits an exceptional ability to obtain the
asymmetrical features of wind fields — a significant improvement over traditional wind
field models. Each simulation was completed within seconds, demonstrating the feasi-
bility of real-time ensemble forecasting. However, the model occasionally mispredicts
detailed landfall locations, such as forecasting Irma’s landfall on the eastern side of
Florida instead of the western side. This fact presents a critical challenge in pre-TC
risk management, where accurate landfall predictions are crucial for issuing effective
evacuation orders, and highlights the need to integrate ensemble methods into the
AI-driven model to enhance its reliability in managing such uncertainties.

4 Perturbation based Ensemble

In this study, we employed an engineered approach to generate ensemble weather
forecasts using the Pangu model. The ensembles were created through systematic
perturbation of the initial inputs into the Pangu model. The initial inputs have a

4



35°N

5°N
110°E 160°E

140°E 160°E

10°S

30°S

10°N

40°N

90°W 40°W

Irma 2017

Mangkhut 2018

Debbie 2017

Fig. 1 Comparative Weather Forecasts by Pangu 7 Days Before Landfall: Truth surface Wind speed
(ERA5 reanalysis [20]; upper panel) vs. Pangu’s predictions (lower panel) for a) Hurricane Irma
(2017), b) Typhoon Mangkhut (2018), and c) TC Debbie (2017).

structure consisting of 37 variables on each of the 721×1440 lattice points for a specific
time point. The output is the forecasted weather condition one day later, also with a
37× 721× 1440 structure. By introducing stochastic variations – specifically, shifting
each input variable by 0, 1, 2, ..., up to n hours from the ERA5 dataset – we achieved a
level of uncertainty quantification analogous to that in ECMWF’s ensemble forecasts.
Intuitively, and as demonstrated in the experiment, as the value of n increases, the
level of uncertainty in the model’s predictions also rises.

We tuned the parameter n and found that when n = 3, the uncertainty in the
Pangu ensemble matched that of current NWP models. The following analysis was
conducted with n = 3 as the perturbation level. This perturbation-based approach
may not only be useful to create ensemble, but could also be useful for benchmark-
ing different weather forecast models, as a robust model should maintain accuracy
against such perturbations [26]. While this perturbation approach is not strictly phys-
ical and cannot guarantee the prediction of a physically consistent environmental field
for future weather, it provides a straightforward method to demonstrate the potential
of AI-driven models to generate ensemble forecasts for meteorological hazards. In the
future, this simple perturbation method is likely to be replaced by more sophisticated
ensemble frameworks that offer greater physical accuracy.

As shown in Fig. 2, the perturbation-based ensembles consistently yield realistic
forecasts of the trajectory and intensity fluctuations of cyclones. For example, the
model accurately predicted the strengthening of Hurricane Irma under the influence
of the westerlies jet stream if it were to track eastward across the Gulf Coast. In
contrast, a westward trajectory would result in a weakening effect. This understanding
of meteorological dynamics confirms the Pangu model’s comparability with established
NWP models. Notably, in cases where NWP models perform well, such as Typhoon
Mangkhut, the Pangu model also shows good performance. Conversely, in situations
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with high uncertainty, such as TC Debbie, where NWPs cannot conclusively predict
outcomes, the Pangu model similarly reflects the high level of uncertainty.

More in-depth and numerically, we computed the projected trajectory uncertainty
between perturbation-based AI-driven ensemble and the ECMWF ensemble. For Irma
2017, the 7-day trajectory probability difference, quantified by the root mean square
error (RMSE), between Pangu and ECMWF within a 5◦ × 5◦ grid is 5.8%. The dif-
ferences are 2.7% and 13.9% for Mangkhut 2018 and Debbie 2017, respectively. These
results demonstrate the consistency in uncertainty levels and trajectory projections
between the proposed model and ECMWF ensembles. Furthermore, these results high-
light the strong potential of substituting ECMWF models with the proposed model
in risk management problems that require uncertain TC forecasts.

a)

b)

c)

Fig. 2 Comparison of Ensemble Weather Forecasts: TC trajectories under Pangu Perturbations (left
panel) vs. ECMWF Ensemble [18] (right panel) for a) Hurricane Irma (2017), b) Typhoon Mangkhut
(2018), and c) TC Debbie (2017).
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5 Potential Applications and Further Adjustment

In a traditional framework for pre-meteorological hazard risk management, as shown
in Fig. 3a, decision-makers first obtain a scenario tree from weather forecast agencies.
Typically, each scenario progresses directly to the end of the decision-making cycle
without branches. A new branch of simulation for a specific scenario is only initiated
when considered necessary by experts. Given the real-time requirements for pre-TC
risk management, the number of scenarios considered in decision-making is generally
fewer than 20.

Conversely, in a prospective AI-driven framework shown in Fig. 3b, decision-makers
can easily generate thousands of scenarios, each characterized by a Markovian rela-
tionship. Hence, modern optimization frameworks such as optimal control, Markovian
decision process, smart prediction and optimization, and reinforcement learning could
be introduced to enhance risk management. In contrast, in the traditional framework,
due to the large uncertainty in weather forecasts, fuzzy math-driven optimizations,
such as robust optimization, play more crucial roles.

Figure 3c compares the traditional WRF Model with an AI-driven weather model
across various key features relevant to meteorological applications. The WRF Model,
while highly accurate when properly configured, is notably slower due to its intensive
computational demands and requires significant expertise and manual effort for setup
and integration with other systems. Its limited scalability and inappropriateness for
real-time analysis hinder its use in emergency meteorological situations.

In contrast, the AI model has faster processing speeds as it exploits modern compu-
tational architectures and advances in parallel computing, making it ideal for real-time
or near-real-time analysis. Its setup is simpler, escaping the need for complex config-
urations, and it exhibits high scalability, capable of handling large volumes of data
efficiently. This model can select time points for scenario analysis flexibly, even at irreg-
ular intervals, without the cost constraints associated with the WRF Model. Moreover,
the AI Model’s ability to continuously learn and adapt enhances its predictive accu-
racy over time, allowing for more precise risk management under changing conditions.
It is also more user-friendly and easier to integrate with modern data systems and
software, making it more accessible to non-experts.

Therefore, it is foreseeable that AI-based weather forecasting, which is worth sig-
nificant attention, could transform the landscape and paradigm of pre-meteorological
hazard risk management.

6 Discussion and Conclusion

As an emerging technology, though performs well, the reliability of AI-driven weather
forecast models has not yet been thoroughly proven. To better understand their
dependability, these models should undergo further validation and testing.The signifi-
cant potential of these models underscores the necessity for ongoing research aimed at
evaluating their efficacy within comprehensive risk management frameworks. Future
advancements in AI weather modeling should prioritize the integration of a wider array
of risk factors, including precipitation, which is important due to its direct implications
for economic impact and flood potential.
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Fig. 3 Comparative Analysis of Meteorological Hazard Simulation Scenarios in Decision-Making:
WRF vs. AI Models. (a) Limited scenario simulation with WRF: Ensembles triggered by expert
judgement. (b) Extensive decision tree simulations using AI: Probabilistic and high-branching. (c)
Illustrative comparison between WRF model and AI-driven models.

Moreover, utilizing AI-driven weather forecasting tools enhances the timeliness
and accuracy of information, which is essential for organizing effective emergency
responses. This capability could significantly support public safety and optimize
resource allocation during large meteorological hazard events, thereby augmenting the
resilience of affected communities and infrastructures.

Acknowledgements

Kairui Feng thanks the support by National Natural Science Foundation of China
(Grant No. 62088101).

Cao Wang was supported by the Australian Government through the Australian
Research Council’s Discovery Early Career Researcher Award (DE240100207).

Wei Ma was supported by the Research Institute for Sustainable Urban Develop-
ment (RISUD) at the Hong Kong Polytechnic University (Project No. P0038288).

Declaration

We have no conflicts of interest to declare.

References

[1] Lagerquist, R., McGovern, A., Smith, T.: Machine learning for real-time predic-
tion of damaging straight-line convective wind. Weather and Forecasting 32(6),
2175–2193 (2017)

8



[2] Chen, X., Feng, K., Liu, N., Ni, B., Lu, Y., Tong, Z., Liu, Z.: Rainnet: A large-scale
imagery dataset and benchmark for spatial precipitation downscaling. Advances
in Neural Information Processing Systems 35, 9797–9812 (2022)

[3] Davidson, R.A., Lambert, K.B., Faust, K.M., Weinstein, N.N.: Hurricane evacu-
ation decision support: Models and observations from hurricane isabel. Natural
Hazards Review 7(4), 220–228 (2006)

[4] Nateghi, R., Guikema, S.D., Quiring, S.M.: Tropical cyclone risk analysis using
statistical learning methods. In: 2011 IEEE Power and Energy Society General
Meeting, pp. 1–7 (2011). IEEE

[5] Roy, C., Kovordanyi, R.: Tropical cyclone track forecasting techniques–a review.
In: 2012 6th IEEE International Conference on Intelligent Systems, pp. 130–135
(2012). IEEE

[6] Feng, K., Ouyang, M., Lin, N.: Tropical cyclone-blackout-heatwave compound
hazard resilience in a changing climate. Nature communications 13(1), 4421
(2022)

[7] Feng, K., Lin, N.: Modeling and analyzing the traffic flow during evacua-
tion in hurricane irma (2017). Transportation research part D: transport and
environment 110, 103412 (2022)

[8] Regnier, E.: Public evacuation decisions and hurricane track uncertainty. Man-
agement Science 54(1), 16–28 (2008)

[9] Murray, J., Gouldby, B., Woodworth, P., Bricheno, L., Horrillo-Caraballo, J.,
Callaghan, D., Smith, D., Tozer, N., Wahl, T., Becker, J., et al.: Assessment of
the economic benefits of hurricane forecasting: An overview. Weather, Climate,
and Society 6(1), 1–13 (2014)

[10] Kantha, L.: Forecasting hurricane tracks in the north atlantic and the gulf of
mexico. Progress in Oceanography 114, 79–93 (2013)

[11] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda,
M.G., Huang, X.-Y., Wang, W., Powers, J.G.: A description of the advanced
research wrf version 3. Technical Report NCAR/TN-475+STR, National Center
for Atmospheric Research (2008)

[12] Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather
prediction. Nature 525(7567), 47–55 (2015)

[13] Bauer, P., Dueben, P.D., Hoefler, T., Quintino, T., Schulthess, T.C., Wedi, N.P.:
The digital revolution of earth-system science. Nature Computational Science
1(2), 104–113 (2021)

9



[14] Gneiting, T., Raftery, A.E.: Weather forecasting with ensemble methods. Science
310(5746), 248–249 (2005)

[15] Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Accurate medium-range
global weather forecasting with 3d neural networks. Nature 619(7970), 533–538
(2023)

[16] Leutbecher, M., Palmer, T.N.: Ensemble forecasting. Journal of Computational
Physics 227(7), 3515–3539 (2008)

[17] Gneiting, T., Katzfuss, M.: Probabilistic forecasting. Annual Review of Statistics
and Its Application 1, 125–151 (2014)

[18] Haiden, T., Janousek, M., Bidlot, J., Ferranti, L., Prates, F., Vitart, F., Bauer, P.,
Richardson, D.S., Buizza, R.: Evaluation of ecmwf forecasts, including the 2018
upgrade. Technical Report ECMWF Technical Memoranda No. 831, European
Centre for Medium-Range Weather Forecasts (2018)

[19] Knutson, T., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C.-H., Kossin, J.,
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., Wu, L.: Tropical cyclones and
climate change assessment: Part i: Detection and attribution. Bulletin of the
American Meteorological Society 100(10), 1987–2007 (2019)

[20] Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,
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