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DIFFERENTIAL INCLUSIONS INVOLVING THE CURL OPERATOR

NURUN NESHA†,1

Abstract. In this article, we study the existence of η ∈ W
1,∞
0 (Ω;Rn) satisfying

curl η ∈ E a.e. in Ω,

where n ∈ N,Ω ⊆ Rn is open, bounded and E ⊆ Λ2.
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1. Introduction and Main Results

In this paper, we study the following differential inclusion problem

curl η ∈ E a.e. in Ω

and

∫

Ω

η 6= 0 (1.1)

where Ω ⊆ Rn is open, bounded, E ⊆ Λ2(Rn), and n ≥ 4. This problem has been
studied in Bandyopadhyay-Barroso-Dacorogna-Matias [2] and Bandyopadhyay-Dacorogna-
Kneuss [3] in the lower dimensional cases, namely when dim spanE = n − 1 when n ≥ 3,
dim spanE = 3, when n = 3. In this article, we investigate the case when dim spanE ≥ n.

The most fundamental case is, of course, the gradient case which has received notable
attention, in particular, by Bressan-Flores [4], Cellina [5,6], Dacorogna-Marcellini [12] and
Friesecke [14]. An extensive study has been done in [10] on this topic. We prove a few
existence as well as non-existence results in this regard. Our main result is the following
which we will prove in section 4.

Theorem 1.1. Let n ∈ N, n ≥ 5 and E ⊆ Λ2(Rn) be such that

ω ∧ ω′ = 0 for all ω, ω′ ∈ E.
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2 N. NESHA

Let Ω ⊆ Rn be an open, bounded set. Then there exists η ∈W
1,∞
0 (Ω;Rn) such that

curl η ∈ E a.e. in Ω

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E (1.2)

and

∫

Ω

η 6= 0

if and only if 0 ∈ ricoE and dim spanE = n− 1.

The next result is about non-existence of solution when dim spanE = n which we will
discuss in section 3.

Theorem 1.2. Let n ∈ N, n ≥ 4 and Ω ⊆ Rn be open, bounded. Then the following
differential inclusion problem

curl η ∈ E a.e. in Ω and

∫

Ω

η 6= 0

has no solution η ∈ W
1,∞
0 (Ω;Rn) if dim spanE = n and meas{x ∈ Ω : curl η(x) = e} > 0

for all e ∈ E.

In [1], Ball-James considered two gradient problem and found that rank of the difference
of two gradients is less than or equal to 1 and in a similar way we can show that, in curl
case the rank of the difference will be less than or equal to 2. So, in section 4, we will see
the following theorem under taking the constraint on the set E that rank of difference of
any two elements is less than or equal to 2.

Theorem 1.3. Let n ∈ N and Ω ⊆ Rn be open, bounded set. Let E ⊆ Λ2(Rn) be such
that rank[e − f ] ≤ 2 for any e, f ∈ E, in other words, there exist x, y ∈ Rn such that

e− f = x ∧ y. Then there does not exist any η ∈W
1,∞
0 (Ω;Rn) of the following problem

curl η ∈ E a.e. in Ω

if dim spanE ≥ n+ 1 and meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E.

In section 5, we will give one existence result of solution η ∈W
1,∞
0 (Ω;Rn) at dimension

(2n− 3) for the following differential inclusion problem

curl η ∈ E a.e. in Ω,

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E.

Finally, in section 6, we show that

Theorem 1.4. Let n ∈ N, 1 ≤ k ≤ n − 3. Suppose f : Rn → Λk(Rn) be continuous such
that f(0) 6= 0 and f(0) is k-divisible, i.e., f(0) = c1 ∧ . . . ∧ ck for some ci ∈ Rn \ {0} for
i = 1, . . . , k. Then

dim span{x ∧ f(x) : x ∈ Rn} 6= n− k + 1.

The results of differential inclusion problems can be applied, embracing the notions due
to Cellina [5,6] and Friesecke [14], to obtain solutions for a non-convex variational problem.
In particular, according to [2], one can show that:

Theorem 1.5. Let Ω ⊆ Rn be a bounded, open set, 0 ≤ k ≤ n− 1 and

f : Λk+1(Rn) → R+

be lower semi-continuous. Let

inf







∫

Ω

f(dη(x))dx : η ∈W 1,∞
0

(

Ω;Λk(Rn)
)






(1.3)
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and K =
{
ξ ∈ Λk+1(Rn) : f∗∗(ξ) < f(ξ)

}
, where f∗∗ is the convex envelope of f. Assume

that K is connected and 0 ∈ K. If K is bounded and f∗∗ is affine on K then (1.3) has a
solution.

Many results as well as applications of differential inclusions can be observed in Dacorogna-
Pisante [8], Dacorogna-Fonseca [11], Dacorogna-Marcellini [12], Blasi-Pianigiani [13], Sil
[16] and Sychev [17].

2. Notations

We gather here some notations which will be used throughout this article. For more
details on exterior algebra and differential forms see [7] and for convex analysis see [9]
or [15].

(1) Let k, n be two integers.
• We write Λk(Rn) (or simply Λk) to denote the vector space of all alternating
k-linear maps f : Rn × · · · ×Rn

︸ ︷︷ ︸

k-times

→ R. For k = 0, we set Λ0(Rn) = R. Note

that Λk(Rn) = {0} for k > n and, for k ≤ n, dim
(
Λk(Rn)

)
=
(
n
k

)
.

• ∧, y, 〈; 〉 and, respectively, ∗ denote the exterior product, interior product, the
scalar product and, respectively, the Hodge star operator.

• For b ∈ Λk, rank[b] denotes the rank of the exterior k-form b.

• If {e1, . . . , en} is a basis of Rn, then, identifying Λ1 with Rn,

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}

is a basis of Λk.

• For E ⊆ Λk, spanE denotes the subspace spanned by E.
• Let W be a subspace of Λk. We write dimW to denote the dimension of W

and W⊥ to denote the orthogonal complement of W.
• For b ∈ Λk, we write, identifying again Λ1 with Rn,

Rn ∧ b = Λ1 ∧ b = {x ∧ b : x ∈ Λ1} ⊆ Λk+1.

(2) Let Ω ⊆ Rn be a bounded open set.

• The spaces C1(Ω;Λk), W 1,p(Ω;Λk) and W
1,p
0 (Ω;Λk), 1 ≤ p ≤ ∞ are defined

in the usual way.

• For η ∈W 1,p(Ω;Λk),

∫

Ω

η denotes the exterior k-form obtained by integrating

componentwise the differential form η. Explicitly, for 1 ≤ i1 < · · · < ik ≤ n,




∫

Ω

η





i1···ik

=

∫

Ω

ηi1···ik .

• For η ∈W 1,p(Ω;Λk), the exterior derivative dη belongs to Lp(Ω;Λk+1) and is
defined by

(dη)i1···ik+1
=

k+1∑

j=1

(−1)j+1∂ηi1···ij−1ij+1···ik+1

∂xij
,

for 1 ≤ i1 < · · · < ik+1 ≤ n. If k = 0, then dη ≃ grad η . If k = 1, then for
1 ≤ i < j ≤ n,

(dη)ij =
∂ηj

∂xi
−
∂ηi

∂xj
i.e., dη ≃ curl η.

(3) For subsets C, V ⊆ Λk,

• coC denotes the convex hull of C;
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• intV C denotes the interior of C with respect to the topology relative to V.
(4) For a convex set C ⊆ Λk,

• aff C denotes the affine hull of C which is the intersection of all affine subsets
of Λk containing C;

• riC denotes the relative interior of C which is the interior of C with respect
to the topology relative to affine hull of C. Equivalently riC = intaff C C;

• rbdC denotes the relative boundary of C which is C \ riC.
(5) For a set A ⊆ Rn meas(A) denotes the Lebesgue measure of A.
(6) R+ denotes the set of all non-negative real numbers.

3. Non Existence of Solution: Dimensionality of E

In this section, we will prove a non-existence result, namely, that there is no η ∈
W

1,∞
0 (Ω;Rn) satisfying

curl η ∈ E, a.e. in Ω,

∫

Ω

η 6= 0,

when dim spanE = n. The following lemma plays the main role.

Lemma 3.1. Let n ∈ N, n ≥ 4 and let f : Rn → Rn be continuous with f(0) 6= 0. Then

dim span{x ∧ f(x) : x ∈ Rn} 6= n.

Remark 3.2. Lemma 3.1 is not true when n = 3. Let us define f : R3 → R3 by

f(x) := (e1 ⊗ e1)x+ e2, for all x ∈ R3.

Then dim span{x ∧ f(x) : x ∈ R3} = 3. To see this, we note that e1 ∧ f(e1) = e1 ∧ e2, e3 ∧
f(e3) = −e2 ∧ e3, and (e1 + e3) ∧ f(e1 + e3) = e1 ∧ e2 − e2 ∧ e3 − e1 ∧ e3.

Proof. Let us set
S := span{x ∧ f(x) : x ∈ Rn}.

We prove by contradiction. Let us suppose to the contrary that dimS = n . Note that,
Rn ∧ f(0) ⊆ S, see Proposition 2.2 of [3]. Furthermore, we can find x0 ∈ Rn such that
x0 ∧ f(x0) ∧ f(0) 6= 0. Indeed, if this was not the case, we would have

x ∧ f(x) ∧ f(0) = 0 for all x ∈ Rn.

Cartan’s lemma, see Theorem 2.42 of [7], then guarantees the existence of ux ∈ Rn satis-
fying

x ∧ f(x) = ux ∧ f(0) for all, x ∈ Rn,

which implies that
S = Rn ∧ f(0).

This is a contradiction as dim(Rn ∧ f(0)) = n− 1 [ Lemma 2.1 of [3] ], whereas dimS = n.

Therefore, we indeed have a x0 ∈ Rn \ {0} such that

x0 ∧ f(x0) ∧ f(0) 6= 0.

Since f is continuous at x0, there exists an ǫ > 0 such that

x ∧ f(x) ∧ f(0) 6= 0 for all x ∈ Bǫ(x0).

Let us find a basis {a1, . . . , an} of Rn inside Bǫ(x0). Then

ai ∧ f(ai) ∧ f(0) 6= 0 for all i = 1, . . . , n. (3.1)

Let us write

S = [Rn ∧ f(0)]⊕ [Rn ∧ f(0)]⊥ = [Rn ∧ f(0)]⊕ span{ω},

where ω ∈ [Rn ∧ f(0)]⊥ \ {0}. For each i = 1, . . . , n, we have

ai ∧ f(ai) = ci ∧ f(0) + βiω, (3.2)



DIFFERENTIAL INCLUSIONS INVOLVING THE CURL OPERATOR 5

for some ci ∈ Rn and βi ∈ R. Note that, thanks to equation 3.1, we have βi 6= 0, for all
i = 1, . . . , n. It follows from Equation 3.2 that, for all i = 1, . . . , n,

βi ω ∧ f(0) ∧ ai = 0.

Since βi 6= 0 for every i = 1, . . . , n, we have

ω ∧ f(0) ∧ ai = 0 for every i = 1, . . . , n,

which implies that ω ∧ f(0) = 0 as {a1, . . . , an} is a basis of Rn. Using Proposition 2.16
of [7], we also note that

〈f(0)yω;x〉 = (−1)(1+1)〈ω; f(0) ∧ x〉

= 0, for all x ∈ Rn,

as ω ∈ S ∩ [Rn ∧ f(0)]⊥ . It follows that f(0)yω = 0. This, combined with ω ∧ f(0) = 0
and Proposition 2.16 of [7] implies that

‖f(0)‖2ω = f(0)y (f(0) ∧ ω) + f(0) ∧ (f(0)y ω) = 0.

Since f(0) 6= 0, we have ω = 0, which is a contradiction. Therefore dim span{x ∧ f(x) :
x ∈ Rn} 6= n. �

Theorem 3.3. Let n ∈ N with n ≥ 4, let Ω ⊆ Rn be open, bounded and let E ⊆ Λ2(Rn).

Then there is no η ∈W
1,∞
0 (Ω;Rn) satisfying

curl η ∈ E a.e. in Ω and

∫

Ω

η 6= 0 (3.3)

if

(i) dim spanE = n, and
(ii) meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E

Remark 3.4. Theorem 3.3 is not true when n = 3, see Theorem 4.15 of [2]. The solution

η constructed in the proof of Theorem 4.15 of [2] has the property that

∫

Ω

η 6= 0.

Remark 3.5. The case n ≤ 3 has been done completely in [2]. We don’t need to take the
case

∫

Ω

η 6= 0 for n ≤ 3.

Proof. Let
P : Λ2(Rn) → Λ2(Rn)

be the projection onto the orthogonal complement of spanE. Since η ∈ W
1,∞
0 (Ω;Rn)

extending η by 0 to Rn, it follows that

P(curl η) = 0 a.e. in Rn.

Applying the Fourier transform, we obtain

P(x ∧ η̂(x)) = 0 for all x ∈ Rn

which implies that
x ∧ η̂(x) ∈ spanE for all x ∈ Rn,

where η̂(x) =

∫

Rn

η(y) cos(2π〈x; y〉)dy. Together with the Proposition 2.2 of [3] and the

above we can conclude that

Rn ∧ η̂(0) ⊆ span{x ∧ η̂(x) : x ∈ Rn} ⊆ spanE. (3.4)

We will now show that
span{x ∧ η̂(x) : x ∈ Rn} = spanE.
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Suppose not, i.e., span{x ∧ η̂(x) : x ∈ Rn} $ spanE. Let m ∈ span{x ∧ η̂(x) : x ∈ Rn}⊥.
Then

〈x ∧ η̂(x);m〉 = 0 for all x ∈ Rn.

Using Plancherel Theorem, this implies that

〈curl η(x);m〉 = 0 for all x ∈ Rn a.e.

and hence
〈e;m〉 = 0 for all e ∈ E.

This gives us that m ∈ (spanE)⊥. So, spanE ⊆ span{x ∧ η̂(x) : x ∈ Rn}. Therefore

dim span{x ∧ η̂(x) : x ∈ Rn} = n.

But it can not happen because of lemma 3.1. Thus there does not exist any solution
η ∈W

1,∞
0 (Ω;Rn) of the problem (3.3) if dim spanE = n. �

4. Restrictions on the Curl Set

In this section, we will see that dim spanE ≤ n if we add one constraint on E that
rank[e − f ] ≤ 2 for any e, f ∈ E, where E ⊆ Λ2(Rn) and n ≥ 4. In lemma 4.1, we will
prove it for n = 4 and in lemma 4.6, we will do it for n ≥ 5. Let us notice here one thing
that between two statements ‘rank[e − f ] ≤ 2 for any e, f ∈ E’ and ‘e ∧ f = 0 for all
e, f ∈ E’, the later one will always imply the first one but the converse may not be true.
We have given one example in remark 4.5(ii) in this respect. Finally, we will establish
Theorem 4.8. Let us first prove the lemma below.

Lemma 4.1. Let E ⊆ Λ2(R4) be such that rank[e − f ] ≤ 2 for all e, f ∈ E. Then
dim spanE ≤ 4.

Proof. Let V := Λ2(R4). Let us define a bilinear map B : V × V → R by

B(u, v) := c(u ∧ v) for all u, v ∈ V,

where c(u ∧ v) ∈ R is such that

u ∧ v = c(u ∧ v)e1 ∧ e2 ∧ e3 ∧ e4.

Clearly, B is symmetric and non-degenerate. For any subspace F ⊆ V, let us define

F̃ := {v ∈ V : B(v, f) = 0 for all f ∈ F}.

As B is non-degenerate, the map

B1 : V → V ∗, defined by v 7→ B(v, .)

is one-one and hence onto. Therefore, the map

B2 : V → F ∗, defined by v 7→ B(v, .)

is also onto because it can be written as B2 = ψ ◦B1, where ψ : V ∗ → F ∗. Hence

dimV = dimkerB2 + dimF ∗.

Clearly, kerB2 = F̃ and dimF ∗ = dimF . So

dimF + dim F̃ = dimV. (4.1)

Now suppose that F ⊆ V is an isotropic subspace, i.e., B|F×F = 0. In other words, F ⊆ F̃ .

In this case, we can say from (4.1) that

dimV = dimF + dim F̃

≥ dimF + dimF,

i.e., dimF ≤ dimV
2 = 3. Therefore, if F ⊆ V is any isotropic subspace of V, then dimF ≤ 3.

Now suppose that E ⊆ V is such that for any e, f ∈ E, there exist x, y ∈ R4 such that
e− f = x ∧ y, i.e., rank[e− f ] ≤ 2. We will show that dim spanE ≤ 4.
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In contrary, let us suppose that E contains five linearly independent elements ζ0, ζ1, ζ2, ζ3,
ζ4 and let

ξi := ζ i − ζ0 for i = 1, 2, 3, 4.

As every ξi has rank less than or equals to 2,

ξi ∧ ξi = 0 for all i = 1, 2, 3, 4 [see proposition 2.37(iii) of [7]]

i.e.,

B(ξi, ξi) = 0 for all i = 1, 2, 3, 4.

Now ξi − ξj = ζ i − ζj and (ζ i − ζj) ∧ (ζ i − ζj) = 0 so (ξi − ξj) ∧ (ξi − ξj) = 0, i.e.,
B(ξi − ξj, ξi − ξj) = 0 for i, j ∈ {1, 2, 3, 4}. This implies that

ξi ∧ ξj = 0 for all i, j ∈ {1, 2, 3, 4}.

If we take

F = {ξi : i = 1, 2, 3, 4} and F ′ := spanF

then

B|F ′×F ′ = 0, i.e., F ′ is an isotropic subspace of V

and dimF ′ = 4. It contradicts that dimF ′ ≤ 3. Therefore, E can not contain 5 linearly
independent elements. Hence dim spanE ≤ 4. �

We will state two trivial lemmas below, the proofs of which are straightforward. We will
use these lemmas 4.2 and 4.3 in the proofs of lemmas 4.4 and 4.6.

Lemma 4.2. Let n ∈ N and n ≥ 3. Let {ω, ω′} be a linearly independent subset of Λ2(Rn)
such that rank[ω] = 2, rank[ω′] = 2 and ω ∧ ω′ = 0. Then dim[ker{ω}⊥ ∩ ker{ω′}⊥] = 1.
Also dim[ker{ω} ∩ ker{ω′}] = n− 3.

Proof. As rank[ω] = rank[ω′] = 2, let us suppose that

ω = x ∧ y and ω′ = x′ ∧ y′ where x, y, x′, y′ ∈ Rn.

Again since ω ∧ ω′ = 0, the set {x, y, x′, y′} is linearly dependent [see Theorem 2.3, [7]].
This gives us that

ker{ω}⊥ ∩ ker{ω′}⊥ 6= {0},

because ker{ω}⊥ ∩ ker{ω′}⊥ = span{x, y} ∩ span{x′, y′} = {0} implies that {x, y, x′, y′} is
linearly independent, which is a contradiction. Hence

dim[ker{ω}⊥ ∩ ker{ω′}⊥] ≥ 1.

Now if dim[ker{ω}⊥ ∩ ker{ω′}⊥] = 2 then clearly,

ker{ω}⊥ ∩ ker{ω′}⊥ = ker{ω}⊥ = ker{ω′}⊥,

since dimker{ω}⊥ = dimker{ω′}⊥ = 2. This implies that

span{x, y} = span{x′, y′}, i.e., {ω, ω′} is linearly dependent,

which is a contradiction. Therefore dim[ker{ω}⊥ ∩ ker{ω′}⊥] = 1.
For the second part,

dim[ker{ω} ∩ ker{ω′}] = n− dim[{ker{ω} ∩ ker{ω′}}⊥]

= n− [dim ker{ω}⊥ + ker{ω′}⊥]

= n− [dim ker{ω}⊥ + dimker{ω′}⊥ − dim{ker{ω}⊥ ∩ ker{ω′}⊥}]

= n− [2 + 2− 1], as dim{ker{ω}⊥ ∩ ker{ω′}⊥} = 1

= n− 3.

Therefore dim[ker{ω} ∩ ker{ω′}] = n− 3. �
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Lemma 4.3. Let n ∈ N and b ∈ Rn \ {0}. Let {ω1, ω2, . . . , ωm} ⊆ Rn ∧ b be a linearly
independent subset, where m ∈ N,m ≤ n− 1. If ωi = xi ∧ b for some xi ∈ Rn, i = 1, . . . ,m
then {b, x1, . . . , xm} is linearly independent.

Proof. Let αb+ α1x1 + · · · + αmxm = 0, where α,α1, . . . , αm ∈ R. Then

0 = 0 ∧ b = (αb+ α1x1 + · · ·+ αmxm) ∧ b

= α1x1 ∧ b+ · · ·+ αmxm ∧ b

= α1ω1 + · · ·+ αmωm.

As {ω1, . . . , ωm} is linearly independent, αi = 0 for i = 1, . . . ,m. So αb = 0 and this gives
α = 0. Therefore {b, x1, . . . , xm} is linearly independent. �

Now let us consider n ≥ 5. Using this lemma 4.4 below we will prove another main
lemma 4.6 of this section which states that dim spanE ≤ n if rank[e − f ] ≤ 2 for any
e, f ∈ E.

Lemma 4.4. Let E ⊆ Λ2(Rn) \ {0}, n ≥ 5. Let dim spanE = n − 1 and ω ∧ ω′ = 0 for
any ω, ω′ ∈ E, then

⋂

ω∈E

ker{ω}⊥ 6= {0}.

Proof. Let {ω1, ω2, . . . , ωn−1} be a basis of spanE and

Ai := ker{ωi}, i = 1, 2, . . . , n− 1.

Now two cases may arise:
Case 1 : In this case, let there exists 1 ≤ i < j < k ≤ n− 1 such that

dim(A⊥
i ∩A⊥

j ∩A⊥
k ) = 1.

Without loss of generality, let

dim(A⊥
1 ∩A⊥

2 ∩A⊥
3 ) = 1.

If

4⋂

i=1

A⊥
i = {0}, then together with dim(A⊥

1 ∩A⊥
2 ∩A⊥

3 ) = 1 and ω4 ∧ω4 = 0, we can say

that
(A⊥

1 ∩A⊥
2 ∩A⊥

3 ) = span{b}

and
ω4 = α ∧ β with dim span{α, β, b} = 3 for some α, β, b ∈ Rn \ {0}.

Now let
ω1 = x ∧ b, ω2 = y ∧ b, ω3 = z ∧ b for some x, y, z ∈ Rn \ {0},

the existence of x, y, z follows from Cartan’s lemma, see Theorem 2.42 of [7]. As {ω1, ω2, ω3}
is linearly independent, it follows from lemma 4.3 that

{x, y, z, b} is linearly independent.

If possible, let all of {α, β, b, x}, {α, β, b, y} and {α, β, b, z} are linearly dependent. Then
we see that

x, y, z ∈ span{α, β, b}

and therefore
span{x, y, z} = span{α, β, b}.

This gives
b ∈ span{x, y, z},

which is a contradiction because {x, y, z, b} is linearly independent. Now without loss of
generality let {α, β, x, b} is linearly independent then clearly

ω4 ∧ ω1 6= 0



DIFFERENTIAL INCLUSIONS INVOLVING THE CURL OPERATOR 9

which contradicts our hypothesis that

ωi ∧ ωj = 0 for all 1 ≤ i < j ≤ 4.

Therefore
4⋂

i=1

A⊥
i 6= {0} and hence we can say that

4⋂

i=1

ker{ωi}
⊥ =

3⋂

i=1

ker{ωi}
⊥, (4.2)

as dim
3⋂

i=1
ker{ωi}

⊥ = 1. By similar argument, we can again show that

5⋂

i=1,i 6=4

ker{ωi}
⊥ =

3⋂

i=1

ker{ωi}
⊥. (4.3)

From equations (4.2) and (4.3) we can say that

5⋂

i=1

ker{ωi}
⊥ =

[
4⋂

i=1

ker{ωi}
⊥

]
⋂





5⋂

i=1,i 6=2

ker{ωi}
⊥





=

3⋂

i=1

ker{ωi}
⊥. (4.4)

Thus we can assert that
3⋂

i=1

A⊥
i = A⊥

1 ∩A⊥
2 ∩A⊥

3 ∩A⊥
k for all k ∈ {4, 5, . . . , n− 1}.

Therefore
n−1⋂

i=1

A⊥
i =

n−1⋂

i=4

(

A⊥
1 ∩A⊥

2 ∩A⊥
3 ∩A⊥

i

)

(4.5)

= A⊥
1 ∩A⊥

2 ∩A⊥
3 . (4.6)

This implies that

dim

(
n−1⋂

i=1

A⊥
i

)

= 1.

Therefore
n−1⋂

i=1

A⊥
i = span{b} for some b ∈ Rn \ {0}

and hence
spanE = span{ω1, ω2, . . . , ωn−1} = Rn ∧ b.

Case 2 : In this case we let

A⊥
i ∩A⊥

j ∩A⊥
k = {0} for any 1 ≤ i < j < k ≤ n− 1.

As n ≥ 5, there exists l ∈ {1, 2, . . . , n− 1} \ {i, j, k} such that

dimA⊥
l = 2 and A⊥

i ∩A⊥
j ∩A⊥

k ⊆ A⊥
l .

This gives us dim(A⊥
l + (A⊥

i ∩A⊥
j ∩A⊥

k )) = 2 and so

dim(Al ∩ (Ai +Aj +Ak)) = n− 2. (4.7)

Because of A⊥
i ∩A⊥

j ∩A⊥
k = {0},

A⊥
i ∩A⊥

j ∩A⊥
k ∩A⊥

l = {0}
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and it follows that

dim(Ai +Aj +Ak +Al) = n.

Now

dim(Ai +Aj +Ak +Al) = dimAi + dimAj + dimAk + dimAl

− dim(Aj ∩Ak)− dim(Aj ∩Al)− dim(Ak ∩Al)

+ dim(Aj ∩Ak ∩Al)− dim(Ai ∩ (Aj +Ak +Al))

= (n− 2)× 4− (n− 3)× 3 + dim(Aj ∩Ak ∩Al)− (n− 2).

[using lemma 4.2 and equation 4.7]

= dim(Aj ∩Ak ∩Al).

That is, dim(Aj ∩Ak ∩Al) = n. But n ≥ 5, so dim(Aj ∩Ak ∩Al) ≥ 5. Also

Aj ∩Ak ∩Al ⊆ Aj ∩Ak

and dim(Aj ∩Ak) = n− 3 by lemma 4.2. So dim(Ai ∩Aj ∩Ak) can not be equal to n for
n ≥ 5. Thus we are getting contradiction and it follows that case 2 can not happen. �

Remark 4.5.

(i) We can not apply the proof of the above lemma 4.4 for Λ2(R4), i.e., if E ⊂ Λ2(R4)
such that dim spanE = 3 and ω ∧ ω′ = 0 for any ω, ω′ ∈ E then it may not
happen that spanE = R4 ∧ b for some b ∈ R4 \ {0} because if we take the set E as
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} then E can not be written as a subset of R4 ∧ b for any
b ∈ R4 \ {0}. Importantly, case 2 of the above lemma is true for this example.

(ii) The aforementioned lemma is not true if we replace the case ω ∧ ω′ = 0 for all
ω, ω′ ∈ E with rank[ω − ω′] ≤ 2 for any ω, ω′ ∈ E. For example, if we take E as

E = {e2 ∧ e3, e2 ∧ e3 + e1 ∧ e2, e2 ∧ e3 + e1 ∧ e3, . . . , e2 ∧ e3 + e1 ∧ en−1}

for n ∈ N and n ≥ 5, then dim spanE = n − 1 but spanE can not be written as
Rn ∧ b for any b ∈ Rn. For n = 4, we can simply take the set {e2 ∧ e3, e2 ∧ e3+ e1∧
e2, e2 ∧ e3 + e1 ∧ e4}.

We will use the following lemma in Theorem 4.8.

Lemma 4.6. Let n ∈ N, n ≥ 5 and E ⊂ Λ2(Rn) be such that rank[e − f ] ≤ 2 for any
e, f ∈ E. Then dim spanE ≤ n.

Remark 4.7. For n = 4, we have done separate proof of this lemma in 4.1 because we will
use lemma 4.4 in the proof below which may not hold for n = 4.

Proof. We will show that dim spanE ≤ n if we take rank[e− f ] ≤ 2 for any e, f ∈ E. Let
us suppose that E contains n+ 1 linearly independent elements ω0, ω1, . . . , ωn. Let

ψi := ωi − ω0, i = 1, . . . , n.

The set {ψi : i = 1, . . . , n} is linearly independent set with

ψi ∧ ψj = 0 for any i, j.

Indeed, ψi − ψj = ωi − ωj and (ωi − ωj) ∧ (ωi − ωj) = 0, i.e., (ψi − ψj) ∧ (ψi − ψj) = 0.
Therefore from lemma 4.4 we can say that there exists b ∈ Rn \ {0} such that

span{ψ1, . . . , ψn−1} = Rn ∧ b.

Similarly there exists b′ ∈ Rn \ {0} such that

span{ψ2, . . . , ψn} = Rn ∧ b′.
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As n ≥ 5, we can say from lemma 4.2 that

ker{ψ2}
⊥ ∩ ker{ψ3}

⊥ =

n−1⋂

i=1

ker{ψi}
⊥

and

ker{ψ2}
⊥ ∩ ker{ψ3}

⊥ =

n⋂

i=2

ker{ψi}
⊥

as dim[ker{ψ2}
⊥ ∩ ker{ψ3}

⊥] = 1. Therefore

Rn ∧ b = span{ψ1, . . . , ψn−1} = Rn ∧ b′ = span{ψ2, . . . , ψn},

which is a contradiction because {ψ1, . . . , ψn} is a linearly independent set.
Hence dim spanE ≤ n. �

Let us prove the main theorem on differential inclusions of this section using the previous
lemma 4.6 and Theorem 3.3.

Theorem 4.8. Let n ∈ N, n ≥ 5 and E ⊆ Λ2(Rn) be such that

ω ∧ ω′ = 0 for all ω, ω′ ∈ E.

Let Ω ⊆ Rn be an open, bounded set. Then there exists η ∈W
1,∞
0 (Ω;Rn) such that

curl η ∈ E a.e. in Ω

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E (4.8)

and

∫

Ω

η 6= 0,

if and only if 0 ∈ ricoE and dim spanE = n− 1.

Proof. If there exists η ∈W
1,∞
0 (Ω;Rn) such that

curl η ∈ E a.e. in Ω

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E (4.9)

and

∫

Ω

η 6= 0,

then from Theorem 2.5 of [3] we can say that

dim spanE ≥ n− 1.

As E has the property that ω ∧ ω′ = 0 for any ω, ω′ ∈ E, it implies that

rank[ω − ω′] ≤ 2 for any ω, ω′ ∈ E.

Hence from lemma 4.6 it follows that

dim spanE ≤ n.

Now for dim spanE = n, there does not exist any solution η ∈W
1,∞
0 (Ω;Rn) of the problem

(4.9) which directly follows from Theorem 3.3. Hence dim spanE = n − 1. Using lemma
2.4 of [3], it holds that 0 ∈ ricoE.

Conversely, if dim spanE = n− 1, then using lemma 4.4 there exists b ∈ Rn \ {0} such
that spanE = Rn ∧ b. Now a solution η exists satisfying (4.8) from corollary 3.9 of [3].

�

Remark 4.9. For n = 4, the necessary part of the above theorem is true and it follows
from Theorem 3.3 and lemma 4.1. But the converse part is not true because spanE may
not be written as R4 ∧ b for some b ∈ R4 \ {0} always.
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5. Existence of Solution: Dimension 2n-3

In this section, we will see one existence result of solution η ∈W
1,∞
0 (Ω;Rn) at dimension

(2n− 3) for the following differential inclusion problem

curl η ∈ E a.e. in Ω,

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E.

Let n ∈ N, n ≥ 4. Let E ⊆ Λ2(Rn) \ {0} and dim spanE = 2n− 3 where E = {e1 ∧ e2, e1 ∧
e3, . . . , e1 ∧ en,−e1 ∧ e2,−e1 ∧ e3, . . . ,−e1 ∧ en, e2 ∧ e3, e2 ∧ e4, . . . , e2 ∧ en,−e2 ∧ e3,−e2 ∧
e4, . . . ,−e2 ∧ en}. Clearly, spanE = Rn ∧ e1 + Rn ∧ e2. Let us write E = E1 ∪ E2, where

E1 = {e1 ∧ e2, e1 ∧ e3, . . . , e1 ∧ en,−e1 ∧ e2,−e1 ∧ e3, . . . ,−e1 ∧ en}

and

E2 = {e2 ∧ e1, e2 ∧ e3, . . . , e2 ∧ en,−e2 ∧ e1,−e2 ∧ e3, . . . ,−e2 ∧ en}.

Then, spanE1 = Rn ∧ e1, spanE2 = Rn ∧ e2 and 0 ∈ ricoE1 ∩ ricoE2.
Step-1: Let G = I1 × I2 × · · · × In be open unit cube in Rn, where Ii = (0, 1) for each

i = 1, . . . , n. Let us divide the domain G into two parts as follows:

G1 =

(

0,
1

2

)

× I2 × · · · × In

and

G2 =

(
1

2
, 1

)

× I2 × · · · × In.

Clearly, G1, G2 are open, bounded sets in Rn. Then there exist η1 ∈ W
1,∞
0 (G1;Rn) and

η2 ∈W
1,∞
0 (G2;Rn) such that

curl η1 ∈ E1 a.e. in G1

and

curl η2 ∈ E2 a.e. in G2.

Let us define a mapping η ∈W
1,∞
0 (G;Rn) by

η(x) =

{

η1(x), if x ∈ G1 a.e.

η2(x), if x ∈ G2 a.e.

Then

curl η ∈ E a.e. in G,

i.e., there exists η ∈W
1,∞
0 (G;Rn) such that

curl η ∈ E a.e. in G,

meas{x ∈ Ω : curl η(x) = e} > 0 for all e ∈ E,

where dim spanE = 2n− 3 and spanE = Rn ∧ e1 + Rn ∧ e2.
Step 2: Let Ω ⊆ Rn be an open, bounded set. Using Vitali’s covering theorem, there

exists a sequence {Gk : k ∈ N}, where Gk’s are translated and dilated sets of G (closure of
G) and G is as defined in step-1 above such that

Gk ⊆ Ω for each k ∈ N,

Gh ∩Gk = ∅ for all h, k ∈ N, h 6= k,

meas

(

Ω \
⋃

k∈N

Gk

)

= 0.
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Let Gk := ak+tkG, where ak ∈ Rn and tk ∈ R\{0}. Let us define a map η ∈W 1,∞
0 (Ω;Rn)

by

η(z) =







η
(
z−ak
tk

)

, if z ∈ Gk

0, if z ∈ Ω \
⋃

k∈N

Gk.

Clearly, η ∈W
1,∞
0 (Ω;Rn) and

curl η ∈ E a.e. in Ω.

Thus we are getting a solution η ∈ W
1,∞
0 (Ω;Rn) for the following differential inclusion

problem

curl η ∈ E a.e. in Ω,

meas{z ∈ Ω : curl η(z) = e} > 0 for all e ∈ E.

6. The Case of a k-form

In this section, we will generalize lemma 3.1 to exterior k-form.

Theorem 6.1. Let n ∈ N, 1 ≤ k ≤ n − 3. Suppose f : Rn → Λk(Rn) be continuous such
that f(0) 6= 0 and f(0) is k-divisible, i.e., f(0) = c1 ∧ . . . ∧ ck for some ci ∈ Rn \ {0} for
i = 1, . . . , k. Then

dim span{x ∧ f(x) : x ∈ Rn} 6= n− k + 1.

Proof. Let
S := span{x ∧ f(x) : x ∈ Rn}.

Let us suppose to the contrary that dimS = n− k + 1. We know that

Rn ∧ f(0) ⊆ S, (6.1)

from proposition 2.2 of [3]. Therefore

S = (Rn ∧ f(0))⊕ span(ω),

for some ω ∈ Λk+1(Rn) \ {0}. Using proposition 2.16 of [7], we can write

〈f(0)yω;x〉 = (−1)k+1〈ω; f(0) ∧ x〉

= 0, because ω ∈ [Rn ∧ f(0)]⊥ for all x ∈ Rn.

Therefore
f(0)y ω = 0. (6.2)

Let us choose x0 ∈ Rn such that x0∧f(x0) ∈ Λk+1 \(Rn∧f(0)). Such an x0 exists because
Rn ∧ f(0) $ S. Since Λk+1 \ (Rn ∧ f(0)) is open, it follows from the continuity of f that,
for some ǫ > 0

x ∧ f(x) ∈ Λk+1 \ (Rn ∧ f(0)),

for all x ∈ B(x0, ǫ).

Let us choose a basis {a1, . . . , an} of Rn within B(x0, ǫ). Then for each j ∈ {1, 2, . . . , n},
we find βj ∈ R and bj ∈ Rn such that

aj ∧ f(aj) = bj ∧ f(0) + βjω.

Note that, βj 6= 0 for all j ∈ {1, 2, . . . , n}.

We have f(0) = c1 ∧ · · · ∧ ck. Let 1 ≤ r ≤ k be fixed. Then for all j ∈ {1, . . . , n},

βj(ω ∧ cr ∧ aj) = 0

implies that
(ω ∧ cr) ∧ aj = 0 for all j = 1, . . . , n.
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This gives us

ω ∧ cr = 0 for all r ∈ {1, . . . , k}.

Therefore, we have

ω = (c1 ∧ . . . ∧ ck) ∧ ω′

for some ω′ ∈ Rn, where ciyω′ = 0 for all i = 1, . . . , k.

Since (c1 ∧ . . . ∧ ck)yω = 0 [from equation (6.2)], we have ω′ = 0.

Hence ω = 0, a contradiction. This proves the theorem. �

Remark 6.2. For k = n − 2 and n ≥ 4, there exists a continuous function such that the
above Theorem 6.1 fails. For example, let us take f : Rn → Λn−2(Rn) defined by

f(x1, . . . , xn) = (x1 + 1)e1 ∧ · · · ∧ en−2 + x2 e
1 ∧ · · · ∧ en−3 ∧ en−1,

for all x = (x1, . . . , xn) ∈ Rn. Then

x ∧ f(x) = (x1e
1 + · · ·+ xne

n) ∧ f(x)

=
(
(−1)n−3xn−2x2 + (−1)n−2xn−1(x1 + 1)

)
e1 ∧ · · · ∧ en−1

+ (−1)n−2xn(x1 + 1)e1 ∧ · · · ∧ en−2 ∧ en

+ (−1)n−2xnx2e
1 ∧ · · · ∧ en−3 ∧ en−1 ∧ en.

Clearly, dim span{x ∧ f(x) : x ∈ Rn} has dimension n− (n− 2) + 1 = 3.
For k = n− 1, the above Theorem 6.1 is trivially true.
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