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Fig. 1. We use differentiable Voronoi diagrams to simulate embryonic cleavage in an elastic spherical membrane. Bottom: As cells split according to a predefined
schedule, substantial neighborhood changes and cell deformations occur. Each cell is modeled using only a single Voronoi site carrying four degrees of freedom.
Top: Images from Jan van Ijken’s "Becoming" [2018], depicting the embryonic development of a salamander, are included for comparison.

Navigating topological transitions in cellular mechanical systems is a sig-
nificant challenge for existing simulation methods. While abstract models
lack predictive capabilities at the cellular level, explicit network represen-
tations struggle with topology changes, and per-cell representations are
computationally too demanding for large-scale simulations. To address these
challenges, we propose a novel cell-centered approach based on differen-
tiable Voronoi diagrams. Representing each cell with a Voronoi site, our
method defines shape and topology of the interface network implicitly. In
this way, we substantially reduce the number of problem variables, eliminate
the need for explicit contact handling, and ensure continuous geometry
changes during topological transitions. Closed-form derivatives of network
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positions facilitate simulation with Newton-type methods for a wide range
of per-cell energies. Finally, we extend our differentiable Voronoi diagrams
to enable coupling with arbitrary rigid and deformable boundaries. We ap-
ply our approach to a diverse set of examples, highlighting splitting and
merging of cells as well as neighborhood changes. We illustrate applications
to inverse problems by matching soap foam simulations to real-world im-
ages. Comparative analysis with explicit cell models reveals that our method
achieves qualitatively comparable results at significantly faster computation
times.
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1 INTRODUCTION
A central characteristic of cellular mechanical systems is that cells
change neighborhoods during dynamic motion and growth-induced
splitting (as in biological tissue), or through merging and collapse
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(as in soap foams). These topological transitions cause abrupt force
changes, which make computational modeling very challenging.

There are several existing approaches in the literature for simula-
tion of cell-based systems. One option is to abstract away the cellular
structure and model the large-scale mechanics of the system in a ho-
mogenized sense. Evidently, suchmodels cannot predict interactions
at the cellular level governed by local topology changes. Another ap-
proach is to explicitly model the network of cell interfaces, enabling
efficient computation of cell volumes and other geometric quanti-
ties that influence their mechanics. However, topology changes are
difficult to model with explicit network representations, requiring
discrete mesh adaptations and other discontinuous operations. An-
other class of models represents each cell individually using, e.g.,
per-cell finite element discretizations. While this approach allows
for accurate modeling of cell interactions, it requires a very large
number of degrees of freedom to resolve cell deformations, and
contact must be handled explicitly at every cell interface. These
aspects render this strategy unsuitable for large-scale simulations
involving hundreds or thousands of cells.
To overcome the limitations of existing methods, we propose

a novel cell-centered approach based on generalized Voronoi dia-
grams. Each cell is represented by a Voronoi site, and the topology
and shape of the cells are defined implicitly. This representation uses
far fewer degrees of freedom, avoids explicit handling of contact be-
tween cells, and ensures continuous cell geometry changes through
topological transitions. In order to use this Voronoi model for sim-
ulation, we derive closed-form expressions for first and second
derivatives of cell geometry with respect to site positions, allowing
us to use Newton-type optimization solvers for a wide range of
energies. We furthermore obtain equilibrium-state derivatives of
the interface network using sensitivity analysis, thus opening the
door to a wide range of inverse simulation problems. Finally, we
extend our differentiable Voronoi formulation to enable coupling
with arbitrary rigid and deformable boundaries.

We demonstrate the potential of our method on a diverse set
of examples, including tissue growth and foam coarsening. We
furthermore show applications of differentiable Voronoi diagrams
to inverse problems by optimizing per-cell pressures to match input
images from real-world foams. Our comparison with explicit cell
models indicates that differentiable Voronoi diagrams can produce
qualitatively similar behavior with much faster computation times.

2 RELATED WORK
Simulating Cell & Tissue Dynamics. Various computational mod-

els have been developed to simulate cell-based mechanical systems.
One approach is to abstract away the cellular structure and model
the mechanical properties of the system in an averaged sense at
coarser scales [Brodland et al. 2006; Kondo et al. 2018; Piatnitski
and Ptashnyk 2020]. Our focus, however, is on problems that are
governed by cell-level phenomena. One option in this context is
to explicitly model the network of cell interfaces using so-called
vertex models [Alt et al. 2017; Fletcher et al. 2014; Honda et al. 2004].
Although extensions have been developed to allow for topology
changes [Farhadifar et al. 2007; Okuda et al. 2012], the discrete
mesh modifications involved in these methods are problematic for

differentiable simulation. Moreover, explicit vertex models require
additional constraints to prevent self-intersections and other invalid
geometry [Vedel-Larsen 2010]. Our differentiable Voronoi diagrams,
in contrast, ensure a valid interface network at all times and guar-
antee continuous topology changes for any displacement of the
Voronoi sites.

Another line of work has explored so-called deformable cell models,
inwhich cells are represented through separate surfacemeshes [Con-
radin et al. 2021; Kim et al. 2021]. While this approach enables accu-
rate modeling of contact forces and topology changes, it requires
explicit handling of collisions between cells. Moreover, hundreds to
thousands of degrees of freedom are needed per cell, which rapidly
leads to all but intractable problem size. With each cell encoded
by the position of a single Voronoi site, our approach requires dra-
matically fewer degrees of freedom. The resulting model is highly
scalable, enabling efficient gradient-based optimization with thou-
sands of cells.

Simulating Soap Films, Foams, & Bubbles. The dynamics of bubbles
have attracted substantial interest from the graphics community.
Examples include the formation of bubbles in water [Hong et al.
2008], soap film dynamics [Deng et al. 2022; Huang et al. 2020;
Ishida et al. 2020], and general foams [Busaryev et al. 2012]. Various
representations have been explored, ranging from explicit surface
meshes [Da et al. 2015] to mixed particle-and-grid discretizations
[Goldade et al. 2020]. We show that, using only a single site per
foam cell, differentiable Voronoi diagrams can produce realistic 3D
foam coarsening simulations. Our method can likewise be used
for inverse problems such as matching soap film simulations to
real-world images.

Implicit Voronoi Diagrams. Voronoi diagrams have numerous ap-
plications in computer graphics, vision, and beyond. They have
been explored as a basis for, e.g., fluid [de Goes et al. 2015] and foam
[Busaryev et al. 2012] simulations, image segmentation [Williams
et al. 2020] as well as for structural design. Zhang et al. [2017] de-
sign personalized medical braces represented as centroidal Voronoi
diagrams. Their algorithm uses a variant of Lloyd’s method to itera-
tively adjust site positions in order to minimize the design objective.
Lumpe et al. [2022] investigate power diagrams for topology op-
timization. While cell volumes are adapted in each iteration, all
simulations are performed on finite element meshes generated from
the power diagrams. Also targeting topology optimization, Feng et
al. [2022] introduce a smooth relaxation of Voronoi diagrams based
on softmax functions. However, their approach ultimately requires
rasterization on a Cartesian grid for optimization.

We refer to the aforementioned Voronoi models as implicit Voronoi
diagrams, as the simulated structures are defined implicitly by
Voronoi sites rather than with explicit degrees of freedom. Lloyd’s
algorithm [1982] for generating centroidal Voronoi tessellations
(CVT) is arguably the most widely used method for optimization
of Voronoi diagrams. Nevertheless, substantial accelerations can
be achieved when using gradient-based or quasi-Newton methods
[Liu et al. 2009; Wang et al. 2015; Yan et al. 2009, 2011]. Unlike these
methods, our work provides explicit derivatives of Voronoi vertices,
opening the door to general energy functions that can be adapted
to a large variety of physical systems. In addition, we provide an
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algebraic recipe for unified treatment of Voronoi cell faces and clip-
ping geometry, enabling simulation of cellular systems coupled to
moving or deformable boundaries.

Adaptive Meshes. Adapting meshes to ensure given quality cri-
teria is a common strategy in many simulation contexts, including
large elastoplastic deformations [Bargteil et al. 2007; Wicke et al.
2010; Wojtan et al. 2009], fracture [Koschier et al. 2014; O’Brien et al.
2002; Pfaff et al. 2014], fluid flow [Misztal et al. 2014], and the folding
of thin sheet materials [Narain et al. 2013, 2012; Schreck et al. 2016;
Zhang et al. 2022]. Remeshing is typically applied as a post-process
after each time step, which can disturb force equilibrium and lead to
abrupt configuration changes. Coupling remeshing with time inte-
gration can avoid such artifacts [Ferguson et al. 2023]. While mesh
adaptation is often an optional improvement, topological changes
that occur, e.g., during droplet formation make remeshing compul-
sory [Brochu and Bridson 2009]. The applications that we consider
in this work likewise involve inherent topology changes as cells split,
collapse, or switch neighbors. However, our differentiable Voronoi
diagrams eliminate the need for explicit remeshing, as the mesh is
given implicitly through the Voronoi sites.

Equilibrium-Constrained Optimization. Differentiable simulation
is a core technology for solving equilibrium-constrained optimiza-
tion problems in graphics and beyond. Examples include material pa-
rameter estimation [Bickel et al. 2009; Hahn et al. 2019; Miguel et al.
2012; Yan et al. 2018], elastic shape optimization [Chen et al. 2014;
Ly et al. 2018; Panetta et al. 2017], inflatables [Panetta et al. 2021;
Skouras et al. 2014], clothing design [Montes et al. 2020; Umetani
et al. 2011; Wang 2018], and trajectory optimization [Geilinger et al.
2020; Hu et al. 2019]. Unlike existing methods that impose equi-
librium constraints on explicit triangle or tetrahedron meshes, our
formulation enables the solution of inverse problems defined on
Voronoi diagrams.

3 DIFFERENTIABLE RESTRICTED VORONOI DIAGRAMS

3.1 Generalized Voronoi Diagrams
The Voronoi cell R𝑖 for a given site 𝐶𝑖 can be defined as

R𝑖 = {𝑝 : 𝑑 (𝑝,𝐶𝑖 ) < 𝑑 (𝑝,𝐶 𝑗 )∀𝑗 ≠ 𝑖} , (1)

where 𝑑 (𝑝,𝐶) = 𝑑Euclidean (𝑝,𝐶) is the Euclidean distance between
point 𝑝 and site 𝐶 . A family of more flexible generalized Voronoi
diagrams can be constructed bymodifying the distancemetric which
defines the Voronoi cell.
Mouzarkel [1997] and Eppstein [2012] draw theoretical links

between foam structures and generalized Voronoi diagrams, inde-
pendently showing that a two-dimensional foam at equilibrium is
geometrically equivalent to a sectional multiplicative Voronoi parti-
tion (SMVP),

𝑑SMVP (𝑝,𝐶𝑖 )2 =
1
𝑘𝑖

(
𝑑Euclidean (𝑝,𝐶𝑖 )2 −𝑤𝑖

)
, (2)

for some arrangement of sites and weights𝑤 , 𝑘 . The multiplicative
weight 𝑘 gives rise to curved interfaces which, while necessary to
represent exact foam structures, significantly complicate computa-
tions of geometric properties of cells (Sec. 3.3). Analytic integration
over 3D curved surfaces such as soap films is typically impossible,

and algebraic line-surface intersection computations, required for
boundary clipping, involve solving high-order polynomials even for
simple 3D interpolating surfaces. We instead use the power diagram,

𝑑Power (𝑝,𝐶𝑖 )2 = 𝑑Euclidean (𝑝,𝐶𝑖 )2 −𝑤𝑖 , (3)

for our simulations, which maintains planar interfaces while al-
lowing for cell size variability. Sec. 4.4 demonstrates the power
diagram’s capacity to express realistic foam geometry.

3.2 Voronoi Vertices
We compute the restricted Voronoi diagram, constrained to within
a bounding domain, as described by Yan et al. [2009; 2011]. Each
restricted Voronoi vertex in𝑚 dimensions is an intersection of𝑚 hy-
perplanes, each of which is either a Voronoi bisector or a facet of the
bounding surface. In three dimensions, there are four types of ver-
tices; (a) unrestricted Voronoi vertices, i.e., intersections between three
(linearly independent) bisec-
tors, (b) boundary face vertices,
i.e., intersections between two
bisectors and one boundary
facet, (c) boundary edge ver-
tices, i.e., intersections between
one bisector and two boundary
facets, and (d) simple boundary
vertices. The generating plane equations can be expressed as simple
functions of the input degrees of freedom, i.e., the Voronoi sites
and the vertices of the boundary surface. Given as the intersection
of three planes, i.e., the solution of a 3 × 3 linear system, each 3D
Voronoi vertex can be expressed in closed-form and differentiated
with respect to the inputs.

We derive as an example the closed-form expression for the un-
restricted Voronoi vertex in 3D. Given four sites x𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )𝑇 ,
𝑖 ∈ {0, 1, 2, 3} of a Delaunay simplex, the plane equations of Voronoi
bisectors are

(𝑥 𝑗 −𝑥𝑖 )𝑥+(𝑦 𝑗 −𝑦𝑖 )𝑦+(𝑧 𝑗 −𝑧𝑖 )𝑧 =
1
2
(𝑥2

𝑗 −𝑥
2
𝑖 +𝑦

2
𝑗 −𝑦

2
𝑖 +𝑧

2
𝑗 −𝑧

2
𝑖 ) . (4)

The intersection x𝑐 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 )𝑇 of three bisectors solves the linear
system
𝑥1 − 𝑥0 𝑦1 − 𝑦0 𝑧1 − 𝑧0
𝑥2 − 𝑥0 𝑦2 − 𝑦0 𝑧2 − 𝑧0
𝑥3 − 𝑥0 𝑦3 − 𝑦0 𝑧3 − 𝑧0



𝑥𝑐
𝑦𝑐
𝑧𝑐

 =
1
2


𝑥2

1 − 𝑥2
0 + 𝑦2

1 − 𝑦2
0 + 𝑧2

1 − 𝑧2
0

𝑥2
2 − 𝑥2

0 + 𝑦2
2 − 𝑦2

0 + 𝑧2
2 − 𝑧2

0
𝑥2

3 − 𝑥2
0 + 𝑦2

3 − 𝑦2
0 + 𝑧2

3 − 𝑧2
0

 ,
for which the solution can be written using the known closed-form
expression for the 3 × 3 matrix inverse. This approach extends
to all types of boundary vertices by substituting bisector plane
equations in the linear system for plane equations of boundary facets.
Furthermore, it is easily adapted for the power diagram by adding
1
2 (𝑤𝑖 −𝑤 𝑗 ) to the right hand side of the bisector plane equation (4).
In our implementation, code for evaluating these expressions and
their derivatives is generated using a computer algebra system.

3.3 Integration over Voronoi Cells
The mechanics of cell-based systems are driven by the energies of
individual cells. Cell energies relate to properties such as surface
area and volume, which are computed by integrating over the cell
geometry. Volume integrals are also used to compute cell centroids
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and moments of inertia. Integration over a polyhedral Voronoi cell
is performed piecewise by dividing the surface and volume into
simplices. A surface integral requires triangulating each facet of the
cell and then summing the per-triangle values. A tetrahedralization
of the volume is, however, unnecessary for computing volume in-
tegrals. Rather, tetrahedra are constructed by joining each surface
triangle to the origin as shown in Fig. 2.

Fig. 2. Volume integration over a 3D Voronoi cell. From left to right: (1) 3D
Voronoi cell. (2) Face triangulation. (3) Integration tetrahedron formed by
connecting a face triangle to the origin. Tetrahedra can have positive (3) or
negative (4) volume.

In addition to avoiding an explicit tetrahedralization, including
the origin in each tetrahredron simplifies the simplex integral to a
function of three vertices instead of four. Importantly, this reduces
the number of first and second derivatives required per simplex. A
generic approach for volume integration in these tetrahedra is given
in App. A.

3.4 Energy Formulation
We simulate cell mechanics in the implicit Voronoi model by con-
sidering a potential energy of the form

𝐸 = 𝐹 (c, x(c)), (5)

where c is a vector containing the degrees of freedom of all Voronoi
sites, and x is a vector of spatial coordinates of all Voronoi vertices,
defined implicitly in terms of c. In general, an energy depending
only on x is sufficient to describe physical interactions between
cells, and explicit dependence on c is used for regularization. The
generic gradient of this energy is

d𝐸
dc

=
𝜕𝐹

𝜕x
dx
dc

+ 𝜕𝐹

𝜕c
, (6)

and the Hessian follows as

d2𝐸

dc2 =

(
dx
dc

)⊤
𝜕2𝐹

𝜕x2
dx
dc

+
(

dx
dc

)⊤
𝜕2𝐹

𝜕x𝜕c

+ 𝜕2𝐹

𝜕c𝜕x
dx
dc

+
∑︁
𝑖

(
𝜕𝐹

𝜕x𝑖
d2x𝑖
dc2

)
+ 𝜕2𝐹

𝜕c2 .

(7)

This flexible formulation permits any differentiable energy function
and is applicable to a wide range of cell-based systems. The same
computational method can be used to simulate foam as well as
biological tissue, as demonstrated in Sec. 4.

3.5 Boundary Coupling
Many cellular systems interface with external bodies or free space.
Biological tissues grow freely or within deformable membranes,
while engineering designs that utilize cellular structures must sup-
port external loads. To handle these external interactions, we define
the bounding domain of the Voronoi diagram by a triangular mesh
with vertices v(p), where p are boundary degrees of freedom. We
let y = (c, p) denote the vector holding all degrees of freedom of
the coupled system and consider a total potential energy

𝐸 = 𝐹 (c, x (c, v(p))) + 𝐹𝐵 (p) , (8)

where 𝐹 is the potential energy of the cells and 𝐹𝐵 is an additional
boundary energy which may encode, e.g., the elastic potential of an
enclosing membrane. As for the static boundary formulation, we
compute the first and second derivatives of the above expression to
use in gradient-based optimization. The gradient with respect to p
is given by

d𝐸
dp

=
𝜕𝐹

𝜕x
𝜕x
𝜕v

dv
dp

+ d𝐹𝐵
dp

. (9)

The additional blocks of the Hessian matrix are given in App. B.
This boundary coupling formulation lends extreme flexibility to the
model, enabling systems involving elastic membranes, free surfaces,
and rigid bodies in addition to fixed boundaries.

3.6 Smoothness
In the general configuration, where each Voronoi vertex in𝑚 di-
mensions is of degree𝑚 + 1, the topology of the Voronoi diagram is
constant within a neighborhood of the given state, and the vertex
coordinates x are a locally smooth function of the Voronoi sites c.
States with higher-degree vertices, which occur during topological
transitions, have undefined dx

dy which gives rise to non-smooth ener-
gies. Cell volume (area in 2D) and other volume integrals of smooth
functions are𝐶1-continuous across these transitional states, though
surface area (perimeter in 2D) is 𝐶0 as noted in [Bogosel and Oudet
2022] for the 2D case.

If cell energy is monotonic in surface area and the domain bound-
ary is convex, the gradient discontinuities are strictly concave, form-
ing local maxima in the energy landscape which do not hinder
minimization. Otherwise, the model may fail to converge using
such energy functions. Our simulations with non-convex domain
boundaries (Secs. 4.1 and 4.3) use𝐶1-continuous energies and there-
fore avoid these problems.

Degenerate configurations exist with lower-order discontinuities,
e.g. when a parallel boundary facet and Voronoi bisector overlap
(discussed in [Liu et al. 2009]) or when multiple Voronoi sites coin-
cide. However, we have not observed these states during simulation
and optimization in any of our examples.

3.7 Dynamics
We have so far considered systems at static equilibrium in which
the net internal force vanishes,

𝐹 (y) = −d𝐸
dy

= 0 . (10)
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Fig. 3. Two simulations of a rigid body propelled through a tissue-like assembly of elastic Voronoi cells. Cells are colored based on starting position. Turbulence-
like effects result in irregular displacement of cells from their starting positions. The asymmetric shape of the second body results in a curved trajectory due to
forces from neighboring cells.

We now relax the equilibrium constraint to consider dynamic cell-
based systems governed by Newton’s second law,

𝐹 (y) = M
d2y
d𝑡2 , (11)

where M is a (typically diagonal) mass matrix. We additionally
introduce viscous forces 𝐹𝑓 (y) = −𝜼 dy

d𝑡 , where 𝜼 is a diagonal
viscosity matrix. The resulting equations of motion are

M¥y + 𝜼 ¤y + d𝐸
dy

= 0 , (12)

where ¤y and ¥y denote first and second derivatives of y with respect
to time. Unless otherwise noted, we approximate these derivatives
using standard finite-differencing, i.e.,

¤y ≈ 1
ℎ
(y𝑘+1 − y𝑘 ) ,

¥y ≈ 1
ℎ2 (y𝑘+1 − 2y𝑘 + y𝑘−1) .

(13)

If the energy function is at least 𝐶1-continuous, quadratic conver-
gence can be achieved using a second-order discretization (BDF2)
for the accelerations,

¥y ≈ 1
2ℎ2 (3y𝑘+1 − 7y𝑘 + 5y𝑘−1 − y𝑘−2) . (14)

Evidence of quadratic convergence under refinement of the simula-
tion time step is shown in App. C. The equations of motion can be
solved for the next state y𝑘+1 via the optimization problem

y𝑘+1 = argmin
y

𝑎2
2
¥y⊤M¥y + 𝑎1

2
¤y⊤𝜼 ¤y + 𝐸 (y) , (15)

where 𝑎1, 𝑎2 are the y𝑘+1-coefficients of the first and second finite-
difference derivatives.Many cell-based systems operate at lowReynolds
numbers, where inertia is dominated by viscous effects. For such
cases, the momentum term can be neglected, leaving

y𝑘+1 = argmin
y

𝑎1
2
¤y⊤𝜼 ¤y + 𝐸 (y) . (16)

3.8 Equilibrium-Constrained Optimization
In addition to forward simulation, our approach can be extended to
solve inverse simulation tasks formulated as equilibrium-constrained
optimization problems. The goal is then to find optimal parameter
values for a cell-based system such that the corresponding equi-
librium state best satisfies a given objective. We demonstrate in
Sec. 4.4 that this framework is useful for characterizing real-world
cell-based systems from images.

A general equilibrium-constrained optimization problem reads

min
y,u

𝐿(y, u) s.t.
𝜕

𝜕y
𝐸 (y, u) = 0 , (17)

where 𝐿 is an objective function, y are dynamic degrees of freedom,
and u are optimization variables. The system is constrained to be
at equilibrium, hence the state y is a function of u. The gradient is
given by

d𝐿
du

=
𝜕𝐿

𝜕y
dy
du

+ 𝜕𝐿

𝜕u
, (18)

where the simulation derivatives dy
du can be computed using the

implicit function theorem,

d
du

𝜕

𝜕y
𝐸 (y, u) = 0 → dy

du
= −

(
𝜕2𝐸

𝜕y2

)−1
𝜕2𝐸

𝜕y𝜕u
. (19)

Having evaluated the objective gradient with respect to the opti-
mization variables u, we can minimize the 𝐿 using first-order or
quasi-Newton methods. Whenever the optimization parameters are
updated during this process, we recompute the equilibrium state
y(u) and ensure monotonic decrease of the objective using a back-
tracking line search.

3.9 Implementation
The method is implemented in C++ using the Eigen library [Guen-
nebaud et al. 2010] formatrix and vector operations, and the CHOLMOD
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(a) Frame 0, 𝑛 = 2000. (b) Frame 31, 𝑛 = 794. (c) Frame 50, 𝑛 = 282.

(d) Frame 65, 𝑛 = 121. (e) Frame 110, 𝑛 = 29. (f) Final equilibrium, 𝑛 = 2.

Fig. 4. Coarsening of an initially monodisperse dry foam in a flattened box. 2000 cells collapse to a two-cell equilibrium in 350 frames.

solver [Chen et al. 2008] for linear systems. Geometry processing
libraries CGAL [Yvinec 2023] and Geogram [Lévy 2015] are used
in Voronoi diagram generation. Finally, we use Polyscope [Sharp
et al. 2019] for visualization and rendering of figures. Our code can
be found at https://github.com/lnumerow-ethz/VoronoiCellSim.

4 RESULTS

4.1 Intercellular Navigation with Rigid Body
In this first 2D experiment, we simulate the propulsion of a rigid
body through a tissue-like assembly of elastic Voronoi cells. The
cell energy is given by

𝐸 = 𝑎0 (𝐴 −𝐴)2 + 𝑎1

∫
𝑥∈R

∥𝑥 − 𝑥 ∥2𝑑𝐴 + 𝑎2∥𝑐 − 𝑥 ∥2 , (20)

where 𝐴 and 𝐴 are the current and target area of the cell, 𝑥 is its
centroid, and 𝑐 is the Voronoi site position. In this and the following
examples, the final term is a regularizer on the distance between
the site and its cell centroid. The rigid body, modelled as an internal
clipping geometry with translation and rotation degrees of freedom
(see Sec. 3.5), is subject to a constant force 𝐹𝑥 to the right. We use a
dynamics model with momentum (Eq. 15) to resolve turbulence-like
effects in the system, the results of which can be observed in Fig. 3.
The curved trajectory of the rigid body in the second example is a
result of its asymmetric shape and forces applied by the surrounding
cells. This demonstrates the dynamic coupling between the cells
and boundary degrees of freedom.
For this and the following experiments, refer to App. D for pa-

rameter values and additional details for reproducibility.

4.2 Foam Coarsening
Due to pressure differences between bubbles in an equilibriated
liquid foam, gas diffuses slowly through the interfaces from smaller,
higher-pressure bubbles into larger, lower-pressure ones. As a result,

smaller foam cells collapse and the total number of foam cells in
the system decreases over time in a process known as coarsening.
This phenomenon has seen extensive research [Thomas et al. 2015;
Vedel-Larsen 2010] due to its detrimental effect in applications such
as enhanced oil recovery. Foam coarsening presents a challenge for
vertex models due to the topological changes which result from the
collapse and removal of a cell, particularly in 3D. Existing 2D vertex
models [Vedel-Larsen 2010] rely on heuristics to remove collapsing
cells and reconstruct topology, resulting in discontinuous changes
to neighboring cell volumes and to the system energy.

We simulate dry foam coarsening using amomentumless dynamic
model as described in Eq. 16. Each site has five degrees of freedom:
three spatial coordinates (𝑥,𝑦, 𝑧), a power diagram weight𝑤 and a
volume target 𝑉 representing the mass of air contained in the cell.
The energy of a cell is

𝐸 = 𝑎0

(
𝑉

𝑉
− 1

)2
+ 𝑎1𝐴 + 𝑎2∥𝑐 − 𝑥 ∥2 , (21)

where 𝑉 and 𝐴 are the volume and surface area, 𝑥 is the centroid
and 𝑐 is the Voronoi site position. The viscosity coefficients (di-
agonal entries of 𝜼 in Eq. (16)) of the site degrees of freedom are
very small, such that the system evolves quasi-statically. The larger
viscosity coefficient, corresponding to the volume target 𝑉 , repre-
sents the resistance to diffusion of air through the foam interfaces.
Fig. 4 shows the result of a large-scale 3D coarsening simulation
beginning with 𝑛 = 2000 monodisperse foam cells. Variation of
power diagram weights in our differentiable Voronoi model allows
cells to collapse smoothly to zero volume. Furthermore, our model
implicitly performs the complete topological restructuring of the
local neighborhood that results from each cell collapse. It should be
noted that the geometric accuracy of this simulation, and other foam
simulations involving wide variation of cell sizes and pressures, is
limited due to the lack of curved interfaces.
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4.3 Biological Tissue Growth
Embryonic cleavage is the process in which a complex organism
grows from a single cell via repeated cell division. It involves an
exponential increase in the number of cells and therefore a rapid in-
crease in the complexity of an organism. Cell proliferation, a similar
process that involves the growth and subsequent division of cells,
is another primary driver of tissue development. Simulation of such
processes is a common use case for computational models [Con-
radin et al. 2021; Ghaffarizadeh et al. 2018]. Our first experiment
simulates embryonic cleavage in a spherical membrane, beginning
with a single Voronoi cell. By the dynamic coupling formulation
described in Sec. 3.5, the domain boundary is deformable and subject
to its own elastic forces, with a boundary mesh edge of length ℓ

having energy 𝐸B = 𝑘ℓ2. The cell energy is

𝐸 = 𝑎0

(
𝑉

𝑉
− 1

)2
+ 𝑎1

𝑉 4/3

∫
𝑥∈R

∥𝑥 − 𝑥 ∥2𝑑𝑉 + 𝑎2

𝑉 2/3 ∥𝑐 − 𝑥 ∥2, (22)

where 𝑉 and 𝑉 are the current and rest volumes, 𝑥 is the centroid
and 𝑐 is the Voronoi site position. We simulate the evolution of
the system using a momentumless dynamic model as described
in Eq. (16). After every 𝑘 simulation time steps, each Voronoi site
is replaced by two daughter sites at positions 𝑐 ± 𝛽𝑉 1/3n, where
n is the unit normal vector to the cleavage plane. The first three
cleavages are orthogonal, after which the cleavage planes are chosen
randomly. The daughter sites are initialized with the same power
diagram weight as the parent site, and rest volume 1

2𝑉parent. The
system is simulated over 700 time steps with a division every𝑇 = 60
frames, resulting in a final cell count of 4096. In Fig. 1, the simulated
embryo is compared to frames from [van Ijken 2018] depicting
embryonic development of a salamander. While this comparison is
not intended to be quantitative, it shows that our method is able
to produce simulations qualitatively similar to real-world cellular
systems undergoing many topological changes.

A second experiment simulates cell proliferation in a cylindrical
container of radius 1, with an added gravity term and free upper
surface (Fig. 5). After each simulation step of size ℎ, each cell divides
with probability 𝑝 = 𝛼𝑉ℎ, where 𝛼 is the proliferation rate of the
tissue. The daughter sites are initialized with rest volume 1

2𝑉parent
increasing linearly to 𝛾𝑉parent over time period 𝜏 .

4.4 Characterization of Foam from Image
We apply our equilibrium-constrained optimization formulation
(Sec. 3.8) to characterize a 2D foam from an image and create a
matching computational model. The image (Fig. 6a) was taken in our
lab and depicts a soap foam between two glass plates. We manually
annotate the image, defining the vertex coordinates and the edges
in the desired tessellation. We assume a cell energy of the form

𝐸 = 𝑎0 (𝐴 −𝐴)2 + 𝑎1𝑃, (23)

where𝐴 and 𝑃 are the cell area and perimeter, and𝐴 is a target area.
This is analogous to the 3D dry foam energy used in our coarsening
simulation (Sec. 4.2). The model is initialized by placing sites at the
centroids of the cells in the annotated image, and assigning 𝐴 equal
to their area. The system is allowed to converge to equilibrium,
resulting in the pre-optimization model shown in Fig. 6b. We then

(a) Frame 0, 𝑛 = 1. (b) Frame 100, 𝑛 = 5. (c) Frame 250, 𝑛 = 24.

(d) Frame 450, 𝑛 = 87. (e) Frame 736, 𝑛 = 250. (f) Frame 1100, 𝑛 = 620.

Fig. 5. Cell proliferation in a cylindrical container. The free boundary is
coupled to the cells using a weak elastic membrane model. Random cell
divisions induce frequent and irregular topology changes throughout the
simulation.

(a) Input image. (b) Before optimization.
Objective value 0.28.

(c) After optimization.
Objective value 0.034.

Fig. 6. Construction of a Voronoi foam model from an input image using
equilibrium-constrained optimization.

perform equilibrium-constrained optimization on the area targets
𝐴 to find cell pressures matching the observed configuration. The
optimization objective is to minimize the sum of squared distances
between the annotation vertices and the corresponding Voronoi
vertices. The corresponding Voronoi vertex does not need to exist
in the tessellation; the generating expression (the circumcenter
of the three neighboring sites, or similar for boundary vertices)
is always computable. The optimization converged in 77 L-BFGS
iterations and 13 seconds of computation time. As can be seen
from Fig. 6c, the optimization successfully reduces the discrepancy
between simulated and real-world foams. It should be noted that
this procedure converges reliably to a good solution only when the
topology of the initial equilibrium state matches that in the image.

4.5 Comparison to Deformable Cell Model
To compare the accuracy and performance of our model with other
simulation methods, we construct a deformable cell model (DCM)
using Incremental Potential Contact (IPC) [Li et al. 2020] to resolve
contact between the cells. The DCM cells have 30 vertices and hence
60 degrees of freedom, while ours are power diagram cells with 3
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degrees of freedom. We use a per-cell energy of the form

𝐸 = 𝑎0 (𝐴 −𝐴)2 + 𝑎1𝑃
2, (24)

where 𝐴 and 𝑃 are the cell area and perimeter, and 𝐴 is a target
area. We use a combined target of 1.2 times the domain area such
that the DCM cells are in compression and fill the entire space.
The DCM uses an additional quadratic penalty per edge length for
regularization as well as the IPC energy. We perform a quasi-static

(a) Initial state, 1x1 domain. (b) Final state, 1.50x0.67 domain.

Fig. 7. Comparison between implicit Voronoi model (background) and de-
formable cell model (white overlay) in a 100-frame quasi-static simulation.
Identical topology changes occur in both models. Cells are colored to show
correspondence between initial and final states.

simulation with 30 cells starting in a square domain. The initial state
for the DCM is constructed by offsetting each Voronoi cell inward
and distributing vertices evenly around the perimeter, followed
by energy minimization to reach equilibrium. In each frame, the
domain is reshaped and both models are allowed to converge to a
new equilibrium. The two models behave similarly, achieving the
same final topology as shown in Fig. 7. However, the DCM required
1000 times more computation time and nearly 40 times as many
average Newton iterations to converge (see Table 1), demonstrating
the efficiency of our implicit Voronoi model.

4.6 Runtime
Runtime statistics for all simulation experiments are collected in
Table 1. Experiments are performed using a workstation with an
AMD Ryzen Threadripper PRO 5995WX CPU.

The number of iterations per frame depends highly on the number
and complexity of topological changes that occur, resulting in large
discrepancies among the 3D experiments. In the embryonic cleavage
example, few topological changes occur except in the frames imme-
diately following each simultaneous cell division. The coarsening
example is particularly expensive because many cells collapse per
frame, and cell collapse results in more complex topological changes
than intercalation. Furthermore, the energy gradient in the coars-
ening example is discontinuous across topology changes, slowing
the convergence of Newton’s method, while the other examples use
𝐶1-continuous energies.

We perform an additional experiment to measure the runtime
scaling of our method with number of cells. In a square (2D) or cube
(3D) with 𝑛 randomly placed Voronoi sites, we perform a single
Newton iteration and measure the total runtime, along with the
runtime of significant subroutines including the generation of the
Voronoi diagram, computation of the energy Hessian and solution

of the linear system (Fig. 8). As can be observed from the results,

Fig. 8. Runtime of a Newton iteration vs. number of cells for 2D (left) and
3D (right) models. In the range of problem sizes considered, the Voronoi
diagram generation (including evaluation of derivatives e.g. dx

dc ) and Hessian
computation exhibit roughly linear scaling, while the cost of solving the
linear system dominates for larger problems.

3D cases are significantly more expensive than 2D cases for similar
numbers of cells. This is primarily due to the increase in average
number of neighbors for each cell, from 6 in 2D to ∼15.5 [Meijering
1953] in 3D, leading to a much denser Hessian and a larger number
of Voronoi vertices.

5 CONCLUSIONS
We have proposed a novel simulation approach for mechanical cel-
lular systems based on differentiable Voronoi diagrams. The method
successfully addresses challenges faced by existing models in han-
dling topological transitions, while using an extremely compact
state representation that implicitly defines the shape and topology
of the interface network. We demonstrated this using a diverse
set of examples, including simulations of complex biological and
physical processes as well as comparisons to alternative models and
real-world systems.

5.1 Limitations & Future Work
The development of informative biological simulations will require
more complex energy models and the incorporation of real-world
data to determine accurate parameters. Deriving a smoother approx-
imation to the surface area of Voronoi cells would enable further
applications, including adhesion effects at biological cell interfaces.
Our model currently uses an isotropic distance metric that restricts
the space of possible cell shapes, and the method assumes planar or
piecewise linear cell interfaces. However, epithelial tissues, for ex-
ample, exhibit non-convex scutoid-shaped cells [Gómez-Gálvez et al.
2018] which permit different cell packing patterns. Extending our
method towards more complex cell shapes while retaining a com-
pact site-based representation is an interesting challenge for future
work. Voronoi diagrams are also a natural design space for foam-like
3D-printed metamaterials. This direction has been explored, e.g., by
Martinez et al. [2018], with extensions to orthotropic foams based on
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Table 1. Runtime statistics for experiments. Each frame represents one simulation time step and consists of solving a single optimization problem.

Experiment # Cells # DOF # Frames # Iter / Frame (avg / max) Time / Iter (avg) [ms] Total time [s]

Comparison (Ours) 30 90 100 5/25 2.32 1.23
Comparison (DCM) 30 1800 100 195/2621 65 1258

Tissue Growth (membrane) 4096 24070 700 3/12 3830 8521
Tissue Growth (cylinder) 620 6067 1101 10/47 1383 14970

Coarsening 2000 10000 350 51/522 1275 22996

Rigid Body 1 2000 4003 396 3/4 212 251
Rigid Body 2 2000 4003 304 3/5 213 194

Voronoi diagrams with spatially varying distance metrics [Martínez
et al. 2019]. An extension of our approach may permit gradient-
based optimization of these materials. Finally, we have investigated
a simple instance of intercellular navigation, where a rigid object is
driven by a constant force. Designing control algorithms to guide an
object through cellular systems towards a desired target is another
exciting future direction.
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The Jacobian matrix of this transformation is

𝐽 =


𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑥
𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑦
𝜕𝑤

𝜕𝑧
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑧
𝜕𝑤

 (26)

where the partial derivatives are
𝜕𝑥

𝜕𝑢
=𝑣𝑥0 + (1 − 𝑣) (𝑤𝑥1 + (1 −𝑤)𝑥2),

𝜕𝑥

𝜕𝑣
=𝑢 (𝑥0 −𝑤𝑥1 − (1 −𝑤)𝑥2),

𝜕𝑥

𝜕𝑤
=𝑢 (1 − 𝑣) (𝑥1 − 𝑥2).

(27)

A volume integral can be transformed as follows, where 𝑓 ∗ is ob-
tained by substituting equations 25 for (𝑥,𝑦, 𝑧) in 𝑓 :∭

𝑓 (𝑥,𝑦, 𝑧)𝑑𝑉 =

1∫
0

1∫
0

1∫
0

det(𝐽 ) 𝑓 ∗ (𝑢, 𝑣,𝑤) 𝑑𝑢𝑑𝑣𝑑𝑤 (28)

B HESSIAN FOR BOUNDARY COUPLING
Taking the derivative of (9), we obtain the second order terms

d2𝐸

dcdp
=

(
𝜕x
𝜕c

)⊤
𝜕2𝐹

𝜕x2
𝜕x
𝜕v

dv
dp

+
(
𝜕x
𝜕c

)⊤
𝜕2𝐹

𝜕x𝜕p

+ 𝜕2𝐹

𝜕c𝜕x
𝜕x
𝜕v

dv
dp

+
(∑︁

𝑖

𝜕𝐹

𝜕x𝑖
𝜕2x𝑖
𝜕c𝜕v

)
dv
dp

+ 𝜕2𝐹

𝜕c𝜕p
,

d2𝐸

dp2 =

(
𝜕x
𝜕v

dv
dp

)⊤
𝜕2𝐹

𝜕x2
𝜕x
𝜕v

dv
dp

+
(
𝜕x
𝜕v

dv
dp

)⊤
𝜕2𝐹

𝜕x𝜕p

+ 𝜕2𝐹

𝜕p𝜕x
𝜕x
𝜕v

dv
dp

+
(

dv
dp

)⊤ (∑︁
𝑖

𝜕𝐹

𝜕x𝑖
𝜕2x𝑖
𝜕v2

)
dv
dp

+
(∑︁

𝑖

(
𝜕𝐹

𝜕x
𝜕x
𝜕v𝑖

)
d2v𝑖
dp2

)
+ d2𝐹𝐵

dp2 ,

(29)

whichmust be added to the Hessian (7) of the fixed-boundary energy.

C DYNAMIC SIMULATION CONVERGENCE ANALYSIS
Convergence of simulations under refinement of the time step is
important for assessing the accuracy of numerical solutions. To eval-
uate the convergence of dynamic simulations using our method, we
perform a simple 2D simulation with four cells and one topological
transition, illustrated in Fig. 9. The simulation is repeated for the

Fig. 9. Approximate initial (left) and final (right) states of a dynamic simu-
lation used to assess the convergence of the implicit Voronoi model.

same total time using a range of time steps. Error measurements
in Fig. 10 show that given a sufficiently smooth energy function
and using second-order finite difference approximations (BDF2),

the dynamic simulation method presented in section 3.7 converges
quadratically. Linear convergence is achieved for 𝐶0-continuous
energy functions (such as perimeter and surface area) or using only
a first-order accurate acceleration.

Fig. 10. Final state error vs. time step for a simple 2D case including a
topological transition. Final state from highest resolution simulation is
taken as ground truth ȳ. Solid lines represent exact linear and quadratic
convergence, with steeper slope indicating higher-order convergence.

D EXPERIMENT DETAILS
In this section we provide additional details and parameters required
to reproduce the examples in Sec. 4.

Intercellular Navigation with Rigid Body. The domain is rectan-
gular with width 4m and height 2m, containing 𝑛 = 2000 cells
along with the rigid body. Other parameters are 𝐴 = 0.004 m2,
𝑎0 = 0.05 N/m3, 𝑎1 = 100.0 N/m3, 𝑎2 = 1.0 N/m, 𝐹𝑥 = 0.035 N,
ℎ = 0.01 s, 𝑚c = 0.0003 kg, 𝑚p = 0.0003 kg, 𝜂c = 0.0003 N s/m,
𝜂p = 0.003 N s/m. Here and in the following examples, 𝑚 and 𝜂

are diagonal entries of the mass matrix M and viscosity matrix 𝜼
corresponding to the site (c) and boundary (p) degrees of freedom.

Foam Coarsening. The domain is a 2m×2m×20cm box starting
with 𝑛 = 2000 cells. Other parameters are 𝑉initial = 0.0004 m3,
𝑎0 = 0.002 N m, 𝑎1 = 0.01 N/m, 𝑎2 = 0.1 N/m, 𝜂c = 0.0001 N s/m,
𝜂𝑉 = 1.0 N s/m3. The time step ℎ = 1.0

𝑛 s is adapted each frame
to the number of remaining cells 𝑛, increasing as the rate of cell
collapse slows.

Embryonic Cleavage. The initial domain is an icospherewith 4 sub-
divisions, approximating a sphere with radius 1.34m. Other parame-
ters are 𝑉initial = 10.25 m3, 𝑎0 = 50.0 N m, 𝑎1 = 5.0 N, 𝑎2 = 1.0 N m,
ℎ = 0.01 s, 𝜂c = 5.0 N s/m, 𝜂p = 0.5 N s/m, 𝛽 = 0.1.

Tissue Proliferation in Cylinder. The initial domain is a cylinder
of radius 1m whose upper deformable face comprises 2432 triangles.
Other parameters are𝑉initial = 0.113 m3, 𝑎0 = 10.0 N m, 𝑎1 = 10.0 N,
𝑎2 = 1.0 N m, ℎ = 0.01 s, 𝜂c = 0.5 N s/m, 𝜂p = 0.003 N s/m, 𝛼 =

30 m−3 s−1, 𝛽 = 0.1, 𝛾 = 0.75, 𝜏 = 0.11 s.
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