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A supercurrent flow can induce a nonvanishing spin magnetization in noncentrosymmetric su-
perconductors with spin-orbit interaction. Often known as the non-dissipative magnetoelectric ef-
fect, these are most commonly found at linear order in supercurrent flow. Here, we argue that
a nonlinear superconducting magnetoelectric effect (NSM) can naturally manifest in altermag-
net/superconductor (ALM/SC) heterostructures: NSM manifests as a spin polarization generated
as a second-order response to a driving supercurrent. Strikingly, we find NSM is the leading order
magnetization response in ALM/SC heterostructures and survives even in the presence of cen-
trosymmetry; C4T symmetry in altermagnets zeroes both the equilibrium magnetization as well
as out-of-plane linear magnetoelectric response. This renders NSM a powerful electric and non-
dissipative means of controlling magnetization in ALM/SC heterostructures, a promising platform
for superconducting spintronics.

Introduction.—Unlike the normal metallic state, the
intrinsically non-dissipative flow of current in supercon-
ductors enables the control of spins and magnetization
without dissipation [1–3]—a critical functionality in real-
izing low-power spintronics [4–6]. Microscopically, this
process occurs through the superconducting magneto-
electric effect (sometimes known as the Edelstein ef-
fect) [2, 3, 7–14], where a supercurrent flowing through
a noncentrosymmetric metal can induce a net magneti-
zation of the carriers. In Rashba superconductors [15–
17], such magnetoelectric effects can be naturally un-
derstood through the spin-orbit interaction (SOI): spin
readily couples to the motion of electrons (and their as-
sociated Cooper pairs) producing a net spin polarization
in the presence of supercurrent flow.

Major attention has focused on the linear supercon-
ducting magnetoelectric effect, where a spin response de-
velops by driving supercurrent in time-reversal (T ) in-
variant noncentrosymmetric superconductors. For ex-
ample, superconductors with a polar axis c and Rashba
SOI [2, 3] possess a supercurrent-induced magnetization
M ∝ c × Js that lies in-plane. Here Js is the super-
current density. However, the nonlinear magnetoelectric
effect in superconductors is much less studied. Indeed,
even in the normal state, nonlinear spin generation is a
topic of intense recent interests [18–22].

In this work, we unveil the nonlinear superconducting
magnetoelectric effect (NSM) by examining second-order
spin generation in response to the supercurrent. Specif-
ically, we find a (second-order nonlinear) supercurrent-
induced magnetization δM in two dimensions as

δM (2)
c = χc

abqaqb, (1)

where a, b = x, y is the direction of the supercurrent,
c = x, y, z, and q is the Cooper pair momentum in the
presence of supercurrent flow. Note χc

ab vanishes in the
presence of T symmetry. As a result, to realize the
second-order nonlinear response, T symmetry breaking
is necessary. Interestingly, Eq. (1) persists even in cen-
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FIG. 1. (a) Schematic illustration of the ALM/SC het-
erostructure exhibiting the nonlinear superconducting magne-
toelectric (NSM) effect. In the presence of a supercurrent Js

flowing along x direction, the net magnetization along z direc-
tion Mz can be created. (b) In noncentrosymmetric supercon-
ductors with Rashba SOI, an in-plane magnetization, denoted
as Mx,y, that is linear with Js can be generated. In ALM/SC
heterostructures, an out-of-plane Mz is generated that goes
as J2

s . When Js = 0, Mz = 0 in the ALM/SC heterostrucure
vanishes due to C4T symmetry. (c) The normal-state band
structure of the altermagnet from Eq. (8) at Jex = 0.4t. The
spin-split bands for spin ↑ and spin ↓ are indicated in red and
blue respectively.

trosymmetric systems in sharp contrast to the case of the
linear magnetoelectric effect in noncentrosymmetric su-
perconductors [9]. As we argue, NSM can be naturally
realized in magnet/superconductor heterostructures by
utilizing the proximity effect between a magnetic mate-
rial and an s-wave superconductor [8, 23–25].
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For concreteness, we propose an altermag-
net/superconductor (ALM/SC) heterostructure as
depicted in Fig. 1(a) as a natural candidate for NSM.
Altermagnets are collinear antiferromagnets with un-
conventional magnetic order [26–36]; recently, several
potential altermagnetic materials have been identified by
ab initio simulations [26–28]. A characteristic property
of d-wave altermagnets is C4T symmetry, which breaks
T and four-fold rotational (C4) symmetry individually
but preserve the combination of them. The interplay
between the altermagnets and superconductivity has
been theoretically investigated [37–43].

For ALM/SC heterostructures, we find that a nonvan-
ishing out-of-plane spin magnetization can be generated
in the second-order response to the driving supercurrent.
This is in sharp contrast to the case of polar or gyrotropic
superconductors [2, 9, 13]. This work is organized as fol-
lows: First we present a general theory of supercurrent-
induced spin generation including both the linear (first
order) and nonlinear (second order) terms. Then we fo-
cus on the case in a specific ALM/SC realization. Re-
markably, due to C4T symmetry in altermagnets, we find
that the second-order response χz

ab provides the leading
order contribution to the out-of-plane spin magnetiza-
tion; both equilibrium out-of-plane magnetization and
linear-order out-of-plane magnetoelectric effects vanish.
Additionally, due to the presence of a weak SOI in real
altermagnets, the linear magnetoelectric effect also shows
up in the in-plane direction. Furthermore, in the weak
oscillating regime, driving an AC supercurrent can in-
duce the second harmonic and rectified magnetization.
Finally, we discuss possible material candidates that in-
clude thin films of the altermagnet RuO2 and KRu4O8

on an s-wave superconductor. We propose that ALM/SC
devices allow for the non-dissipative electric control of
magnetization, which is important for high density mag-
netic memories and offers tantalizing possibilities for spin
transport in which Joule heating and dissipation are min-
imized.

Superconducting magnetoelectric effect—We first ex-
amine the superconducting magnetoelectric effect within
an effective Bogoliubov-de Gennes (BdG) framework.
We note that our treatment is general and is agnos-
tic to the precise microscopics of the superconduct-
ing gap: the superconducting state can be intrinsic or
proximity induced. In what follows, we describe ei-
ther case phenomenologically via the pairing potential
∆k. The finite-q BdG Hamiltonian in the Nambu basis
(ĉk+q/2,↑, ĉk+q/2,↓, ĉ

†
−k+q/2,↑, ĉ

†
−k+q/2,↓) reads

Hk,q
BdG =

(
Hk+q/2 ∆̂k

∆̂†
k −H∗

−k+q/2

)
, (2)

where Hk is the Bloch Hamiltonian of the normal state,
and q is the momentum of the Cooper pair. As we will
see below, altermagnetic Hk enables the NSM effect. For

TABLE I. Symmetry restrictions for three components of M
in a two-dimensional system. Note that C4T corresponds to
the case for altermagnets that we focus on in our work. 1(2)
indicates first (second) order response. ✓ indicates allowed
and × indicates forbidden.

P T PT C4T
Mx ✓(2) ✓(1) × ✓(1)

My ✓(2) ✓(1) × ✓(1)

Mz ✓(2) ✓(1) × ✓(2)

simplicity we have used a q-independent gap function ∆̂k,
which is valid for weak values of the applied current [12].

The total free energy F of the ALM/SC heterostruc-
ture comprises two parts: the superconductor compo-
nent Fsc and the material (i.e. altermagnet) component
Fal so that F = Fsc + Fal. The supercurrent can be
tracked as Js = νsq with the condensate superfluid stiff-
ness νs = ∂2Fsc(q)/∂

2q. As a result, observables that
scale with q below are induced by the supercurrent at
linear order while q2 indicates a second-order nonlinear
response.
The magnetic response of the heterostructure can be

obtained in the standard fashion by analyzing the set of
parametric partition function Z(h)

Z(h) = e−β{Fsc− 1
2β

∑
k,q,n Tr[logG−1(k,q,h,iωn)]}, (3)

where h is a parameter describing an auxiliary Zee-
man field with a corresponding Zeeman energy Σ(h) =
diag(gsµBh · ŝ,−gsµBh · ŝ∗)/2. Here gs = 2 is the
Landé g factor, µB being the Bohr magneton, and
the Gor’kov’s Green’s functions are G−1(k, q,h, iωn) =

G−1(k, q, iωn)+Σ(h) and G(k, q, iωn) = (iωn−Hk,q
BdG)

−1

with the Matsubara frequency ωn = (2n + 1)π/β. β =
1/kBT with T being the temperature.
The spin magnetization can be evaluated as M =

−β−1∂logZ(h)/∂h|h=0. Using the BdG Hamiltonian
[Eq. (2)] in the current-carrying state, we obtain the spin
magnetization as

Ma = −gsµB

4β

∑
nk

Tr[G(k, q, iωn)ηa]. (4)

Here ηa = diag(sa,−s∗a) are the generalized spin Pauli
matrices in the Nambu space. To extract the linear and
nonlinear responses systematically, we expand the BdG
Hamiltonian as

Hk,q
BdG = Hk,q=0

BdG +
1

2
qav̂a +

1

8
qaqbŵab, (5)

where v̂a = diag[Va(k),−V∗
a(−k)] and ŵab =

diag[Wab(k),−W∗
ab(−k)] with Va(k) = ∂Hk/∂ka and

Wab(k) = ∂2Hk/∂ka∂kb. At linear order in q, we find
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δM
(1)
a = αabqb, where the first-order spin susceptibility

αab reads

αab = −gsµB

8β

∑
nk

Tr[ηaG0v̂bG0], (6)

where G0 ≡ G(k, 0, iωn) = (iωn −Hk,q=0
BdG )−1 for brevity.

This formula is consistent with the results in Ref. [12].
Importantly, we find the nonlinear spin magnetization
along c direction in Eq. (1) with the second-order spin
susceptibility χ as

χc
ab = −gsµB

32β

∑
nk

Tr[ηc(G0ŵabG0 + 2G0v̂aG0v̂bG0)]. (7)

We note that that χc
ab in Eq. (7) is general for arbitrary

model Bloch Hamiltonians as well as pairing potentials.
In particular, Eq. (7) applies for both conventional pair-
ing as well as unconventional pairing ∆̂k. However, in
the next section we will take a simple s-wave pairing
∆̂k = ∆0isy with a k-independent pairing gap as an illus-
trative example to emphasize the effect of the magnetic
order. Detailed derivations can be found in Supplemen-
tary Material [44].

It is instructive to examine the symmetry requirements
for both the linear αab and second-order NSM χc

ab sum-
marized in Table I. For instance, T breaking is necessary
for non-zero χc

ab while P breaking is necessary for αab;
both are destroyed in PT -invariant systems. A particular
interesting case is that of C4T symmetry found in alter-
magnets: we find that χx

ab and χy
ab terms vanish; only

χz
ab is non-zero. Interestingly, C4T further constrains

the NSM so that χz
xx = −χz

yy. In the presence of a weak
SOI naturally found in realistic altermagnets, in-plane
spin magnetization can be induced as expected of a linear
magnetoelectric effect in Eq. (6). Importantly, however,
the Rashba SOI induced linear magnetoelectric effect is
purely in-plane (αzx = αzy = 0). This means that for
out-of-plane magnetatization responses, the second order
NSM χz

ab is the leading order term in the altermagnetic
systems. As we will see below, it dominates the out-of-
plane magnetization responses.

NSM in ALM/SC heterostructure—In the set-up illus-
trated in Fig. 1(a), an altermagnet thin film is in contact
with a conventional s-wave superconductor. To charac-
terize the physics of quasi-2D planar dx2−y2 -wave alter-
magnet, we adopt a generic two-band Hamiltonian [27],
yielding

Hk = [ta2(k2x + k2y)− µ]s0 + Jexa
2(k2x − k2y)sz. (8)

Here t parameterizes the usual kinetic energy, Jex denotes
the dx2−y2 exchange magnetic order and µ is the Fermi
energy. a denotes the lattice constant. We note that
an additional Rashba SOI term HR = λa(kxsy − kysx)
can be readily added to Hk with λ term representing
the strength of SOI, that arises in altermagnets [27, 35].
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FIG. 2. (a) The fully gapped BdG energy spectrum of
ALM/SC from Eq. (2) with Bloch Hamilotnian in Eq. (8)

at ky = 0 using a phenomelogical gap ∆̂k = ∆0isy. (b) The
spin magnetization Mz as a function of qx from Eq. (4) (solid
orange). As a comparison, the NSM susceptibility multiplied
by q2x is plotted as Eq. (7) (dashed green). (c) The nonlinear
spin susceptibility χz

xx as a function of d-wave magnetic order
Jex. The inset shows the region of 0 < Jex < 0.04t. (d) For
nonzero λ, the linear and nonlinear spin susceptibilities αxy

and χz
xx as a function of λ. αxy increases linearly with λ for

small λ. Parameters: λ = 0 for (a), (b) and (c). Jex = 0.2t
for (a), (b) and (d). (∆0, µ) = (0.1, 0.3)t for all four panels.
The temperature is set to be T = 0.3Tc.

Here, s matrices operate on the spin degree of free-
dom. This Hamiltonian breaks time reversal symmetry
T = −isyK (K is the complex conjugate) and four-fold
rotation symmetry C4 = eiπsz/4, but preserves the com-
bination of them as C4T . The SOI term breaks inversion
(P) symmetry without breaking C4T . Throughout our
work, we use the energy unit t. As an illustration of the
spin-split band structure in altermagnet, we plot Eq. (8)
in Fig. 1(c); here we have used Jex = 0.4t and λ = 0.

Because of the proximity effect between the altermag-
net and superconductor, Cooper pairs can tunnel into
the altermagnet. For a thin film of altermagnet [see
Fig. 1(a)], with thickness d much less than the coher-
ence length of the superconductor (d ≪ ξ), the pair-
ing gap is approximately uniform along the z direc-
tion. We have focused on an conventional s-wave su-
perconductor with the pairing ∆0. Using the parameters
as (Jex, λ, µ,∆0) = (0.2, 0, 0.3, 0.1)t, we diagonalize the
BdG Hamiltonian and plot the fully gapped BdG energy
spectrum in Fig. 2(a). Although the pairing potential
is purely s-wave, the induced superconducting correla-
tions can be obtained as F = [ψ0 + d(k) · s]isy, where
ψ0 and d vector parameterize the spin-singlet and spin-
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FIG. 3. The second-order spin susceptibility χz
xx as a function

of the temperature T at (Jex,∆0, µ) = (0.02, 0.1, 0.3)t. The
purple diamonds denotes the numerical results from Eq. (7)
and the orange line denotes the analytical result from Eq. (9).
At low temperatures, χz

xx ∼ β3sech2β.

triplet pairing correlations, respectively [45–47]. We have
d = (0, 0, dz) with dz ∝ Jex(k

2
x − k2y), indicating that

the d-wave magnetic order gives rise to the spin-triplet
pairing correlation in altermagnets due to the proximity
effect.

To illustrate NSM effect in the ALM/SC heterostruc-
ture, we numerically study the supercurrent induced
magnetization in Fig. 2 for the Bloch Hamiltonian in
Eq. (8). By applying the current along x direction as
q = (qx, 0), we calculate the magnetization directly from
Eq. (4) at Jex = 0.2t as shown in Fig. 2(b). One finds
thatMz ∼ q2x as expected from Fig. 1(b). It is also worth
noting that when qx = 0, equilibrium magnetization van-
ishes Mz = 0, which is consistent with C4T symmetry in
altermagnets. We note that numerically computing the
NSM susceptibility χz

xx from Eq. (7) and multiplying by
q2x as plotted in the dashed green line matches the solid
line in orange [from Eq. (4)].

In Fig. 2(c), we show the second-order spin susceptibil-
ity χz

xx as a function of Jex from Eq. (7). Generally, χz
xx

starts to grow linearly with Jex as shown in the zoom-
in inset of Fig. 2(c). Furthermore, we also calculate the
first-order spin susceptibility αxy (purple) which is shown
in Fig. 2(d). As expected, αxy directly depends on λ; for
small λ, αxy increases linearly with λ and vanishes when
λ = 0. In contrast, for NSM χz

xx is finite for λ = 0 and
exhibits a weak dependence on λ; χz

xx becomes smaller
when λ is nonzero since Rashba SOI tends to pin the spin
in the in-plane direction and weakens the out-of-plane
spin polarization. In our calculations, we adopt the BCS
temperature dependence (for the s-wave superconductor
substrate) of ∆0 with ∆(T ) = ∆0 tanh(1.74

√
Tc/T − 1)

and ∆0 = 1.76kBTc.
In contrast to the linear magnetoelectric effect in

Rashba-type supercondcutors, we find that the tem-
perature dependence of NSM spin generation is non-
monotonic. Expanding in small Jex ≪ t, we can obtain
an approximate analytical result for the temperature de-
pendence of χz

xx as χz
xx = µB

∫∞
0
f(x)dx+O(J2

ex) with

f(x) =
β3Jex
64π

xsech2γ
[ 4

β2
+ t2x4(2− 3sech2γ)

+
4tx2(µ− tx2) tanh γ

γ

]
,

(9)

where γ = β
√
∆(T )2 + (tx2 − µ)2/2. By employing

Eq. (9), we plot the χz
xx as a function of temperature in

Fig. 3 (orange solid curve) with Jex = 0.02t. By way of
comparison, we also show a fully numerical plot of Eq. (7)
(purple diamonds); both agree with each other. Interest-
ingly, χz

xx vanishes at zero temperature. At low temper-
atures (β∆0 ≫ 1), χz

xx starts to grows with T scaling
as χxx ∼ β3sech2β. However, at T/Tc ∼ 0.6, it reaches
a peak after which it rapidly diminishes with temper-
ature. This non-monotonic behavior contrasts sharply
with that of the linear magnetoelectric effect in Rashba-
type superconductors [13, 44] that instead saturates at
low temperature.
In superconductors, supercurrent flow can arise due to

either an external applied magnetic field or an explicit
transport current [48]. In the former case, there is a
screening supercurrent on the surface of the supercon-
ductor. In the latter case, the global excitation of the
superconductor gives a uniform Cooper pair momentum
q. Specifically, for slowly varying AC supercurrent as
Js(t) = Jω cosωt with ω ≪ ∆0, we expect an oscillatory
Cooper pair momentum q(t) = qω cosωt. This will allow
to obtain a second harmonic magnetization in the weak
oscillating regime with χc

ab(2ω) = χc
ab/4.

Candidate materials.—We anticipate that NSM we dis-
cuss here can be realized in ALM/SC formed out of read-
ily available d-wave altermagnetic materials [27]. As an
example, consider the altermagnet RuO2 with in-plane
lattice constant a = 4.5Å, and t = 2.5 eV, Jex = 0.5
eV [32, 39]. Using a pairing gap of ∆0 = 1 meV,
µ = 10 meV, λ = 10 meV and T = 0.3Tc we esti-
mate χz

xx ≈ 0.07µB . For a Cooper pair momentum
q ≈ 10−3Å−1 [49], the induced out-of-plane spin density
in the RuO2 thin film/superconductor heterostructure
is ∼ 0.7 × 10−5µB/nm

2. Note that this value is com-
parable to the spin generation in MnBi2Te4 and other
noncentrosymmetric ferromagnetic systems [19, 50, 51].
Another example is KRu4O8 with the parameter values:
t = 0.05 eV, Jex = 0.018 eV, and a = 9.9Å. We find
χz
xx ≈ 0.01µB and out-of-plane spin density similar to

that discussed above. These magnitudes are estimated
qualitatively using a low-energy effective description of
altermagnets in the small J and weak doping (small µ)
regime as well as a gapped BdG spectrum. In real alter-
magnets with large J and high doping, the BdG spectrum



5

becomes gapless. We anticipate this may enhance NSM
with additional contribution from the quasiparticles ex-
cited at finite temperature.

In this work, we have proposed a novel nonlinear su-
perconducting magnetoelectric effect. Naturally occur-
ring in ALM/SC heterostructures, this second-order spin
generation in response to the supercurrent becomes the
leading order contribution to the magnetization along the
out-of-plane direction. Supercurrent induced magnetiza-
tion can be readily detected by using a superconduct-
ing quantum interference device (SQUID) perpendicu-
lar to the altermagnet surface, which can be employed
to probe the magnetic flux change [12]. Interestingly,
nonlinear spin generation that is second order in an ap-
plied electric field can be realized in normal-state (non-
superconducting) altermagnets with C4T symmetry [19].
Our work shows that nonlinear spin generation survives
in the superconducting state and is driven by a dissipa-
tionless supercurrent.
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He for helpful discussions. This work was supported by
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Note added.—Recently, we became aware of an inde-
pendent pre-print posted on the arXiv in Ref. [52] which
also found a second-order supercurrent-induced spin po-
larization in superconductors with d-wave magnetization.
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G. Springholz, K. Uhĺı̌rová, F. Alarab, P. Constantinou,
V. Strocov, D. Usanov, et al., Nature 626, 517 (2024).

[37] D. Zhu, Z.-Y. Zhuang, Z. Wu, and Z. Yan, Physical
Review B 108, 184505 (2023).

[38] C. Beenakker and T. Vakhtel, Physical Review B 108,
075425 (2023).

[39] S.-B. Zhang, L.-H. Hu, and T. Neupert, Nature Com-
munications 15, 1801 (2024).

[40] J. A. Ouassou, A. Brataas, and J. Linder, Physical Re-
view Letters 131, 076003 (2023).

[41] M. Papaj, Physical Review B 108, L060508 (2023).
[42] Y.-X. Li and C.-C. Liu, Physical Review B 108, 205410

(2023).
[43] H. G. Giil, B. Brekke, J. Linder, and A. Brataas, arXiv

preprint arXiv:2403.04851 (2024).
[44] See Supplemental Material for 1. Theory of nonlinear su-

perconducting magnetoelectric effect; 2. Pairing correla-
tions; 3. Linear Edelstein effect in Rashba-type supercon-

http://arxiv.org/abs/2311.11087
http://arxiv.org/abs/2402.07756
http://arxiv.org/abs/2402.00532
http://arxiv.org/abs/2306.09413
http://arxiv.org/abs/2310.11489
http://arxiv.org/abs/2403.04851


6

ductors.
[45] L. P. Gor’kov and E. I. Rashba, Physical Review Letters

87, 037004 (2001).
[46] P. Frigeri, D. Agterberg, A. Koga, and M. Sigrist, Phys-

ical review letters 92, 097001 (2004).
[47] B. T. Zhou, N. F. Yuan, H.-L. Jiang, and K. T. Law,

Physical Review B 93, 180501 (2016).
[48] A. Anthore, H. Pothier, and D. Esteve, Physical review

letters 90, 127001 (2003).
[49] Z. Zhu, M. Papaj, X.-A. Nie, H.-K. Xu, Y.-S. Gu,

X. Yang, D. Guan, S. Wang, Y. Li, C. Liu, et al., Science
374, 1381 (2021).

[50] A. Chernyshov, M. Overby, X. Liu, J. K. Furdyna,
Y. Lyanda-Geller, and L. P. Rokhinson, Nature Physics
5, 656 (2009).

[51] D. Fang, H. Kurebayashi, J. Wunderlich, K. Vỳbornỳ,
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I. THEORY OF NONLINEAR SUPERCONDUCTING MAGNETOELECTRIC EFFECT

A. Green’s function method

In this section we provide more details for deriving the general formula of superconducting magnetoelectric effect,
including both the linear and nonlinear terms. The superconducting state can be intrinsic or proximity induced with
a pairing function ∆̂k. ∆̂k can be conventional s-wave with a uniform pairing gap ∆̂k = ∆0isy or unconventional
pairing states. In the current-carrying state, the finite-q Bogoliubov-de Gennes (BdG) Hamiltonian in the Nambu

basis (ĉk+q/2,↑, ĉk+q/2,↓, ĉ
†
−k+q/2,↑, ĉ

†
−k+q/2,↓) reads

Hk,q
BdG =

(
Hk+q/2 ∆̂k

∆̂†
k −H∗

−k+q/2

)
(S1)

where Hk is the Bloch Hamiltonian of the normal state, q is the momentum of the Cooper pair, and sy is a Pauli

matrix. For simplicity we have used a q-independent gap function ∆̂k, which is valid for weak values of the applied
current.

In the main text, we focus on the altermagnet/superconductor heterostructure. The total free energy F of the
system contains the superconductor part Fsc and the altermagnet part Fal with F = Fsc + Fal. The supercurrent
Js = νsq with the superfluid density νs = ∂2Fsc(q)/∂

2q. The partition function Z(h) is given by

Z(h) = e−β[Fsc− 1
2β

∑
k,q,n Tr[logG−1(k,q,h,iωn)]]. (S2)

By introducing an auxiliary Zeeman field h, we can write down the modified BdG Hamiltonian:

Hk,q
BdG(h) =

(
Hk+q/2 − 1

2gsµBh · s ∆̂k

∆̂†
k −H∗

−k+q/2 +
1
2gsµBh · s∗

)
, (S3)

This auxiliary Zeeman field is to be distinguished from the genuine magnetization of the system and is set to zero at
the end of the calculation. The Gor’kov’s Green’s function is G(k, q,h, iωn) = [iωn−Hk,q

BdG(h)]
−1. The magnetization

M can be obtained from the partition function as

Ma = − 1

β

∂

∂ha
logZ(h)

= − 1

2β

∑
k,q,n

∂

∂ha
Tr[logG−1(k, q,h, iωn)]

(S4)

We decompose the Green’s function as G−1(k, q,h, iωn) = G−1(k, q, iωn) + Σ(h) with

Σ(h) =

(
1
2gsµBh · s 0

0 − 1
2gsµBh · s

)
, (S5)

We can then expand the logarithm in the first order of h as logG−1(k, q,h, iωn) = logG−1(k, q, iωn)+G(k, q, iωn)Σ(h).
Thus, we can then obtain the magnetization M as

Ma = −gsµB

4β

∑
nk

Tr[G(k, q, iωn)ηa]. (S6)
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Here ηa = diag(sa,−s∗a) is the redefined spin Pauli matrices in the Nambu space. The Gor’kov Green’s function is

G(k, q, iωn) = (iωn −Hk,q
BdG)

−1 with the Matsubara frequency ωn = (2n + 1)πkBT . T is the temperature. gs = 2 is
the Landé g factor and µB is the Bohr magneton. We can then expand the BdG Hamiltonian as

Hk,q
BdG = Hk

BdG + qav̂a/2 + qaqbŵab/8 +O(q3) (S7)

The velocity operators are

v̂a =

(
V̂a(k) 0

0 −V̂∗
a(−k)

)
, ŵab =

(
Wab(k) 0

0 −W∗
ab(−k)

)
. (S8)

Here we introduce Va(k) = ∂Hk/∂ka and Wab(k) = ∂2Hk/∂ka∂kb. We proceed in evaluating terms of Eq. (S7), we
note that if A and B are matrices and B ≪ A (B ∼ O(q)), we can expand the matrix expression in small B as

(A+B)−1 = A−1 −A−1BA−1 +A−1BA−1BA−1 +O(B3). (S9)

In the following we will apply Eq. (S9) to the full Green function in order to make an effective expansion around small
q. We obtain

G(k, q, iωn) = (iωn −Hk,q
BdG)

−1 = G0 +
1

2
qaG0v̂aG0 + qaqb(

1

8
G0ŵabG0 +

1

4
G0v̂aG0v̂bG0) (S10)

Here G0 ≡ G(k, iωn) = (iωn − Hk
BdG)

−1. We insert Eq. (S10) to Eq. (S6) to get the magnetization susceptibility at

both linear- and (nonlinear) second-order. Firstly, the first-order spin susceptibility αab is described by δM
(1)
a = αabqb,

where αab reads

αab = −gsµBkBT

8

∑
nk

Tr[ηaG0v̂bG0]. (S11)

More importantly, we can write the second-order nonlinear spin magnetization along c direction as δM
(2)
c = χc

abqaqb,
and the nonlinaer susceptibility χ can be obtained as

χc
ab = −gsµBkBT

32

∑
nk

Tr[ηc(G0ŵabG0 + 2G0v̂aG0v̂bG0)]. (S12)

B. Analytical result

In the previous subsection, we use the Green’s function method to give the general formulas of the linear and nonlin-
ear magnetization. These formulas can be adopt to evaluate the spin susceptibilities for altermagnet/superconductor
heterostructures. In this subsection, we provide the analytical solution of the nonlinear spin susceptibility χz

ab. For
the altermagnets, we can write down a general two-band model

Hk = [ta2(k2x + k2y)− µ]s0 + Jexa
2[2kxky cos(2θ) + (k2x − k2y) sin(2θ)]sz (S13)

t parameterizes the usual kinetic energy, Jex denotes the d-wave exchange magnetic order parameter and µ is the
chemical potential. θ is the angle between the altermagnetic orientation and the crystalline axes. The velocity
operators are

v̂x = a2

(
2tkxs0 + 2Jexk sin(ϕ+ 2θ)sz 0

0 2tkxs0 + 2Jexk sin(ϕ+ 2θ)sz

)
, (S14)

v̂y = a2

(
2tkys0 + 2Jexk cos(ϕ+ 2θ)sz 0

0 2tkys0 + 2Jexk cos(ϕ+ 2θ)sz

)
, (S15)

and

ŵxx = a2

(
2ts0 + 2Jex sin(2θ)sz 0

0 −2ts0 − 2Jex sin(2θ)sz

)
, ŵxy = a2

(
2Jex cos(2θ)sz 0

0 −2Jex cos(2θ)sz

)
, (S16)
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Here kx = k cos(ϕ) and ky = k sin(ϕ). For Jex ≪ t, we can obtain an approximate analytical results (using Mathe-
matica) as χz

xx = µB sin(2θ)
∫∞
0
f(x)dx+O(J2

ex) and χ
z
xy = χz

yx = µB cos(2θ)
∫∞
0
f(x)dx+O(J2

ex), where

f(x) =
β3Jex
64π

xsech2γ
[ 4

β2
+ t2x4(2− 3sech2γ) +

4tx2(µ− tx2) tanh γ

γ

]
, (S17)

where γ = β
√

∆2 + (tx2 − µ)2/2.

II. PAIRING CORRELATIONS

Although we only consider the simplest conventional spin singlet pairing, i.e., ∆0isy, here we show that the d-wave
magnetic order will induce the spin-triplet correlations. To show this, the BdG Hamiltonian is

Hk
BdG =

(
Hk ∆0isy

(∆0isy)
† −H∗

−k

)
(S18)

Here Hk is from Eq.(S13). Let us identify the superconducting properties in terms of Green’s function:

Gλµ(k, τ) = Tτ{ck,λ(τ)c†k,µ(0)}, (S19)

Fλµ(k, τ) = Tτ{ck,λ(τ)c−k,µ(0)}. (S20)

We can rewrite the Green’s function in the Matsubara frequency space: Gλµ(k, iωn) =
∫ β

0
dτeiωnτGλµ(k, τ) and

Fλµ(k, iωn) =
∫ β

0
dτeiωnτFλµ(k, τ). The latter Fλµ(k, iωn) represents the pairing correlations we refer. These two

Green’s functions are related to the Gor’kov Green’s function as

G(k, iωn) = (iωn −Hk
BdG)

−1 =

(
Ge(k, iωn) F (k, iωn)

F †(k, iωn) Gh(k, iωn)

)
. (S21)

Substitute the BdG Hamiltonian into Eq. (S21) and after some massage, we can parameterize the pairing correlation
as

F (k, iωn) = ∆0[C1(k, iωn) + C2(k, iωn)d(k) · s]isy (S22)

with the coefficients

C1(k, iωn) = −1

2
[

1

∆2
0 + ξ2k − (Jexf2k + iωn)2

+
1

∆2
0 + ξ2k − (Jexf2k − iωn)2

], (S23)

C2(k, iωn) =
2iωn

(∆2
0 + ξ2k − J2

exf
2
k )

2 + 2(∆2
0 + ξ2k + J2

exf
2
k )ω

2
n + ω4

n

, (S24)

where ξk = ta2(k2x + k2y)− µ and fk = a2[2kxky cos(2θ) + (k2x − k2y) sin(2θ)]. Importantly, the triplet vector is directly
related to the d-wave magnetic order with

d(k) = (0, 0, Jexfk), (S25)

Therefore, it can be seen that due to the presence of d-wave, the spin-singlet pairing and the spin-triplet pairing
are mixed. Microscopically, the spin-singlet pairing correlations provide the physical origin of the nonlinear spin
magnetization.

III. LINEAR EDELSTEIN EFFECT IN RASHBA-TYPE SUPERCONDUCTORS

In this section we review the linear magnetoelectric effect in superconductors with Rashba SOC. The low energy
Bloch Hamiltonian is

Hk = [ta2(k2x + k2y)− µ]s0 + λa(kxsy − kysx), (S26)
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FIG. S1. The linear spin magnetization in Rashba-type superconductors. (a) The band structure with Rashba SOC at λ = 0.3t.
(b) The first-order spin susceptibility αyx as a function of λ at T = 0.1Tc, ∆0 = 0.03t and µ = 0.2t. The purple diamonds
denotes the numerical results from Eq. (S11) and the orange line denotes the analytical result from Eq. (S28). (c) The first-order
spin susceptibility αyx as a function of µ at T = 0.1Tc for various values of the pairing gap ∆0. (d) αyx as a function of T at
∆0 = 0.1λ for various values of µ.

where λ characterizes the strength of Rashba SOI, and a is the lattice constant. We introduce the spin singlet pairing
∆k = ∆0isy. Similarly, the linear spin susceptibility αyx can be obtained as

αyx = µB

∫ ∞

0

f(x)dx (S27)

where

f(x) =
β

32π(tx2 − µ)
{x(λ− 2tx)(tx2 − µ)sech2γ1 + x(λ+ 2tx)(tx2 − µ)sech2γ2

− [∆2 + (µ− tx2)(µ+ λx− tx2)] tanh γ1/γ1 + [∆2 + (µ− tx2)(µ− λx− tx2)] tanh γ2/γ2}
(S28)

with

γ1 =
β
√
∆2 + (µ+ λx− tx2)2

2
, γ2 =

β
√
∆2 + (µ− λx− tx2)2

2
(S29)

We apply the above formula to calculate the linear (first order) magnetization in superconductors with Rashba SOI.
The calculated band structure from Eq. (S26) is shown in Fig. S1(a) at λ = 0.3t. By employing Eq. (S28), we plot
the αyx as a function of λ in Fig. S1 (orange solid curve). By way of comparison, we also show a fully numerical plot
of Eq. (S11) (blue diamonds); both agree with each other. In Fig. S1(c) we show the µ-dependence of the αyx with
various values of ∆0. When µ < 0, αyx decreases as µ goes down. Fig. S1(d) shows αyx as a function of temperature
for different values of µ. Generally, αyx starts to grow linearly when T < Tc, and it saturates when T → 0. These
behaviors are consistent with the results shown in Ref. [13].
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