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Abstract

We provide an in-detail derivation through the 3P0 pair creation model of the transition matrix

for a baryon decaying into a meson-baryon system. The meson’s analysis was conducted in Ref. [1]

and we extend the same formalism to the baryon sector, focusing on the ∆(1232) → πN strong

decay width because all hadrons involved in the reaction are very well established, the two hadrons

in the final state are stable, avoiding further analysis, all quarks are light and so equivalent, and the

decay width of the process is relatively well measured. Taking advantage of a Gaussian expansion

method for the hadron’s radial wave functions, the expression of the invariant matrix element can

be related with the mean-square radii of hadrons involved in the decay. We use their experimental

measures in such a way that only the strength of the quark-antiquark pair creation from the vacuum

is a free parameter. This is then taken from our previous study of strong decay widths in the meson

sector, obtaining a quite compatible result with experiment for the calculated ∆(1232) → πN decay

width.

I. INTRODUCTION

One of the main goals of nuclear and particle physics communities is the understanding of

hadrons in terms of the elementary excitations of quantum chromo-dynamics (QCD), which

are quarks and gluons (The interested reader is referred to the Particle Data Group and

its topical mini-reviews [2]). QCD is well understood in its high energy regime, where per-

turbative theoretical calculations has been contrasted with many experimental results since

QCD’s birth, 50 years ago; however, hadrons live in its non-perturbative regime where, a

priori, low-level rules produce high-level phenomena with enormous apparent complexity [3].

That is to say, for instance, that less-than 2% of a nucleon’s mass can be attributed to the

so-called current-quark masses that appear in QCD’s Lagrangian, a phenomenon known as

dynamical chiral symmetry breaking (DCSB). Another important non-perturbative effect is

color confinement which basically states that quarks and gluons (color objects) are not those

degrees-of-freedom readily accessible via experiment; i.e., they are confined inside hadrons.

This complexity makes hadron spectroscopy, the collection of readily accessible states
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constituted from gluons and quarks, the starting point for all further investigations. A very

successful classification scheme for hadrons in terms of their valence quarks and antiquarks

is the so-called quark model [4, 5], which basically separates hadrons in quark-antiquark

(meson) and three-quark (baryon) bound-states. The quark model, and its more mod-

ern variations and extensions, have received experimental verification beginning in the late

1960s and, despite some caveats, they have been demonstrated to be very valuable. For

instance, the phenomenological quark models represent a reliable theoretical approach to

hadron spectra in heavy quark sectors, are flexible enough in order to extend their appli-

cability to exotic matter, and allow to compute easily electromagnetic, weak and strong

reactions whose predictions have turned to be very useful for experimental searches.

Among the wide range of chiral quark models developed in the last 50 years [6], our the-

oretical framework is a QCD-inspired constituent quark model (CQM) proposed in Ref. [7]

and extensively reviewed in Ref. [8]. Moreover, the CQM has been recently applied with

success to conventional mesons containing heavy quarks, describing a wide range of physical

observables that concern spectra [9–11], strong decays [1, 12, 13], hadronic transitions [14–16]

as well as electromagnetic and weak reactions [17–19]. Besides, the interested reader could

appreciate that the naive model has been extended to describe meson-meson molecules [20]

and compact multiquark systems [21].

Trying to extend our CQM in the baryon sector, three steps must be taken: (i) the com-

putation of baryon spectra, (ii) the modeling of a baryon decaying strongly into a meson plus

another baryon and (iii) the description of baryon-meson interactions, and their resulting

bound- and resonance-states, from the quark–(anti-)quark forces dictated by CQM. All of

them are underway, see for example the advances done in the third case by one of us in, for

instance, Refs. [22–24], but the first that has been completed by our group is the extension

of the phenomenological 3P0 model to the description of baryon strong decays. In fact,

the same decay model was used in [1] to calculate the total strong decay widths of mesons

which belong to heavy quark sectors. Therein, a global fit of the experimental data showed

that, contrarily to the usual wisdom, the only free parameter of the 3P0 model depends on

the meson sector and thus the scale-dependent strength follows a logarithmic behavior with

respect the typical scale of the particular meson sector (Eq. (10) in Ref. [1]).

Hadron strong decay is a complex non-perturbative process that has not yet been de-

scribed from first principles of QCD. In the search for ways to explain it, Micu [25] formulated
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the 3P0 model in the 1960s as a way to obtain hadron’s decay rates using the correspond-

ing wave functions and a strength parameter as the only needed inputs. His approach was

innovative for its simplicity and the few assumptions that were made. A few years later, Le

Yaouanc [26] et al. developed Micu’s model using the work of Carlitz and Kislinger based on

SU(6)w theory [27]. Remarkable features of this work were the assumption that constituent

quarks drive the decay process and the use of harmonic oscillator wave functions to find

analytic expressions of the terms fitted by Micu from experiment. The only free parameter

was then the so-called pair-creation constant, γ. The work of Le Yaouanc et al. allowed to

calculate many ratios between decay widths of mesons and baryons [28], popularizing the

model. In the following years, the 3P0 model was widely used to describe decay properties

of hadrons, such as charmonium states [29, 30]. In 1982 Hayne et al. improved the analytic

expression corresponding to the transition matrix [31]. In 1996, Blundell et al. analyzed

the data of various decay widths to fit the strength parameter γ [32], finding a value which

is frequently used in modern works [33]. In addition, parallel work in the flux-tube pair

creation model [34] showed that it contains, and thus can be simplified to, the 3P0 model

making it even more famous. Recent variants of the 3P0 model modify the pair production

vertex [35] or modulate the spatial dependence of the pair-production amplitude [36].

This work consists on finding an analytical expression for the transition matrix of a baryon

decaying into a meson-baryon system using the 3P0 strong decay model to parametrize the

needed quark-antiquark pair creation from the vacuum and Gaussian expansions of the

hadron wave functions in order to simplify the evaluation of matrix elements, and express

them in terms of the measured hadron sizes. The strength γ of the decay interaction is

fixed to our previous evaluation of meson strong decays in order to provide a free-parameter

prediction of the ∆(1232) → πN decay width; comparing it with the experimental value

provide us an assessment of our calculation and the possible extension of our decay model

from the meson sector to the baryon one.

This manuscript is organized as follows. After this introduction, Sec. II is devoted to

a detailed description of the 3P0 model and how to obtain the transition matrix, starting

from the initial and final hadron states and the transition operator. A few assumptions are

made to simplify the expression, the limitations of these are specified. Section III provides an

application of the model presented, obtaining the decay width of the process ∆(1232) → πN ,

specifying the data used. In this section, the quark-antiquark pair creation constant, γ, for
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FIG. 1. Panel (a) Feynman diagram for a baryon, A, decaying into a baryon, B, and a meson,

C. Panel (b) Schematic representation of a baryon as an sphere of radius ⟨r⟩; a particular set of

Jacobi coordinates, (ρ, λ), for the quarks in a baryon is also shown.

baryons seems to follow the analytic expression presented in [1] for mesons. Finally, we

summarize and draw some conclusions in Sec. IV.

II. THE 3P0 MODEL APPLIED TO BARYONS

The quark-antiquark pair creation models consist on a phenomenological way to describe

hadron strong decays. Among this kind of models, the so-called 3P0 strong decay model is the

most popular and basically states that the quark-antiquark pair, created from the vacuum,

must conserve the vacuum’s angular momentum, parity and charge conjugation, viz. the

quark-antiquark pair must have JPC = 0++ quantum numbers. Another important property

of the 3P0 model is that it takes into account only diagrams in which the quark-antiquark

pair separates into different final hadrons. This was originally motivated by experimental

observations and it is known as the Okubo-Zweig-Iizuka(OZI)-rule [37–39] which tells us

that the disconnected diagrams are more suppressed than the connected ones.

The model defined as above describes baryon into meson+baryon strong decays as rep-

resented in panel (a) of Fig. 1. It thus has an associated transition operator given by

T = −3γ′
∑
µ,ν

∫
d3pµd

3pν

[
Y1

(
p⃗µ − p⃗ν

2

)
⊗ (sµsν)1

]
0

a†µ(p⃗µ)b
†
ν(p⃗ν)δ

(3)(p⃗µ + p⃗ν), (1)

where µ is the quark and ν is the antiquark created. The 3-dimensional Dirac delta func-
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tion, δ(3)(p⃗µ + p⃗ν), assures the conservation of momenta and the function Yl(p⃗ ) = pl Yl(p̂)

is the solid harmonic that characterizes the angular momentum (l = 1) of the pair created;

one can also observe that it is coupled to the spin-1 of the pair in order to give total spin

J = 0. Meanwhile, γ′ is the only unknown constant of the 3P0 model which characterizes

the strength of the quark-antiquark pair creation from the vacuum and it is normally fitted

to the data. Besides, it is important to note that this transition operator is a non-relativistic

reduction of an interacting Hamiltonian involving Dirac quark fields that describes the pro-

duction process [1]; observe therein that the
√
3 is replaced by 3 when going from meson

decays to baryon ones, since the term must cancel out with the color contribution.

The decay width of the process can be calculated using the following relation:

ΓA→BC = 2π
EB(k0)EC(k0)

mAk0

∑
JBC ,l

|MA→BC |2, (2)

where k0 is the relative momentum of the final products with respect to the initial state [40].

The squared modulus of the invariant matrix element must be summed over all possible

values of JBC and relative angular momentum l whose inner product is equal to the total

angular momentum of the decaying baryon, JA.

In order to calculate the invariant matrix element that appears in the formula of the

decay width,

MA→BC = δ(3)(K⃗0)⟨BC|T |A⟩ , (3)

where K⃗0 is the center-of-mass momentum of the decaying baryon, one needs to establish

expressions for the initial and final states:

|A⟩ =
∫

d3pαd
3
βd

3pηδ
(3)(P⃗A − K⃗A)χACAϕA(p⃗α, p⃗β, p⃗η)a

†
α(p⃗α)a

†
β(p⃗β)a

†
η(p⃗η)|0⟩ , (4)

|BC⟩ =
∫

d3KBd
3KC

∑
m,MBC

⟨JBCMBC lm|JAMA⟩δ(3)(K⃗ − K⃗0)δ(k − k0)

× Ylm(k̂)

k

∑
MB ,MC ,MIB

,MIC

⟨JBMBJCMC |JBCMBC⟩⟨IBMIBICMIC |IBCMIBC
⟩

×
∫

d3pδd
3pϵd

3pζd
3pσd

3pτδ
(3)(K⃗B − P⃗B)δ

(3)(K⃗C − P⃗C)

× χBCBϕB(p⃗σ, p⃗ζ , p⃗ϵ)a
†
σ(p⃗σ)a

†
ζ(p⃗ζ)a

†
ϵ(p⃗ϵ)χCCCϕC(p⃗δ, p⃗τ )a

†
δ(p⃗δ)b

†
τ (p⃗τ )|0⟩. (5)

In the equations above, the functions ϕA,B,C are the Fourier transforms of the hadron’s

wave functions in coordinate space, these describe the probability of finding the hadron in
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momentum space; moreover, the CA,B,C and χA,B,C are, respectively, the color and spin

functions of the hadrons involved in the decay. In the final state |BC⟩, the internal products

assure the conservation of angular momentum and isospin between the baryon and meson

in the final state, but also its coupling with the initial baryon state.

The invariant matrix element, MA→BC , is a product of a color factor, a flavor factor and

a spin-space overlap integral, i.e.

MA→BC = IColor IFlavor ISpin−space , (6)

in such a way that each component can be calculated separately.

A. The spin-space contribution

Before discussing the spin-space contribution, one needs to disentangle how many equiv-

alent Feynman diagrams contribute to the same process, i.e. the symmetry factor. Focusing

on the ladder operators that appear in Eqs. (1), (4) and (5), where combined adequately,

we arrive at the following expression:

⟨0|bτ (p⃗τ )aδ(p⃗δ)aϵ(p⃗ϵ)aζ(p⃗ζ)aσ(p⃗σ)a†µ(p⃗µ)b†ν(p⃗ν)a†α(p⃗α)a
†
β(p⃗β)a

†
η(p⃗η)|0⟩ . (7)

This product of creation and annihilation operators can be simplified. Since quarks are

fermions, we use the anti-commutation relations of the ladder operators,

{ar(p⃗ ), a†s(p⃗ ′)} = ar(p⃗ )a
†
s(p⃗

′) + a†s(p⃗
′)ar(p⃗ ) = δrsδ

(3)(p⃗− p⃗ ′) , (8)

{ar(p⃗ ), b†s(p⃗ ′)} = {ar(p⃗ ), bs(p⃗ ′)} = {a†r(p⃗ ), bs(p⃗ ′)} = {a†r(p⃗ ), b†s(p⃗ ′)} = 0 , (9)

{ar(p⃗ ), as(p⃗ ′)} = {a†r(p⃗ ), a†s(p⃗ ′)} = {br(p⃗ ), bs(p⃗ ′)} = {b†r(p⃗ ), b†s(p⃗ ′)} = 0 , (10)

and arrange them in normal ordering to arrive at

⟨0|bτaσaζaϵaδa†µb†νa†αa
†
βa

†
η|0⟩ =

= δτνδδµδϵαδζβδση − δτνδδµδϵαδσβδζη − δτνδδµδζαδϵβδση − δτνδϵµδδαδζβδση

+ δτνδδµδζαδσβδϵη + δτνδδµδσαδϵβδζη + δτνδϵµδδαδσβδζη + δτνδϵµδζαδδβδση

+ δτνδζµδδαδϵβδση − δτνδδµδσαδζβδϵη − δτνδϵµδζαδσβδδη − δτνδϵµδσαδδβδζη

− δτνδζµδδαδσβδϵη − δτνδζµδϵαδδβδση − δτνδσµδδαδϵβδζη + δτνδϵµδσαδζβδδη

+ δτνδζµδϵαδσβδδη + δτνδζµδσαδδβδϵη + δτνδσµδδαδζβδϵη + δτνδσµδϵαδδβδζη

− δτνδζµδσαδϵβδδη − δτνδσµδϵαδζβδδη − δτνδσµδζαδδβδϵη + δτνδσµδζαδϵβδδη. (11)
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dηϵ dβϵ dαϵ

dησ dβσ dασ

dηζ dβζ dαζ

FIG. 2. Decay process for a Baryon. Below each diagram the notation dab characterises the diagram

using the quark (a) that begins in the baryon and end in the meson and the quark (b) that comes

form the pair created and end in the baryon.

Note here that we have done an abuse of notation, δab δ
(3)(p⃗a − p⃗b) ≡ δab.

Each term is a different process that can be represented by a Feynman diagram. Following

the OZI-rule, those terms with the factor δδµ can be eliminated, the remaining ones are

8



pictorially shown in Fig. 2. If all quarks and antiquarks involved in the baryon strong decay

are indistinguishable, the diagrams can be taken as equivalent. Therefore, the final result

may be written as

⟨0|bτaσaζaϵaδa†µb†νa†αa
†
βa

†
η|0⟩ = −18 δτνδϵµδζαδσβδδη . (12)

If this equivalence between quarks and antiquarks do not hold, the contribution of different

diagrams differs between them but do not change the subsequent expressions significantly

and thus one may straightforwardly extend the computation to be described below.

Now, the spin-space contribution can be separated in two terms, one collects the coupling

of angular momentum and spin, (J ), and the other deals with linear momenta, (E),

ISpin−space = 54γ′
∑

LBC ,L,S

J (A → BC)E(A → BC) . (13)

The hadron’s total angular momentum, J , represents a coupling between its angular

momentum, L, and its spin, S. Therefore, the initial form of J (A → BC) is

J (A → BC) = {[LBSB]JB [LCSC ]JC}
∗
JBC

{[LBCS]JBC
l}∗JA{[LASA]JA [11]0}JA , (14)

where the extra [11]0 is added to take into account the quantum numbers of the quark-

antiquark pair created from the vacuum. Note also that complex conjugate symbols affect

to final states as expected.

Equation (14) is a matrix element written in terms of hadron’s individual L−S coupling

into J . The final expression must have a total angular momentum (L), inner sum of all

the angular momenta of the particles, and a total spin (S), inner sum of all the spins of

the particles. These final angular momentum and spin must be then coupled to the total

angular momentum of the decaying baryon. These transformations can be done usingWigner

symbols [41]:

{[L1S1]J1 , [L2S2]J2}JT = ΠJ1,J2,LT ,ST


L1 L2 LT

S1 S2 ST

J1 J2 JT

 {[L1L2]LT
, [S1S2]ST

]}JT , (15)

where Πl =
√
2l + 1 is used to simplify the notation. With this relation the couplings of the
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initial state and the pair created can be changed as

{[LASA]JA [11]0}JA =
∑
L,S

ΠL,S,JA,0


LA SA JA

1 1 0

L S JA

 {[LA1]L[SA1]S}JA . (16)

Since the 9J-symbol contain a zero in one of its components, it can be reduced to a 6J-

symbol [41]:

{[LASA]JA [11]0}JA =
∑
L,S

(−1)S+JA+LA+1ΠL,S√
3

 L S JA

SA LA 1

 {[LA1]L[SA1]S}JA . (17)

A similar transformation can be done for the final state,

{[LBSB]JB [LCSC ]JC}
∗
JBC

=
∑

LBC ,S

ΠLBC ,S,JB ,JC


LB SB JB

LC SC JC

LBC S JBC

 {[LBLC ]LBC
[SBSC ]S}∗JA

(18)

where the conservation of spin is used, simplifying SBC = S. The baryon and meson in the

final state have a relative angular momentum between them denoted by l; reordering terms

as indicated in [41], we arrive at:

{[LBCS]JBC
l}∗JA = (−1)LBC+S−JBC{[SLBC ]JBC

l}∗JA

= (−1)LBC+S−JBC

∑
L

(−1)LBC+S+JA+lΠL,JBC

S LBC JBC

l JA L

 {S[LBC l]L}∗JA

=
∑
L

(−1)2LBC+2S+JA+l−JBCΠL,JBC

S LBC JBC

l JA L

 (−1)S+L−JA{[LBC l]LS}∗JA

=
∑
L

(−1)S+L+l−JBCΠL,JBC

S LBC JBC

l JA L

 {[LBC l]LS}∗JA . (19)

The spin couplings can be also simplified in the following; the corresponding matrix

element,

{[sµsβsα]SB
[sνsη]SC

}∗S{[sαsβsη]SA
[sµsν ]1}S , (20)

has been written taking into account the delta-functions of Eq. (12). Now, because the

couplings are binary operations, the spins of the quarks inside baryons must be ordered.
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Using the Jacobi coordinate system (ρ, λ) shown in panel (b) of Fig. 2, the named ρ-spin

can be introduced,

sρ = sα ⊗ sβ , (21)

as the spin of the non-interacting quarks during the decay, i.e. those quarks that do not

change their properties in the process. Then, the spin of the baryons as follows,

[sαsβsη]SA
= [sρsη]SA

,

[sµsβsα]SB
=
[
sµ (sβsα)sρ

]
SB

= (−1)sα+sβ+sµ−SB [sρsµ]SB
, (22)

and so the spin conservation can be expressed using a 9J-symbol,

{[sµsβsα]SB
[sνsη]SC

}∗S{[sαsβsη]SA
[sµsν ]1}S =

= (−1)sα+sβ+sµ+sν+sη−SB−SCΠSB ,SC ,SA,1


sρ sµ SB

sη sν SC

SA 1 S

 . (23)

Once all couplings are modified, the final expression for J (A → BC) looks like

J (A → BC) = (−1)3/2−SB−SC+LA+L+l+JA−JBC ΠLBC ,L,L,JB ,JC ,JBC ,SA,SB ,SC ,S,S

×

 L S JA

SA LA 1


S LBC JBC

l JA L


×


sρ 1/2 SB

1/2 1/2 SC

SA 1 S




LB SB JB

LC SC JC

LBC S JBC

 . (24)

The remaining term to be calculated is the linear momentum contribution, whose initial

expression is

E(A → BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pηd

3pµd
3pν

× δ(3)(K⃗ − K⃗0)δ
(3)(K⃗A − P⃗A)δ

(3)(K⃗B − P⃗B)δ
(3)(K⃗C − P⃗C)δ

(3)(p⃗µ + p⃗ν)
δ(k − k0)

k

×
{
[ϕB(p⃗σ, p⃗ζ , p⃗ϵ)ϕC(p⃗δ, p⃗τ )]LBC

Yl(k̂)
}∗

L

{
ϕA(p⃗α, p⃗β, p⃗η)Y1

(
p⃗µ − p⃗ν

2

)}
L

. (25)
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This expression can be simplified defining a new set of coordinates:

P⃗A = p⃗α + p⃗β + p⃗η , P⃗C = p⃗δ + p⃗τ ,

p⃗ρA =
ωβ p⃗α−ωαp⃗β

ωαβ
, p⃗C = ωδ p⃗τ−ωτ p⃗δ

ωδτ
,

p⃗λA
=

ωη(p⃗α+p⃗β)−ωαβ p⃗η
ωαβη

, P⃗ = p⃗µ + p⃗ν ,

P⃗B = p⃗ζ + p⃗σ + p⃗ϵ , p⃗ = p⃗µ−p⃗ν
2

,

p⃗ρB =
ωσ p⃗ζ−ωζ p⃗σ

ωζσ
, K⃗ = K⃗B + K⃗C ,

p⃗λB
=

ωϵ(p⃗ζ+p⃗σ)−ωζσ p⃗ϵ
ωζσϵ

, k⃗ = ωCK⃗B−ωBK⃗C

ωBC
,

(26)

where we have introduce a so-called reduced mass convention which redefines all masses in

terms of a reference one, m,

ωα = mα

m
, ωαβ = ωα + ωβ . (27)

The delta functions related with momenta provide an additional set of conditions,

K⃗ = K⃗0 = K⃗A = P⃗A = 0 ,

K⃗B = P⃗B ,

K⃗C = P⃗C ,

p⃗µ + p⃗ν = P⃗ = 0 , (28)

where it is important to note that the center-of-mass of baryon A is taken as the center of

mass of the interaction. Now, the equivalences in momenta eliminate some integrals and the

reaming variables can be written in terms of the following ones:

p⃗ = p⃗µ = −p⃗ν ,

k⃗ = p⃗λA
+ p⃗ ,

p⃗ρ = p⃗ρA = p⃗ρB . (29)

Then, the simplified expression for E(A → BC) is

E(A → BC) =

∫
d3pd3kd3pρ

δ(k − k0)

kl+1

×
{
[ϕB(p⃗σ, p⃗ζ , p⃗ϵ)ϕC(p⃗δ, p⃗τ )]LBC

Yl(k̂)
}∗

L

{
ϕA(p⃗α, p⃗β, p⃗η)Y1

(
p⃗µ − p⃗ν

2

)}
L

.

(30)
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Continuing with the calculation, the hadron wave functions can be separated in radial

and angular parts,

ϕA(p⃗α, p⃗β, p⃗η) = fλA
(p⃗λA

)fρ(p⃗ρ)
[
YLλA

(p⃗λA
)YLρ(p⃗ρ)

]
LA

, (31)

ϕB(p⃗σ, p⃗ζ , p⃗ϵ) = fλB
(p⃗λB

)fρ(p⃗ρ)
[
YLλB

(p⃗λB
)YLρ(p⃗ρ)

]
LB

, (32)

ϕC(p⃗C) = fC(p⃗C)YLC
(p⃗C) , (33)

where the solid spherical harmonics take into account the Jacobi coordinate decomposition

of a baryon system and the radial parts are assumed to be Gaussian functions,

fλA
(p⃗λA

) =
∑
i

dλA
i exp

(
−λAi

2
p2λA

)
, (34)

fλB
(p⃗λB

) =
∑
j

dλB
j exp

(
−
λBj

2
p2λB

)
, (35)

fρ(p⃗ρ) =
∑
k

dρk exp
(
−ρk

2
p2ρ

)
, (36)

fC(p⃗C) =
∑
l′

dCl′ exp

(
−Cl′

2
p2C

)
, (37)

where the constants could be computed theoretically from hadron spectra or fitted to exper-

imental data of hadron radii.1 The limits of the sums are fixed according to the precision

required. Inserting the above expressions in Eq. (30), we arrive at

E(Aik → BjkCl′) =
∑
ijkl′

dλA
i dλB

j (dρk)
2dCl′

×
∫

d3pd3kd3pρ
δ(k − k0)

kl+1
exp

(
−1

2
[λAip

2
λA

+ λBjp
2
λB

+ ρkp
2
ρ + Cl′p

2
C ]

)
×

{[[
YLλB

(p⃗λB
)YLρ(p⃗ρ)

]
LB

YLC
(p⃗C)

]
LBC

Yl(k⃗)

}∗

L

{[
YLλA

(p⃗λA
)YLρ(p⃗ρ)

]
LA

Y1 (p⃗ )

}
L

.

(38)

We need now that all functions of Eq. (38) be expressed in terms of the integration variables.

In order to do that we define q⃗ = p⃗ − xk⃗, where x could be any number; note also that p

1 In order to test this theoretical calculation we are going to follow the second strategy and we leave the

microscopic calculation of the wave functions for a later publication because we have not yet developed

the program that would calculate eigenenergies and eigenfunctions of baryons.
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and pρ continue to be variables of the integral. Therefore,

p⃗λA
= (1− x) k⃗ − q⃗ ,

p⃗λB
=

(
ωµ

ωαβµ

− x

)
k⃗ − q⃗ ,

p⃗C =

(
ωµ

ωηµ

− x

)
k⃗ − q⃗ . (39)

The terms are squared,

p2λA
= (1− x)2 k2 + q2 − 2 (1− x) k⃗ · q⃗ ,

p2λB
=

(
ωµ

ωαβµ

− x

)2

k2 + q2 − 2

(
ωµ

ωαβµ

− x

)
k⃗ · q⃗ ,

p2C =

(
ωµ

ωηµ

− x

)2

k2 + q2 + 2

(
ωµ

ωηµ

− x

)
k⃗ · q⃗ , (40)

and replaced in the exponential argument as

λAip
2
λA

+ λBjp
2
λB

+ Clp
2
C = k2

[
λAi(1− x)2 + λBj

(
ωµ

ωαβµ

− x

)2

+ Cl

(
ωµ

ωηµ

− x

)2
]

+ q2
[
λAi + λBj + Cl

]
− 2k⃗ · q⃗

[
λAi(1− x) + λBj

(
ωµ

ωαβµ

− x

)
+ Cl

(
ωµ

ωηµ

− x

)]
. (41)

Now, in order to eliminate the k⃗ · q⃗ term, x is fixed to the following value,

x =
λAi + λBj

ωµ

ωαβµ
+ Cl

ωµ

ωηµ

λAi + λBj + Cl

. (42)

To simplify more the notation, the parameters

A = λAi + λBj

ωµ

ωαβµ

+ Cl
ωµ

ωηµ

, (43)

2B = λAi + λBj + Cl , (44)

2D = λAi(1− x)2 + λBj

(
ωµ

ωαβµ

− x

)2

+ Cl

(
ωµ

ωηµ

− x

)2

, (45)

are defined, where x = A
2B

. Therefore, the linear momentum contribution can be now written

as

E(Aik → BjkCl′) =
∑
ijkl′

dλA
i dλB

j (dρk)
2dCl′

∫
d3qd3kd3pρ

δ(k − k0)

kl+1
exp

(
−Bq2 −Dk2 − ρk

2
p2ρ

)
×

{[[
YLλB

(p⃗λB
)YLρ(p⃗ρ)

]
LB

YLC
(p⃗C)

]
LBC

Yl(k⃗)

}∗

L

{[
YLλA

(p⃗λA
)YLρ(p⃗ρ)

]
LA

Y1 (p⃗ )

}
L

,

(46)
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but the second line of Eq. (46) is still not expressed in terms of the integration variables.

In order to do this, the properties of spherical harmonics and couplings between angular

momenta must be used [41] in such a way that

{[
YLλA

(p⃗λA
)YLρ(p⃗ρ)

]
LA

Y1 (p⃗)

}
L

=
∑

l1,l2,l3,l4,l5

Bl4
l1,l2

Bl5
LλA

−l1,1−l2
C

LλA
l1

C1
l2

× ΠLA,LλA
,l3,l4,l5,1(1− x)l1xl2(−1)L+LA+LλA

−l1+1kl1+l2−l4qLλA
−l1−l2−l5+1

×

LλA
Lρ LA

L 1 l3



l1 LλA

− l1 LλA

l2 1− l2 1

l4 l5 l3


{
YLρ(p⃗ρ)

[
Yl4(k⃗)Yl5(q⃗ )

]
l3

}
L

, (47)

where we have defined the following coefficients

Bc
a,b = (−1)c

√
(2a+1)(2b+1)

4π

a b c

0 0 0

 , Ca
b =

√
4π(2a+1)!

(2b+1)!(2(a−b)+1)!
. (48)

The remaining term becomes

{[[
YLλB

(p⃗λB
)YLρ(p⃗ρ)

]
LB

YLC
(p⃗C)

]
LBC

Yl(k⃗)

}
L

=

=
∑

l6,l7,l8,l9,l10,l11,l12

Bl9
l6,l7

Bl10
LλB

−l6,LC−l7
Bl12

l9,l
C

LλB
l6

CLC
l7

× ΠLBC ,LB ,LC ,LλB
,l8,l8,l9,l10,l11,l12

(
ωµ

ωαβµ

− x

)l6 ( ωµ

ωηµ

− x

)l7

× (−1)LBC+LB+LλB
+Lρ+L−l6−l7+l10+l12kl+l6+l7−l12qLλB

+LC−l6−l7−l10

×

LλB
Lρ LB

LBC LC l8


Lρ l8 LBC

l L l11


l10 l9 l8

l l11 l12



l6 LλB

− l6 LλB

l7 LC − l7 LC

l9 l10 l8


×
{
YLρ(p⃗ρ)

[
Yl12(k⃗)Yl10(q⃗ )

]
l11

}
L

. (49)
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We arrive then to the expression of the linear momentum contribution

E(Aik → BjkCl′) =
∑
ijkl′

dλA
i dλB

j (dρk)
2dCl′

∫
d3qd3kd3pρ

δ(k − k0)

kl+1
exp

(
−Bq2 −Dk2 − ρk

2
p2ρ

)
×

∑
l1,l2,...,l11,l12

Bl4
l1,l2

Bl5
LλA

−l1,1−l2
Bl9

l6,l7
Bl10

LλB
−l6,LC−l7

Bl12
l9,l

C
LλA
l1

C1
l2
C

LλB
l6

CLC
l7

× ΠLBC ,LA,LB ,LC ,LλA
,LλB

,l3,l4,l5,l8,l8,l9,l10,l11,l12,1 (1− x)l1xl2

(
ωµ

ωαβµ

− x

)l6 ( ωµ

ωηµ

− x

)l7

× (−1)LBC+LA+LB+LλA
+LλB

+Lρ−l1−l6−l7+l10+l12+1

× kl+l1+l2−l4+l6+l7−l12qLC+LλA
+LλB

−l1−l2−l5−l6−l7−l10+1

×

LλA
Lρ LA

L 1 l3


LλB

Lρ LB

LBC LC l8


Lρ l8 LBC

l L l11


l10 l9 l8

l l11 l12


×


l1 LλA

− l1 LλA

l2 1− l2 1

l4 l5 l3



l6 LλB

− l6 LλB

l7 LC − l7 LC

l9 l10 l8


×
{
YLρ(p⃗ρ)

[
Yl12(k⃗)Yl10(q⃗ )

]
l11

}∗

L

{
YLρ(p⃗ρ)

[
Yl4(k⃗)Yl5(q⃗ )

]
l3

}
L

, (50)

in which the angular integrals can be solved using the orthogonality of spherical harmonics

as follows [41]:∫
d3q d3k d3pρ

{
YLρ(p⃗ρ)

[
Yl12(k⃗)Yl10(q⃗ )

]
l11

}∗

L

{
YLρ(p⃗ρ)

[
Yl4(k⃗)Yl5(q⃗ )

]
l3

}
L

=

= δLρ,Lρδl12,l4δl10,l5δl11,l3δL,L

∫
dq dk dpρ q

2+l5+l10k2+l4+l12p2+2Lρ
ρ . (51)

Additionally, the radial integrals can be simplified using the Gamma function when the

exponential term is taken into account. The integral over q becomes∫ ∞

0

dq e−Bq2qLC+LλA
+LλB

−l1−l2−l5−l6−l7+l5+3 =

=
1

2
B− 1

2
(LC+LλA

+LλB
−l1−l2−l6−l7+4)

× Γ

(
1

2
(LC + LλA

+ LλB
− l1 − l2 − l6 − l7 + 4)

)
. (52)

The same can be made for the integral over pρ,∫
dpρ e

− ρk
2
p2ρp2+2Lρ

ρ =
1

2

(ρk
2

)− 1
2
(2Lρ+3)

Γ

(
1

2
(2Lρ + 3)

)
, (53)
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and the integral over k can be simplified using the delta-function δ(k − k0).

Threfore, the lineal momentum contribution has the final expression

E(Aik → BjkCl′) =
∑
ijkl′

dλA
i dλB

j (dρk)
2dCl′ exp

(
−Dk2

0

)
×

∑
l1,l2,...,l8,l9

Bl4
l1,l2

Bl5
LλA

−l1,1−l2
Bl9

l6,l7
Bl5

LλB
−l6,LC−l7

Bl4
l9,l

C
LλA
l1

C1
l2
C

LλB
l6

CLC
l7

× ΠLBC ,LA,LB ,LC ,LλA
,LλB

,l3,l3,l4,l4,l5,l5,l8,l8,l9,1(1− x)l1xl2

(
ωµ

ωαβµ

− x

)l6 ( ωµ

ωηµ

− x

)l7

× (−1)LBC+LA+LB+LλA
+LλB

+Lρ−l1−l6−l7+l5+l4+1(2)Lρ− 1
2

× kl1+l2+l6+l7+1
0 B− 1

2
(LC+LλA

+LλB
−l1−l2−l6−l7+4)ρ

− 1
2
(2Lρ+3)

k

× Γ

(
1

2
(LC + LλA

+ LλB
− l1 − l2 − l6 − l7 + 4)

)
Γ

(
1

2
(2Lρ + 3)

)

×

LλA
Lρ LA

L 1 l3


LλB

Lρ LB

LBC LC l8


Lρ l8 LBC

l L l3


l5 l9 l8

l l3 l4


×


l1 LλA

− l1 LλA

l2 1− l2 1

l4 l5 l3



l6 LλB

− l6 LλB

l7 LC − l7 LC

l9 l5 l8

 , (54)

where the limits of the sums can be obtained using triangular conditions of the Wigner

symbols.

B. The color contribution

Concerning the color matrix element, this can be written as

IColor = ⟨CBCC |CA⟩ = ⟨C(ϵσζ)C(δτ)|C(αβη)C(µν)⟩ , (55)

where the color function of the pair created is added. In order to calculate this contribution,

the color function of the baryons and mesons must be known:

C(αβη) =
1√
6

∑
αβη

εαβη =
1√
6
(rαgβbη − rαbβgη + gαbβrη − gαrβbη + bαrβgη − bαgβrη) , (56)

C(δτ) =
1√
3

∑
δτ

δδτ =
1√
3
(rδrτ + gδgτ + bδbτ ) . (57)
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Since mesons are made of a quark and antiquark a Kronecker delta is enough to describe

the color function. On the other hand, the baryon must have an antisymmetric color wave

function, this make the Levi-Civita symbol sufficient to describe the color of the system.

The color wave functions are replaced in Eq. (55), taking into account the particle equiv-

alences of Eq. (12), the color contribution becomes

IColor =
1

18

∑
αβη

∑
µν

∑
ϵσζ

∑
δτ

εαβηδµνεϵσζδδτ

=
1

18

∑
αβηµ

∑
ϵσζδ

εαβηεϵσζδδµδϵµδζαδσβδδη

=
1

18

∑
αβη

∑
δ

εαβηεδβαδδη

=
1

18

∑
αβη

εαβηεηβα . (58)

Now, the product of Levi-Civita tensors can be simplified as∑
αβη

εαβηεηβα = −6 , (59)

arriving at

IColor = −1

3
. (60)

This term cancels with the 3 put by hand in the transition operator, Eq. (1).

C. The flavor contribution

The flavor matrix element may be written as

ISabor = ⟨[(tµtβtα)IB(tνtη)IC ]IA|[(tαtβtη)IA(tµtν)0]IA⟩ . (61)

In order to simplify this expression, the flavor of the non-interacting quarks (α and β) inside

baryons is defined as already done for spin,

tρ = tα ⊗ tβ. (62)

Thus, the final expression to be calculated is

ISabor = (−1)tα+tβ+tµ−IB(−1)tν+tη−IC ⟨[(tρtµ)IB(tηtν)IC ]IA|[(tρtη)IA(tµtν)0]IA⟩ . (63)
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This can be re-written using a 9J-symbol as

ISabor = (−1)tα+tβ+tµ−IB(−1)tν+tη−ICΠIB ,IC ,IA,0


tρ tµ IB

tη tν IC

IA 0 IA

 . (64)

Since the 9J-symbol has a zero in one of its components, it can be simplified into a 6J-

symbol,

ISabor = (−1)tα+tβ+tµ+tη+tρ+IA−IB
ΠIB ,IC

Πtµ

 tη IC tµ

IB tρA IA

 , (65)

where the equivalence of tµ = tν is used.

III. RESULTS

Once we have shown a detailed derivation of the analytical expression for the decay width,

and transition matrix, of a baryon decaying strongly into a meson plus another baryon, it

is time to provide an example of calculation in order to check the correctness of it. Besides,

one of our long-term goals is to provide a unified picture of mesons and baryons decaying

strongly, from our previous analysis in the meson sector [1].

The most convenient example for our test is the ∆(1232) baryon decaying strongly into a

pion (π(140)) plus a nucleon (N(940)). This is because (i) all hadrons involved in the reaction

are very well established in the Particle Listings of Particle Data Group (PDG) [42]; (ii) the

two hadrons in the final state are stable avoiding additional complications in the computation

related with taking into account decay widths of the products; (iii) all constituent quarks

inside hadrons are either u- or d-quarks and, since isospin symmetry is well fulfilled in QCD,

one can assume all as equivalent quarks; (iv) the branching fraction of the ∆(1232) → πN

strong decay channel is 99.4% which constitutes almost the total decay width; and (v) the

total decay width is relatively well measured experimentally, with a value between 114MeV

and 120MeV [42].2

As we have already mentioned, the ∆-baryon is made of up (u) and down (d) quarks

in different combinations, this make 4 different species with different charges and decay

channels. This species an their properties can be resumed in the following table,

2 Note the use of the so-called natural units, ℏ = c = 1.
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Baryon Quarks Charge (in units of e) Decay Channels

∆++ uuu +2 p+ + π+

∆+ uud +1 n0 + π+ or p+ + π0

∆0 udd 0 n0 + π+ or p+ + π−

∆− ddd -1 n0 + π−

In order to calculate the decay width, the properties of the initial and final hadrons

must be fixed. To simplify, and without loss of generality, the studied decaying baryon is

∆(1232)−. Therefore, the properties of all the hadrons involved in the reaction are listed as

(a constituent quark model description of hadrons is assumend):

Hadron L S J Mass (MeV) Radius (fm)

∆ 0 3/2 3/2 1232 1.03

n 0 1/2 1/2 940 0.84

π+/− 0 0 0 140 0.5

Using the experimental masses, the transferred momentum of the reaction can be calcu-

lated:

k0 =

√
(m2

A − (mB −mC)2) (m2
A − (mB +mC)2)

2mA

= 226MeV . (66)

Having fixed the target reaction to be studied, let us now disentangle some relevant

couplings needed to provide a final numerical result. For example, the coupling of angular

momenta in the final state can be deduced as follows

JBC = JB ⊗ JC = 1
2

and LBC = LB ⊗ LC = 0 . (67)

For the other values is necessary a little more of work. For instance, the baryons have two

internal momenta that comes form the (ρλ)-Jacobi coordinates, they should fulfill

LλA
⊗ Lρ = 0 ,

LλB
⊗ Lρ = 0 , (68)

which dictate that

LλA
= LλB

= Lρ , (69)
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and we assume that all are zero. Besides, the final hadrons have a relative angular momen-

tum, l, which must be taken into account to assure the conservation of angular momentum,

J⃗A = J⃗BC + l⃗ ⇒ 3

2
=

∣∣∣∣12 ⊗ l

∣∣∣∣ , (70)

having two possible values,

l = 1 or l = 2 . (71)

During the calculation the Wigner symbols eliminate any of the values that do not comply

with the triangular conditions.

Concerning spin coupling, the quarks are fermions with spin 1/2 and sρ must be main-

tained since it is the total spin of the two spectator quarks. Therefore, the next decompo-

sition is made,

SA =
3

2
=

(
1

2
⊗ 1

2

)
1

⊗ 1

2
= (sα ⊗ sβ)sρ ⊗ sη ,

SB =
1

2
=

(
1

2
⊗ 1

2

)
1

⊗ 1

2
= (sα ⊗ sβ)sρ ⊗ sµ ,

SC = 0 =
1

2
⊗ 1

2
= sη ⊗ sν . (72)

Note that the spin of the spectator quarks must be equal to 1 in order to provide correctly

the ∆’s quantum numbers and thus this requires the same value of sρ in the nucleon. Similar

reasoning is made for the isospin couplings:

IA =
3

2
=

(
1

2
⊗ 1

2

)
1

⊗ 1

2
= (tα ⊗ tβ)tρ ⊗ tη ,

IB =
1

2
=

(
1

2
⊗ 1

2

)
1

⊗ 1

2
= (tα ⊗ tβ)tρ ⊗ tµ ,

IC = 1 =
1

2
⊗ 1

2
= tη ⊗ tν . (73)

In order to estimate the coefficients that appear in the Gaussian expansion of the hadron’s

wave functions, some analysis is needed. The Gaussian form for the meson can be assumed

to be,

f(p⃗C) = dCe−
C
2
p2C , (74)

where only one term of the sum is used in order to simplify the calculation. The form of the

Gaussian function gives the next relation between the variance and the coefficient,

σ2 =
1

C
. (75)
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Then, the following approximation can be done for the hadron’s radius,

⟨r2⟩ ≈ (ℏc)2

σ2
, (76)

where ℏc = 0.197327GeV fm is added to have the correct units. This is the relationship

that we are going to use between hadron’s coefficient and its size.

The Gaussian expansion for a baryon is different since it has two components. Following

Ref. [43] the next function is used,

f(p⃗λ, p⃗ρ) =

[
2b2

π

] 3
4

e−b2p⃗ 2
ρ

[
2αb2

π

] 3
4

e−αb2p⃗ 2
λ , (77)

where α depends on quark masses as

α =
m1m2(m1 +m2 +m3)

m3(m1 +m2)2
, (78)

which is equal to 3/4 in our case. Equation (77) shows us two important aspects: (i) the

computation of the baryon radius in terms of its Gaussian’s standard deviation and (ii) the

relation

dC =

[
2C

π

]3/4
. (79)

Now, we are in the position of computing the coefficients necessary for the transition

matrix (see Eqs. (42)-(45)),

A =
9⟨rA⟩2 + 3⟨rB⟩2 + 2⟨rC⟩2

4(ℏc)2
, (80)

B =
9⟨rA⟩2 + 9⟨rB⟩2 + 4⟨rC⟩2

8(ℏc)2
, (81)

x =
9⟨rA⟩2 + 3⟨rB⟩2 + 2⟨rC⟩2

9⟨rA⟩2 + 9⟨rB⟩2 + 4⟨rC⟩2
, (82)

D =
1

2

(
9⟨rA⟩2

4(ℏc)2
(1− x)2 +

9⟨rB⟩2

4(ℏc)2

(
1

3
− x

)2

+
⟨rC⟩2

(ℏc)2

(
1

2
− x

)2
)

, (83)

and the product of the amplitudes,

dλA
i dλB

i (dρk)
2dCl = ρ

3
2
k

[(
2

π

)5(
81⟨rA⟩2⟨rB⟩2⟨rC⟩2

16(ℏc)6

)] 3
4

. (84)

Note that ρ
3
2
k cancels with the ρ

− 3
2

k that appears in the spin-space component, Eq. (54).
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The final constant that needs to be known is only-free paramter of the 3P0 decay model,

γ′, that characterizes the strength of the quark-antiquark pair creation from the vacuum.

Following Ref. [1], the next relation can be used to calculate this constant,

γ′ =
√
25π · γ0

log
(

µ
µγ

) , (85)

where γ0 = 0.81 ± 0.02 and µγ = 49.84 ± 2.58MeV are constants fitted to the total strong

decay widths of mesons, and µ represents the quark sector to which the decaying hadron

belongs. For the example at hand, the ∆-baryon belongs to the light quark sector; therefore,

we have µ = 156.5MeV and

γ′ =
√
16π ≈ 7.09 . (86)

All together provide the following value for the decay width

Γ(∆(1232)− → n(940) + π(140)−) = 113.32MeV , (87)

which is just at, or below, the minimum given by the PDG [42], viz. Γ∆(1232) = (114 −

120)MeV and so Γ∆(1232)→Nπ = (113 − 119)MeV. This result is quite remarkable since, in

some sense, it is a free-parameter prediction of the 3P0 decay model using just the experi-

mental values of the hadron’s radii reported in Ref. [42] and the scale-dependent strength

determined in Ref. [1].

To contrast this result, in the literature, the γ′ value usually used is the one obtained

in the fitting made by Blundell [32]. Since this value is fixed for meson decays, it must be

divided by
√
3 to extrapolate it for baryon decays. Therefore, the next value of γ′ can be

used,

γ′ =
13.4√

3
, (88)

having a decay width of

Γ(∆(1232)− → n(940) + π(140)−) = 134.95MeV , (89)

which is slightly higher than the experimental interval but relatively correct [42], confirming

that the analytical development of the 3P0 model for baryon decays seems correct and the

radii of the involved hadrons also well estimated.
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IV. SUMMARY

This work have shown how to obtain in detail the transition matrix element for a baryon

decaying strongly into a meson and another baryon through the well-known 3P0 quark-

antiquark pair creation model.

Since one of our long-term goals is to provide a unified picture of mesons and baryons

from our chiral quark model, one important feature is to describe under the same umbrella

meson and baryons strong decays. The meson’s study was conducted in Ref. [1] and we have

wanted to extend the same formalism to the baryon sector, focusing on the ∆(1232) → πN

strong decay width because all hadrons involved in the reaction are very well established,

the two hadrons in the final state are stable avoiding further analysis, all quarks are light

and equivalent, and the decay width of the process is relatively well measured.

Taking advantage of a Gaussian expansion method for the hadron’s radial wave functions,

the expression of the invariant matrix element can be simplified into a sum of multiple terms

composed basically on some numerical values, wavefunction coefficients and Wigner symbols.

Those wavefunction coefficients can be determined from the mean-square radii of involved

hadrons, and we have used their experimental measures in such a way that the only one free

parameter is the strength of the quark-antiquark pair creation from the vacuum. This has

been taken from our previous study of strong decay widths in the meson sector [1] and we

have obtained a quite compatible result with experiment for the calculated ∆(1232) → πN

decay width.

Aware of our weaknesses, we are working on applying the model developed herein to more

baryon strong decays, but to do so we must first develop a numerical method that solves

the bound state problem for baryons. This is where we are putting our efforts right now.
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nos. PID2022-141910NB-I00 and PID2022-140440NB-C22; Junta de Andalućıa under con-
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