arXiv:2404.18815v1 [math.DS] 29 Apr 2024

Bifurcations for Lagrangian systems and geodesics

Guangcun Lu*

Preliminary version

Abstract In this paper we shall use the abstract bifurcation theorems developed
by the author in previous papers to study bifurcations of solutions for Lagrangian
systems on manifolds linearly or nonlinearly dependent on parameters under various
boundary value conditions. As applications, many bifurcation results for geodesics on
Finsler and Riemannian manifolds are derived.
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Introduction

Basic assumptions and conventions. Let M be a n-dimensional, connected C7 submanifold of RV,
Its tangent bundle T'M is a C®-smooth manifold of dimension 2n, whose points are denoted by
(z,v), with € M and v € T, M. The bundle projection 7 : TM — M, (z,v) — x is C°. Let g
be a C% Riemannian metric and I, a C7 isometry on (M, g), i.e., I,: M — M is C" and satisfies
9((Ig)«(u), (Ig)«(v)) = g(u,v) for all u,v € TM. (Thus the Christoffiel symbols F;k and the
exponential map exp : TM — M are C°.) Without special statements, A denotes a topological
space.

This paper is a continuation of our program on variational bifurcations beginning at [33,
34, 35]. Using the abstract bifurcation theory developed in [34, 36] we studied bifurcations for
solutions of several types of Hamiltonian boundary value problems [37]. The current manuscript
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focuses on bifurcations research for the following Lagrangian boundary value problem:

4 (0,271 A(0.5(0)) — 4 La(0.9(0).3(0)) = 0 Ve € 0.7],
(7(0),v(1)) e N and (0.1)
v LA (0,7(0),%(0))[vo] = OvLa(T,7(7), ¥(7))[v1] V(vo,v1) € T((0) ()N

with respect to a continuous family {yy|A € A} of solutions of this problem, where N is a
submanifold M x M, (precisely N is either a product of two submanifolds in M or the graph of
an Riemannian isometry on (M,g)), and L : A x [0,7] x TM — R is as in Assumption 1.1. If
every neighborhood of (p,7,) in A x C*([0, 7]; R?") contains a point (A, ay) ¢ {(A\, 1) | A € A}
satisfying (0.1) we say (p,7,) to be bifurcation point of (0.1) in A x C1([0, 7]; R*") with respect
to the trivial branch {(A,7,) | A € A}. Using the Morse index m~(Ex,7,) and nullity m®(Ex, )
at v, of C? functionals

CL0.7): M) 5 R, v Ex(y) = /0 " Lt A1), 3(0)dt

on CL([0,7]; M) = {y € C([0,7]; M) | (v(0),7(7)) € N} we shall characterize the following
questions:

(1) Under what conditions (u,~,) is a bifurcation point in the above sense?

(2) What are the necessary (resp. sufficient) condition for a given point (u,~,) to be a bifur-
cation point in the above sense?

(3) How is the solutions of (0.1) distributed near a bifurcation point (u,,) as above ?
Let A(Ex,va) == [m™(Ex,7n), m™ (Ex, a) + mY(Ex,72)]. Roughly speaking, our answers are:

(a) If A is path-connected and there exist two points AT, A~ € A such that A(Ey—,vy-) N
A(Ext,7ar) = 0, and either m%(Ex+,ya+) = 0 or mY(E5-,7v,-) = 0, then there exists a
bifurcation point (u,7,) as above.

(b) If A is first countable and there exist two points AT, A~ € A in any neighborhood of some
p € A satisfying the properties as in (a), (p,7,) is a bifurcation point. Conversely, for a
bifurcation point (p,,) it must hold that m®(&,,~,) > 0. possesses the above properties.

(c) If A is a real interval, o € Int(A), then the solutions of (0.1) near a bifurcation point (s, y,)
have alternative bifurcations of Rabinowitz’s type (as in [51]) provided that m®(€y,v,) = 0
for each A € A\ {u} near p, and m™(Ex,7x) take, respectively, values m™(E,,v,) and
m ™ (Epus V) + mP(Epy i) as A € A varies in two deleted half neighborhoods of .

More results and assumptions are precisely stated in Section 1. Proofs are based on the abstract
theory in [34, 36] and Appendix in [37]. These constitute Part I of this paper.

Clearly, many bifurcation theorems of geodesics on Riemannian manifolds can be immediately
obtained as direct consequences of results in Part I. For geodesics on Finsler manifolds there are
questions corresponding to (1)-(3) above. Using a technique by the author [31] we may derive
similar answers from the above (a)-(c). These are completed in Part II.

To the author’s knowledge there only are a few results on geodesic bifurcations in the liter-
ature. The following classical result was first proved by Morse-Littauer [45] for analytic Finsler
spaces, and then was generalized to the C* Finsler space by Savage [53]. See Warner [55] for a
new proof.
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Theorem 0.1. The exponential map exp® of a C™ Finsler space (M, F) is not locally injective
near any critical point.

Precisely speaking, if v € T,M \ {0} is a critical point of expf then there exist two sequences
(vi), (v}) € T,M \ {v} converging to v such that v # vi and exp} (v}) = expl (v}) for each
k € N. That is, we have always at least two distinct geodesics from p to some point of any
neighborhood of expf'(v) near the geodesic [0,1] 5 ¢ — expy (tv). Theorem 0.1 is absolutely not
trivial because the C* map R? > (z,y) — (23,y) € R? is a bijection and has singularity at each
point of the y axis.

In the case of a two-dimensional Riemannian manifold Klingenberg used geometrical tech-
niques to study bifurcation at a conjugate point on a geodesic ([22, complement 2.1.13]) and
geodesic bifurcations in the case of a smoothly varying family of Riemannian metrics (][22, section
3.4]). There are several generalizations of these to bifurcation of geodesics in semi-Riemannian
manifolds and Lorentzian manifolds; see [14, 15, 19, 49] and the references therein. For exam-
ple, if there exists a nondegenerate conjugate instant to € (0,1) along a geodesic v : [0,1] — M
in a semi-Riemannian manifold (M, g) with sgn(tg) # 0, Piccione, Portaluri and Tausk [49,
Corollaries 5.5 and 5.7] concluded that ~(tp) is a bifurcation point along 7 and that the ex-
ponential map exp,g) is not injective on any neighborhood of tp%(0). For a lightlike geodesic
z:]0,1] — M in a Lorentzian manifold (M, g), Javaloyes and Piccione [19, Corollary 11] showed
that z(tp) with 9 € (0,1) is conjugate to z(0) along z if and only if the exponential map
exp : AN (Ugepo,i{v € ToyM | g(v,v) # 0}) — M is not locally injective around #(Z(0).

Using a bifurcation result (Theorem 1.9) about Euler-Lagrange curves of Lagrangian systems
we derive a bifurcation theorem about Finsler geodesics, Theorem 10.5, whose following special
form greatly improved Theorem 0.1.

Theorem 0.2. Let M C RN be a C” manifold and let F : TM — R be a C% Finsler metric. If
v s a critical point of the restriction expf,J of the exponential map TM D D > u + exp’ (u) € M
to D, :=DNT,M, then one of the following alternatives occurs:

(i) There exists a sequence (vi) of distinct points in Dy \ {v} converging to v, such that
exp) (vy) = expl (v) for each k =1,2,---.

(ii) For every A € R\ {1} near 1 there exists vy € Dy \ {v} such that expl (Avy) = exp} (\v)
and vy — v as A — 1.

(iii) Given a small neighborhood O of v in D) there is an one-sided neighborhood A* of 1 in R
such that for any X\ € A*\ {1}, there exist at least two points vi and v3 in O\{v} such that
expg()\vl)f) = expg()\v) for each k = 1,2. Moreover the points vl and vi above can also
be chosen to satisfy F(vy) # F(v3) if dim Ker (Dexpg(v)) > 1 and O\ {v} only contains
finitely many points, vy, -+ ,Vm, such that expg()\vi) = expg()\v), i=1,---,m.

There exist examples to show that the latter two cases of Theorem 0.2 cannot appear. For
example, if M = S" is the n-sphere with the round metric, then the geodesics are great circles,
and the cut locus of the south pole is the north pole. Suppose that p is the south pole and the
norm of v € TS™ is equal to 7 (the length of semi-great circle). Then exp,,(v) is the north pole.
It is easily seen that only (i) in Theorem 0.2 occurs.

As a continuation of this article, Part I will be generalized to Lagrangian systems of higher
order in [39]. We shall also prove similar results to those of Part II for other geometrical
variational problems such as minimal submanifolds, harmonic maps, and so on in [40].



Part 1
Bifurcations of Lagrangian systems

1 Statement of main results

1.1  Bifurcations for Lagrangian trajectories connecting submanifolds

Assumption 1.1. Let (M, g) be as in “Basic assumptions and conventions” in Introduction.
For a real 7 > 0 and a topological space A, let L : A x [0,7] x TM — R be a continuous
function such that for each C? chart o : U, — a(U,) C R" and the induced bundle chart
Ta:TM|y, — a(Uy) x R" C R™ x R™ the function

LY: A x[0,7] x a(Uy) x R* = R, (A t,q,0) — L(\t, (Ta) (g, v))

is C? with respect to (¢, ¢, v) and strictly convex with respect to v, and all its partial derivatives
also depend continuously on (A, t,q,v). Let Sy and S; be two boundaryless and connected
submanifolds of M of dimensions less than dim M.

By [48, Theorem 4.2], for each integer 1 < i < 4, C%([0,7]; M) is a C°~* Banach manifold
modeled on the Banach space C%([0, 7]; R") with the tangent space

T,C([0,7]; M) = C'(v*TM) = {¢ € C*([0, 7[; RY) | £(t) € T M Yt}
at v € C*([0,7]; M). Thus
Coesy ([0,7]; M) = {7 € C1([0,7]; M) | (7(0), (7)) € So x St} (1.1)
is a C* Banach submanifold of C'([0,7]; M). Its tangent space at v € C§, g, ([0,7]; M) is
Ciyxs, (Y TM) :={€ € CH(Y"TM)[(£(0),&(7)) € Tiy0)4(1))(So X S1)}
which is dense in the Hilbert subspace
W s, (V' TM) = {& € WH(y*TM) | (£(0),€(7)) € Ti0p(1y)(So x S1)} (1.2)

of WH2(y*TM) (consisting of all W12-sections of the pull-back bundle v*T'M — [0, 7]) with
inner product given by

€ = [ e+ [ (vgew). Vs (13)
(using the L? covariant derivative along v associated to the Levi-Civita connection V9 of the

metric ¢g). Hereafter (u,v) = g(u,v) for u,v € TM.
For each A € A, as in the proof of the first claim in [35, Proposition 4.2] we get that

En: CL o (0,7]: M) 5 R, 7 /0 " Lt 4(0)dt (1.4)

is a C? functional. A path vy € Céoxsl ([0, 7]; M) is a critical point of £ if and only if it belongs
to C2([0,7]; M) and satisfies the Euler-Lagrange equation

(LA, 4(0)) — ALt 4(1),5(1) = 0 5 € [0,7] (15)



and the boundary condition

(7(0), (7)) € So x S1 and
9L (0,7(0),4(0))[vo] = 0 Vug € T (9)So, (1.6)
O LA(7,7(7), ¥(7)[n1] =0 Vor € T, 7) 51

By [11], the second-order differential D2&y (7o) of €y at such a critical point vy can be extended
into a continuous symmetric bilinear form on W;fx s, (7*TM) with finite Morse index and nullity

m”(Ex,70) and  m®(Ex, 7).

Assumption 1.2. Under Assumption 1.1, for each A € A let v\ € C%([0,7]; M) satisfy (1.5)-
(1.6). It is also assumed that Ax[0,7] 3 (A, t) — Y (t) € M and Ax[0,7] 5 (A, t) — () e TM
are continuous, that is, for any C? coordinate chart ¢ : W — ¢(W) C R™, maps

(1) = Gom)B), (A1) o (6o (D)
are continuous.

Definition 1.3. Let X = W;fxsl([o,T];M) (or C§, s, ([0,7]; M), or C%, ., ([0,7]; M)). For
€ A, we call (u,7,) a bifurcation point of the problem (1.5)—(1.6) in A x X with respect to the
branch {(A,vx) | A € A} if there exists a point (Ag,70) in any neighborhood of (u,7,) in A x X
such that 79 # 7, is a solution of (1.5)~(1.6) with A = Xg. Moreover, (u,7,) is said to be a
bifurcation point along sequences of the problem (1.5)—(1.6) in A x X with respect to the branch
{(A\, 7)) | A € A} if there exists a sequence {(Ag,7*)}r>1 in A x X, converging to (u,7,) such
that each v* # 7, is a solution of (1.5)~(1.6) with A = A, k = 1,2,---. (These two notions are
equivalent if A is first countable.)

Recall that an isolated critical point p of a C'-functional f on a Banach manifold M is said
to be homological visible if there exists a nonzero critical group C,,(f, p; K) for some Abel group
K.

Theorem 1.4. Let Assumptions 1.1, 1.2 be satisfied, and p € A be such that * ~,(0) # v,(7)
in the case dim Sy > 0 and dim S7 > 0.

(I) (Necessary condition): Suppose that (p,7,) is a bifurcation point along sequences of the
problem (1.5)-(1.6) with respect to the branch {(A\,vx) | A € A} in A x Cé‘oxsl([o’T];M)'
Then m°(E,,7,) > 0.

(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to pi, (A, ) and ()\z), such that one of the following conditions is satisfied:

(IL.1) For each k € N, either Tt is not an isolated critical point of 8/\?, OT Yy~ s not an
isolated critical point of £ o OT Yk (resp. fy)\;) is an isolated critical point of 5)\:
(resp. 5)\]:) and Cm(gAZ”YAZ;K) and C’m(é’)\;,’y)\;;K) are not isomorphic for some
Abel group K and some m € Z.

!This assumption is to guarantee the existence of a Riemannian metric g on M such that Sy (resp. S1) is totally
geodesic near -y, (0) (resp. v,(7)) when we reduce the problems to Euclidean spaces in Section 3.1.1. Therefore
it is not needed if M is an open subset in Euclidean spaces and Sp and S; are linear subspaces. Actually, when
¥u(0) = v.(7) we only need a weaker condition that there exists a coordinate chart (U, ¢) around this point on
M such that ¢(So NS1 NU) is the intersection ¢(U) of the union of two linear subspaces in R".



(IL2) For each k € N, there exists A\ € {\{,\;} such that vy is an either nonisolated or
homological visible critical point of £ , and

[m_ggA;aVA;)a m_(,g)\;77/\’:) + mo(og)\ga'b\; )] (*k)

N[m (g,\;ﬂFa')/)J)am (5)\?'7)\2‘) +m (SA;:VY)\;)] = 0.

(I1.3) For each k € N, (x1) holds true, and either mO(E)\;,’yAI;) =0 or mo(é’/\z,’y/\:) =0.

Then there exists a sequence {(Ag,v")}es1 in A x C%, x5, (10,7]; M) converging to (t,7,)
such that each v* # vy, is a solution of the problem (1.5)-(1.6) with A = A\, k=1,2,-- -,
where A = {u, )‘;7)‘1; |k € N}. In particular, (p,7,) is a bifurcation point of the prob-
lem (1.5)-(1.6) in A x C%, x5, (10,7]; M) respect to the branch {(A\,7)| A € A} (and so
{(Am) A e A}).

Theorem 1.5 (Existence for bifurcations). Let Assumptions 1.1, 1.2 be satisfied, and let A be
path-connected. Suppose that there exist two points AT, A\~ € A such that one of the following
conditions is satisfied:

(i) Fither vy+ is not an isolated critical point of Ex+, or yx- is not an isolated critical point of
Ex—, orya+ (resp. ya-) is an isolated critical point of Ex+ (resp. Ex-) and Cpy(Ex+,va+; K)
and Cp(Ex—, 72— K) are not isomorphic for some Abel group K and some m € Z.

(i) [m~(Ex— =)y m™ (Ex— =) +m (Ex-, 1) IN[m™ (Exr, yat ), m™ (Ext, Yar ) +m 2 (Exs, 1a+)]
= 0, and there exists A € {\T, A"} such that v, is an either non-isolated or homological
visible critical point of E.

(iit) [m~(Ex—va-)ym ™ (Ex—, 1A= )+mO (Ex—, 1 )IN[m ™ (Exe, at), m™ (Ext, ot )+mO(Ext, 1at)]
=0, and either m®(Ex+,x+) =0 or m(Ex-,12-) = 0.

Then for any path o : [0,1] — A connecting A* to A\~ such that Y,(5)(0) # Ya(s)(T) for any
s € [0,1] in the case dim Sy > 0 and dimS; > 0, there exists a sequence (A;) C ([0, 1])
converging to some pu € «([0,1]), and solutions v # v, of the problem (1.5)—(1.6) with A\ = X,
k = 1,2,---, such that |[y* — Ylle2omyy = 0 as k — oo (In particular, (p,7,) is a
bifurcation point along sequences of the problem (1.5)—(1.6) in A x Cgoxsl ([0, 7]; M) with respect
to the branch {(\,7x) |\ € A}.) Moreover, u is not equal to A\* (resp. A=) if mY(Ext, 7\ +) =0
(resp. m(Ex-,72-) =0).

Theorem 1.6 (Alternative bifurcations of Rabinowitz's type). Under Assumptions 1.1, 1.2 with
A being a real interval, let p € Int(A) satisfy v,(0) # v,(7) (if dimSy > 0 and dim S; > 0)
and m°(Eu,v,) > 0. If mO(Ex,va) = 0 for each X € A\ {u} near p, and m=(Ex,7y) take,
respectively, values m™(E,,vu) and m™(Ey, ) + m°(Eu,vu) as A € A varies in two deleted half
neighborhoods of u, then one of the following alternatives occurs:

(i) The problem (1.5)-(1.6) with A = p has a sequence of solutions, v, # Yu, k = 1,2,---,
which converges to 7y, in C*([0,7], M).

(ii) For every A € A\ {u} near u there is a solution oy # vyx of (1.5)-(1.6) with parameter
value A, such that ay — 7y converges to zero in C2([0,7],RN) as X\ — p. (Recall that we
have assumed M C RY.)



(iii) For a given neighborhood W of v, in C*([0,7], M), there is an one-sided neighborhood
A° of u such that for any A € A°\ {u}, (1.5)-(1.6) with parameter value \ has at least
two distinct solutions in W, ’y)l\ # 7\ and 'y?\ # v, which can also be chosen to satisfies
Ex(V)) # Ex(V}) provided that m®(E,,v,) > 1 and (1.5)-(1.6) with parameter value A has
only finitely many distinct solutions in W.

When M is an open subset in R”, the conditions in Assumptions 1.1, 1.2 in theorems above
can be weakened, see Theorems 3.5, 3.6, 3.7.

Assumption 1.7. Let Sy be a boundaryless submanifold of M of dimension dim Sy < dim M,
and let L : [0,7] x TM — R be C? and fiberwise strictly convex, that is, for each (t,q,v) €
[0,7] x TM the bilinear form 0y, L(t, q,v) is positive definite.

Under Assumption 1.7, a C? curve v : [0,A\] — M with A € (0, 7] is called a Euler-Lagrange
curve of L emanating perpendicularly from S if it solves the following boundary problem

4 (70, 4(1)) = ALt 7(0), (1) =0, 0 <1<, } (1.7
7(0) € So and 9, L(0,7(0),7(0))[v] = 0 Yo € T () So-

In particular, if Sy consists of a point p we call a Euler-Lagrange curve of L starting at p. Since
L is C?, with a local coordinate chart it may follow from [6, Proposition 4.3] that the Euler-
Lagrange curves of L are C3. Clearly, for each s € (0, \] the Euler-Lagrange curve s := Yj0,s]
of L emanating perpendicularly from Sy is a critical point of the C? functional

Lg, s(a) = / L(t,a(t), &(t))dt (1.8)
0
on the C* Banach manifold

Oy (3 ([0, 81: M) = {a € CH([0, 5]; M) | a(0) € Sp, a(s) = () } - (1.9)

We say s € (0, \] to be a Sp-focal point along ~ if the linearization of (1.7) on [0, s] (called the the
Jacobi equation of the functional Lg, ;) has nonzero solutions, i.e., the second order differential
D2Lg, s(7s) of Lg,.s at s is degenerate; moreover dim Ker(D2Lg, s(7s)) is called the multiplicity
of s, denoted by 1/50 (5) or m%(Lsy.s,7s)-

As done in [49, Definition 6.1] for geodesics, similar to Jacobi’s original definition of conjugate
points along an extremal of quadratic functionals (cf. [13, Definition 4, page 114]) we introduce:

Definition 1.8. Under Assumption 1.7, u € (0,)) is called a bifurcation instant for (Sp,7) if
there exists a sequence (tx) C (0, \] converging to p and a sequence of Euler-Lagrange curves of
L emanating perpendicularly from Sy, vk : [0, A\] = M, such that

AR (tr) = ~(tg,) for all k € N, (1.10)
0< |y - Ylerqoryy = 0 as k — oo. (1.11)

As proved in Lemma 2.6(ii), using local coordinate charts we can derive from the basic
existence, uniqueness and smoothness theorem of ODE solutions that the limit of (1.11) is
equivalent to any one of the following two conditions:

b Hryk - ’YHCQ([O,/\],RN) —0as k — oco.

e 7:(0) — v(0) and 4%(0) — (0).



Theorem 1.9. Under Assumption 1.7, let v : [0,7] — M be a Euler-Lagrange curve of L
emanating perpendicularly from Sy. Then:

(i) There exists only finitely many So-focal points along ~y.
(ii) If p € (0,7] is a bifurcation instant for (So,~), then it is a So-focal point along .

(iii) If p € (0,7) is a Sp-focal point along v, then it is a bifurcation instant for (So,~y), and one
of the following alternatives occurs:

(iii-1) There exists a sequence distinct C® Euler-Lagrange curves of L emanating perpendic-
ularly from Sy and ending at v(p), ag : [0,u4] = M, ag # vljou, k= 1,2,---, such
that ;. — Yljo,u 0 C?([0, 1), RY) as k — oc.

(iii-2) For every A € (0,7) \ {u} near u there exists a C3 FEuler-Lagrange curves of L
emanating perpendicularly from So and ending at (), ax : [0,A] = M, ax # vljo .\
such that [[ax — [ llc2onry) = 0 as A — p.

(iii-3) For a given small € > 0 there is an one-sided neighborhood A* of p such that for any
A € A\ {u}, there exist at least two distinct C3 Euler-Lagrange curves of L emanating
perpendicularly from Sy and ending at YN, B [0,A] = M, Bi # Yo, @ = 1,2,
to satisfy the condition that |85 — Ylpxllcr ey < € @ = 1,2. Moreover, if the
multiplicity of v(u) as a Sp-focal point along v is greater than one and there exist
only finitely many distinct C® Euler-Lagrange curves of L emanating perpendicularly
from Sy and ending at ¥(\), a1, am, such that |l — Y|l ey) < €
i=1,---,m, then the above two distinct C°® L-curves ﬁﬁ\ * 7‘[0Nf 1=1,2, can also
be chosen to satisfy

A A
/OL(t,ﬁi(t),Bi(t))dt#/o L(t, B3 (t), B3()) dt. (1.12)

Remark 1.10. If M is an open subset in the Euclidean space, we may assume that L in
Assumption 1.7 and Theorem 1.9 is C?, see Theorems 3.5, 3.7.

1.2 Bifurcations for generalized periodic solutions of time dependent La-
grangian systems

Assumption 1.11. Let (M, g) be as in “Basic assumptions and conventions” in Introduction,
let I, be a C7 isometry on (M, g), and let (7, A, L) be as in Assumption 1.1. For each A € A let
v € C2([0,7]; M) satisfy the following boundary problem

(0L, 5(1)) = 9Lt A1) 4(1) =0, 0t < 7,
I,(7(0)) = 7(r) and dl,(7(0)) | %2 (0,7(0),5(0))] = Z2(7,7(), (7).

Suppose also that AXR 3 (A, t) — v\ (t) € M and A xR 3 (A, t) — 4\ (t) € TM are continuous,

(1.13)

Consider the following C* Banach submanifold of C*([0,7]; M) of codimension n,
Cr, (10, 7); M) = {y € C*([0,7); M) | Ig(+(0)) = ~(7)}. (1.14)
Its tangent space at v € C'ng([O, T]; M) is

CL,(y*TM) := T,C{ ([0, 7); M) = {£ € C'(+*T M) | dlly(v(0))[£(0)] = £()},
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which is dense in the Hilbert subspace
W2 (" TM) = {¢ € H'(y*TM) | dly(+(0))[£(0)] = &()}

of WH2(y*T M).
For each A € A, as above we have a C? functional

Ex: C]Ilg([O,T];M) - R, v /07' L(t,y(t),4(t))dt. (1.15)

By [6, Proposition 4.2] v € C'ng([O,T];M ) is a critical point of € if and only if it belongs to
C3([0,7]); M) and satisfy (1.13). By [11], the second-order differential D?E(7) of €, at such
a critical point v can be extended into a continuous symmetric bilinear form on WHIQ’2(7*T M)
with finite Morse index and nullity

m7(Ex,7) and m2(Ex, 7). (1.16)

Definition 1.12. In Definition 1.3, “Wé(’)zxsl ([0,7); M) (or C4 ., ([0, 7]; M), or CF . 5, ([0, 7]; M))”
is replaced by “W; ([0, 7]; M) (or G ([0, 7]; M), or CZ ([0, 7); M))”, and “(1.5)~(1.6)" is replaced
by “(1.13)”.

Theorem 1.13. Let Assumption 1.11 be satisfied, and p € A.

(I) (Necessary condition): Suppose that (11,7,) is a bifurcation point along sequences of (1.13)
with respect to the branch {(\,vx) |\ € A} in C]Ilq([O,T]; M). Then m°(€,,7,) > 0.

(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to p, (A, ) and (/\g), such that one of the following conditions is satisfied:

(I1.1) For each k € N, either Tt is not an isolated critical point of 8/\;, T Y- is not an
isolated critical point of 8/\;, O Ynk (resp. ’y)\;) s an isolated critical point of 8/\:
(resp. 8)\’:) and C’m(é’)\z,’y/\:; K) and C’m(E)\g,’y)\;;K) are not isomorphic for some
Abel group K and some m € Z.

(I1.2) For each k € N, there exists A € {\[, A } such that vy is an either nonisolated or
homological visible critical point of €y , and

(M= (€ ) m ™ (Ex—s7a o) + mO(g/\;’%\;)] } (2%,)

N~ (Exr o)™ (Exrs vy ) + (€ 73)] = 0.
(I1.3) For each k € N, (2x) holds true, and either mO(S/\;,fy)\;) -0 or mO(g/\z’%\:) —0

Then there exists a sequence {(Ag, v*)}x>1 in A x C]%g([(), 7]; M) converging to (u,yu) such
that each ~* # Y, 18 a solution of the problem (1.13) with A = X\, k = 1,2,---, where
A= {u, MO AL [k € NY. In particular, (p,7,) is a bifurcation point of the problem (1.13)
in A x 0]129([0,7']; M) respect to the branch {(\,7x) | A € A} (and so {(A,7x) | A € A}).

Theorem 1.14 (Existence for bifurcations). Let Assumption 1.11 be satisfied, and let A be path-
connected. Suppose that there exist two points N\, A\~ € A such that one of the following condi-
tions is satisfied:
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(i) Either yy\+ 1is not an isolated critical point of Ex+, or - is not an isolated critical
point of Ex—, or v+ (resp. ~yx-) is an isolated critical point of Ex+ (resp. € -) and
Con(Ext, 7+ K) and Cp(Ex-,72—; K) are not isomorphic for some Abel group K and
some m € 7.

(i) [m(Ex-7a-)sm™ (Ex= 1= )+mO(Ex—, M= )IN[m™ (Exs, Yt ), m™ (Ext, Yar)+mO (Ext, Ya+)]
= 0, and there exists X\ € {\*,\"} such that v is an either non-isolated or homological
visible critical point of €.

(iii) [m=(Ex—, ), m™ (Exy 1o )FmP(Ex, )M~ (Ext, 1ot ), m™ (Ext, 1os )+mO(Ext, ot )]
=0, and either m®(Ex+, vy +) =0 or m(Ex—,yy-) = 0.

Then for any path o : [0,1] — A connecting AT to A\~ there exists a sequence (\x) C a([0,1])
converging to some i € «([0,1]), and solutions v* # ~y, of the problem (1.13) with X = )\,
k = 1,2,---, such that ||y* — Yllc2omyy — 0 as k — oo. (In particular, (u,7u) s a
bifurcation point along sequences of the problem (1.13) in A X Cfg([O, T]; M) with respect to the
branch {(\,7x) | A € A}.) Moreover, pu is not equal to A\t (resp. X\~ ) if m2(Ex+,vat) =0 (resp.
m2(Ex-,7a-) = 0).

Theorem 1.15 (Alternative bifurcations of Rabinowitz's type). Under Assumption 1.11 with A
being a real interval, let p € Int(A) satisfy m®(E,,7v,) > 0. If mP(Ex,7x) = 0 for each A € A\{u}
near p, and m~(Ex,ya) take, respectively, values m™(Eu,7v,) and m™(Eyy ) + m°(Eu, ) as
A € A wvaries in two deleted half neighborhoods of p, then one of the following alternatives
occurs:

(i) The problem (1.13) with A = p has a sequence of solutions, v, # Yu, k =1,2,---, which
converges to vy, in C*([0,7], M).

(ii) For every A € A\ {u} near pu there is a solution ay # vx of (1.13) with parameter value
A, such that a — vy converges to zero in C%([0,7],RY) as X — u. (Recall that we have
assumed M C RN .)

(iii) For a given neighborhood W of ~, in C]Ilg([O,T];M), there is an one-sided neighborhood

A° of i such that for any A € A\ {u}, (1.13) with parameter value X has at least two
distinct solutions in W, v3 # v and v # v, which can also be chosen to satisfies
Ex(v)) # Ex(V3) provided that m°(E,,~y,) > 1 and (1.13) with parameter value X\ has only
finitely many distinct solutions in V.

Assumption 1.16. In Assumption 1.11, the interval [0,7] is replaced by R, and L is also
required to be I -invariant in the following sense:

L\t +7,14(z),dly(x)[v]) = L\ t,z,v) Y(t,z,v) € R x TM. (1.17)

The problem (1.13) is replaced by

4 (10 4(2)) - 0Ll A0, (1) =0t € R, } (1.18)
I(v(#) =~(t+7) VieR.

Solutions of (1.18) are also called I,-periodic trajectories with period 7 ([9]). When I, generates
a cyclic group, that is, it is of finite order p € N, every I ,-periodic trajectory is pr-periodic.
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A C? curve v : R — M satisfies (1.18) if and only if it is a critical point of the C? functional
defined by

R R ARIORIO (119
on a C* Banach manifold X} (M,1,), where
XM, 1,) = {y € CUR, M) | Ty(4(8) = A(t+7) V), i=0,1,2,.  (1.20)

Clearly, a solution v of the problem (1.18) restricts to a solution 7|y - of (1.13). Conversely,
any solution v* of (1.13) may extend into that of (1.18), v : R — M, via

y(t) = (I)*(v*(t — k7)) if kT < t < (k + 1)7 with +k € N. (1.21)
Moreover, for a solution «y of (1.18) we call

m (€x,7) i=m; (Ex o) and ml(€y,y) :=m(Ex,V]j0,n) (1.22)

the Morse index and nullity of €, at -, respectively, where m; (€x,7]j05) and m2(Ex,7]j0.1])
are as in (1.16). These are well-defined by [9, §4].
Theorem 1.13, 1.14, 1.15 immediately leads to the following two results, respectively.

Theorem 1.17. Let Assumption 1.16 be satisfied, and p € A.

(I) (Necessary condition): Suppose that (p,7,) is a bifurcation point along sequences of the
problem (1.18) in A x X}(M,1,;) with respect to the branch {(A,vx)|X € A}. Then

mg(em'ﬁt) # 0.

(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to pi, (A, ) and ()\z), such that one of the following conditions is satisfied:

(I.1) For each k € N, either Tnt is mot an isolated critical point of (’E/\:, T Yz is mot an
isolated critical point of G)\’:, or Yzt (resp. 'y)\]:) s an isolated critical point of GA:
(resp. QE)\;) and Cm(Qf/\;:,'y/\z; K) and Cm(QE/\;,'y)\;;K) are not isomorphic for some
Abel group K and some m € Z.

(IL.2) For each k € N, there exists A € {\[, A\ } such that vy is an either nonisolated or
homological visible critical point of €y , and

- - 0
[m (_6,\;77)\;)77” (_e,\;77)\;) +m (06)\;77)\;)] (3%5)
ﬂ[m (QEA;CH’AkJr)am (Gxﬁaf)’)\z)“‘m (QE)\LH'Y)\;‘)] = 0.

(IL.3) For each k € N, (3x) holds true, and either mO(Ci/\;,’yA;) =0 or mo((’f/\z,’h:) =0.

Then there exists a sequence {(Ak,7*)}i=1 in A x X2(M,1,) converging to (fty Yu) such
that each v* # vy, is a solution of the problem (1.18) with A = M\, k = 1,2,---, where
A={p, A5 AL |k € NY. In particular, (p,~,) is a bifurcation point of the problem (1.18)
in A x X2(M,1,) respect to the branch {(\, 1) | X € A} (and so {(\, 1) | A € A}).

Theorem 1.18 (Existence for bifurcations). Let Assumption 1.16 be satisfied, and let A be path-
connected. Suppose that there exist two points N\, A\~ € A such that one of the following condi-
tions is satisfied:
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(i) Either vy\+ 1is not an isolated critical point of €y+, or vy- is not an isolated critical
point of Ex—, or yy+ (resp. 7\-) is an isolated critical point of €x+ (resp. €,-) and
Cn(Ex+,7+; K) and Cp(Ex—,vy—; K) are not isomorphic for some Abel group K and
some m € 7.

(i) [m(&x—, )y m ™ (Ex—, ya-)+mO(Ex—, 1a-)N[m ™ (Exr, e )y m (Exs, yar ) +m0 (€, o))
= 0, and there exists X € {\T,\"} such that vy is an either non-isolated or homological
vistble critical point of €.

(ili) [m™(Ex=,7a-),m ™ (Ex—, 1= )+mO(Ex—, 1A=V~ (Exe, 1ok ), m™ (Exe, ot ) +mO (€, 7+ )]
=0, and either m®(€y+,y+) =0 or m®(€y-,y,-) =0.

Then for any path « : [0,1] — A connecting AT to A\~ there exists a sequence (\g) C ([0, 1]

converging to u € o([0,1]), and solutions v* # vy, of the problem (1.18) with A = A, k =

1,2,---, such that (v* — )l — 0 in C%([0,7;RY) as k — oo. (In particular, (u,7,) is

a bifurcation point along sequences of the problem (1.18) in A x X2(M,1,;) with respect to the

branch {(\, 7)) | X € A}.) Moreover, u is not equal to AT (resp. A=) if m2(€y+,vy+) =0 (resp.
0 —

mT(QE/\—a’Y)\_) - 0)

Theorem 1.19 (Alternative bifurcations of Rabinowitz's type). Under Assumption 1.16 with A
being a real interval, let p € Int(A) satisfy m2(€,,v,) # 0. Suppose that m2(€y,v\) = 0
for each X € A\ {u} near p, and that m7(Ey,vy) take, respectively, values m; (€,,~,) and
my (€, vu) + m2(€E,,v,) as X € A wvaries in two deleted half neighborhoods of u. Then one of
the following alternatives occurs:

(i) The problem (1.18) with A = p has a sequence of solutions, v, # vu, k =1,2,---, such that
Vi = Y in X2(M, 1) (or equivaliently vy [0,7] = Yul[o,r] converges to zero in C?([0,7],RY)).

(ii) For every A € A\ {u} near p there exists a solution oy # vx of (1.18) with parameter
value A, such that ||(ax —v\)ljo,nllc2(o,my) = 0 as A — p.

(iii) For a given neighborhood W of ~y,, in X}(M,1,), there exists an one-sided neighborhood
A° of i such that for any A € A\ {u}, the problem (1.18) with parameter value X has at
least two distinct solutions in W, 7/1\ # v\ and 7)2\ # Y, which can also be chosen to satisfy
Ex(13) # Ex(v}) provided that if mY(€,,~,) > 1 and the problem (1.18) with parameter
value A € A\ {u} has only finitely many distinct solutions in W.

1.3 Bifurcations for generalized periodic solutions of autonomous Lagrangian
systems

When L) in (1.18) is independent of time ¢, the problem (1.18) becomes

4 (8.L(1(0).4(1)) -~ L(H(1). () = 0¥t € B, -
I(y(t)) =~(t+7) VteR. :

Two solutions «; and 72 of (1.23) are said R-distinct if 1(0 4 -) # 2 for any # € R. The
corresponding functionals €y, Morse indexes m; (€),v) and nullities mY(€y,~) are also defined
by (1.22).
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1.3.1 Bifurcations of (1.23) starting at constant solutions

Theorem 1.20 (Alternative bifurcations of Fadell-Rabinowitz's type). Under Assumption 1.16
with A being a real interval, suppose also that L is independent of t and that I, satisfies ]Ilg =idy
for some l € N. Let

A > X — vy e Fix(Iy) C M be continuous and } (1.24)

axLA(’)/)\,O) =0VAeA.

(Therefore ~yy is a constant solution of (1.23). Hereafter the points vy are also understood as
constant value maps from R to M without special statements.) Suppose that for some p € Int(A)
and T >0,

(a) OuwwLy (Y4,0) is positive definite;
(b) OveLiy (Y4, 0)u =0 and dly(v,)u = u have only the zero solution in T, M;

(¢) m2(€u,vu) # 0, mU(€yx,7,) = 0 for each A € A\ {u} near p, and m7(€x,~,) take,
respectively, values m; (€,,7,) and m; (€4, v,) + m2(€,,v,) as A € A wvaries in two
deleted half neighborhoods of .

Then one of the following alternatives occurs:

(i) The problem (1.23) with A\ = p has a sequence of R-distinct solutions, v, k = 1,2,---,
which are R-distinct with v, and converges to 7y, on any compact interval I C R in C?-
topology.

(ii) There exist left and right neighborhoods A~ and AT of u in A and integers n*,n~ > 0,
such that n™ +n~ > m2(€,,v,)/2, and for X € A=\ {u} (resp. A € AT\ {u}), (1.23)
with parameter value \ has at least n~ (resp. n') R-distinct solutions solutions, 'yi,
i=1,---,n" (resp. nt), which are R-distinct with v, and converge to ~, on any compact
interval I C R in C?-topology as X — fu.

Moreover, if m2(€,,~,) > 3, then (ii) may be replaced by the following alternatives:

(iii) For every A € A\ {u} near p there is a solution ay ¢ R-~y of (1.23) with parameter value
A, such that ay — vy converges to zero on any compact interval I C R in C?-topology as
A= u.

(iv) For a given small € > 0 there is an one-sided neighborhood A° of ju in A such that for any
A € A%\ {u}, (1.23) with parameter value \ has either infinitely many R-distinct solutions
ak ¢ R -y such that ||6/§\|[07T] — Nlplle2omyy < € k‘.: 1,2,---, or at least two R-
distinct solutions 81 ¢ R -~y and B3 & R - v\ such that 183 10,71 — W71l 2o,y <€
i =1,2, and that €\(B}) # E\(B3). (Recall that we have assumed M C RV .)

1.3.2 Bifurcations of (1.23) starting at nonconstant solutions
We need make stronger:

Assumption 1.21. Let (M, g) be as in “Basic assumptions and conventions” in Introduction
and let I; be a C7 isometry on (M,g). For a real 7 > 0 and a topological space A, let L :
A x TM — R be a continuous function such that each L(\,-) : TM — R, XA € A, is C% and all
its partial derivatives of order no more than two depend continuously on (A, z,v) € A x TM.



15

Each Ly(-) = L(X,-) is fiberwise strictly convex, and I -invariant (i.e., L(\,I4(z), dly(x)[v]) =
L(\, z,v) for all (x,v) € TM). Let 4 : R — M be a nonconstant C? map satisfying (1.23) with
this L for all A € A. (¥ is actually C® by [6, Proposition 4.3].)

Under this assumption, each element in R-7 := {¥(0+-) | § € R} (R-orbit) also satisfies (1.23)
with this L for all A € A. It follows that m?(€y,7) # 0 for all A € A. Thus each point (), 7) in
A x {#} is a bifurcation point of (1.23) in the sense of Definition 1.12. In order to give an exact
description for bifurcation pictures of solutions of (1.23) near R -7, we introduce:

Definition 1.22. R-orbits of solutions of the problem (1.23) with a parameter A\ € A is said
sequently bifurcating at p with respect to the R-orbit R - 7 if there exists a sequence (A\;) C A
converging to u, and a solution 7* of (1.23) with parameter value ) for each k, such that: (i)
% ¢ R -7 Vk, (i) all v are R-distinct, (iii) v*[j0,) = ¥, in C*([0,7]; M). [Passing to a
subsequence (i) is implied in (ii).]

Theorem 1.23 (Necessary condition). Under Assumption 1.21, suppose that R-orbits of solu-
tions of the problem (1.23) with a parameter X € A sequently bifurcate at p € A with respect to
the R-orbit R - 5. Then m2(€,,7) > 2.

Theorem 1.24 (Sufficient condition). Under Assumption 1.21, suppose that A is first countable,
we AN and:

(a) 7 is periodic, and mY(€&,,7) > 2;
(b) there exist two sequences in A converging to yu, (A;) and (A{), such that for each k € N,
- 0 S — 0 ) -
and either mT((‘EA;,fy) =1or mT((’E)\z,*y) =1;

(c) for any solution v of (1.23) with X\ = p, if there exists a sequence (sy) of reals such that
s -y converges to 4 on any compact interval I C R in C'-topology, then v is periodic.

early, this holds 1 =idps for somel € N.
Clearly, this hold, ‘f]Igl idyr f leN

Then there exists a sequence (\;) C A = {pu, M AL |k € N} converging to p and C® solutions
vk of the corresponding problem (1.23) with X = \g, k = 1,2,---, such that any two of these
Y are R-distinct and that () converges to 7y on any compact interval I C R in C?-topology as
k — oo.

Theorem 1.25 (Existence for bifurcations). Under Assumption 1.21, suppose that A is path-
connected, (]Ig)l =1idy for somel € N, and the following is satisfied:

(d) There exist two points \T, A~ € A such that
[z (€-,9),mz (€=, 7)+m3 (Ex-,3) = 1N[me (Exe, 7),my (Exe, 7) +me(€Exe, 7) 1] = 0
and either m2(€5-,7) =1 or m(&y+,7) = 1.

Then for any path « : [0,1] — A connecting A\* to A\~ there ewists a sequence (\) in a([0,1])
converging to u € a([0,1]) C A, and C® solutions ~y of the corresponding problem (1.23) with
A= Xg, k=1,2,---, such that any two of these ~y are R-distinct and that () converges to 7
on any compact interval I C R in C?-topology as k — oo. Moreover, this j is not equal to AT

(resp. A=) if m2(€x,7) = 1 (resp. m2(&,-,7) = 1.
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Theorem 1.26 (Alternative bifurcations of Rabinowitz's type). Under Assumption 1.21 with A
being a real interval, let 1 € Int(A), Iy = idy and 5 have least period T. Suppose that

m2(€,,5) > 2, ml(€y,5) =1 for each A € A\ {u} near 0,

and that m7 (€, %) take, respectively, values m7 (€,,%) and m7 (€,,5)+m2(€,,7)—1 as A € A
varies in two deleted half neighborhoods of 0. Then one of the following alternatives occurs:

(i) The corresponding problem (1.23) with X = p has a sequence of R-distinct C® solutions, v,
k=1,2,---, such that () converges to 5 on any compact interval I C R in C-topology
as k — oo.

(ii) For every A € A\ {u} near p there is a CS solution vy of (1.23) with parameter value X,
which is R-distinct with 5 and converges to ¥ on any compact interval I C R in C?-topology
as A\ — .

(iii) For a given neighborhood W of 4 in X}(M, Iy), there exists an one-sided neighborhood
A° of p such that for any A € A\ {u}, (1.28) with parameter value \ has at least two
R-distinct C° solutions in W, 'y)l\ ¢ R-5 and 7)2\ ¢ R-7, which can also be chosen to satisfy
Ex(713) # €x(73) provided that m2(€,,7) > 3 and (1.23) with parameter value \ has only
finitely many R-distinct solutions in W which are R-distinct from 7.

In the above Theorems 1.23, 1.24, 1.25, 1.26, if M is an open subset U of R" and I, is an
orthogonal matrix F of order n which maintain U invariant, Assumption 1.21 can be replaced
by a weaker Assumption 6.12, see Section 6.5.

1.4 Bifurcations for brake orbits of Lagrangian systems

Assumption 1.27. Let (M, g) be as in “Basic assumptions and conventions” in Introduction.
For a real 7 > 0 and a topological space A, let L : A x R x TM — R be a continuous function
satisfying

L(\, —t,q,—v) = L(\, t,q,v) = L\, t+7,q,v) VY(t,q,v) € A X R xTM. (1.25)

Suppose that for each C3 chart a : U, — a(U,) C R" and the induced bundle chart Ta :
TM|y, — a(Uy) x R™ C R™ x R™ the function

LY AX R x a(Uy) x R® = R, (A t,q,v) — L\t (Ta) g, v))

is C? with respect to (, ¢, v) and strictly convex with respect to v, and all its partial derivatives
also depend continuously on (\,t,q,v).

Consider the following problem

4(DuLa(t A1), 4(1))) = BeLa(t, (D), 4(1)) =0 VE € R } (1.26)
V(=) =) =~(t+7) VEER

and C* Banach manifolds

EC*(Sp; M) == {y € CYR; M) |y(t+7) =~v(t) &y(—t) = y(t) Vt € R}, ke N. (1.27)
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Solutions of (1.26) are called brake orbits. Assumption 1.27 assures that the solutions of (1.26)
are critical points of the C? functionals

Efjm%&wﬁﬁnga/lMuﬂWﬂMﬁeR,AEA
0

For a critical point ~ of Ef , the second-order differential D2£§ (7) can be extended into a
continuous symmetric bilinear form on W12(y*T'M) with finite Morse index and nullity

my(CF.) and ml(LF,7). (1.28)

Assumption 1.28. For each A € A let vy € ECY(S;; M) N C?(S,; M) satisfy (1.26) and the
maps A X R 3 (A t) = y(t) € M and A x R 3> (A, t) — 4,\(t) € TM are continuous.

For € A we call (u,7,) a bifurcation point along sequences of the problem (1.26) in A X
EC*(S;; M) with respect to the branch {(\, 7)) | A € A} if there exists a sequence {(Ag, v*) }r>1
in A x ECY(S;; M) converging to (1,7,), such that each v # 7,, is a solution of (1.26) with
A=Ap k=12,

Theorem 1.29. Let Assumptions 1.27,1.28 be satisfied.

(I) (Necessary condition): Suppose that (,7,) is a bifurcation point along sequences of the
problem (1.26). Then mg(ﬁf,’m) > 0.

(IT) (Sufficient condition): Let A be first countable. Suppose that there exist two sequences in A
converging to p, (A;) and (X)), such that one of the following conditions is satisfied:

(II.1) For each k € N, either Vot is not an isolated critical point of Ef:, T Yz s not an
isolated critical point of Ef;, O Yyt (resp. 7/\;) is an isolated critical point of Efz
(resp. L:\EI:) and Cm(ﬁfﬁ’%\ﬁ; K) and C’m(ﬁf;,%\g ; K) are not isomorphic for some
Abel group K and some m € Z.

(IL.2) For each k € N, there exists A € {)\+,)\,;} such that «yy is an either nonisolated or
homological visible critical point of Ef , and

[mi(ﬁf;/h;)ami ('Cf\;,;’%;) + mo(ﬁfga%\; )} (4*k)
ﬂ[m_ (‘Cf; ) 7)\2')> m- ([’fz ) 7)\:) + mo(ﬁf;r ) 7)\2')] = @

(I1.3) For each k € N, (4% ) holds true, and either mo(ﬁfg,%;) =0 or mo(ﬁf:,yw) =0.

Then there exists a sequence {( Mg, ¥*)}p>1 in A x EC(Sy; M) converging to (11,7,) such
that each v* # ~, is a solution of the problem (1.26) with A = M\, k = 1,2,---, where
A= {1, )\;, A, |k € N} In particular, (p,v,) is a bifurcation point of the problem (1.26)
in A x ECY(S;; M) respect to the branch {(\,vx) | A € A} (and so {(\,7\) | X € A}).

Theorem 1.30 (Existence for bifurcations). Let Assumptions 1.27,1.28 be satisfied, and let A be
path-connected. Suppose that there exist two points AT, A\~ € A such that one of the following
conditions is satisfied:

i) Either ~y+ is not an isolated critical point o ", or Y\- 1is not an isolated critica

i) Bither vy+ 1is not solated critical point of LY - is not isolated critical
point of Ef,, or Ya+ (resp. 7yx-) is an isolated critical point of Eﬂ (resp. Ef,) and
C’m(£§+,*y/\+;K) and C’m(ﬁf_,ﬁyk;K) are not isomorphic for some Abel group K and
some m € Z.
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(ii) [m~ (/357 s VA=), m” (Ef, s YA )+m0(£:\E, ,Ma-)INm™ (£:\E+ s at),m” (£:\E+ s YA+ )+m0(Lf+ st )]
=0, and there exists X\ € {\*, A"} such that v, is an either non-isolated or homological
visible critical point of Ef.

(iii) [m~ (L5 =), m (L47 o= ) +mO (L3, ya-)IN[m ™ (L5 ) m™ (L35 v ) +mO (L7, 1))
=0, and either m°(LY,,yy+) =0 or m* (LY., v,-) =0.

Then for any path « : [0,1] — A connecting \T to A\~ there exists a sequence (\x) C «([0,1])
converging to some p € «([0,1]), and solutions ¥* # ~, of the problem (1.26) with X\ = A,
k=1,2,---, such that |v* — Yalle2s,myy = 0 as k — oo. (In particular, (u,A,) is a bi-
furcation point along sequences of the problem (1.26) in A x ECY(S;; M) with respect to the
branch {(X\, 7)) | A € A}.) Moreover, p is not equal to At (resp. A=) if m2(LE, v +) =0 (resp.
mO(LE  1y-) = 0).

Theorem 1.31 (Alternative bifurcations of Rabinowitz's type). Under Assumptions 1.27,1.28 with
A being a real interval, let p € Int(A) satisfy mg(ﬁf,”yﬂ) > 0. Suppose that m2(LY ) =0
for each X € A\ {u} near pu, and that m7 (LY, ~)\) take, respectively, values m;(ﬁf,vﬂ) and
m;(ﬁE,’yﬂ) + m?(ﬁf,'yﬂ) as A € A wvaries in two deleted half neighborhoods of ;. Then one of

w
the following alternatives occurs:

(i) The problem (1.26) with A = p has a sequence of solutions, vy # Yu, k = 1,2,---, which
converges to vy, in C*(S., M).

(ii) For every A € A\{pu} near u there exists a solution ay # yx of (1.26) with parameter value
A, such that a — v\ converges to zero in C?(S;,RN) as X — u. (Recall that M C RV .)

(iii) For a given neighborhood W of vy, in C*(S-, M), there exists an one-sided neighborhood A°
of i such that for any A € A°\ {u}, (1.26) with parameter value \ has at least two distinct
solutions in W, v} # v\ and ¥4 # yx, which can also be chosen to satisfy LE(73) # LE(73)
provided that mg(ﬁf,’yu) > 1 and (1.26) with parameter value X\ has only finitely many
solutions in W.

As noted in Remark 2.8, when M is an open subset in R™ the conditions in the above theorems
may be weakened suitably.

Remark 1.32. Clearly, if the Lagrangian L in Assumption 1.27 comes from a family of C°
Riemannian metrics {hy | A € A} on M, i.e., L(\ t,x,v) = (hy)z(v,v) for all (A, ¢,z,v), as direct
consequences of the above results we immediately obtain many bifurcation theorems of geodesics
on Riemannian manifolds. See Section 14 for an outline.

Further researches. As natural continuations to this work the following can be considered.

(i) Because of [2, 3] and [50] we may also consider the case of free period (resp. free time) for
those in Sections 1.2,1.3 (resp. in Section 1.1).

(ii) We may also study the case where reflections are allowed as in [56].

2 Preparations and some technical lemmas

In this section we collect a few preliminaries which will be used throughout the proof.
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2.1 Technical lemmas

Notations and conventions Following [37], all vectors in R™ will be understand as column
vectors. The transpose of a matrix M € R™*™ is denoted by M’. We denote (-,-)grm by the
standard Euclidean inner product in R™ and by | - | the corresponding norm. Let L£5(R™) be
the set of all real symmetric matrices of order m, and Sp(2n) := {M € GL(2n)| MTJM = J},
where J is the standard complex structure on R?" given by
(@1, qn 1y 5pn)" = J(@1 - @ns 1y pn)" = (=1 =P )"

For a map f from X to Y, Df(x) (resp. df(x) or f'(x)) denotes the Gateaux (resp. Fréchet)
derivative of f at © € X, which is an element in £(X,Y"). Of course, we also use f'(z) to denote
D f(x) without occurring of confusions. When Y = R, f'(z) € L(X,R) = X*, and if X = H
we call the Riesz representation of f’(x) in H gradient of f at x, denoted by Vf(z). The the
Fréchet (or Gateaux) derivative of Vf at € H is denoted by f”(z), which is an element in
Ls(H). (Precisely, f"(x) = (f')(x) € L(H;L(H;R) is a symmetric bilinear form on H, and is
identified with D(V f)(x) after L(H,R) = H* is identified with H via the Riesz representation
theorem.)

Let L2([0,7];R™) = (L2([0,7]; R))"® and W2([0,7];R") = (W2([0,7];R))" be the Hilbert
spaces equipped with L2-inner product and W12-inner product

(u,v)y = /OT(u(t),U(t))Rndt, (2.1)
(u,v)12 = /OT[(u(t),v(t))RQn + (4, 0)pn]dt, (2.2)

respectively. The corresponding norms are denoted by | - ||2 and || - ||1,2, respectively. (As usual
each u € L?([0,7];R") will be identified with any fixed representative of it; in particular, for
k € N we do not distinguish v € W1¥([0, 7]; R") with its unique continuous representation.)
Then WH*([0, 7]; R™) < C°([0, 7]; R™) and

il = (e Dy, o 0 (0 TLE, ) 23)

lulloo < (V7 +1/vDllullr2,  Yue WH([0, 7];R™).

Lemma 2.1 ([31, Lemma 2.1]). Given positive numbers ¢ > 0 and Cy > 1, choose positive
parameters 0 < € < § < 32701 Then:

(i) There exists a C™ function s : [0,00) = R such that: . s > 0 and .5 is convex on
(€,00), e 5 vanishes in [0,€) and is equal to the affine function kt + o on [, 00), where
k>0 and g9 < 0 are suitable constants.

(i) There exists a C* function ¢, : [0,00) — R depending on parameters 1 > 0 and b > 0,
such that: ¢, is nondecreasing and concave (and hence ¢Z » <0 ), and equal to the affine

function pt — pd on [0, 9], and equal to constant b > 0 on [%Cl, 00).

(ili) Under the above assumptions, Ve 5(t) + ¢up(t) —b = Kkt+ 0o for any t > 32701 (and hence for
t > %), Moreover, ¥ 5(t)+¢up(t)—b > —ud—b ¥Vt > 0, and ¢ 5(t) + @ p(t) —b = —ué—b
if and only if t = 0.

(iv) Under the assumptions (i)-(ii), suppose that the constant pu > 0 satisfies

p+ éﬁ) >0 and pd+b+ oo >0. (2.4)

0—¢
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Then 7/’5,6(75) + ¢u,b(t) —b<kl+gVt > &€ and @Z)e,é(t) + qbu,b(t) —b<kt+ ©o vt € [Oa 5] 'Lf
K 2> W

Assumption 2.2. For a real 7 > 0, a topology space A, let L: A x [0,7] x U x R" — R be a
continuous function such that the following partial derivatives

OtL(+), OgL(-), OuL(:), OwL(:), Ot L(-), OguL(-), OvgL(:), OgqL(:), OuuL(:)

exist and depend continuously on (A, t,q,v) € A x [0,7] x U x R"™. Moreover, A x [0,7] x U x
R™ 5 (A, t,q,v) — L(A t,q,v) is convex with respect to v, that is, the second partial derivative
Ow L(\, t,q,v) is positive semi-definite as a quadratic form.

Under Assumption 2.2 let E be a real orthogonal matrix of order n such that (EU)NU # {.
Consider the Lagrangian boundary value problem on U:

% (auL)\(t: x(t)a J:‘(t))) - 6qL)\(t, l’(t), l‘(t)) = 07 (2'5)
E(x(0)) =x(7) and (ET)71[0,Lx(0,2(0),#(0))] = Oy La(T,x(7),3(7)).

Assumption 2.3. For a real 7 > 0, a topological space A, a real orthogonal matrix F of order
n, and an F-invariant path-connected open subset U C R® let L : A X R x U x R®™ — R be a
continuous function such that the following partial derivatives

815[/(')7 8(1[/(')7 8UL(')7 8tUL(')7 8vtL(')7 86]1)[’(')7 aqu(')> 8qu(')7 ava(')

exist and depend continuously on (A, ¢,q,v) € A x [0,7] x U x R™. Moreover, for each (\,¢,q) €
AXRxU, L(\t,q,v) is convex in v, and satisfies

L(\t+1,Eq, Ev) = L(A\t,q,v) V(A t,q,v) € AxRxUxR"™ (2.7)

Lemma 2.4. Under Assumption 2.2, let the topological space A be either compact or sequentially
compact. Suppose that for some real p > 0 the function BZ}(O) S v Ly(t,q,v) is strictly convex
for each (A t,q) € A x [0,7] x U. Then for any given real 0 < py < p there exists a continuous

function L : A x [0,7] x U x R™ — R and a constant k > 0 satisfying the following properties:
(i) L is equal to L on A x [0,7] x U X B} (0).

(ii) The partial derivatives

6ti(')v 8q[~’(')7 avi('): 6151113(')7 avti(')v 6qv[~’(')a 8vql~’(')7 aqqi(')? av’ui(')

exist and depend continuously on (A, t,q,v).

(iii) R™ 3 v — Ly(t,q,v) is strictly convez for each (\,t,q) € A x [0,7] x U, that is, the second
partial derivative Oy, Ly (t, z,v) is positive definite as a quadratic form.

(iv) For any given compact subset S C U, there exists a constant C > 0 such that
Ly(t,q,v) > ko> = C, Y(\t,q,v) € Ax[0,7] x S xR™
(v) For each (\t,q), if L(\,t,q,v) is even in v then Ly(t,q,v) can be required to be even in
V.

(vi) IfU is a symmetric open neighborhood of the origin in R™, and for each (A, t) the function
L(\t,q,v) is even in (q,v) then L(\ t,q,v) can be also required to be even in (q,v).
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(vii) For each (X, q), if L(\t,q,v) is even in (t,v), then L(\t,q,v) can be chosen to be even
n (t,v).

(viii) If L is independent of time t, so is L.

(ix) If Assumption 2.2 is replaced by Assumption 2.3, the function L given by (2.8) may be
replaced by

L:AXRXUXR* R, (At,q,0) = LAt q,0) + oy p (J0]?),
which also satisfies (2.7) because E is a real orthogonal matriz.

Proof. Fix a positive real p; € (pg, p). By Lemma 2.1 ([31, Lemma 2.1]) we have a C*° convex
function ¢, 5, : [0,00) — R such that ¢}, () > 0 for t € (pg,00), Ypq.p (t) = 0 for t € [0, pg)
and 1, p, (1) = Kt + 0o for t € [p3,00), where k > 0 and gy < 0 are suitable constants. We
conclude

L:Ax[0,7] xUxR" =R, (A t,q,0) = L\ t,q,0) + Ve p0 ([V]?) (2.8)
to satisfy the desired requirements. By Assumption 2.2 and the choice of 1, ,, it is clear that
L satisfies (i)-(ii).

In order to see that L satisfies (iii), note that

0? 2
aras Voo (0¥ sut tul®) | = 2000 o (o)l + 40, 5, (10) (0, w)er)

(cf. the proof of [31, Lemma 2.1]) and therefore
Do LN, 4, 0) [, u] = By LA 1, q, 0) [ ] + 205, ([0 |ul® + dpr L, ([0]%) (v, w)en ).
Since ¢, , >0 and ¢, , (t) >0, by Assumption 2.2 we deduce
oL\, t,q,v)[u, u] > Oy L(N, t,q,v)[u,u] >0 for [v] < p and u # 0.
Moreover, if |[v| > p1 and u # 0 we obtain Do L(\, t, q,v)[u, u] > 2k|u|? because Oy L(\, t, ¢, v)[u, u]
> 0. Hence L(\,t,q,v) is strictly convex in v.

Let us prove (iv). Fixing vg € B;(0) \ B, (0), by [12, Proposition 1.2.10] we get

I:()V ta q, UO) + avi(A’ ta q, UO)[U - UO]
L()‘? l,q, UO) + avL()‘a t, q, UO)[U - UO] + 2¢;)0,p1 (|U0‘2)(/U7 v = /UO)R"
= L(At,4,v0) — Oy L(A, t,¢,v0)[v0] + Dy L(A, t, ¢, v0)[v] — 2k(v, v0)rn + 2k[0[?

E()\7 t? q? /U) 2
>

for all v € R™. Since 2x|(v, vo)re| < K|v[?/2 + 2k|vg]? and

n

" 9L 1 oL 2k
_ oL ‘ 1 K| o
|0y L(A, t, q,v0)[v]| = ;:1 avj(/\,t,q,vo)vg < ”j§:1 a0, — (A t,q,v0)| + 4!1)! :
we derive
L(\t,q,v) > L(\t, q,v0) — Oy L(\, t, lfj (At )2 2| |2+75*””| E
v v vo)[vo] — — vo)| —2k|v v
y Uy 4, = , U, 4,00 q, 0 0 K 81)] , 4,00 0 4
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for all v € R™. Since A is either compact or sequential compact, so is A x [0, 7] X S, in either case
we can always derive that both L(A,t,q,vy) and 9, L(\,t,q,v) are bounded on A x [0,7] x S.
Therefore there exists a constant C' > 0 such that

~ 5
L(\t,q,v) > f|v\2 —C, Y\t qguv)eAx[0,7] xS xR"
Other conclusions are clear by the above construction. O

Assumption 2.5. Under Assumption 2.2, for each A € A, let =) : [0,7] — U be a C? path
satisfying (2.5). Suppose: (i) A x [0,7] > (A, t) = zA(t) € U and A x [0,7] 3 (A, t) — &5 (t) € R"
are continuous; (ii) for any compact or sequential compact subset A C A there exists p > 0 such
that

sup {ax ()] | (A1) € A x [0,7]} < p
and that A x [0,7] x U x B2 (0) > (A t,q,v) = Li(t,q,v) is strictly convex with respect to v.
Lemma 2.6. Under Assumption 2.5, the following holds:
(i) A x[0,7] 2 (N, t) — @x(t) € R™ is continuous.

(ii) If there exists a sequence (A\x) C A converging to p € A and solutions zj, € C*([0,7],U) \
{z,} of (2.5) with A\ =X, € A, k=1,2,---, such that ||z, — xz,||cr — 0, then ||z} —
zxllc2 = 0 as k — oo.

Proof. Step 1[Prove (i)]. Since ) is C?, we have
Out LA(t, 2A (1), 2A (1)) + OugLa (L, 2A(1), 2A(1))2A(2)
+0u La(t, zA (), £2(1))Ex() — OgLa(t, 2A(t), £a(2)) = 0
and therefore
Ex(t) = [OuuDa(t, za(t), 22(0)] Oy LA(t, 2a(L), 22 (1))

~[OuLa(t, A (1), @x ()] Qe La(t, 2 (1), E(1))
— O LA (t, A (), @2 (1))~ DugLa(t, 2a(E), £ (1)) EA (L)
because (ii) in Assumption 2.5 implies that the matrixes Oy, L (¢, z(t), £(t)) are positive definite
and therefore invertible. Moreover, by Assumption 2.2 maps
()\a ta q, U) — avtL)\(ta q, U)v ()\a ta q, U) — aqu)\(ta q, U)a
(>‘a ta q, /U) — avaA(ta q, ’U), (>‘7 t? q, U) = 8qL/\(t? q, 7))
are continuous. The desired conclusion may follow from these, (i) in Assumption 2.5 and the
above equality directly.
Step 2[Prove (ii)]. Let A = {u,\ |k € N}. It is a sequential compact subset of A. By the
assumption (ii) in Assumption 2.5 there exists p > 0 such that sup{|Z(¢)|| (A, t) € Ax[0,7]} <p

and that A x [0, 7] x U x By(0) 3 (A, t,q,v) = Lx(t, g, v) is strictly convex with respect to v. In
particular, we may obtain 0 < M; < Ms < oo such that

M1, < OpuLy(t,xu(t), 2,(t) < Maol,, Vtel0,7].

Suppose that there exists a sequence (t;) C [0, 7] such that for each i =1,2,---,

. 1 . 1
OuvLin,, (i, x,, (8), T, (i) < §M1[n or  OuyLy, (ti; (L), Ea, (8)) > iMQIn-
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We can assume t; — tg € [0,7]. By (i) in Assumption 2.5 and the continuity of the map

A x[0,7] x U x R" > (A, t,q,v) — Oy L(\, t,q,v) € R™",
we derive

Doo L (t0, 2, (t0), (o)) < %len or Do Ly(to, xu(to), dplte)) > %szn.
This contradiction shows that if k is large enough then
ML < Do (1,23, (1), 0, (1) < 5 Mo, V€ [0,7] (2.9)

Similarly, since ||z — zy, ||c1 — 0, for sufficiently large k& we have

%len < ByoLn, (6 20 (1), (1)) < %Mgln, vt € [0, 7]. (2.10)
Note that for each k € N, both (A;, z) and (Mg, x), ) satisfy (2.5), that is,

aWL/\k (t, Lo (t)7 Ty, <t))5(})\k (t) + atUL)\k (tv LA (t)v Ty, (t))

+0qu L, (t, T g (t), Ty, (t))j})\k (t) — 9q L, (t, LAp (t), Ty, (t)) =0, (2.11)
OowLxy, (8 2k (1), 25 (8)) 2 (8) + e L, (L, 2 (8), E4(1))
Oy Loy (b, 0 (8), 1 (8)) () — 0y Lo, (b, 2u(8), (0)) = 0. 2.12)

By contradiction, passing to subsequences (if necessary) suppose that there exists € > 0 and a
sequence (t;) C [0, 7] converging to to such that |2y, (tx) —Zx(tx)| > € for all K € N. Then for each
large k, (2.9) and (2.10) imply that (ava)\k (tg, Ty, (tk), Ty, (tx))) and (ava)\k (tk, Ty, (tx), T, (tx)))
are invertible. It follows from (2.11) and (2.12) that for each large k,

e < [En, (tk) — Zx(te)|
| (Buo Ly by T (t) s xy (t))) ™ Opw L (b oay (), g (1))
— (OuoLong (trs Tr(tr); &k (t1)) ™" oL, (b (), (i)
(DowLoxg, (b, Ty, (b, 0, (8))) ™ O Ly (b, a (B, x, (B )n, (1)
— (Ovo L, (tk, Ti (), Bx(tk))) 13quAk(tk=ka(tk) T ()L (k)
— (OvwLng (b 2, (th), D, (¢ k))) OqLn, (ks 2, (E), T, (1))
+ (Ovw L, (try i (te), & (tr))) " OgLon, (b i (t), ()| (2.13)

By (i) in Assumption 2.5, |z, (tx) — xu(to)| = 0 and |&y, (tx) — &, (to)| — 0. Moreover

_l’_

|k (tr) — wu(to)| < |, (tr) = zu(to)| + lzx, — @kllco =0,
|k (tk) — Eu(to)| <l (tk) = u(to)| + (12, = Zkllco = 0.
Letting k& — oo in (2.13), by Assumption 2.2 we get ¢ < 0. This contradiction shows ||z, —

Zgllco — 0. Combing the condition ||z — z),||c1 — 0, we arrive at ||z — z),||c2 — 0 as
k — oo. O

Note: the continuity of 0y, L is used in the proof of Lemma 2.6.
Under Assumption 2.5, for a given compact or sequential compact subset A C A there exist
positive numbers 0 < pg < p such that

P00 = Sup{|fb)\(t)| [(\1) € A x [O,T]} <po<p
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and that A x [0,7] x U x B2 (0) > (A t,q,v) = Lx(t,q,v) is strictly convex with respect to
v. By Lemma 2.4 we have an associated continuous function L : A x [0,7] x U x R" — R.
Since a subset of R™ is compact if and only if it is sequential compact, whether A is compact or
sequential compact the continuous map A x [0,7] 3 (\,t) — zx(t) € R" has a compact image
set and therefore we can choose § > 0 so small that the compact subset

S := Cl(Uyei Ve, (2a(t) + B3 (0)))
is contained in U. Lemma 2.4(iv) yields a constant C' > 0 such that
Ly(t,q,v) > k]2 = C, VY(\t qv)€ A x [0,7] x S x R™.
Define
L:Ax[0,7] x BR0) x R® = R, (A t,q,v) = L(\t,q+xx(t), v+ ix(t)) (2.14)
and Ly(-) = L(),-) for A € A. By Lemmas 2.4, 2.6, we obtain:

Lemma 2.7. (A) The function L is continuous; partial derivatives

ati/(')7 8qi’()a avff()a atvff('>7 avtff(')v aqvf/(')a 8vqi/(')7 8qu(')7 ava(')
exist and depend continuously on (A, t,q,v).

(B) For each (\t,q) € A x [0,7] x B3 (0), L(t, q,v) is strictly convez in v, and
La(t,q,v) > slv + ix(t))2 — C > g|v|2—,{p2—c (2.15)

for all (\t,q,v) € A x [0,7] x B3 (0) x R™.

(C) For each (M t,q), if each xy is constant and L(\,t,q,v) is even in v then ﬁA(t,q,v) can
be required to be even in v.

(D) If U is a symmetric open neighborhood of the origin in R™, zx = 0 VA, and for each (\,t)
the function L(\t,q,v) is even in (q,v), then L(\ t,q,v) can be also required to be even
in (q,v).

(E) For each (N, q), if L(\,t,q,v) is even in (t,v), and xx = 0 VA, then f}(A,t,q,v) can be
chosen to be even in (t,v).

(F) If L is independent of time t, so is L.

(G) If Assumption 2.2 is replaced by Assumption 2.3, and Ex(t) = zA(t) Vt € A, then the
function L given by (2.14) may be replaced by

LiAXRXUXRY 5 R, (Atg,0) = Lt g+ 22(0), 0+ 5a(1) + Gy (10 + 22 ()],
which also satisfies (2.7) because E is a real orthogonal matriz.
Remark 2.8. For a given positive number pg > 0, replacing L* and ¢ by L and § in the proof

of Lemma 3.8 we may obtain a continuous function L : A x [0, 7] x By, 4(0) x R™ — R satisfying

(L1)-(L6) in Lemma 3.8 with L* = L and ¢ = ¢, and Lemma 3.8(L0) without 8,L(-). Because
of Remark 3.12, as in the proofs of Theorems 1.4, 1.5, 1.6 in Section 3 we may obtain the
corresponding versions of these theorems under weaker Assumptions 2.2, 2.5. Similarly, when
M is an open subset in R™ the conditions in Theorem 1.9 may be weakened suitably.
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3 Proofs of Theorems 1.4, 1.5, 1.6 and 1.9

3.1 Proofs of Theorems 1.4, 1.5, 1.6
3.1.1 Reduction to Euclidean spaces

Since 7,,(0) # 7,(7), we may choose the C® Riemannian metric g on M so that Sy (resp. St) is
totally geodesic near 7,(0) (resp. 7,(7)). (Indeed, by the definition of submanifolds there exists
a coordinate chart (U, ) around +,(0) (resp. v,(7)) on M such that ¢(SoNU) = ¢(U) NV
(resp. @(S1NU) = o(U)NVp) for some linear subspace Vy (resp. Vi) in R™. extending the
pullback of the standard metric on R™ to U yields a required metric.) There exists a fibrewise
convex open neighborhood U(07yy) of the zero section of T'M such that the exponential map of
g gives rise to C° immersion

F:UOrp) — M x M, (q,v) = (g, exp,(v)), (3.1)

(cf. Appendix A). By (A.3), dF(q,0) : T(g,0,) = T(g,q) (M x M) =Ty M x Ty M is an isomorphism
for each ¢ € M. Since F is injective on the closed subset Opy; C T'M, it follows from Exercise 7
in [16, page 41] that F|yy(g,,,,) is a C® embedding of some smaller open neighborhood W(07s) C
U(Orar) of Orar. Note that F(Oras) is equal to the diagonal Ay in M x M, and that v, ([0, 7])
is compact. We may choose a number ¢ > 0 such that

(%) the closure Us,(v,(]0,7])) of Us, (7.([0,71)) == {p € M | dy(p,u([0,7])) < 3¢} is a compact
neighborhood of 7,([0,7]) in M, and Us,(7,([0,7])) x Us,(74([0,7])) is contained in the
image of F‘W(OTM);

(#) {(q.v) € TM | q € Us,(7,([0,7])), [vlg < 3} € W(Orar)-

Then 3. is less than the injectivity radius of g at each point on Us,(7,([0,7])). Let us take a
path 7 € C7([0, 7]; M) such that

7(0) =7u(0), F(7) =u(7), and distg(yu(t),7(t)) <Vt € [0,7]. (3:2)
We first assume:
dg(a(t),7(t)) < ¢, V(A t) e Ax[0,7]. (3.3)

(For cases of Theorems 1.4, 1.6, by contradiction we may use nets to prove that (3.3) is satisfied
after shrinking A toward p.) Then (3.2) and (3.3) imply

dg( (), 7 ([0, 7])) < dg(ya(t), yu(t)) < 2¢, V(A t) € A x [0, 7]. (3.4)

Using a unit orthogonal parallel C® frame field along ¥, [0,7] 3 t = (e1(t), -+ ,en(t)), we get a
C% map

¢5 + [0,7] x B3,(0) = M, (t,2) — expsq (Zx ei(t ) (3.5)

(Note that the tangent map d¢= : T([0,7] x BL(0)) — TM is C*.) By Step 1 in [31, §4]
there exist two linear subspaces of R", V and Vl, such that v € V) (resp. v € V7) if and only if

py 1vkek(0) Ty 0)So (resp. Yop_y vrer(T) € Ty0yS1)- By [48, Theorem 4.2], C¢ . ([0, 7]; M)
is a C* Banach manifold; and it follows from [48, Theorem 4.3] that the map

5 : O (10,715 B5,(0)) = gy, ([0, 7] M) (3.6)
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defined by ®~(£)(t) = ¢=(t,£(t)) gives a C? coordinate chart around ¥ on C’éoxsl([O,T];M),

where
Ciyxv; ([0,7]; B3, (0)) = {¢ € C*([0,7]; B,(0)) |£(0) € Vo, &(7) € i} with k € NU{0}.

Moreover, it is clear that

s (Ol (0,71 B3 0)) = {7 € Chyes (0.71.00) | supis, (16, 7(0) < 2}

(Note: ®- also defines an at least C'! map from C‘Q/Oxvl([O,T]; B3 (0)) to Cgoxsl([o, T M).)
By (3. 3) for each A € A there exists a unique map uy : [0, 7] — B}*(0) such that

A(t) = d=(t, ur(t)) = exps (Zu)\ ei(t ), te0,7].

Clearly, uy satisfies the first assertion of the following lemma, whose proof will be given in
Appendix A.

Lemma 3.1. u,(0) = 0 = u,(7), uy € Cf, .. ([0,7]; B(0)), and
(A t) = up(t) and (A t) — ax(t)
are continuous as maps from A x [0, 7] to R™.
Define L* : A x [0, 7] x B3,(0) x R" — R by

L*()‘v t,q, U) = L;(tv q, U) = L)x (t7 %(ta Q)v Dt¢7(tv Q) + Dq%(ta Q) [U]) (37)

Since ¢= is C°, by Assumption 1.1, L* is C? with respect to (t,g,v) and strictly convex with
respect to v, and all its partial derivatives also depend continuously on (\, ¢, ¢, v). Moreover, u)
solves the following boundary problem:

C‘;(a L3 (1, 2(0), (1)) ) — L3 (1, 2(0), (1)) = 0,

x € C*([0,7]; B*(0)), (x(0),2(7)) € Vo x Vi and
9y L3(0,2(0), 2(0))[vo] = Ou L3 (7, 2(7), &(7))[v1]
V(Uo,vl) S VO x V7.

By Lemmas 2.6, 3.1 we directly obtain:
Lemma 3.2. A x [0,7] 3 (A, t) — wx(t) € R™ is continuous.
(This is necessary for us to derive that Dpt L* is continuous in Proposition 3.3.)
Define L* : A x [0, 7] x B*(0) x R — R by
L*(\ t,q,v) = Li(t,q,v) = L*(\ t,q + ux(t), v 4 x(t)). (3.8)
Then
HL*(N\t,q,v) = OL*(\t,q+un(t),v+1x(t)
+0, L7 (AN, t,q +un(t), v+t (t))an(t)
+0,L* (N, t, g+ ux(t), v+ uy(t)) (),
OgL* (A t,q,0) = 94L7 (A t,q +un(t),v +x(1))
O L*( N\ t,q,v) = O, L (A t,q+ up(t), v+ uy(t)).
L

*

By these and Lemmas 3.1, 3.2 it is not hard to see that satisfies the following:
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Proposition 3.3. (a) L* is continuous, and the following partial derivatives
OL*()s BgL (), BuL* (), Buwl*(-)s QL (), OquL* (), BugL* (), DgqL* (), BuwLl” (")
exist and depend continuously on (A, t,q,v).
(b) For each (\t,q) € A x [0,7] x B™0), L(t, q,v) is strictly convez in v.
Clearly, L* satisfies Assumption 2.2, and Assumption 2.5 with z) = 0 V.

Remark 3.4. Actually, for our next arguments in this section it is suffices that L* satisfies (a)
and the following weaker condition:

(b’) L*(\,t,q,v) is convex in v, and for any compact or sequential compact subset A C A there
exists p > 0 such that A x [0,7] x B}'(0) x B;(0) > (A,t,q,v) = L*(A,t,q,v) is strictly
convex with respect to v.

This means: In Assumption 1.1 we may only require that L is fiberwise convex; but in Assump-
tion 1.2 we need to add the condition: for any compact or sequential compact subset AcA
there exist 0 < pg < p such that sup{|9\(¢)|g| (N, 1) € A % [0,7]} < po and L is fiberwise strictly
convex in (A, t,q,v) € A x [0,7] x TM | v, < p}.

The condition (a) in Proposition 3.3 assure that each functional
~ 1 ~
& : Cliers (075 B2O) > R o> [ Ey(t,a(t), (o) (3.9)
0

is C?, and satisfies

& () = Ex Pz + ) Vo € Oy 1y (10, 7); B'(0)) and  déf(0) = 0. (3.10)

Hence for each A € A, z € C‘l/oxvl([o, 7]; B*(0)) satisfies d€5 (z) = 0 if and only if v := ®=(x+uy)
satisfies d€y(y) = 0; and in this case m~ (€%, z) = m~(Ex,7) and m°(€5,x) = m®(Ey,7). In

particular, we have
m=(E5,0) =m ™ (Ex, 1) and mO(E5,0) = mP(Ex, 7). (3.11)

By [6, Proposition 4.2] the critical points of g'; correspond to the solutions of the following
boundary problem:

%(&Ei(t,:p(t),:'r(t))) — 9, L (t, x(t), #(£)) = 0, (3.12)
T € C?([0, 7]; B*(0)), (x(0),z(7)) € Vo x Vi and

8, L3(0,2(0), £(0))[ve] = 0 Voo € Vo, (3.13)
Op LA (7, 2(7), &(7))[1] =0 Vv € V1.

Let Wy, ([0, 7); BP0)) = {€ € WU 2([0,7]; B[(0))| (£(0),&(7)) € Vo x Vi}. The following
three theorems may be, respectively, viewed as corresponding results of Theorems 1.4, 1.5, 1.6
provided that L* satisfies (a) and (b) in Proposition 3.3.

Theorem 3.5. (I) (Necessary condition): Suppose that (1,0) € A x C"l/oxvl([O,T];BZ‘(O)) is a
bifurcation point along sequences of the problem (3.12)—(3.13) with respect to the trivial

branch {(X,0) | X € A} in A x Cf, 1. ([0,7]; B[*(0)). Then mo(g;,O) > 0.

0
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(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to p, (A, ) and (/\g), such that one of the following conditions is satisfied:

. or eac € N, either 0 is not an isolated critical point of £, or 0 is not an
I1.1) F h k € N, either 0 4 t isolated critical point E; 0 t
k

isolated critical point of é::;, or 0 is an isolated critical point of g;z and (‘:’*; and

Cm(g;+,0;K) and Cm(g;_,O;K) are not isomorphic for some Abel group K and
k k
some m € 7.
(IL2) For each k € N, there exists A\ € {\J, A\, } such that 0 is an either nonisolated or

homological visible critical point of 5}{ , and

[m™ (&5, 0),m™ (€5 0) + m"(&;

A AL

0)] N~ (€50, m™ (E54,0) +mO(E},,0)] = 0.

(IL.3) [m’(g;;,O),m’(g;g,O) + mo(é;;,o)] N [m=(EF 0),m’(6~';:,0) + m%(€%,,0)] = 0,

AF AF
and either mo(f:’;,,O) =0 or mo(g;, 0) =0 for each k € N.
k k
Then there exists a sequence {(Ar, zx) bx>1 @ A x C2([0,7],R™) converging to (11,0) such
that each zj # 0 is a solution of the problem (3.12)-(3.13) with A = A\, k = 1,2,---,
where A = {p, A}, A | k € N}

Theorem 3.6 (Existence for bifurcations). Let A be connected. For A=, AT € A suppose that one
of the following conditions is satisfied:

(i) Fither 0 is not an isolated critical point of g:\‘tr, or 0 is not an isolated critical point of g:\",,
or 0 is an isolated critical point of £, and E_ and Cp(E54,0;K) and Cp,(E5-,0; K) are
not isomorphic for some Abel group K and some m € 7Z.

(ii) [m_(g;— ) 0)7 m- (g;— ) 0) + mo(g:\k— ’ 0)] N [m_( ~,>\k+7 0)7 m_( ~;+7 0) + mO( ~;+7O)] = (2)7 and
there exists X € {\T, A"} such that 0 is an either nonisolated or homological visible critical
point of £5.

(111) [mi (gi— ) 0)7 m- (5;7 ) 0) + mO (5;7 ) 0)] N [mi (g;+a 0)7 m- (g;+a 0) + mO (€;+ ) 0)] = (2)7 and
either m°(€5,,0) =0 or m°(£5_,0) = 0.

Then for any path « : [0,1] — A connecting A\t to A\~ there exists a sequence (t) C [0,1]
converging to some t € [0, 1], and a nonzero solution xy, of the problem (1.5)—(1.6) with A = a(ty,)
for each k € N such that ||zx||c2(jo sy — 0 as k — oo. Moreover, a(t) is not equal to A*

(resp. X\~ ) if mo(g;+,0) =0 (resp. m°(€5_,0) =0).

Theorem 3.7 (Alternative bifurcations of Rabinowitz's type). Let A be a real interval and p €
Int(A). Suppose that mo(g;,O) > 0, and that m°(€%,0) = 0 for each A € A\ {u} near pu, and
m~(E%,0) take, respectively, values m~ (fj;, 0) and m_(é:;, 0) +m0(<§;, 0) as A € A varies in two
deleted half neighborhoods of u. Then one of the following alternatives occurs:

(i) The problem (8.12)—(3.13) with X = p has a sequence of solutions, xp # 0, k = 1,2,---,
which converges to 0 in C?([0, 7], R™).

(ii) For every A € A\ {u} near p there is a solution yy # 0 of (3.12)—(3.13) with parameter
value \, such that y converges to zero in C2([0,7],R") as A\ — p.
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(iii) For a given neighborhood 2V of 0 € C\1/0><V1 ([0,7]; B*(0)), there is an one-sided neighborhood
A° of p such that for any X € A°\ {u}, the problem (3.12)-(3.13) with parameter value
A has at least two distinct solutions in 2, y}\ # 0 and y?\ # 0, which can also be required
to satisfy £ (y}) # Ex(y3) provided that mo(g;j, 0) > 1 and the problem (3.12)—(3.13) with
parameter value A has only finitely many solutions in 2.

Theorems 1.4, 1.6 are derived from Theorems 3.5, 3.7, respectively. We first admit them and
postpone their proof to Section 3.1.3. Theorem 3.6 can only lead to Theorem 1.5 under the
assumption (3.3). We shall directly prove Theorem 1.5 in Section 3.1.4.

3.1.2 Proofs of Theorems 1.4, 1.6

Proof of Theorem 1.4. (I) By the assumption there exists a sequence in AxC§ g ([0,7]; M)
converging to (1,7,), {(Ak,7¥)}k>1, such that each v* # 7y, is a solution of (1.5)—(1.6)
with A = \g, £ =1,2,---. After removing the finite terms (if necessary) we may assume
that all v* are contained in the image of the chart ®5 in (3.6). Then for each k € N
there exists a unique u® € C, v, ([0,7]; B*(0)) such that d=(uk) = 4%, Since 7, #
'y’i, d€y, (vx,) = 0 and dé’)\k('yk) = 0, we obtain u* # uy,, and dc‘j,\k(u,\k) = 0 and
d€y,(u¥) = 0. Recall that we have assumed M C RY. Assumption 1.2 implies that
Y =y — 0 in CY([0,7;RY) as A — u. Moreover, v¥ — v, in CS, s, (10,7; M) C
C'([0,7];RY) as k — oo. Therefore ||y* — Y llerqo,;rvy — 0 as k& — oo. This implies
that ||u® — wy, [le1(o,7mny) — 0 as k — oo. In particular, there exists an integer kg > 0
such that |[u® — wy, oo, ey < ¢ for all k& > k. Since u* = (uf —u,,) +uy,, by
the arguments below (3.9) we get dé;k (u* —uy,) = 0 for all k£ > kg. These show that
(1,0) € A x C‘l/oxvl([O,T];B[‘(O)) is a bifurcation point along sequences of the problem

(3.12)~(3.13) in A x O, .y ([0, 7]; B/*(0)) with respect to the trivial branch {(),0) | A € A}.

Then Theorem 3.5(I) concludes mo(c‘f;, 0) > 0, and therefore m®(&,,~,) > 0 by (3.11).

(IT) Follow the above notations. By the assumption, (3.11) we get that for all k£ € N,

[mi (g;; ’ 0)7 m- (“j;]: ’ 0) + mo(g;; ’ O)] N [mi (g;;:v 0)7 m- (g;:’ 0) + mO( ~;\<z ) O)]

= [m;(g)\;,”y)\;),m;(g)\;a’)’)\;) + mg(ﬁ)\;,’y)\;)]

m[mr_(g)\?”)’)\z)v mr (EA;?%\;) + m?(é‘)\ﬁ,%\z)] =0

and either mo(g;;,O) = mﬁ(%,%;) =0 or mo(g;Z,O) = m?(é')\ﬁ,*y/\z) = 0. By Theo-
rem 3.5(I1) we have a sequence {(Ag, v¥)}r>1 C {1, A\, A |k € N} x Ct. v ([0,7]; B1(0))
such that Az — p and 0 < ||[v¥||c2 — 0, and that each v* is a solution of (3.12)(3.13)
with A = A, k = 1,2,---. Therefore for k large enough, 7* := ®(v¥ + u,, ) defined by
P (vE +uy, ) (t) = (2, vE(E) + 1y, (1)) is a solution of (1.5)—(1.6) with X = A, v* # Y,
and as k — oo we have v* — ~, in Cgoxsl([O,T];]RN) because @ is also a C! map from
CI2/0XV1([07 7]; B3,(0)) to C%Oxsl ([0, 7]; M) as noted below (3.6). Theorem 1.4(II) is proved.

O

Proof of Theorem 1.6. Follow the above notations. By the assumption, (3.11) ‘we obtain
that m%(&y,0) # 0, and Ehat mP(€5,0) =0 for each~)\ € A\ {u} near p, and m™(€5,0) take,
respectively, values m™(&;,0) and m™(£:,0) + m°(E;,0) as A € A varies in two deleted half
neighborhoods of p. Therefore one of the conclusions (i)-(iii) in Theorem 3.7 occurs.
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Let (zx) be as in (i) in Theorem 3.7. Since ||zg|/c2 — 0, we can choose kg > 0 such that
|zk|lc2 < ¢ for k > ko. Then for each k > ko, v := ®~(xy +1,,) # v, is a solution of (1.5)—(1.6)
with A = p, and as above we may deduce that v¥ — =, in C@Oxsl([o, 7);RY) as k — oo. This
is, (i) of Theorem 1.6 occurs.

For y # 0 in (ii) in Theorem 3.7, we can shrink A toward g so that ||yx|lc2 < ¢ for all A € A.
Then oy := P5(y\ + uy) # v, is a solution of (1.5)—(1.6) with parameter value X, and ay — 7y
converges to zero in C2([0,7],RY) as A — p. Namely, (ii) of Theorem 1.6 occurs.

For a given neighborhood W of v, in C1([0,7], M), let us choose a neighborhood 20 of
0 € Oy, 1, ([0,7]; B1*(0)) such that & (u, +20) € W. Let A%, y} # 0 and y3 # 0 be as in
(iii) in Theorem 3.7. Put 7} := ®5(y} + uy) # v, ¢ = 1,2. Both sit in W and are distinct
solutions of (1.5)—(1.6) with parameter value A. Suppose that m°(&,,v,) = mo(fj;,O) > 1 and
(1.5)—(1.6) with parameter value A has only finitely many distinct solutions in . Then the
problem (3.12)—(3.13) with parameter value A has only finitely many solutions in 20 as well. In
this case (iii) in Theorem 3.7 concludes that the above yi # 0 and y3 # 0 are chosen to satisfies
E(y)) # Ex(y3), which implies £y(7}) # Ex(73). Hence (iii) in Theorem 3.7 occurs. O

3.1.3 Proofs of Theorems 3.5, 3.6, 3.7

We need to make modifications for the Lagrangian L* in (7.9).

Lemma 3.8. Given a positive number pg > 0 and a subset A C A which is either compact
or sequential compact, there exists a continuous function L : A x [0, 7] X Bi?b/4(0) x R" - R

satisfying the following properties for some constants = >0 and 0 < ¢ < C':
(LO) The following partial derivatives
atji(')a aqL()7 avlv/()a 8tvL(')a avtlv—/(')a 0qu(')a aqu(')7 aqu(')7 avvi()

exist and depend continuously on (A, t,q,v). (These are all used in the proof of Proposi-
tion 3.11.)

(L1) L and L* are equal in A x [0, 7] x Bg‘b/4(0) x By (0).
(L2) Duulna(t,q,v) > éln,  V(At,q,0) € Ax[0,7] x By, 4(0) x R™.
2 ¥ ~ 2 v -
(L3) ‘%%Lk(t,q,v)‘ <CO+ PP, |5 Laltgv)| < C(L+ o)), and
<C, VY(\tqv)eAx[0,7]xBj ,(0) x R".

2 ~
%&)jLA(t7Q7U)
(L4) L(A\t,q,0) > &2 = C, Y(\t,q,0) € A x [0,7] x B, ,(0) x R™.

(L5) 10,1\ t,q,v)] < C(1+[v]?) and [3,L(A,t, q,v)| < C(1+o]) for all (A, t,q,v) € Ax[0,7]x
Bz ,(0) x R™.

(L6) |La(t.q,v) < C(L+[u2), VAt q,0) € A x [0,7] x B ,(0) x R™.

Proof. Step 1. Fix a positive number p; > pg. As in the proof of Lemma 2.4, we may choose a
C™ convex function ¢, p, : [0,00) = R such that ¢/, , (t) > 0 for t € (p§,00), tpy.p, (t) = 0 for
t € [0, p3) and 9, p, (t) = Kt + o for t € [p}, o0), where k > 0 and gy < 0 are suitable constants.
Define L** : A x [0,7] x B™(0) x R” — R by

L™\ t,q,v) = L*(\ t,q,v) + Voo (J02). (3.14)
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It possess the same properties as L in (L0) and also satisfies
L™\ t,q,0) = L*(\ t,q,v), V(A t,q,v) € Ax[0,7] x B'(0) x By (0). (3.15)

Since the closure of By, , 4(0) is a compact subset in B}*(0), and A is either compact or sequential
compact, by Lemma 2.4 (or the proof of Lemma 2.4(iv)) there exists a constant C’ > 0 such
that

L™\t q,0) > ko2 = C', Y(\t,q,v) € Ax[0,7] x By, ,(0) x R™. (3.16)

Step 2. Take a smooth function I' : R — R such that I'(s) = s for s < 1 and that I'(s) is
constant for s > 2. Fix positive numbers p > p; and 9 such that

9 > max{L}"(¢,v) | (\,q,v) € A x [0,7] x B ,,(0) x B1(0)}.

3u/4
Define L*** : A x [0,7] x B, BY, 4(0) x R" — R by L*** = ¢I'(L**/d). Then the choice of ¥ implies
i***()\,t,q,v) — L**()\,t,q, v), V(\tq,v) € A x [0, 7] x B} /4( ) X BZ(O). (3.17)

By (3.16), L*** is equal to a constant C” outside A x [0, 7] x i
Because of this fact and

Do L™ (Nt ¢, 0)u, u] = Qo L* (N £, 0) [ ul + 200, ([0IH)ul® + 4l ([0]) (v, u)rn) *(3.18)

for each (\,t,q,v) € A x [0, 7] x B™(0) x R", there exist positive constants T and C such that

B2 ,,(0) x BE(0) for a large R > p.

Do L3 (t, ¢, ) [u,u] > =Y|u> V(N t,q,v,u) € A x[0,7] x B?

By, ,(0) xR,  (3.19)
L™ (\t,q,0) > kw2 = Ch, Y(\t,q,v) € A x[0,7] x By, ,(0) x R™. (3.20)

Choose a smooth function Z : [0, 00) — R such that:

=’ >0, E is convex on [p3, 00), vanishes in [0, p3), and is equal to
the affine function Ys + © on [p?, 00), where © < 0 is a suitable constant.

(See [31, Lemma 2.1] or [1, §5]). Define L : A x [0, 7] x B§/4(0) x R™ — R by

L:Ax[0,7] x B, (0)

3L/4(0) x R" = R, (\t,q,0) = L™ (\t,q,0) +E(jv?). (3.21)

Since L** = 9T'(L** /1), it clearly satisfies (LO) by (3.14). (L1) may follow from (3.15), (3.17)
and the fact that = vanishes in [0, p2). (3.20) leads to (L4) because = > 0.
Let us prove that L satisfies (L.2) and (L3).

o If [u| < p, by (3.17) E(A,t,q,v) = E***()\ t,q,v) + E(|v ] ) = L**()\ ,q,v) + E(!v|2) and so
Dol (Nt g, 0)[uu] = BuL™ (Nt q,0)[u, u] + By (E(0])) [u, u]
= L\t q,0)[usu] + 200, (J0])]ul?
4yl () (0, w)re ) + 200, ([0 |ul?
+22/(Jo]?) |ul? + 42" (|v]?) (v, u)gn)

because of (3.18) and the equality Oy, (Z(|v]?))[u, u] = 2Z/(|v|?)|u|? —|—4E”(|v|2)((g, ’LL)]Rn)Q for all
u € R™. Recall that ¢P07P1 >0, wpo’pl >0, >0and Z” > 0. Since both 9,,L(\,t,q,v) and

Duo L™ (A, t,q,v) depend continuously on (), ,q,v) we deduce

L (N t,q,0) > B L* (N, t,q,v), V(A t,q,v) € A x [0,7] x B?

540 x Bp(0).  (322)
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o If |v| > p then (3.19) may lead to

av’UL()‘v ta q, U) [ua ’LL] = aﬂvi***(kﬂ ta q, U) [’LL, u] + 2EI(|U‘2)‘U|2
Tlu|?>, VucR™ (3.23)

V

By Proposition 3.3(c), L} (¢, ¢,v) is strictly convex in v. (L2) may follow from (3.23) and (3.22)

because A x [0, 7] x By, 4

reason we obtain that L satisfies (L3) because

(0) x B7(0) is either compact or sequential compact. Using the same

L(\t,q,0) = L**(A\,t,¢,0) + E([vf*) = C" + T[o]* + ©  V]o| > R.

Finally, since 9,L(),t,0,0) and 9,L(\, ,0,0) are bounded using the Taylor formula (L5) and
(L6) easily follows from (L3). O

Consider the Banach subspace
Xvpxvi = 1€ € CH([0,7];R™) [ (£(0),&(7)) € Vo x Vi }
of C1([0,7],R™), and the Hilbert subspace
Hyyxv; o= {€ € WH2([0,7);R™) | (£(0),&(7)) € Vo x Vi }

of W12([0, 7]; R"™). The spaces Hy,x1; and Xy, xy; have the following open subsets

U = W, (10,71 B,(0)) = {e € w2 (10,71 Biy(0)) | (60),€(7) € Vo x Vi |
UX = UN Xy = Clyeny (0.7 BJo(0))

respectively. Define a family of functionals €y : i/ — R given by

~

&\ (x) = /0 it o(t), #()dt, A€ A, (3.24)

Since £ is defined on C"l/oxvl([(),ﬂ; B(0)) and UX = C"l/oxvl([o, Tl; BL"/Q(O)) is an open neigh-
borhood of 0 € CJ; «v;, ([0, 7]; B[*(0)), by (L1) in Lemma 3.8 we obtain

0
E=&lyx in {zeUX||z|c < po} CcUX, (3.25)
and therefore the following (3.26).

Proposition 3.9. (i) Each &y is C*7° and twice Gateaus-differentiable, and d€x(0) =0 and

m*(5,0) = m*(Exlyx,0) = m*(€x,0), %= —,0. (3.26)

(ii) Each critical point of £y sits in C? ([0,7’]; 37/2(0)) NUX, and satisfies the boundary prob-

lem:

%<6vﬁ>\(t,x(t),:’c(t))> — Oy La(t, 2(t), (1)) = 0,
0L (0,(0),2(0))[vo] =0 Voo € Vp, (3.27)
O L (T, 2(7),2(7))[11] =0 Vo1 € V1.



33

(iii) The gradient of £\ at x € U, denoted by VEx(x), is given by
t s
Ve(z)(t) = et/ [6_25/ erf&m(r)dr} ds +c1(\ z)et + ca( N, z)e
0 0
t
—I—/ DL (s, (), (s))ds, (3.28)
0

where c1(A, x), c2(X,x) € R™ are suitable constant vectors and
Faz(t) = —0,La(t, x( / OpLix(s,x(s),(s))ds. (3.29)

(iv) VE, restricts to a C' map Ay from UX to Xy xVv; -

(v) V& has the Gateauz derivative By(¢) € Ls(Hyyxv,) at ¢ €U given by

(B = [ (00 (1.CCOCOO) O 0(0)] + B (1,610 £0) (01 0]
+0aLa(1,C(0),C(0) [E0),n(0)]
044 La (£, (). S(0) [§(0),m(®)] ) dt (3.30)

for any &,m € Hy,xv,. BA(Q) is a self-adjoint Fredholm operator and has a decomposition
By (€) = PA(Q)+Q\(C), where P\(C) € Ls(H) is a positive definitive linear operator defined

by
(P)\(C)‘Sa 77)1,2 = /OT <6vvlvl)\ (ta C(t)7 C(t))[é(t)a U(t)] + (é(t)v U(t))Rn> dt: (3'31)

and Q\(¢) € Ly(H) is a compact self-adjoint linear operator. Moreover, (L2) Lemma 3.8
implies that (Px(€)&,&)1,2 > min{e, 1}||§H%2 forallz €U and & € Hy,xv,.

(vi) If (\) © A and (&) C U converge to p € A and 0, respectively, then |Py, ()€ —
Pu(0)¢

(vil) U 3 ¢ = Q\(¢) € Ls(Hyyxvy) is uniformly continuous at 0 € U with respect to A € A and
[Qx,(0) = Q,(0)]| = 0 as (Ax) C A converges to p € A.

Proof. (i) is obtained by [31, §4] or [32, §3] and [30]. (ii) follows from [6, Theorem 4.5] because
of conditions (L0), (L2) and (L4)-(L6) in Lemma 3.8. (iii) is obtained by (4.13) and (4.14) in
[31]. (iv) and (v) are proved in [31, §4].

Proof of (vi). By (6.25) we have

dt.

[81)’UL>\k (t, Ck (t)> Ck (t)) - avvi/u (t> 07 0)]5@) i

Rn

1[Pae (Ge) — Pu(0)I€]25 < /0 '

Note that ||Cx[l1.2 — 0 implies ||Cxllco — 0. Since (A, t,2,v) + Oy L(t, 2,v) is continuous, by
the third inequality in (L3) in Lemma 3.8 we may apply [37, Prop. B.9] (|35, Prop. C.1]) to

f(ta Uk )‘) = ava()\, t, Ck(t)7 Ck(t))n
to get that
dt — 0.

[8UUL)\k (t; Ck (t)7 Ck (t)) - 8111)Lu (t7 07 0)]5@) ;n

r
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Moreover, the Lebesgue dominated convergence theorem also leads to

J
Hence [|[Px, (Ck) — Pu(0)]¢][1.2 — 0.
Proof of (vii). Write Q)(¢) := Qx1(¢) + Qx2(¢) + Q) 3(C), where

[Ouu L, (,0,0) — py Ly (£,0,0)]€(t) ;n dt — 0.

(Qur (O M2 = /0 Do (£ C(8), CO) [ECE), (D).
(Qua(O)€. )1 = /0 DL (1, C(8), C0) € (D).
(@us(©)6m2 = [ (00l (60 CO) e n(0)] ~ (€0 m(0), ) .

As above the first claim follows from (L3) in Lemma 3.8 and [37, Prop. B.9] ([35, Prop. C.1])
directly.
In order to prove the second claim, as in the proof of [30, page 571] we have

1@Qx,1(0) = Q1 ()] £ (r

- 1/2
< 2" +1) </ |OugLn, (5,0,0) = DygLy(s, 0, 0)\2 ds) .
0

Because of the second inequality in (L2), it follows from the Lebesgue dominated convergence

theorem that [|Qy, 1(0) — Q.1 (0)ll ¢y — 0. Observe that (Qy2(C)§,m)1.2 =(&, (Qx1(¢))*n) -
Hence [|Q), 2(0) — Q,, 2(0)|[¢(zxy) — 0. Finally, it is easy to deduce that

2
’ dt.

||Q>\k,3(0) - Qy,3(0)||%(H) < /0 8qu)\k (t7070) - aquu (t,O, 0)

By the Lebesgue dominated convergence theorem the right side converges to zero. Then || Q,, 3(0)—

Q%?,(O)HL(H) — 0 and therefore HQAk (0) — QM(O)H — 0.
OJ

In order to apply our abstract theory in [34, 36, 37] to the family of functionals in (3.24) we
also need two results.

Proposition 3.10. Both maps A x UX 5 (A, z) = Ex(z) € R and A x UX 5 (\,z) — Ay(z) €
Xvyxvy are continuous.

Proof. Step 1(Prove that A x U 5 (\,z) — Lx(z) € R is continuous, and therefore obtain the
first claim). Indeed, for any two points (A, z) and (Mg, x¢) in A X U we can write

E(@) — Exy(m0) = [/TEA(t,x(t),a‘c(t))dt—/TL,\(t,a:o(t),i:o(t))dt]

0 0

A [ /O Ea(t, 20(t), do(0))dt — /O ’ Exo(t,xo(t),x'o(t))dt} |

As (A, z) = (Mo, o), we derive from (L6) in Lemma 3.8 and [37, Prop.B.9] or [35, Proposition
C.1] (resp. (L6) in Lemma 3.8 and the Lebesgue dominated convergence theorem) that the first
(resp. second) bracket on the right side converges to the zero.
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Step 2(Prove that A x UX 3 (X, z) — Ax(z) € Xyyxv, is continuous). By [31, (4.14)] we have

d_ s T L BT A
avg,\(a:)(t) = 6/0 [e /Oef,\jx(r)dr} ds+e /OefA,x(r)dr
+ei(N x)el — co( N z)e ™t 4 9, Ly (t, 2(t), 2(1)) . (3.32)

This and (3.28) lead to
201()\,x)et = —2¢ /Ot [628 /OS e’“fA,x(r)dr] ds — et /Ut e fag(r)dr
— /t 8Uﬁx(s,x(s),gt(s))ds — Oyl (t,z(t),z(t))
0

+VEN(z)(t) + %w}(z)(t) (3.33)

and

t ¢
o= -t : - 81; [ ) ) i
2c9(\, x)e e /0 e faz(r)dr /0 Ly(s,x(s),x(s))ds

FOuEn ( (t), #(8)) + VEx(x)(t) — %Véf,\(x)(t). (3.34)

Moreover, since

4\, (@)[e] - dén )]
= /0(aqL(Al,t,x(t),yb(t))—aqi(/\g,t,y(t),y(t)))-g(t)dt
+ [ (L a0, 8(0) - L0 ty(0). 59) - €0)) .
0

we have

IVEN () = VE ()12

. 1/2
< </0 \aqL(Aht,x(t),j:(t))—aqL(AQ,t,y(t),y(t))\2dt>

, 1/2
+<A\aluhaaw@a»—@Lu%amwww»fw> |

Fix a point (A;,z) € A x UX. Then {(A1,t,z(t),(t)) |t € [0,7]} is a compact subset of A x
[0, 7] x 37/2(0) x R™. Since d,L and 0, L are uniformly continuous in any compact neighborhood

of this compact subset we deduce: If (Ay,y) € A x UX converges to (A, z) in A x U, then

[VEL (7) = VELW) 12 =0 andso [|[VE\ (z) — VEN(Y)|lco — 0.

This fact, (3.29) and (3.33)-(3.34) imply that ¢; (A, ) and c2(A, ) are continuous in /A} x UX.
From the latter claim, (3.28)-(3.29) and (3.32), it easily follows that as (A2,y) € A X Uux
converges to (A1, z) in A x UX,
d_x d_ .
FACYCEFAL N0

dt dt =0

Co

and hence |VEy, (z) — VEx, (1)l — 0. O
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Proposition 3.11. For any given € > 0 there exists € > 0 such that if a critical point x© of
&y satisfies ||xz]|12 < € then ||z]|c2 < €. (Note: ¢ is independent of A € A.) Consequently, if
0 € UX is an isolated critical point of Ex|yx then 0 € U is also an isolated critical point of €.

By Proposition 3.9(ii), Crit(§) := {(\,z) € AxU | dé(z) = 0} € AxC? ([ 7] By (0 ))muX.
Proposition 3.11 claims that A x ¢/ and A x C? ([O,T]; BL”/2(0)) NUX induce the equivalence

topologies.

Proof of Proposition 3.11. The second claim may follow from the first one by contradiction.
Let us prove the first one. By Proposition 3.9(ii), x is C2. Let ¢1(\, x) and c2()\, x) be given by
(3.33) and (3.34), respectively.

Step 1 (Prove that both |c1(A, z) —c1(A,0)| and |ca(A, ) — ca(A, 0)| uniformly converge to zero
in A€M as|z|12 — 0).

Since VE,(2)(t) = 0 and £VE,(z)(¢) = 0, by (3.33) for any ¢ € [0, 7] we have

2le1(\ ) — 1 (A, 0)] < 2]c1()\,a:)et — cl()\,O)et\

< 2! /0 [628 /0 Tl faa(r) — f/\,O(T)\dT] ds + et /0 ¢ Fra(r) — fro(r)ldr
/ BuLa(5,2(5), () — L (5,0,0)|ds + |8 E (¢, 2(t), (1)) — DuLx (1,0,0) |
< 26277/0 [faz(r) — fro(r)|dr + /OT |fae(r) = faolr)|dr

[ 0L (sv0(6).(5) = L 0,0)ds +[0,L (), (6) = 0, (1,0.0)
and (by integrating this inequality over [0, 7]) hence
2rler (M z) — e (A, 0)] < 2/7 lex(\, 2)et — 1 (A, 0)el|dt
< 27 [1a) = Pl [ 150) = froflar
+(r+1) | 10,Lr(s,2(s),2(s)) — DpyLr(s,0,0)|ds,
that is,

ler(A, x) — (A, 0)] < e r+1 /|f>\x — fao(r)|dr

T+
LD

o / |0y LA (s, 2(s), i (s)) — ByLa(s,0,0)|ds.  (3.35)

Moreover, (3.29) leads to
[ 1520 = haolar < [ 10,La(t.a(0),5(0) - AL t0.0
+7 /OT 10, Lx(t,x(t), &(t)) — OyLx(t,0,0)|dt (3.36)
From this and (3.35) we derive

e z) — (A, 0)] < (77 + 1) /0 10, (s 2(1), () — Dy La (1,0, 0)dt
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T+ 1
T

+ ((6277 + 1)1+ ) /OT |0y Lx(5,x(5),2(s)) — La(s,0,0)|ds. (3.37)

Similarly, by (3.34) we obtain
t
20es(02) = 2(M0)| < [ () ~ o)l
0
t
+et/ 10, L\ (s, 2(5), () — OyLa(s,0,0)|ds + €'|0, Ly (t, z(t), &(t)) — Oy Lx(t,0,0)]
0
and (by integrating this inequality over [0, 7]) so
27[ca(A, @) — c2(A, 0)] < €7 / |0y La(t, (1), &(t)) — 84 LA(t,0,0)|dt
0
+eT (27 + 1) / |0y Ly (t, 2(t), &(t)) — Oy La(t,0,0)|dt (3.38)
0

by (3.36).
Note that (L5) of Lemma 3.8 and [37, Prop.B.9] ([35, Proposition C.1]) imply that

h
/
Sﬁ(/(:

uniformly in A € A as ||z|;2 — 0. The required claim follows from this and (3.37)-(3.38).

Step 2(Prove that for any given v' > 0 there exists € > 0 such that VEx(x) = 0 and ||z||12 < €’
imply a1 < ).

Since V& (z) = 0 and VE\(0) = 0, by (3.32) we have

0 = ¢ /Ot |:6’_28 /OS erfA,z(r)dr] ds+e? /Ot e’ frz(r)dr
ter(\z)et — co( N, x)et + Oy Ly (t,x(t), 2(1)) .

t s t
0 = et/ |:€_2S/ erf)\70(r)dr] ds + e_t/ e fro(r)dr
0 0 0
+c1 (N, 0)e! — ca(N,0)e™t + 9, Ly (¢,0,0).

[04Lx(5,2(s),3(s)) — 9gL(s,0,0)] )ds — 0 and

[81,[:/\ (s, x(s), x(s)) — OyLy (s, 0, 0)] ‘ds

) § 5 N\ 1/2
[&,L,\ (s,x(s),:’u(s)) — OpLy (s, 0, 0)} ‘ ds> -0

and

For each 0 <t < 7, the former minus the latter gives rise to
0, L (t,x(t), 2(t)) — OyLx (£,0,0) | < efler (N, ) — c1 (N, 0)] + e ez (N, 2) — c2(N, 0)]
t S t
v [ [e% | et - fA,()(r)\dr] dst et [ ) = rolr)ldr
0 0 0

< 67‘01()\,.%) - Cl()\,O)| + ‘02()"'%) - 02()‘70)| + eT(T + 1) /OT ’f)\,w('r> - f)\,O(TNdT
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and (by (3.36)) hence
OuL (£, 2(8), (1)) — Bl (£,0,0) | < €7let (M 2) — 1 (A, 0)] + lea(h, ) — ca(\, 0)]
beT(r 4 1)/0 10, (£, 2(8), (1)) — D, Ex(t, 0, 0)]dt

+e’ (1 + 1)7/ 0y LA (t,2(t), &(t)) — By L(t,0,0)]|dt. (3.39)
0
Note that (L3) in Lemma 3.8 and the mean value theorem of integrals may lead to
1
é|'U|2 < / (ava)\(ta q, SU)[U],’U)Rn ds = (81)L)\(t7 q, U) - avL/\(t’ q, O)a U)Rn
0

and so c|v| < ‘OUL,\(t,q, v) — dyLa(t, q,0 ‘ for any (A, t,q,v) € A x [0,7] x B
particular, for all ¢ € [0, 7] we have

2 4(0) x R, In

i) < |0uLa(t,m(t), #(t)) — OuLa(t, 2(t),0)|
< ‘avL)\ t, ac(t), x<t)) - 8111—/)\(757 07 O)| + ‘8UIV/)\(ta x(t)a 0) - avlv—f)\(ta 07 O)| :
By this and (3.39) we arrive at
é‘l’(t)’ < eT’cl(Aax) - cl(Aa 0)’ + ICQ(Aax) - CQ(Aa 0)’ + ‘av[v/)\(tvx(wv 0) - 8vz)\<t707 0)‘

e (1T +1) /OT 0, La(t, x(t), 2(t)) — Oy LA(t,0,0)|dt
+eT (T + )7 /T 0pLx(t, x(t), (1)) — DyLx(t, 0,0)]|dt. (3.40)
0

Since ||z||co < (v/T+1/4/T)||z|1,2, as in the final proof of Step 1, the required claim may follow
from (3.40) and the conclusion in Step 1.
Step 3(Complete the proof for the first claim). Note that x satisfies

0 = %(BUE,\(t,x(t),i(t)))—8qEA(t,x(t),;b(t))

= OpoLn(t,2(t), 2(t))E(t) + OugLr(t, 2(t), 2(t))E() + Opr La(t, 2(t), 2(t))
—0y LA (t, (1), 2(t)). (3.41)

In particular, taking x = 0 we get
0 = Oy Lx(t,0,0) — 9,Lx(t,0,0). (3.42)
(6.62) minus (6.63) gives rise to

0 = OuLa(t,x(t),(t))i(t) + OpgLa(t, x(t), 2(t))i(t)
+0u L (t, (1), 2(t)) — Ope L(t,0,0)
—0,L(t, x(t), & (t)) + Dy LA(t,0,0). (3.43)

Since (L2) of Lemma 3.8 implies [0y, La (2, (t), 2(t))]71¢| < 1|¢] V€ € R, (6.64) and (L3) in
Lemma 3.8 lead to

FO] S 21O Lalto(0), )] [4(0)] + 10w Lat 2(2), 6(0)) — D (2,0,0)]
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210, L (1 2(0), 4(0)) = 8,1 (1,0,0)
< %(1 + @)D |2@)] + %|avtLA(t,x(t)’i(t)) — 9yt LA(t,0,0)]
+%|8qlv/)\(t,x(t),jc(t)) — 9,L(t,0,0)|. (3.44)

Recall that A is either compact or sequential compact and that 8qf/A(t,q,v) and &jtlvl,\(t, q,v)
is continuous in (A, ¢, q,v) by Lemma 3.8(L0). The desired claim easily follows from (6.65) and
the result in Step 2. ]

Remark 3.12. (i) The existence and continuity of the partial derivative 9; L(-) in Lemma 3.8(L0)
are not used in the proofs of Propositions 3.9, 3.10, 3.11.

(ii) The existence and continuity of the partial derivatives 9y, L(-) and 9y L(-) in Lemma 3.8(L0)
are not used in the proofs of Propositions 3.9, 3.10; but they are necessary for the proof
of Proposition 3.11.

Proof of Theorem 3.5(I). Since there exist a sequence {(Ag, zx) be>1 C AXCY, . (10,7]; B(0))
converging to (u,0) such that each zj is a nonzero solution of the problem (3.12)—(3.13) with
A=\, e, VE (xx) =0, k =1,2,--+, by (L1) in Lemma 3.8 with A = {u, A\ [k € N} we
deduce that Vc‘:}\k (zx) = 0 for k large enough. Therefore (i, 0) is a bifurcation point along se-
quence of VEx(z) = 0in A xU. By (i) and (v)-(vii) of Proposition 3.9 we see that the conditions
of [34, Theorem 3.1] ([37, Theorem C.6]) are satisfied with Fy = &\ and H = X = Hy, 3,
U =U and \* = p. Then m2(£,,0) > 0 and so m°(ES,0) > 0 by (3.26). O

Proof of Theorem 3.7. Since A is a real interval and p € Int(A) we can take a small € > 0 so
that A := [t —¢e, u+€] C A. Propositions 3.9, 3.10 shows that (U, UX, {Ex| ) € A}) satisfies the
conditions in [35, Theorem 3.6] with \* = u except for the condition (f). The latter may follow
from (3.26) and the assumption, that is, m°(€,, 0) # 0 and m°(€,,0) = 0 for all A € A\ {x} near
p, and m~(€y,0) take, respectively, values m~(&,,0) and m~(E,,0) +m°(&,,0) as A € A varies
in two deleted half neighborhoods of p. Therefore from [37, Theorem C.7] ([36, Theorem 3.6))
we deduce that one of the following occurs:

(i) Vc‘fu has a sequence of nontrivial zero points converging to 0 in U.

(ii) For every \ € A \ {u} near i, Ay has a zero point yy # 0, which converge to zero in U~
as A — .

(iii) For a given neighborhood M of 0 € U¥, there is an one-sided neighborhood A° of y in A
(therefore in A) such that for any A € A%\ {u}, Ay has at least two distinct nontrivial zero
points in 9, y} and y3, which can also be required to satisfy E:'A(y/l\) #* év',\(yi) provided
that m°(&,,0) > 1 and A has only finitely many nontrivial zero points in 9.

As above the required results may follow from Proposition 3.11 and (L0) in Lemma 3.8. O

In order to prove Theorem 3.5(II) and Theorem 3.6, noting that because of Propositions 3.9, 3.10,
(specially Proposition 3.9(iv) implies that &|,x € C*(UX,R) and By is continuous as a map
from UX to Ls(Hy,x1;) because A) = B,), we may, respectively, apply [37, Theorem C.4] and
[37, Theorem C.5] to (U, UX,{Ex| X € A}) to obtain (I) and (II) of the following theorem.
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Theorem 3.13. (I) (Sufficient condition): Suppose that A is first countable and that there
exist two sequences in A converging to p, (A, ) and (A,‘:), such that one of the following
conditions is satisfied:

(L1)

(L.2)

(1.3)

For each k € N, either 0 is not an isolated critical point of g}\;:, or 0 is not an
isolated critical point of 5/\ , or 0 is an isolated critical point of 5/\+ and 6')\— and
Cm (5’/\+,0 K) and Cp, (6’/\7,0 K) are not isomorphic for some Abel group K and
some m € Z. Moreover, in the third case, “Cy, (5)\+,0 K) and Cp, (5)\7,0 K)” may
be replaced by “Ci( )\+|ux 0;K) and Cy(E A lux, 0; K)”

For each k € N, [m (5/\:,0),771 (EA:,O) + mo(ff)\;r,O)] N [m_(g/\;,()),m_(g’)\;,O) -
mo(g’)\;,())] = 0, and there exists \ € {)\Z, A } such that 0 is an either nonisolated

or homological visible critical point of Ex. Moreover, £y can be replaced by g)\’Z/[X mn
the second condition.

For each k € N, [m_(SA:,O),m_(SA:,O) + mo(g)\:,O)] N [m_(g)\;,O),m_ (SA;,O) +
mo(g’/\;,O)] =0, and either mo(c‘f)\z,O) =0 or mo(g'/\;,()) =0.

Then there exists a sequence {(Ag, x)}x>1 in A x (UN CQ([O 7],R™)) such that A\, — p,

0<

lzrllcz — 0 and VE\(xx) = 0 for k = 1,2,---, where A = {u,)\k,)\k |k € N}. In

particular, (p,0) is a bifurcation point of the problem VEy(x ) =0 in A x C?([0,7],R™)
with respect to the branch {(),0)| A € A} (and so {(A,0)| X € A}).

(IT) (Existence for bifurcations): For A\~ , AT in a path-connected component of A suppose that
one of the following conditions is satisfied:

(IL1)

(11.2)

(I1.3)

Either 0 s not an isolated critical point of c‘f,\+, or 0 is not an isolated critical
point of Ex—, or 0 is an isolated critical point of Ex+ and Ex— and Cy(Ex+,0; K)
and Cm(c‘f,\f,O;K) are not isomorphic for some Abel group K and some m € Z.
Moreover, in the final case, “Cpp(Ex+,0;K) and Cp(Ex-,0;K)” may be replaced by
C(Ext lyx, 0; K) and Co(Ex=|yx,0; K) 7.

[m_(g)\+,0),m_(<‘j>\+,0) + mo(g)\+,0)] N [m_(g)\f,O),m_(c‘fAf,O) + mo(c‘fx,O)] = q),
and there exists X\ € {\T,A\7} such that 0 is an either nonisolated or homological
visible critical point of Ex. Moreover, in the second condition, £y can be replaced by
5,\|ux.

[m™ (Ext,0),m™ (Ext,0) + mP(Exs,0)] N [m™(Ex-,0),m™ (Ex-,0) +m°(Ex-,0)] = 0,
and either m°(Ey+,0) =0 or m(£,-,0) = 0.

Then for any path o : [0,1] — A connecting A\* to A\~ there exists a sequence {(t, z1)}x>1
in [0,1] x U converging to (t,0) for somet € [0, 1], such that each xy, is a nonzero solution
of VEu(x) =0, k = 1,2,---. (In fact, ||zk|c2 — O by Proposition 3.11.) Moreover,

a(t)

is not equal to Xt (resp. A7) if mP(Ex+,0) = 0 (resp. m°(Ey-,0) =0).

Proof. Step 1(Prove (I)). Because of Propositions 3.9, 3.10, (specially Proposition 3.9(iv) im-
plies that Ey|;x € C?(UX,R) and B, is continuous as a map from UX to L4(Hy,x1;) since
A\ = B,), for the case (1.2) [resp. (I.3)] we apply [37, Theorem C.4(B.1),(B.2)] (resp. [37,
Theorem C.4(B.3)]) to obtain:

(¥) There exists a sequence {(Ag,zx)}p>1 € A x U\ {(1,0)} converging to (u,0) such that
rp #0and VE\(z3) =0 for k=1,2,---.
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For the case (I.1), if {Ev)\;r }e>1 or {5’/\; }i>1 has a subsequence such that each term of it has 0
as a non-isolated critical point, then we have () naturally. Otherwise, for each sufficiently large
integer [, 0 is an isolated critical point of 5)\? and & - and Ciy, (EV, 0; K;) and Gy, (8/\;,0; K))
are not isomorphic for some Abel group K; and some m; € Z, which implies that for each such
an integer [, 0 is an isolated critical point of 5)\?—|UX and 5/\1_ lyx and Cp, (EAl—Q—‘uX,O;KZ) and
Ch, (5/\1— lix, 0; K;) are not isomorphic because by Proposition 3.9 we may use [21, Corollary 2.8]
to deduce that Ci,, (SVW,O; K;) = Cy, (6‘)\?,0; K;) and Cp,, (g')\; lux, 0; K;) = Cy, (5’/\;,0; K)).
Then we may use [37, Theorem C.4(A)] to get a contradiction provided that (x) is not true.

In summary, we get () in this case, and therefore the desired statements by Proposition 3.11.

Step 2(Prove (II)). Applying [37, Theorem C.5] to (U,UX,{Ex| X € A}) a similar proof to
that of Step 1 yields the required results. O

Proof of Theorem 3.5(II). Suppose that (II.1) is satisfied. If {g;r}kzl or {f:, }k>1 has a
k k

subsequence such that each term of it has 0 as a non-isolated critical point, then the required
result may follow from (3.25) and Proposition 3.11. Otherwise, for each sufficiently large integer
I, 0 is an isolated critical point of g:;r and g;f and Cp, (g;;r, 0; K;) and Cp,, (g:f ,0; K;) are not
isomorphic for some Abel group K; and some m; € Z, which implies by (3.25) that 0 is an
isolated critical point of gkf lx and év'/\; lyx and Cp, (SV lux,0;K;) and Cp, (5’/\; lux,0;K;) are
not isomorphic. That is, the condition (I.1) in Theorem 3.13 is satisfied. Hence (3.25) and the
conclusion in Theorem 3.13(I) lead to the required result.

Next, let (IL.2) be satisfied. If the statements in the second sentence in last paragraph are
true we are done. Otherwise, for each sufficiently large integer [, 0 is an isolated critical point

of c‘f;+ and gj\‘_ and either Cy,, (5;+,0; K;) # 0 for some Abel group K; and some m; € Z or and
L l
Ch, (5;, ,0; K7) # 0 for some Abel group K; and some n; € Z. Therefore by (3.25) 0 is an isolated
l

critical point of 5’)\? lyx and 5’/\; lx and either Cpy, (‘Cj)\f lux,0;K;) # 0or Cp, (5’/\; lux,0; Kj) # 0.
These mean that the condition (I.2) in Theorem 3.13 is satisfied. As above, Theorem 3.13(I)
and (3.25) yield the desired conclusions.

For the case (1.3), by (3.26) we see that the condition (I.3) in Theorem 3.13 is satisfied. The
required statements are derived as above. ]

Proof of Theorem 3.6. For the case (i) in Theorem 3.6. The first two cases easily follow from
Proposition 3.11 and (3.25). For the third case, 0 is also an isolated critical point of £+ and &y-
by Proposition 3.11 and (3.25), and Cy,(Ex+ 1yx, 0; K) and C,, (€~ |;x, 0; K) are not isomorphic.
Theorem 3.13(II) leads to the required results.

For the case (ii) in Theorem 3.6, by (3.25) “0 is an either nonisolated or homological visible
critical point of £” is equivalent to “0 is an either nonisolated or homological visible critical
point of £+ |yx”. Because of these and (3.26), Theorem 3.13(II) yields the required results.

The case (iii) in Theorem 3.6 follows from (3.26) and Theorem 3.13(1I). O

3.1.4 Proof of Theorem 1.5

By contradiction suppose that there exists a path « : [0,1] — A connecting A* to A~ such
that each point (a(s),Va(s)); § € [0,1], is not a bifurcation point of the problem (1.5)-(1.6) in
a([0,1]) x C% 4 ([0,7]; M) with respect to the branch {(A, )| € a([0,1])}. Then for some



42

small € > 0 we have:

v € CF ([0, 7]; M) satisfies [|7 — ya(s)lo2(fo,r1my) < €
and (1.5)—(1.6) with A = a(s) for some s € [0, 1] (3.45)
= 7 = 7, for some X € ([0, 1]).

Fix a point 1 € ([0, 1]). Let 7 be as in (3.2). We have a compact neighborhood A of yu in
a([0, 1]) such that (3.3) is satisfied for all (A, t) € A x [0, 7], i.e.,

disty (72 (1), 7(t)) < ¢, V(A1) € A x [0,7]. (3.46)

Then the reduction in Section 3.1.1 is valid after we use A to replace A therein. Therefore for
the functionals in (3.9), (3.45) implies that for some € > 0 we have

x € Oy, ([0, 7]; BI(0)) satisfies [l c2(po rrv) < € (3.47)
and d€i(xz) =0 for some A\ e A = z=0. ’
It follows from this fact, (3.25) and Proposition 3.11 that there exists é > 0 such that
x € U satisfies ||z]12 < € and (3.48)
déx(z) =0 forsome A€ A = z=0. '

Since we can shrink € > 0 so that the ball B:(Hy,x1;) = {£ € Hyyxv; | [|€]l1.2 < €} is contained
in U, (3.48) means that 0 € U is a unique critical point of €y in Bs(Hy, ;) for each A € A

Take 5 € [0, 1] such that «(5) = u. We have a connected compact neighborhood N (§) of § in
[0,1] such that a(N(5)) € A. Because of (3.48), as in the proof of [37, Theorem C.5] we have
a correspondent result of [37, (C.17)] and therefore obtain that for any Abel group K and any
s,s' € N(s),

Cy(Ea(s), 0 K) = Co(Ensr), 0;K), Vg € NU{0}. (3.49)
As in the previous proofs we may use [21, Corollary 2.8] to deduce that
Cy(Exlyx,0;K) = Cy(€x,0;K), VA€ A.
This, (3.25) and (3.10) lead to
Cy(Exlyx, 0, K) = Cy(E5,0; K) = Oy (Ex, 70 K), VA € A.
and hence
Co(Eas) Ya(s) K) = Cy(Eua(sys Ya(s): K), Vs, s € N(5), Vg € NU{0}. (3.50)
Because the point u € «([0, 1]) is arbitrary, (3.50) implies
ColE i K) = CylEx, i K), YA X € a((0,1]), ¥g € NU{0}. (3.51)
Almost repeating the arguments below (C.18) in the proof of [37, Theorem C.5] we may see

that (3.51) contradicts to each of the conditions (i)-(iii) in Theorem 1.5. Hence the assumption
above (3.45) is not true. Theorem 1.5 is proved. O
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3.2 Proof of Theorem 1.9

We first admit the following version of the Morse index theorem due to Duistermaat [11],
which can directly lead to the Morse index theorem in Finsler geometry (Corollary 9.7).

Theorem 3.14. Let the functionals Lg, s be as in (1.8). Then

m7(£50,)\77)\) = Z m0(£50,8778)7 VA S (077—]'

0<s<A

Theorem 3.14 implies that there only exist finitely many u € (0,7) where m®(Ls, 1, 7u) # 0,
and hence the conclusion (i) follows.

Proof of Theorem 1.9. In the arguments above (7.9) taking v, = v and S; = {y(7)} we have
a unique map

u € Cy 0y ([0, 71 BI'(0)) N C*([0, 7]; B}'(0))
such that u(0) = u(r) = 0 and v(t) = ¢5(t, u(t)) for all t € [0, 7]. For A € (0,7] let

Wég)i{u@)}([oy Al; B, (0)) = {u € WV  {u(x )}([Oa)\]§Rn) ‘U([Oa A]) C BSL(O))} )
which contains C‘I/O>< (u( )\)}([0, AJ; B, (0)) as a dense subset. As before using [48, Theorems 4.2, 4.3]
we deduce that

W taop (0. A1 M) := {ar € WH([0, M) M) [ a(0) € So, a(A) = (V)]

is a C'* Hilbert manifold and obtain a C? chart

D) W,

Voseroy ([0, X B (0)) — Wg ([0, \]; M)

Sox{y(\)}

given by ®,(§)(t) = ¢5(t,un(t) + £(t)) Vt € [0, A] for each A € (0, 7], where uy := uljg 5. Then
®,(0) = yx := 7|,y Note that @, : c;ox{o}([o, AJ; B*(0)) — Céox{w»([o’ AJ; M) is also a C?
chart by the w-Lemma. Clearly, the Banach space isomorphism

Do Wy oy (10, R = W ([0, AR, €= (A7)
maps WV ><{0}([0, 1]; B}*(0)) onto WV’X{O}([O, Al; B](0)). Put

Ly: le}Qx{o}([Ov 1]; B/(0)) = R, § = Lgyx 0 Py o T'x(§).

It is easy to check that

A d
L = [ (Lo, fame0) @

S— S—

1 d
AL (xs, DDA, & <FA<€>W>LZM) ds. (3.52)

Note that ®5(I'\(£))(t) =
have

3

(t,un(t) + TA() (1)) = ¢ (t, ux(t) + E(t/N)) for all ¢ € [0,A]. We

SOATAE) (1) = Didslt, mr(6) + E(t/A) + Dags(t, mr(6) + E(E/M)in(0) + £t/
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It follows that for any s € [0, 1],

@ATA(©)(As) = d3(As,u(As) + £(5)),
SOATAEN®D)| _, = Didylhs,u(hs) + €(5)) + Datylhs, u(hs) + () [00) + 1 (9]

Define L : (0,7) x [0,1] x B"(0) x R" — R by

L\, s,q,v) = Lx(s,q,v)
= AL <)\s, dy(As,u(As) + q), Didy(As,u(As) +q) + %ngﬁ()\s, u(As) +q)[v + Ail(As)]) .
(3.53)

Since both u and L are C?, L is C? and fiberwise strictly convex. Clearly, (3.52) becomes

1 .
Ly(€) = /0 L (n.&).E0)) at. (3.54)
Let ) := 7|p,n- Then @5 o T'x(0) = v, and

dLix(0) = dLgy A (72) 0 d(®x 0 T'A)(0) = 0,
d’LA(0)[€, 7] = d* Ly A(7) [d@A(0)[TA(E)], dPA(0)[TA(n)]], VE,m € W&—QX{O}([O’ 1;R").

Let m~(Ly,0) and m°(Ly,0) be the Morse index and nullity of Ly at 0, respectively. Then
m~(Ly,0) = m™ (Lsyx,7) and  m°(Ly,0) = m®(Lg,x,7a) (3.55)
because d®(0) o I"y (C’V X{0}([0, 1];R”)) is equal to
Chox oy MTM) = {X € C'(1{TM) | X(0) € T}, (0)S0 = Ty(0)S0, X(A) = 0}.

Claim 3.15. For pu € (0,7], p is a bifurcation instant for (Sp,7y) if and only if (u,0) €
(0, 7] x CV X{0}([0, 1]; B*(0)) is a bifurcation point of the problem

4 L (Bualt,2(0), #(1))) — Bela(t,2(0), #(1) =0, (3.56)

95602([0 1]; B(0)), (x(0),z(1)) € Vo x {0} and }
0vLA(0,2(0), 2(0))[vo] = 0 Vv € V.

with respect to the trivial branch {(X\,0) | A € (0,7]} in (0,7] x C‘l/ox{o}([(], 1]; B*(0)).

(3.57)

Proof. By Definition 1.8 a real u € (0, 7] is a bifurcation instant for (Sp,~y) if and only if there
exists a sequence (A;) C (0, 7] converging to p and a sequence of Euler-Lagrange curves of L
emanating perpendicularly from Sg, % : [0, \x] — M, such that (1.10) and (1.11) are satisfied,
ie.,

AR(te) =~v(\g) forall k e N, 0 < ||4* — Yol (o, ryy — 0 as k — oo.

Since Ay — pu, from the latter we deduce that for each k large enough each " sits in the
image of the map ®), : Cvox{o}([o Ai]; B(0)) — C’qu X{'y()\k)}([O’Ak];M) and therefore there

exists a unique u® € C‘l/ox{o}([o Ak]; B(0)) such that @), (u*) = 4% € C'éOX{'Y()\k)}([()’)\k];M)'
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Let vk = (I'),)"1(uF) € C"l/ox{o}([(), 1]; B}(0)). It follows from @, (0) = 7|, that 0 <
HukHcl([O’AkLRn) — 0 and so 0 < ||VkHcl([0,1]7Rn) — 0 as k — co. Moreover, @y, o Ty, (vF) =
7|[07)\k] implies

dLy, (vF) = dLs, (‘I’Ak oly, (Vk)) od(®y, oTy,)(vF) =0.

These affirm the necessary.
Carefully checking the above arguments it is easily seen that the sufficiency also holds. [

Suppose that p € (0, 7] is a bifurcation instant for (Sp,7). Then it follows from Claim 3.15
and Theorem 1.4 (or Theorem 3.5) that m°(Ly, 0) > 0 and therefore m°(Ls, ,,7,) > 0 by (3.55).
That is, p is a Sp-focal point along . (ii) is proved.

Finally, let us prove (iii). Suppose that p € (0,7) is a Sp-focal point along v. By (i) or
Theorem 3.14 there only exist finitely many numbers in (0,7), 0 < p; < -+ < iy, < 7, such
that m®(Lsy s> Yu;) > 0,4 = 1,---,m. Then p € {p1,--- ,m}. Then by Theorem 3.14 and
(3.55) we obtain that

m®(L,;,0) #0,i=1,---,m and m°(Ly,0)=0 for A€ (0,7)\ {u1,  pm},

m™(Ly,0) = Y m°(Ls,0), VYA€ (0,7]. (3.58)
0<s<A

Let p be the distance from p to the set {0, 1, -, thm, 7} \ {t}. Then for any 0 < € < p it holds
that m™(Ly—e, 0) # m™ (L4, 0) and that m®(L,_.,0) = m°®(L,4.,0) = 0. By Theorem 3.5(II)
and Claim 3.15 we deduce that p is a bifurcation instant for (Sp,7). This completes the proof
of the first claim in (iii).

It remains to prove others in (iii). Note that (3.58) gives rise to

_ _f m™(L,,0) for X < p near p,
m-(In,0) = { m~(Ly,0) +m°(L,,0) for A > unear p.

Then Theorem 3.7 may be applicable to £ = Ly and V; = {0} C R”, and therefore one of the
following alternatives occurs:

(A) The problem (3.56)-(3.57) with A = p has a sequence of distinct solutions, v¥ # 0,
k=1,2,---, which converges to 0 in C‘Q/Ox{o}([(), 1]; B*(0)).

(B) There exists a real 0 < ¢ < min{y, 7 — u} such that for every A € [ — o, u+ o] \ {u} the
problem (3.56)—(3.57) with parameter value A has a solution v* # 0 to satisfy |[v*||c2 — 0
as A — .

(C) For a given neighborhood 20 of 0 € C’%/Ox{o}([(), 1]; B](0)), there exists a real 0 < 0 <

min{y, 7 — p} such that for any A € A%\ {u}, where A® = [ — o, ] or [y, p + o], the
problem (3.56)—(3.57) with parameter value A has at least two distinct solutions in 20,
v} # 0 and v) # 0, which can also be required to satisfy Ly(v7) # Ly(v4) provided that
m%(L,,0) > 1 and the problem (3.12)—(3.13) with parameter value A has only finitely
many solutions in 20.

Let us prove that the cases (A) and (B) lead to (iii-1) and (iii-2) in Theorem 1.9, respectively.
In the case of (A) above, C? paths

g [0,1] = M, £ (@, 0 T) (V) (1) = 65 (tult) +vE(E/0)) ki =1,2,0-,
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are a sequence distinct C? Euler-Lagrange curves of L emanating perpendicularly from Sy and
ending at (), and each of them is not equal to 7|jg ). Moreover, since ¢5 : [0, 7] x By, (0) — M
and u : [0,7] — B"*(0) are C° and C3, respectively, we have a continuous map

C2([0, J; [0, 7] x By,(0)) = C*([0, u}; M), w = d5 0w
by Exercise 10 on the page 64 of [16], and a C*> map
0 : C*([0,1]; B(0)) — C*([0, ); [0, 7) x B5,(0))
given by ©(v)(t) = (t,u(t) + v(t/u)). Hence the composition map
C2([0,1]; B(0)) = C2([0, u]; M), v = ¢y 0 O(v) = (B 0 T,)(v)

is continuous, and therefore oy, = (@, 0 y)(VF) = @,,(0) =79, in C2([0, 1], RY) as k — oo.
In the case of (B) above, for each A € [u— o, + o] \ {1},

0 [0, = M, £ (@3 0 T\)(vY)(¢) = 6= (t, u(t) + vA(t/A))

is a C? Euler-Lagrange curve of L emanating perpendicularly from Sy and ending at y(\), and
not equal to 7|jpy- We cannot prove the desired claim as above. But noting that we have
assumed M C RY, ¢ can be viewed as a C°> map from [0,7] x B5(0) to RY. A straight
computation leads to

@) = Digr (tult) + v 1/0) + Dass (1) + 3 0/N)) W (1) + 5 () (t/A)],

(@(1) = DiDigs (t,u(t) +vA1/0) + DaDids (1u(t) +vA(1/0)) [W(0) + £ (v (/)]
£ DaDior (1) + A /N)) W)+ £ () (/)]
Doy (1) + A1/ [(0) + 35 () (/)]
+ DyDyg (t, u(t) + v)‘(t//\)) [w'(t) +

where we denote by D; and D the partial derivatives of ¢x(t, z) with respect to the arguments
t and x, respectively, and in particular, the final term is equal to

83?852% (t, u(t) +vA(E/A) + (s1+ s2) (W' (1) + i(vA)/(t/A))

s1=52=0

Since (u+ o) < AN < (u—0), i =1,2, and |[v*]|c2 — 0 as A — p, it follows from the above
expressions that [[ax — [z llc2onrY) = 0 as A — p.

(As pointed out below (1.7) the above Euler-Lagrange curves of L, oy, o and the following
3 are actually C3.)

Suppose that (iii-1) and (iii-2) in Theorem 1.9 do not hold. Then the above proofs show that
the cases (A) and (B) do not occur. That is, the case (C) must hold. Let us prove that it
implies (iii-3) in Theorem 1.9. By the proof of the case (B) above we have positive numbers §
and ¢’ < min{p, 7 — p} such that

Wy = {v € Ol oy (0,115 BL(0)) | IVl < 6} < 20
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and that C'-paths
ary 1 [0,A] = M, t — ¢z (t,u(t) + v(t/N))

associated with (\,v) € [u — o', p+ 0] x {v € C‘l/.ox{o}([o, 1; B(0)) | Iv]cr < &} satisty

laxy —Ypxller <e

By (C) there exists a positive number oy < min{o’, o} such that the corresponding conclusions
in (C) also hold true after 20 and o are replaced by 2y and oy, respectively. For A* :=
A° N [ — 00, 1t + 0] and A € A*\ {u}, let vi € Wo \ {0} and v5 € W \ {0} be two distinct
solutions of the problem (3.56)—(3.57) with parameter value A. Then

BLE 10N > M, £ (@30 Ta)(vI)(1) = o5 (Lu(®) + V2 (E/N), i=1,2,

are two distinct C? Euler-Lagrange curves of L emanating perpendicularly from Sy and ending
at y(A), and not equal to 7| y. Moreover both satisfy 182 — Yonller <€ i=1,2.

Suppose further that m°(Ls, 1, v,) = m°(L,,0) > 1. For A € A*\ {u}, if there only exist
finitely many distinct C? Euler-Lagrange curves of L emanating perpendicularly from Sy and
ending at y(A), a1, ,am, such that [Ja; — vl llcr < € @ = 1,--- ,;m. then the above
arguments imply that the problem (3.56)—(3.57) with parameter value A\ has only finitely many
solutions in 2g. In this case the above v{ and v} can be chosen to satisfy Ly (v{) # Ly(v3),
which implies (1.12). O

Proof of Theorem 3.14. Follow the first paragraph in the proof of Theorem 1.9. We have a
C? chart

U 1 Oy e quny (10 Al BE,(0)) = G0 ([0, A]; M)

given by W)(§)(t) = ¢5(¢,€(t)) vVt € [0

,A] for each A € (0,7]. Then Wy(uy(t)) = 7, where
u)y = u|[0’)\] and I\ = ’y][o’)\]. Define L : [0

, 7] x By (0) x R — R by

L(t,q,v) = L(t, q,v) = L (t, o5(t, q), Didy(t, q) + Dy (t, g)[v]) -

By Assumption 1.7, L is C® and L(t, ¢, v) is strictly convex in v for each (¢,q) € [0, 7] x B (0).
Therefore for each A € (0, 7] the functional

>\ ~
Ol w04 B (0)) 3 & > £y 1 () = /0 L(t, x(t). i(t)dt € R

is C2, and satisfies d5~VO7>\(u>\) =0 and
Evpa(§) = Ly a (U5(8))  for all & € Oy, 10 ([0, A]; B3, (0)).
With the same reasoning as for (3.55) these yield
m*(éVO,A,uA) =m (Lsyn,7n) and mo(gvm,\,u,\) = mO(ESO,A,*yA). (3.59)
Therefore from now on we may assume that M = R"™ and Sy is a linear subspace in R"”. Then

forO<A<rtandy,ze€ C’Ll%x{o}([o,)\];]Rn)7

A
DLy A (1)l 2] = / [(Py+Qy)- 2+ QTy-=+Ry- 2] dt, (3.60)
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where P(£) = Ou L (1, 1(1), (1)), Q) = OuuL (1, 4(), 3(6)) and R(E) = Ou L (t,1(8), (1))
Let v = v(t, x, ) be the solution of £ = 9, L(t, z,v). Define

H(t,z,&) = (v(t,z,£),E)rn — L(t, x,v(t, x,§)).

Writing x(t) = v(t) and &(t) = O, L(¢t, x(t),v(t)), we get that (1.7) is equivalent to
§@), } (3.61)

with boundary condition

(2(0), (7)) € So x {q} C R" x R™, } (3.62)

(€(0), —€(7)) € Sy x R"

since (T((0),2(r)) (So X {g})+ = (So x {0})+ = Sg- x R™. Note that T*R™ = R" x R". The natural
projection 7 : T*M — M becomes the projection from R™ x R™ onto the first factor R™. The
co-normal bundle of Sy, i.e., N*Sy = {(x,§) € T*M |z € Sy, ({,v) = 0 Vv € T, Sp}, becomes
So X SOL and therefore its tangent space U = Sy X S(J)-. Moreover the vertical space V is equal
to {0} x R™ C R™ x R". By [11, Proposition 4.5] with p = U x V we have

m™(D*Loa (1) = Y dim(UN&(0,5)"(V)), (3.63)

0<s<A

where ®(0,1), according to (1.19) and (1.20) in [11], is the fundamental matrix solution of

< 58 > = A1) < §E8 > (3.64)

with

_( DXH(w(0.6(1)  DEH(t.a(t).£(1)
A(Qﬂ—( D2 H(t,z(t),£(t)) —D2 H(t, ()75(t))>

with £(t) = 0, L(t,v(t),%(t)). Note that [11, (1.13)-(1.14)] with u = 0 corresponds to the Jacobi
equation of the functional Lg, -, namely, the following linearized problem of (1.7)

4(Q(t) - () + P(t) - (1)) = R(t) - () + QT (1) - &(0), } (3.65)
z(0) € S, (1) =0 and Q(0) - z(0) + P(0) - #(0) € Sy

whose solution space is equal to the kernel of D?Lg, (). It was claimed in [11, page 179] that
(3.65) is equivalent to (3.64) plus with boundary condition

(x(0),z(7)) € Sp x {0} C R® x R™, }

(
4(0) € St (3.66)

According to the deduction from [11, (1.13)-(1.14)] with g = 0 to [11, (1.19)-(1.21)] with u =0,
(3.64) was obtained by putting y(t) := Q(¢) - x(t) + P(¢) - £(¢) in (3.66). Hence (3.64) is exactly

(1)) _ —[P(1)]-'Q(t) P()] 2(t)
< 5(t) > B ( R(t) — [QIT[PMIIQ)  [Q)IT[P(t)] > ( y(#) ) (3.67)
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that is,

—[P(®))'Q(t) [P(t)]~ ) _
(R @il e @t por ) =400
with &(t) = 0, L(t,v(t),%(t)). (Hence ®(0,t) = d¢'(v(0),d,L(t,v(0),7(0))) : R?® — R?" where
¢! is the flow of the Hamiltonian system (3.61); see [11, page 192].)

Note that the map sending (Z,%) € U N ®(0,7)" (V) to =, where (z(t),y(t)) = ®(0,t)(Z, )
with 0 <t < 7, is a linear isomorphism between U N ®(0,7)~ (V) and the space of solutions of
(3.65). We obtain

dim(U N ®(0,7)""(V)) = m®(D*Ls, A (7))

and so dim(U N ®(0,s)~H(V)) = m®(D?Ls, s(7s)) since 7 may be replaced by any 0 < A < 7.
The desired conclusion follows from these and (3.63). O

4 Proofs of Theorems 1.13, 1.14, 1.15

The proofs are completely similar to those of Section 3. We only outline main procedures.

4.1 Reduction to Euclidean spaces

As in Section 3.1.1, we have a positive number ¢ such that 3¢ is less than the injectivity radius
of g at each point on 7,([0,7]), and a path 7 € C']I ([0,7]; M) N C7([0, 7]; M) such that (3.2)
is satisfied. Then the injectivity radius of g at each point on ([0, 7]) is at least 2.. Then we
assume that (3.3) is satisfied. (For cases of Theorems 1.13, 1.15, it is naturally satisfied after
shrinking A toward p.)

As in [32, §3], starting with a unit orthogonal frame at T, )M and using the parallel trans-
port along 7 with respect to the Levi-Civita connection of the Riemannian metric g we get a
unit orthogonal parallel C° frame field [0, 7] — F*TM, t + (e1(t),--- ,en(t)). Note that there
exists a unique orthogonal matrix Ex such that (ei(7),--- ,en(7)) = (Igx€1(0),- -+, Igxe,(0))Ex.
Let B3, (0) := {x € R"||z| < 2t} and exp denote the exponential map of g. Then

¢5 [0, 7] x B3,(0) = M, (t,2) = exps (Z xiei(t ) (4.1)

is a C® map and satisfies

d5(1, ) =TIy (¢5(0, (B5z")"))  and  déx(r, 2)[(1,v)] = de5(0, (Eyz")")[(7, (Bsv")")]

for any (¢,z,v) € [0, 7] x B%,(0) x R™. (Note that the tangent map d¢= : T'([0, 7] x B%,(0)) — T'M
is C*.) Consider the Hilbert subspace

W2 ([0, 7 R™) := {u € W((0, 7] R") |u(r) = E5u(0)} (4.2)
of WH2([0, 7]; R?") equipped with W!2-inner product (2.2), and Banach spaces
Cp([0,7];R") = {u € C([0,7]; R") | u(T) = Exu(0)} (4.3)

with the induced norm || - ||« from C%([0, 7], R™) for i € NU {0}. By [48, Theorem 4.3], we get
a C? coordinate chart around 7 on the C* Banach manifold C]Ilg([(), T]; M),

5 : Cp ([0, 7], By,(0)) = {€ € Cp_([0,7],R™) | [€llo < 2¢} — Cf ([0, 7]; M) (4.4)
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given by ®5(£)(t) = ¢5(,£(t)), and
d®5(0) : Cp_([0,7],R") — CL (7" TM), £ ) &ie;.
j=1

By (3.2) and (3.3), for each A € A there exists a unique map uy : [0, 7] — BJ*(0) such that

() = ¢5(t, un(t)) = expsy <Z ule;(t ) , telo,T].

As in the proofs of Lemma 3.1, 3.2 we have:

Lemma 4.1. uy € C?([0,7]; B*(0)), u,(0) = 0 =u,(7) (and so uy € C}; ([0,7], B/*(0))) and
(A1) = un(t), (At)—=ax(t) and (A t) — 0y(t)

are continuous as maps from A x [0, 7] to R™.

Let L* : A x [0,7] x B"(0) x R" — R by (7.9). It satisfies Proposition 3.3. Each functional
~ 1 ~
& b (0,71 B2O) = R o s [ Exfea(o) (0)de (45)
0

is C?, and satisfies
Ex(x) = &x (Py(x +uy)) Vo € Cp_([0,7], B}(0)) and dE€}(0) = 0. (4.6)

Hence for each A € A, z € C}Ey([(), 7], B]'(0)) satisfies déﬁ\(m) = 0 if and only if v := ®5(x + uy)
satisfies d€(y) = 0; and in this case 7 and x have the same Morse indexes and nullities. In
particular, for each A € A, it holds that

m”(€5,0) =m™(Ex,m) and m°(€3,0) = m®(Ex, ). (4.7)
The critical points of éf\ correspond to the solutions of the following boundary problem:

@ (0,130, 2(0), #(0))) — AL (1, 2(1), 5(6) = 0, (48)

z € C% ([0,7], B*(0)) and

(EX >wnmum<»=mmmﬂmﬂW} Y

([6, Proposition 4.2]). Corresponding to Theorems 3.5, 3.6, 3.7, we have the following three
theorems, which also hold true provided that L* satisfies (a) in Proposition 3.3 and the weaker
(b’) in Remark 3.4 as noted in Remark 3.4.

Theorem 4.2. (I) (Necessary condition): Suppose that (p,0) € A x 0}27([077']737(0)) is a

bifurcation point along sequences of the problem (4.8)-(4.9) with respect to the trivial
branch {(\,0)| X € A} in A X 01157([077]73?(0))- Then m°(€%,,0) > 0.

(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to p, (A, ) and ()\z), such that one of the following conditions is satisfied:
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o1

(I1.1) For each k € N, either 0 is not an isolated critical point of é:ﬂ or 0 is not an
k

:E’ or 0 is an isolated critical point of é;Z and éi; and
Cm(Eiﬁ,O; K) and Cm(Sig,O; K) are not isomorphic for some Abel group K and
some m € 7.

(IL.2) For each k € N, there exists A € {)\:,)\;} such that 0 is an either nonisolated or

homological visible critical point of €Y , and

[m_(éf\;,O),m_(é;;,O) + mo(éf\;,())] Nm=(&

isolated critical point of &

0)7m_(é:;70) +m0(~§2-30)] = @

A
(I1.3) [m~=(&;_,0),m™(&_,0) + m®(&;_,0)] N [m~(€7,0),m™ (€5,,0) + m° (&%, 0)] = 0,
k k k k k k

and either mo(é’)‘\,,O) =0 or m°(&*,,0) =0 for each k € N.
k

+
)‘k

Then (11,0) is a bifurcation point of the problem (4.8)~(4.9) in A x 0%7([077—]7 B(0)) with
respect to the branch {(X\,0)| XA € A} (and so {(\,0)| A € A}), where A = {p, MNOAL ke
N}.

orem 4.3 (Existence for bifurcations). Let A be connected. For A=, AT € A suppose that one

of the following conditions is satisfied:

(i)

(i)

(iii)

FEither 0 is not an isolated critical point of é;, or 0 is not an isolated critical point of &x ,
or 0 is an isolated critical point of é’;\+ and &% and C’m(é;r,O; K) and C’m(é;_,o; K) are
not isomorphic for some Abel group K and some m € Z.

[mi(éi— ’ 0)7 mi(é;— ) O) + mo(é;— ) 0)] N [mi(éjd-? 0)7 mi(é§+7 0) + m0<é§+7 0)] = ®7 and
there exists X € {\T, A"} such that 0 is an either nonisolated or homological visible critical
point of €.

[m=(E%_,0),m™(E%_,0) +m°(EX_,0)] N [m~(€%,,0),m™ (€%, 0) +m (€%, 0)] = 0, and
either m°(€5.,0) =0 or m°(&3_,0) = 0.

Then for any path « : [0,1] — A connecting AT to A\~ there exists a sequence (t;) C [0,1]
converging to some t € [0, 1], and a nonzero solution xy, of the problem (4.8)—(4.9) with A = a(ty,)
for each k € N such that |lzi||c2(jo,7mny — 0 as k — oo. Moreover, a(t) is not equal to A\*

(resp. X\~ ) if mo(é§\+,0) =0 (resp. mo(éj,,O) =0).

Theorem 4.4 (Alternativg bifurcations of Rabinowitz’s type). Let A be a real interval and p €
Int(A). Suppose that mO(EZ‘“O) > 0, and that m°(€3,0) = 0 for each A € A\ {u} near p, and

m”(

éj, 0) take, respectively, values m*(él*l, 0) and m*(éz, 0) —I—mo(é;, 0) as A € A wvaries in two

deleted half neighborhoods of . Then one of the following alternatives occurs:

(i)

(i)

(iii)

The problem (4.8)—(4.9) with X = p has a sequence of solutions, x) # 0, k = 1,2,---,
which converges to 0 in C*([0, 7], R™).

For every A € A\ {u} near p there is a solution yx # 0 of (4.8)—(4.9) with parameter value
A, such that yy converges to zero in C2([0,7],R™) as A — p.

For a given neighborhood 20 of 0 € C};ﬁ([o, 7], B*(0)), there is an one-sided neighborhood

A° of p such that for any A € A°\ {u}, the problem (4.8)-(4.9) with parameter value \
has at least two distinct solutions in 27, y}\ # 0 and yi =% 0, which can also be required
to satisfy €% (y3) # E%(y3) provided that mo(éZ,O) > 1 and the problem (4.8)—(4.9) with
parameter value A has only finitely many solutions in 2.
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As in the proofs of Theorems 1.4, 1.6, Theorems 1.13, 1.15 are derived from Theorems 4.2, 4.4,
respectively.

4.2 Proofs of Theorems 1.13, 1.14, 1.15
Let us write
Hp = W,;jqo,ﬂ;RH) and Xp, = Cp_([0,7;R"),
U= {uew([0,71: Bjy(0)) |u(r) = Bzu(0) }
U =UNXp = {u e ! ([O,T]; 37/2(0)) | u(r) = EVU(O)}

The latter two sets are open subsets in the spaces Hp. and X, respectively. Let the continuous

function L : A x [0,7] x B? ,,(0) x R” — R be given by Lemma 3.8. Define a family of functionals

3 3u/4
Ex:U — R given by
Exz) = / La(t, z(t), &(t))dt, X e A. (4.10)
0
Then (L1) in Lemma 3.8 implies
& =C&ylyx in {zeUX||z]c < po} cUX, (4.11)
and hence } ) )
m*(€3},0) = m*(Exlyx,0) =m*(€x,0), == —,0. (4.12)

Since Hp_ contains the subspace {u € W2 ([0, 7];R") | u() = 0 = u(0)}, carefully checking
the computation of [31, (4.14)] it is easily seen that replacing Hy by Hp_ we also obtain that
the gradient VéA(x) of &y at z € U is still given by

Vér(z)(t) = ¢ /Ot [625 /OS e’"fA,x(r)dr] ds +c1(\ z)et + ca(\, x)e !

+/0t Oy L (s, 2(s),i(s))ds, (4.13)

where ¢1 (A, ), c2(\, ) € R™ are suitable constant vectors and f)(t) is given by (3.29).
Proposition 4.5. Proposition 3.9 is still effective after making the following substitutions:
o The functionals 5~:\* and €, are changed into é; and &y, respectively.
o The spaces Hy,xv, and Xy,xv; are changed into Hg_ and Xp_, respectively.
o The boundary problem (3.27) is changed into
4 (BuL(t2(0),#(1)) ) — Oy La(t, 2(0), #(1)) =0, w1
x(7) = Exx(0).
Then repeating proofs of Propositions 3.10, 3.11 we can obtain:

Proposition 4.6. Both maps AxUX 3 (A, z) = &x(z) € R and AxUX 5 (N, z) — Ax(z) € Xp
are continuous.
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Proposition 4.7. For any given € > 0 there exists € > 0 such that if a critical point z of €y
satisfies ||z]12 < € then ||z||c2 < e. (Note: ¢ is independent of A € A.) Consequently, if
0 € UX is an isolated critical point of Ex|yx then 0 € U is also an isolated critical point of €.

Having these we can prove

Theorem 4.2(I) with [34, Theorem 3.1] ([37, Theorem C.6]) as in the proof of Theorem 3.5(I),

Theorem 4.4 with [37, Theorem C.7] ([36, Theorem 3.6]) as in the proof of Theorem 3.7,

e a corresponding result of Theorem 3.13, from which Theorem 4.2(II) and Theorem 4.3 may
be derived,

Theorem 1.14 as in the proof of Theorem 1.5 in Section 3.1.4.

5 Proof of Theorem 1.20

Step 1 (Reduction of the problem (1.23) to one on open subsets of R™). We can assume A =
[ — &, u+ €] for some € > 0. (1.24) implies that each -, is a constant solution of (1.23) for any
7 > 0. Since ]Ilg = idyr, each solution of (1.23) is I7-periodic. All solutions of (1.23) near v, sit in
a compact neighborhood of 7, € M. Let ej1,- -+ , e, be a unit orthogonal frame at 7>, M. Then
(Igxe1, -+, Igxen) = (€1, -+ ,en)E,, for a unique orthogonal matrix E, . Clearly, Efm = I, Let
B3 (0) := {z € R"||z| < 2.} and exp denote the exponential map of g. Then

¢ : B3, (0) > M, x — exp,, <Z xiei> (5.1)
i=1

is a C° embedding of codimension zero and satisfies ¢(E,, x) = Iy¢(x) and dp(0)[y] = DI, yie;
for any y € R™. Shrinking A toward p (if necessary) we may assume that vy € ¢(B5,(0)) for all
A € A. (This is possible because A X R 3 (A, t) — ~va(t) € M is continuous.) Therefore there
exists a unique x) € B3, (0) such that ¢(xy) = v, for all A € A. Clearly, z, =0, E,,x\ = z) VA
and A 5 X — x) € Bj (0) is continuous. Define

L*: A x By (0) x R" - R, (A\,z,y) — L(\, ¢(x), dop(z)]y]).

It is C? with respect to (x,y) and strictly convex with respect to y, and all its partial derivatives
also depend continuously on (A, z,y). Moreover, L} = L*(},-) is also £, -invariant. From (1.24)
we derive that L3(z,0) = L*(\, z,0) has the differential at z) € R,

O Lx(xx, 0)[y] = 9gL(A, 12, 0)[dep(0)[y]] =0 VA € A.

These show that L* satisfies

A> X — ) € UnKer(FE — I,) be continuous and (5.2)
aqL)\(JJ)\,O):OV)\EA. ’
Recall that the Banach spaces
XL (R™, En,) := {7 € C'(R,R™) | By, (7(£)) = (¢ + 1) ¥}
with the induced norm ||¢||ci from C1([0,7],R™), i = 0,1,2,---. Consider the functional on the
open subset X}(B,(0)), E,,) of X}(R™, E,,),
s € (z) = / L3 (2(t), () dt. (5.3)
0
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Note that the map ¢ induces an C? embedding of codimension zero
(I)’Yu : X‘rl(BgL(O))?E’YH) - Xﬂ'l(M7 Hg)a T (ZSO Z.
It is not hard to see that ®,,(z)) = v, and

D?€;(2)[6, 1] = D*E\(1)[dPy, (22)€, APy, (x)1],  VE,m € X2 (R", En,). (5:4)

We conclude that the conditions (a),(b) and (c) in Theorem 1.20 are, respectively, equivalent to
the following three conditions:

(a’) OpuLy,(z,,0) is positive definite;

(b") Opa L} (24, 0)(ar, - ,an)’ = 0 and B, (a1, -+ ,an)" = (a1,--- ,an)" has only the zero
solution in R".

(¢) m2(€:,0) # 0, m)(€5,z5) = 0 for each A € A\ {u} near p, and m; (€5,z,) takes,
respectively, values m_ (€], 0) and m (€},0) + m?(@fz, 0) as A € A varies in two deleted
half neighborhoods of p.

In fact, let H) ,, be the Hessian bilinear form of the function M > ¢ +— L(X,q,0) at y € M.
Then
s (U, 0) = Goy (Ogg Ly (7, 0) w,v) - Vu,v € Ty, M.

View (z1,--- ,z,) € B3,(0) as local coordinates at ¢(z) € M and write u = ;" ; aia%ih and

i
—_\n 0 W
v = E i=1 blT%’vu e have

lpu=u <= E, (a1, - can)l = (ag, -+ ,an)T,
02L*
g’m (8(1(1[/“(’}//“ 0)“7 U) = j{m’m (U, U) = ZZj:l CLJ%W(O, 0)

- (axxLZ(xua 0)(ala e 7an)T7 (b17 T 7bn)T)Rn .

Hence the conditions (a) and (b) in Theorem 1.20 are equivalent to (a’) and (b’), respectively.
Clearly, (5.4) implies the equivalence between (c) and (c’).

Since A — z is continuous and z, = 0 we can shrink ¢ > 0in A = [ — ¢, u + €] so that
xy € B*(0) for all A € A. Define L* : A x B*(0) x R” — R by

L*(\2,9) = Li(z,y) = L*(\, 2 + x5, ).

For a given positive pg > 0, by Lemma 2.4 we have a continuous function L* : Ax B*(0)xR™ — R
and a constant x > 0 satisfying the following properties:

(i) L*is equal to L* on A x B*(0) x B} (0).

(ii) L* is C? with respect to (z,y) and strictly convex with respect to y, and all its partial
derivatives also depend continuously on (X, z,y). Moreover, each L} = L*(X,-) is also
E.,, -invariant.

(iii) There exists a constant C' > 0 such that

Li(z,y) > Klyl> = C, V(A z,y) € Ax B, ,(0) x R".

(iv) GMEZ(O,O) is positive definite;
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(v) 89636[:;(0,0)(@1,--- ,an)’ = 0 and Ey (a1, - ,a,)" = (a1, ,a,)" has only the zero
solution in R™.

(Note: Applying Theorem 8.12 to L* we can also complete the required proof.)
Since A = [p — €, + €] is compact, by shrinking ¢ > 0 (if necessary) as in Lemma 3.8 we
can modify L* to get a continuous function L : A x BSLM(O) x R™ — R satisfying the following

properties for some constants £ > 0 and 0 < ¢ < C:
(LO) L* in the above (ii) and (iv)-(v) is changed into L.
(L1) L and L* are equal in A x ng/4(0) x Bp (0).

(L2) OyyLn(z,y) > ¢l,, V(N 2,y) € A x By, ,,(0) x R™.

(L3)

gitg Ia(e9)| S OO+ o). |l Lae.y)| < O+ D), and
%{;yji)\(a:,y)’ <C, Y(\z,y) € Ax By, ,(0) x R™.
(L4) L\ z,y) 2 &lyl* = C, Y(\z,y) € Ax B ,(0) x R
(L5) lﬁqE(A, x,y)| < C’(1+|y|2) and |8yf/(A,x, y)| < C’(l—l—|y|) forall (A, z,y) € AXBQLM(O)XR”.
(L6) [La(z,y)| < C(A+yl), Y(\z,y) € Ax By ,(0) x R".
Consider the Hilbert space

Hp,, :={{ € WZ(R;R™) | EL (£(t) = €(t+7) Vt € R}

loc Y

equipped with W12-inner product as in (2.2). Since Efm = I, the spaces X, = XHR™, E,,)
and Hp,  carry a natural S Laction with S = R/(ITZ) given by

0-2)(t) =x(t+80), 6eR, (5.5)
and have the following S'-invariant open subsets

Up, : = {&€W(R; By, (0) | ES (6(1)) = £(t +7) Vi € R},
ugju = Ug, NXpg,, =X} (B ,(0),E,,)

respectively. For each A € A, define functionals €} : X}(B*(0)), E,,) — R and Ly Ug,, - R
by

&) = [ L. i) (5.0
Ea@) = [ Lata(o),a(0)de. (5.7)

0
They are invariant for the above S!-action.
Corresponding to Proposition 4.5, 4.6, 4.7 we have

Proposition 5.1. Proposition 3.9 is still effective after making the following substitutions:

e The functionals (‘:’; and € are changed into ¢} and Ly, respectively.
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o The spaces Hy, xv, and Xy, xv, are changed into HEm and XEW’ respectively.

e The boundary problem (3.27) is changed into

(0, L@(0) (1)) - 0,Ea(a(0), () = 0¥t € R } 6.9

B, x(t)=x(t+71) VtecR

Proposition 5.2. Both maps A x UX > (\,z) — Ly(z) € R and A x UX > (\,z) — A\(x) €
XEW are continuous.

Proposition 5.3. For any given € > 0 there exists £ > 0 such that if a critical point x of Ly
satisfies ||z|12 < € then ||z||c2 < €. (Note: ¢ is independent of A € A.) Consequently, if
0e Ub{ is an isolated critical point of Ey|yx then 0 € Ug,, s also an isolated critical point of
. H

L.

Step 2 (Prove that [37, Theorem C.6] ([37, Theorem 3.7] or [34, Theorem 5.12]) can be used
for £y). As before, we have m;(€y,v\) = mr (€}, xx) = mi(E3,0) = mz(Ly,0) for x = —,0.
Because of the assumption (c), we obtain

(c”) mY(L,,0) # 0, mg(ﬁ,\,ir,\) = 0 for each A € A\ {u} near y, and m>(Ly,xy) takes,
respectively, values m; (£,,0) and m; (£,,0) +m2(£,,0) as X € A varies in two deleted
half neighborhoods of p.

Next, let us prove that
the fixed point set of the induced S*-action on (HEm)g = Ker(Z)Z(O)) is {0}, (5.9)
Note that £ € Hg, , belongs to (HEW )2 if and only if it is C? and satisfies
Dy L2 (0,0)€ 4 8y L (0,0)E — D L (0,0)€ — 9y L1 (0,0)€ = 0. (5.10)

Suppose that £ is also a fixed point for the action in (5.5). Then it is equal to a constant vector
in R" and E,,{ = {. By (5.10) we obtain Oz LA (0,0)¢ = 0 and hence ¢ = 0 because 9y, L,,(0,0)
is positive definite by (L0). (5.9) is proved.

By [37, Theorem C.6] ([37, Theorem 3.7] or [34, Theorem 5.12]) one of the following alterna-
tives occurs:

(I) (u,0) is not an isolated solution in {u} x Up, , of VL, =0.

(IT) There exist left and right neighborhoods A~ and A" of p in A and integers n™,n~ > 0,

such that n* +n~ > %dim(HEW)g, and that for A € A=\ {u} (resp. A € AT\ {u}) the

functional £ has at least n~ (resp. n') distinct critical S'-orbits disjoint with 0, which
converge to 0 in Z/Iifw as A — p.
i

Moreover, if dim(Hg,, )% > 3, then (ii) may be replaced by the following alternatives:

(III) For every A € A\ {0} near 0 € A there is a Sl-orbit S*-w)y # {0} near 0 € Z/Iﬁ;: such that
o H
VL, (wy) =0 and that S*-wy — 0 in Z/{fgW as A — [i.
m
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(IV) For any small S'-invariant neighborhood A of 0 in Mﬁ } there is an one-sided deleted

neighborhood A° of ;1 € A such that for any A € A, VLy = 0 has either infinitely many
S 1—01"bits of solutions in A/, St - @ j =1,2,---, or at least two S'-orbits of solutions in
N, St} # {0} and St - w3 # {0} such that L)\(w)\) # L(1?). Moreover, these orbits
converge to 0 in Z/{EW as A —> L.

Step 3 (Complete the proof of Theorem 1.20).

In the case of (I), we have a sequence (w;) C Hg,, \ {0} such that [[wj][12 — 0 as j — oo
and that V£, (w;) = 0 for each j € N. By Proposition 5.3 these w; are C2 and [Jw;||c2 — 0.
Because 0 is a fixed point for the S'-action, the S'-orbits are compact and different S'-orbits are
not intersecting, by passing to a subsequence we can assume that any two of w;, j =0,1,---, do
not belong the same S'-orbit. Using the chart ¢ in (5.1) we define R 3 t > 7*(t) := ¢p(wy(t)),
k=1,---. They satisfy (i) of Theorem 1.20.

In the case of (II), note firstly that dim(Hpg )2 is equal to m2(L,,0) = m2(€&,,v,). For
A e A\ {u} (vesp. A e AT\ {u}) let ST wA, i =1,---,n" (resp. n") be distinct critical
S'orbits of £y disjoint with 0, which converge to 0 in ME as A — p. Proposition 5.3 implies
that ||wl||cz — 0 as A — p. Then R 3 ¢ — ~4(t) = p(z(t ) +wi(t)),i=1,---,n" (resp. n*)
are the required solutions.

In the case of (III), let a\(t) = @p(zx(t) + wr(t)) for t € R. Tt satisfies (1.23) with parameter
value A and Proposition 5.3 implies that a) — )\ converges to zero on any compact interval
I C R in C%topology as A — p. Since S* - wy # {0}, for any t € R we have w)(¢) # 0 and so

ax(t) #7a(t). Note that all v, are constant solutions. Hence ay & R - 7y.

In the case of (IV), for the first case let a/\(t) d(za(t) + wA( )) forte Rand j =1,2,---,
and for the second case let B4 (t) = ¢p(zA(t) + w4 (¢)) for t € R and i = 1,2. They satisfy (1.23)
with parameter value A. For a given small ¢ > 0, by Proposition 5.3 there is an one-sided
neighborhood A° of 4 in A such that for any A € A\ {u},

o for the first case [|a%]j0.-1 — aljo.7 le2qomyy <€ k=1,2,-+,
e for the second case |’ﬂ§\|[077'] = MloAllezoryy <€ i=1,2.

Moreover, each ) is constant, orbits R - 07§ = St. 6/§ are distinct, and &’j ¢ R -, as above.
Similarly, B3 and B)\ are R-distinct, and 33 ¢ R- v, and 83 ¢ R - v,. Finally, €,(81) # €,(53)
because £ (}) # £ (w?). The desired assertions are proved. O

6 Proofs of Theorems 1.23, 1.24, 1.25, 1.26

6.1 Reduction of the problem (1.23) to one on open subsets of R”

Since I4(%(t)) = A(t + 7) Vt € R and I, is an isometry, the closure CI(7(R)) of ¥(R) is
compact. As in Section 3.1.1 we may choose a number ¢ > 0 such that the following holds:
(#6) the closure Us, (CI(3(R))) of Us,(CI(F(R))) := {

pact neighborhood of 7,,([0, 7]) in M, and Us,(CI
the image of F|yy(o,.,,), where F is as in (6.1).

f M |dy(p,Cl(7(R))) < 3¢} is a com-

p (R
(7(R))) x Uz, (CI(¥(R))) is contained in

(#6) {(q,v) € TM |q € Us,(CI(F(R))), [vlg < 3¢} € W(Orar)-
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Then 3. is less than the injectivity radius of g at each point on Us, (CI(3(R))).

Let us choose the C% Riemannian metric g on M so that Sy (resp. S1) is totally geodesic
near 7, (0) (resp. v,(7)). There exists a fibrewise convex open neighborhood U(0rxr) of the zero
section of TM such that the exponential map of g gives rise to C° immersion

F:UOrr) — M x M, (q,v) = (q,exp,(v)), (6.1)

(cf. Appendix A). By (A.3), dF(q,0q) : T(g,0,) = T(g,q) (M x M) =Ty M xT; M is an isomorphism
for each ¢ € M. Since E is injective on the closed subset Opy; C T'M, it follows from Exercise 7
in [16, page 41] that Flyy(,.,,) is a C5 embedding of some smaller open neighborhood W(07,s) C
U(Orar) of Orar. Note that F(07as) is equal to the diagonal Ay in M x M, and that v, ([0, 7])
is compact.

Since 7 is C, as in [32, §3], starting with a unit orthogonal frame at T50yM and using the
parallel transport along 4 with respect to the Levi-Civita connection of the Riemannian metric
g we get a unit orthogonal parallel C® frame field R — ¥*TM, t + (e1(t),- - ,en(t)), such that

(e1(t+7), - sealt + 7)) = (Ieler(t)), -, Lpu(en(t)) By ¥t € R,

where Ejy is an orthogonal matrix of order n.
By [17, Corollary 2.5.11] there exists an orthogonal matrix Z such that

[1]

B2 = diag(Sy, - - -, S,) € R, (6.2)

cosf; sinf;
—sinf; cos0;
ord(Sy) > -+ > ord(S,). Replacing (e1,--- ,epn) by (e1,- - ,e,)= we may assume

where each §; is either 1, or —1, or ( ), 0 < 0; < 7, and their orders satisfy:

E5 = diag(Sh,- -+ ,S,) € R™™, (6.3)
Let B*(0) := {x € R"||z| < r} and B*(0) := {x € R"||z| < r} for r > 0. Then
¢5 1 R x B3, (0) = M, (t,x) — expsy (Z aciel-(t)> (6.4)
i=1
is a C® map and satisfies

¢5(t + 7,2) =14 (d5(t, E5z)) and
ds(t + 7, 2)[(1,v)] = dly (d5(t, E5x)) o dos(t, Eyx)[(1, E5v)]

for any (¢,z,v) € R x B} (0) x R". By [48, Theorem 4.3], from ¢+ we get a C? coordinate chart
around 4 on the C* Banach manifold X;(M,1,;) modeled on the Banach space

X (R, Ey) = {€ € CY(R;R™) | ES €(t) = &(t +7) V¢ € R}
with the induced norm ||¢]|c1 from C1([0, 7], R™),
By XL(BL(0), By) = {€ € XLR™, Ey) | [€llco < 20} — AL(M.T,) (6.5)

given by ®5(&)(t) = ¢5(t,&(t)). Moreover

d®5(0) : X} (R™, Ey) = T X (M, 1), £ > e,
j=1
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is a Banach space isomorphism. (Actually, we have

E@) R =D (G0 =g | D_&(0ei (1), &()es(t) | = [dD5(0)[E](1)]; (6.6)
i=1 j=1

j=1

for any £ : R — R" and ¢t € R.) Therefore there exists a unique {y € X} (R", E5) satisfying
d®5(0)[¢o] = 7, that is, ¥(t) = 3_7_ Coj(t)e;(t), V¢ € R, where

Goj(t) = g(¥(t),e5(1)) VEER,  j=1,--- .

Clearly, (o € X2(R", E5) and (p # 0 because 7 is nonconstant. If v € X} (M,1,) is nonconstant
and C! (2 <1 < 5), by the arguments above [37, Proposition 4.1] the orbit O := R+ is either an
one-to-one C'~! immersion submanifold of dimension one or a C'~!-embedded circle; moreover
T,0 = 4R C T, X} (M,1,). Then for any reals a < b, [a,b] -4 is a C* embedded submanifold of
dimension one. Take a > 0 such that [—a,a] -4 C Im(®5). Then

So == @5 ([—a,a] - ¥ N Im(®5)) (6.7)

is an one-dimensional compact C? submanifold of X!(B% (0), E5) containing 0 as an interior
point, and
ToSo = (d®(0) ™ (T55) = (d®5(0)) ™ (RY) = R¢o.

Define the function L* : A x R x Bf,(0) x R” — R by
L*(\ t,z,v) = L()\, ¢5(t, ), dos(t, z)[(1, v)])
It is continuous and satisfies (2.7) with U = B%,(0) and E = E5, i.e.,
L*(\, t+7,2,v) = L(X\, ¢5(t + 7, 3),dd5 (¢ + 7, 2)[(1,0)])
= LA (95(t Esx)) , dlly (05(t, Exx)) 0 dps(t, Exz)[(1, E5v)])

L (A, ¢5(t, E5x), dos(t, Eyx)[(1, E5v)])
= L*(\t, Eyz, E5v) (6.8)

for all (A\,t,z,v) € A xR x B (0) x R", and thus

O L\t +1,2,0) = E:Y@xL*()\,t,Eﬁx,Exyv),
O L* N\ t+1,2,0) = E:Y&)L*()\,t,E:Yx,E:yv).

(Here 0,L* and 0,L* denote the gradients of L* with respect to z and v, respectively. Recall
that all vectors in R™ in this paper are understood as column vectors.) Each L*(},-) is C*
and all its partial derivatives of order no more than two depend continuously on (A, t,x,v) €
A x R x Bz, (0) x R™. Moreover, do5(t,z)[(1,v)] = Ox¢5(t, z)[v] + Orp5(t, x) implies that

R" > v L*(\, t,3,v) = L(X, ¢5(t,2),dos(t, z)[(1,v)]) € R

is strictly convex.

Consider the functional &% : X}(B%(0), E5) — R,

&= [ "L E(), E(0)dE = € 0 D5 (), (6.9)
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where €, is given by (1.19). It is C? by Proposition ??. Since €, is invariant under the
continuous R-action on X}!(M,1,) given by

X:X’I}(MJ[Q)XR_)X:(MaHQ)? (S’,Y)'_)S"% (610)
where (s-7)(t) =v(s+1t) Vs,t € R, Sy is a critical submanifold of each &3, and there holds
D*€5(0)[¢,n] = D*€x(7) [dP5(0)[¢], d@5(0)[n]] V&, m € X7 (B3,(0), E5),

which imply
m7(€3,0) =mz(€),5) and m(£5,0) = ml(€y, 7). (6.11)

Since Sy is compact, there exists py > 3¢ such that sup, |#(t)| < po for all z € Sy. For the
Lagrangian L*, as in Lemma 3.8 we can modify it to obtain:

Lemma 6.1. For a given subset A C A which is either compact or sequential compact, There
exists a continuous function L : A x R x B3, (0) x R™ = R satisfying the following conditions for
some constants k > 0 and 0 < ¢ < C':

(LO) Iv/()\,t:i— 7,7,v) = L(\ t, B5x, Esv) for all (\,t,x,v), and each the function Ly(-) = L(),-)
(A € A) is C* and partial derivatives

OHLA(),  OgLa(), OwLa(), OguLa(-), OgqLr(-), OwuLn(®)
and 5ttL>\('), 5th)\('), atvL/\(')
depend continuously on (A, t,q,v) € A xR x B2 (0) x R™.

(L1) L and L* are same on A x R x B:?L/z(o) x By (0);

(L2) &JUIV/)\(t,q,v) >cl,, Y(\t,qv)e€ A x [0,7] x BY

7 5(0) X R,

2 2 -
(LS) ‘%%Lk(tﬂbv)‘ < C(]- + |U‘2)7 %&;J.L)\(t7Q7 U) < C(l + ‘U’)v and

sl LAt a,0)| <€, V(A tg,0) € Ax[0,7] x By, ,(0) x R™.

(L4) L(At,q,0) > k[o]> = C, V(A t,q,v) € A xR x BE ,(0) x R".
(L5) [0,L(\ t,q,v)| < C(1 4+ |[v|?) and |9,L(\,t,q,v)| < C(1+ |v]) for all (\t,q,v) € A x R x
B ,(0) X R™.

(L6) |La(t,q,0)| < C(L+[0f?), V(A t.q,v) € A xR x By,

2 5(0) X R™.

Consider the Banach space
X := X (R", E5)

with the induced norm || - [|¢1 from C*([0,7],R™), and the Hilbert space

H = {¢ € W2 (R;R") | B (£(t)) = &(t +7) ¥t € R}

ocC

equipped with W12-inner product as in (2.2). Both carry a natural R-action given by (0-z)(t) =
x(t + 0) for § € R. The spaces H and X have the following R-invariant open subsets

U: = {£€W2(R; By ,(0)) | BT (6(t) = £(t +7) Vt € R},

ocC
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U*: = UNX=XNBY ,(0), Ey)

respectively. Define a family of functionals £y : U — R by

~ ~

Ly(z) = /0 Lalt,(t),(t))dt, X e A, (6.12)

and put H* := {z € H|(¢p,z)12 = 0} and

Xt = {r e X|(¢,2)12=0} =XNH, (6.13)
Ly :UNHY R, 2 — Ly(x). (6.14)

Remark 6.2. Because of Lemma 6.1, by [6, Theorem 4.5] we deduce that every critical point
of £y is C*.

6.2 Properties of functionals £ and Ly

In order to use the ab§tract theorems developed in [34, 35, 37] we need to study some prop-
erties of the functionals £ and £y near 0. By [32, §3] and [30], we have (i)-(iii) of the following
corresponding result of Proposition 3.9.

Proposition 6.3. (i) Ly is C279 and the gradient map VL) : U — H has the Géteauz
deriwative By(xz) € Ls(H) at z € U.

(ii) VL restricts to a C* map Ay : UX — X.

(iii) (D1) of [34, Hypothesis 1.1] and (C) of [34, Hypothesis 1.3] hold near the origin 0 € H,

i.€.,

{ue H|B\(0O)u=su,s<0}CX and {ueH|B\(0)ue X} CX. (6.15)

(iv) Since L =L =L* on A x R x BgL/Q(O) x Bp (0), it holds that

Ey(z) = /0 "Bt 2(t), 5(8))dt = £ () (6.16)

for each x in an open subset {x € XTI(BQL/Q(O),E@)] sup, |#(t)| < po} of UX. Clearly,
0 € Sp has an open neighborhood Spy in Sy contained in the open subset. It follows that
dLy(x) = 0 Vx € Soo and that

m7(L£y,0) =m_(€%,0) and m2(Ly,0) =m2(€x,0). (6.17)

2
By (iv) and (6.9), a point » € X}(BY: /2
if v = ®5(z) € X-(M,],) is a critical point of &y near 4. However, if v € Im(®P5) is a critical
point of €y, so is each point in R-~. Therefore for |s| small enough (®5)~!(s-~) is also a critical
point of €}. Such a critical point is said to be the R-same as 7. We need to study behavior of
R-distinct critical points of €% near 0. Clearly, d£(0) = 0 and d£y-(0) = 0 VA.

Denote by IT : H — H' the orthogonal projection. Then Il(z) = 2 — (W&Eﬂ)ff o for x € H,

(0), E5) near 0 is a critical point of &3 if and only

and

L ; (VLA@), G2

Vi (z) = VLiy(x) - ol o VreUnH*, (6.18)
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where by [32, (3.10)-(3.11)] (all vectors in R™ are understood as column vectors now)

VEO0 = 5 [ e a6, 60) - (o) ds
+ % /_ e 10,0 (5,€(5), £(5)) = RE(s)] ds +:5(1) (6.19)

where SRE\, (provided 2 = ord(Sp) > ord(Sp+1) for some p € {0,--- ,0} in (6.3)), is given by
R(8) = fy oL (s,€(s),€(s))ds +
<@l<p2 S;Zzéel( vl ) - §12p> @ diag(ap1(t), - ,ao(t))] Jo BuLa(s.€(s).€(5))ds

1 0
(6.20)
with a;(t) = w, j=p+1,---,0=n—p. (As usual p =0 (resp. p = o) means that
ord(S1) = --- =ord(S,) =1 (resp. ord(S7) = --- = ord(Sy) = 2) and hence there is no the first
(resp. second) term in the square brackets in (6.20).) Note that
d . . T . .
TS0 = L (€0 E00) + 2 [ 0,Ex(5.8(9).E(0)) s (6.21)
where 9t € R™*™ is a matrix only depending on E.
Since (o is C*, we derive from (6.18) that VL3 (x) € Xt for any z € Xt N, and
Ay U NXE = X 2 VI (2) (6.22)

is C1. By [32, §3] VL3 has the Gateaux derivative By (z) € £5(H*) at € Y N H* given by

(Ba(%)v, Co)2
<ol

where B)((¢) € Ls(H) for ¢ € U is a self-adjoint Fredholm operator defined by

By (z)v = By(z)v — ¢ YveHt (6.23)

B = [ (00 (1.6 CO) [0 1(0)] + O (160,10 €00, 1)
+0ug L (8, ¢(1), C(1)) [€(t), n(t)]
04 L (£,C(1), () [€(0),m(1)] ) dt (6.24)

V

for any £,7 € H. The map B, has a decomposition By = Py + Q,, where P,(¢) € Ls(H) is a
positive definitive linear operator defined by

(PO 12 = [ (0L (0N ED. 0] + (€100 ) (6:25)

and Q,(¢) € Ls(H) is a compact linear operator. Then

Px(z) :=1lo Px(z)lgs  and  Qx(z) := ITo Qy(z)[m+ (6.26)

are positive definitive and compact, respectively, and By (z) = Py(x) + Qx(x) by (6.23). Since
Ry € Ker(Bx(0)) we get

my (£x,0) =m;(£3,0) and m(Ly,0) =m(£,,0) - 1. (6.27)
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Clearly, (L1) and (6.25) yield
(PA(Q)€ )12 > min{e, 1}[[¢]1F 5, Vo €U, VE € H, (6.28)

and hence
(PA(2)€,8)1,2 > min{c, 1}|[€|T,, VE€ HY, VzeUnH (6.29)

Proposition 6.4. Let (A\;) C A and () CU converge to p € A and 0 € U, respectively. Then
| Py, (Ck)§ — Pu(0)¢|[1,2 = O for each & € H. In particular, if () CUN H' converges to zero,
then ||Py, (Ck)€ — Pu(0)é|l1.2 — O for any € € HE.

Proof. By (6.25) we have

2

I[P, (G) = Pu(0)JEIF 2 < /OT [Ouu L (£ Gi(8), G(1)) = Duw L (£,0,0)1E(8) | dit.

R

Note that ||Cx[l1.2 — 0 implies ||Cxllco — 0. Since (A, t,2,v) + Oy L(t, 2,v) is continuous, by
the third inequality in (L2) in Lemma 6.1 we may apply [37, Prop. B.9] (|35, Prop. C.1]) to

f(ta m; )‘) = ava()‘7 t, Ck’(t)v (k(t))’ﬁ
to get that
. . . . 2
[8UUL)\k (ta gk (t)7 Ck (t)) - avau (t7 07 O)]f(t) ‘]R" dt — 0.

r

Moreover, the Lebesgue dominated convergence theorem also leads to

r

Hence ||[Py, (¢k) — Pu(0)]€]|1,2 = 0. The final claim follows from this and (6.26). O

2
dt — 0.
Rn

O L, (£,0,0) — By L (£,0,0)1€(2)

Proposition 6.5. U 3 ( — Q,(¢) € Ls(H) is uniformly continuous at 0 with respect to X € A.
Moreover, if (A\x) C A converges to 0 € A then ||Q,, (0) — Q,(0)|| — 0.

Proof. Wiite Qy(¢) = Qy1(¢) + Qy(C) + Qs 5(¢), where
@Oz = [ 0ula(t.COL.CO)E®. (o),
(@ualO8m2 = [ 00 La(t.COCO) e e,

(@@€2 = [ (00l (100 EO)E®. (0] = (€010, ) .
As above the first claim follows from (L2) in Lemma 6.1 and [37, Prop. B.9] ([35, Prop. C.1])

directly.
In order to prove the second claim, as in the proof of [30, page 571] we have

1Qx,1(0) = Q1 (0)| ey

. ) § 1/2
< 2(e"+1) </ ‘&,qL,\k(s,0,0) — (f%qLM(s,O,O)}2 ds> .
0
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Because of the second inequality in (L2), it follows from the Lebesgue dominated convergence

theorem that ||Qy, 1(0) — Q, 1(0)||l¢) — 0. Observe that (Qyo(¢)&, n)1,2 =(&, (Qk,l(C))*n)L?
Hence [|Q), 2(0) — Q,, 2(0)|[ ¢y — 0. Finally, it is easy to deduce that

T - . 2
1050 = Qs < [ [0uaLac (4:0.0) =0y Lu(t.0.0)| .

By the Lebesgue dominated convergence theorem the right side converges to zero. Then || Q,, 3(0)—
QH,3(O)||L(H) — 0 and therefore [|Q,, (0) — Qu(O)H — 0.

By (6.26) and Proposition 6.5, maps U NH* 3 ¢ — Qx(¢) € Ls(H™) is uniformly continuous
at 0 with respect to A € A. Moreover, if (A;) C A converges to 0 € A then ||Q,, (0) —Q,(0)| — 0.

Proposition 6.6. (HY, X! £{ Ay = VLy,B)) satisfies (C) of [37, Hypothesis B.2] ([34,
Hypothesis 1.3]) and (D1) of [37, Hypothesis B.1] ([34, Hypothesis 1.1]) at the origin 0 € H*,
namely

(C) {u€ HY|By(0)u € Xt} c X+,
(D1) {u € H* |By(0)u = su, s <0} C X+,
Proof. In order to prove (C) let u € H be such that v := By(0)u € X*. By (6.23)

(BA(0)u, Co)2

B _
A T

Co =Bx(0)u =v e Xt

Since ¢y € X, it follows from this and (6.15) that v € X and hence u € X+,
Next, let u € H* satisfy By(0)u = su for some s < 0. Then (6.23) leads to

By(0)u = su+ 20w )2
[Coll2

Since TpSg = Ry and Vﬁx(az) = 0Vzx € Sy, we deduce B)(0)(p = 0 and therefore By (0)u = su.
By (6.15) this implies v € X and so u € X*.
O

We also need the following two corresponding results of Propositions 3.10, 3.11.

Proposition 6.7. Both A xU 5 (\,z) — Ly(z) € R and A x UX 5 (\,z) — Ay(z) € X are
continuous.

Proofs of this proposition and the following key result are similar to those of Proposi-
tions 3.10, 3.11. For completeness their proof are put off until Section 6.4 because they are
rather long.

Proposition 6.8. Let £ > 0 be such that Byg(0,&) C U. For any given € > 0 there exists
0 < e <& such that if v € By.(0,¢) := {x |z € H*, ||z|j12 < €} is a critical point of L3 with
some X € A then x is a critical point of Ly, belongs to C*(R;R™) and also satisfies ||z c2 < e.
In particular, for x € By (0,€), dly(z) = 0 if and only if dCx(z) = 0.
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6.3 Completing the proofs of Theorems 1.23, 1.24, 1.25, 1.26

The ideas are the same as the proofs of [37, Theorems 1.18, 1.19, 1.21]. But the corresponding
checks and computations are much more complex and difficult.

Proposition 6.9 ([5, Proposition 3.5]). Let P be a finite-dimensional manifold, N a (possibly
infinite dimensional) Banach manifold, Q C N a Banach submanifold, and A a topological space.
Assume that x : A x P — N is a continuous function such that there exist ag € A and mg € P
with:

(a) x(ao,mo) € Q;

(b) x(ag,-) : P — N is of class C*;

(C) 82)((@07 mo)(TmOP) + Tx(ao,mo)Q = Tx(ao,mo)N'
Then, for a € A near ag, x(a, P) N Q # 0.

For 0 < § < 3¢/2 put
By (0,8) = {€ € Ch (R, B p(0)) | [€llcr < 6} and Q5 := 5 (Bx1 0,6))

Clearly, Qs is a C? Banach submanifold of X;(M,1,). For the action y in (6.10), since 7 is
nonconstant and C9,

X(ﬁa ) R— XT(Mv ]Ig)7 S X(:% S)

is a C* one-to-one immersion, and
Oax(7,0)(ToR) = Ry = d5(0)(R¢p) and  Tyy(5,0) = T5025 = dd5(0)(XH),

we have 92X (7, 0)(ToR) + Ty (5,002 = Ty(5,)X-(M,1y). Applying Proposition 6.9 to A = N =
X (ML), P=R, Q =Qs, ap =7, my = 0 we get:

Proposition 6.10. For any given 0 < § < 2, if v € X (M, 1) is close to 7, then (R-y)NQs # 0,
that is, R - Q5 is a neighborhood of the orbit O =R -7 in X (M,1,).

Proof of Theorem 1.23. By the assumptions there exists a sequence (A\;) C A converging
to i € A such that the problem (1.23) with A = A\; has solutions 7k, k = 1,2, --, which are
R-distinct each other and satisfy vkl = 7o, in C'([0,7]; M). Then A= {p, |k € N} is
compact and sequential compact. Take a decreasing sequence of positive numbers §,, < 2: such
that 6,, — 0. For each é,,, by Proposition 6.10 we have v, € R-Qs,  and thus 8, := spm -V, €
s, for some s;, € R. Note that each S, is a critical point of €, ~—on <I>7(L{X). Since any two
of (%) are R-distinct, so are any two of (5,,).

Note that Q5 C 5 (UX) C D5 (C}EW(R, BL /2(0))), and by (6.9) and (6.16) we have

Ly(z) = €y (P5(z)) Vz e Bxi(0,0) (6.30)
because 0 < 2t < py and = € Bx1(0,9) imply that for all t € R,
(t,z(t),4(t)) € R x By, (0) x B, (0)

and so L(\, t,z(t),&(t)) = L*(\, t, 2(t), 2(t)).
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It follows that each

T o= (P5) 7 (Bm) € {€ € X |€llor < Om}

is a critical point of £ A, in H (and hence that of L&k in H') and they are distinct each other.

Moreover ||Tm]l12 < v/T||Zmllcr — 0. Hence (u,0) € A x (U NHY) is a bifurcation point of
VLi =0in A x (UNHY).

Since £ is €270 and V£, : & — H has the Gateaux derivative By(z) € Ls(H) at x € U,
L1 is €270 and VL3 has a Gateaux derivative By(z) € L5(H') at © € U N HL given by
(6.23). From (6.26), (6.29) and Propositions 6.4, 6.5 it easily follows that the conditions (i)-
(iv) of [34, Theorem 3.1] ([37, Theorem C.6]) are satisfied with Fy = £y and H = X = H*
and U = U N H*. Therefore m%(£:,0) > 1. This and (6.11), (6.17) and (6.27) lead to
mQ(@uﬁ) = m?([)u,O) > 2. O

Note that Propositions 6.8, 6.7 are not used in the proof of Theorem 1.23. However, they are
necessary for proofs of Theorems 1.24,1.26.

Proof of Theorem 1.24. The original A can be replaced by compact and sequential compact
A= {1, A\, A | k € N}. Follow the notations above. By Propositions 6.7, 6.4, 6.5, and (6.15)
and (6.28), the conditions of [36, Theorem 3.3] (or [34, Theorem A.3]) are satisfied with £, = £},
H=H X =X,U =U and \* = pu. From these, (6.22)-(6.23) and (6.26), (6.29) and
Proposition 6.6 it follows that £, = Ef, H=H X=X U=UnH" and \* = p satisfy
the conditions of [36, Theorem 3.3] (or [34, Theorem A.3]).
By the assumptions (a)—(b) of Theorem 1.24 we may use (6.11), (6.17) and (6.27) to deduce
that mg(ﬁi, 0) > 1 and that for each k € N,
[m; (Ei]z,O),m; (bfg,o) + mB(Efg,o)] N [m; (Eiz, 0), m; (L

T )\}CH

0) +m2(3§z,0)] ={

and either mg(ﬁi,,O) =0 or mY(LL,,0)=0.
k

T )\Z?

Thus [37, Theorem C.4] concludes that there exists an infinite sequence (A, xg) C A x HE \
{(1,0)} converging to (u,0) such that each xj # 0 and satisfies 2*;@ (zg) =0 for all k € N.

Fix 0 < § < 2. Let 25 be as in Proposition 6.10. By Proposition 6.8, passing to a subsequence
(if necessary) we may assume: each xy is C* and a critical point of Ly, , ||zx]lc2 < & Vk and
|zk|lc2 — 0. Then each 7y, := ®5(z)) € Q5 is a CO solution of the corresponding problem (1.18)
with A = A\, k =1,2,---, and () converges to ¥ on any compact interval I C R in C?-topology
as k — oo.

Since d®5(0)[¢o] = 7 and T5Qs5 = d®5(0)(X1), R¢ + X+ = X implies RY + T5Q5 =
T-XL(M,1,), that is, the C* embedded circle O = R -4 (because of periodicity of 7) and Qs are
transversely intersecting at 7. It follows that there exists a neighborhood V of 4 in X}(M, Iy)
such that VNONQs = {7}. Because ||zk||c2 — 0, there exists ky > 0 such that for each k > ko,
Y = @5 (zg) € VN Qs \ {7} and the C* immersed submanifold R - v transversely intersect with
Qs at v. Hence

Ry # O for any k > k. (6.31)

(Otherwise, O and 25 have at least two distinct intersecting points vy and 7 in V.)

We conclude that {R -4 |k € N} is an infinite set. (Thus (7%) has a subsequence which only
consists of R-distinct elements. The proof is completed.) Otherwise, passing to a subsequence
we may assume that all v, are R-same, i.e., v = s - v* for some s € R, where v* : R — M
satisfies (1.23) with A = Ag, k = 1,2,---. Since all its partial derivatives of L(\,-) of order no
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more than two depend continuously on (A, z,v) € A x T'M, it easily follows that v* satisfies
(1.23) with A = p. Clearly, 7 sits in the intersection of O and the closure of R - v*. By the
assumption (c) of Theorem 1.24 R - ~* is closed and so equal to O, namely R -y, = O Vk, which
contradicts (6.31).

O

In order to prove Theorem 1.26 we also need some preparations. Consider the C* Hilbert—
Riemannian manifold

Ar(M,Tg) = {y € Wyt (R, M) | 1(t + 1) = Ly(3(t)) ¥t}

loc

with the natural Riemannian metric given by (1.3); see [48, Theorem 4.2] (or [46, Theorem(8)]).
Let || - |1 = +/(-,-)1 be the induced norm.

Since Rj5 is an infinite cyclic subgroup of R with generator p > 0, i.e., 7 has the least period p,
the orbit O := R-# is an R-invariant compact connected C? submanifold of A (M, 1), precisely
an C® embedded circle S*(p) := R/pZ. Let m : NO — O be the normal bundle of O in A, (M, 1,).
It is a C? Hilbert vector bundle over O (because TO is a C? subbundle of ToA,(M,1,)), and

XNO = ToX,(M,I,) N NO

is a C? Banach vector subbundle of ToX-(M,1,) by [32, Proposition 5.1]. Recall that 3¢ is less
than the injectivity radius of g at each point on J(R). For 0 < v < 3: we define

NO(v) :={(y,v) e NO||v|]12 <v} and XNO(v):={(y,v) € XNO||v|c1 < v}.

Clearly, XNO(v) C NO(y/7v) and there exist natural induced R-actions on these bundles given
by
(v,v) = (s-7v,s-v) VseR.

Using the exponential map exp of g we define the map
EXP : TA, (M, L) (v7v) = {(3,v) € TA,(M,1,) | [v]l12 < v7v} — A,(M.I,)  (6.32)
by EXP(v,v)(t) = exp, ) v(t) vt € R. Clearly, EXP is equivariant, i.e.,
s (EXP(v,v)) = EXP(s-v,s-v) VseR.

It follows from [32, Lemma 5.2] that EXP is C2. For sufficiently small v > 0, EXP gives rise to
a C? diffeomorphism f : NO(y/7v) — N(O, \/7v), where N'(O,/7v) is an open neighborhood
of O in A;(M,1,;). Let X(O,v) := F (XNO(v)), which is contained in N'(O, \/7v).

Lemma 6.11. Suppose that (I,)! = idy; for some | € N, and that 0 < § < 21 is so small that
Q§ = @Fy (BxJ_ (0, 5)) C X(O, U).

Then for any two different points v; € Qgs, i = 1,2, either they are R-distinct, or there exists an
integer 0 < m < [ such that vo = (m7) - v2 or v1 = (m7) - y1. In particular, if | =1 and T is
equal to the minimal period p of 7, then any two different points in Qg5 are R-distinct.

Proof. Let different points &;,&2 € Bx1(0,0) be such that v; = ®5(&1) and 72 = ®5(&2) are
R-same. Then we have s > 0 such that s -, = 2. Since ]Ié = idps implies (ki) -1 = 71 and
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(s — klT) -v1 = s -7 for any k € Z we can assume 0 < s < I7. By (6.6), (¥

(-4, 0 1(s-&)(s - e)) belong to NO(y/7Tv). Note that

and so

(s-7)(t) = m(s+1) = exps(ste (Z E1(s + thei(s + t))

=1
= EXP (s-v,zwi)(s - >> (t
=1

n

s-v1=F (S-ﬁ,Z(s-ﬂ)(s-eQ).

=1

Similarity, we have

=1

Then s-5 =4 and

The former implies s € Ry C {[0], - - -

Z( 51 S 61 Zf?ez

i=1

Combing with the latter we obtain &; = &2, and therefore a contradiction.
1 and 7 is equal to the minimal period p of 4, Ry = {0} and so & = &.
contradiction is obtained.

When | =

Proof of Theorem 1.26. The original A may be replaced by A =

) 2oie1 §5ei) and

J[(=1)7]}, Where [qr] = qr+17Z. Hence s € {0,--- ,l—1}.

O]

[0 — &, +€]. By the first

paragraph in the proof of Theorem 1.24 we have checked that £y = £+ . H = H', X = X!,
U =UNH' and \* = p satisfy the conditions of [36, Theorem 3.6] except for the condition (f).
By the assumptions of Theorem 1.26 and (6.11), (6.17) and (6.27) we get that m (»CL 0)>1

and m2(Ly,0) = 0 for each \ € A\ {u} near y, and that m> (£3,0) takes, respectively, values

mg(ﬁﬁ,O) and m;(ﬁﬁ,O) +

m?(ﬁﬁ, 0) — 1 as A € A varies in two deleted half neighborhoods

of . These mean that the condition (f) of [37, Theorem C.7] ([36, Theorem 3.6]) is satisfied.
Therefore one of the following alternatives occurs:

(i) There exists a sequence (r3) C H* \ {0} converging to 0 in H* such that Vﬁj(mk) =0

for all k.

ii) For each A € A\ {u} near u, VL (w) = 0 has a solution ) € X+ different from 0, which
A
converges to 0 in X+ as A — p.

(iii) Given a neighborhood 2 of 0 in X", there is an one-sided neighborhood A° of y such that
for any A € A\ {u}, VL3 (w) = 0 has at least two nonzero solutions in 20, z} and 23,
which can also be required to satisfy £y (2}) # L1 (22) provided that m (LL 0) > 2 and

VLJ‘( ) = 0 has only finitely many nonzero solutions in 2.

Let 6 > 0 satisfy Proposition 6.10 and Lemma 6.11. By Proposition 3.11, we obtain:

e In case (i), passing to a subsequence (if necessary) all x; are C* and satisfy: V.£ ulzr) =0,
0 < ||zgllc2 < & and ||zg|lc2 — 0. Therefore each 7y := ®5(z;) € Qs is a C° solution of
the corresponding problem (1.23) with A = u, and (7) converges to 4 on any compact
interval I C R in C?-topology as k — oo.
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e In case (ii), when A\ € A\ {u} is close to u, all z) are C* and satisfy: V.Ly(zy) = 0,
0 < |lzalle2 < and ||zy]|c2 — 0 as A — p. Hence each vy := ®5(zy) € Q5 \ {7} is a C°
solution of the corresponding problem (1.23), ) converges to 7 on any compact interval
I C R in C?-topology as A — p, and R - vy # O by Lemma 6.11.

e In case (iii), we can require that the neighborhood 20 so small that ®5(20) C W and
W C Bx1(0,0). The latter implies ®5(2) C Q5. Then all 2} and a;/\ are C* and critical
pomts of £y, and sat1sfy 0 < H%\HC? < ¢ and |zi|lc2 — 0, i = 1,2. Consequently,
7y = ®5(z}) and 7% = ®5(z3) belong to Qs N W \ R - 7o, are C’6 solutions of the
corresponding problem (1.23). When m(€,,%) = m?(ﬁiﬁ) + 1 > 3, and (1.23) with
parameter value A has only finitely many R-distinct solutions in WW which are R-distinct
from %, it is clear that Vﬁf(w) = 0 has only finitely many nonzero solutions in 20,
and therefore we can require that z} and x3 satisfy Ly (z}) # £ (22), which implies

Ex(1)) # Er(73),

O
Proof of Theorem 1.25. The original A may be replaced by A a([o, ]) By the first para-
graph in the proof of Theorem 1.24 we have checked that L) = Li‘ = H', X = X+,
U = UNH' satisfy the assumptions a)-c) and (i)-(v) of [37, Theorem C.5] for any A\* € A. The

condition (d) of Theorem 1.25 can be translated into:
iz (B, 0).my (B4 ,0) +m2(E4,0)] 1 my (£, 0),my (£,0) + mO (£, 0)] = 0

and either m (LL ,0)0=0o0rm (L;,O) =0.

Hence the condition (e.3) of [37, Theorem C.5] is satisfied. Thus [37, Theorem C.4] concludes

that there exists € ([0, 1]) and an infinite sequence (A, z) C A x HE\ {(11,0)} converging

o (i, 0) such that each zj # 0 and satisfies ﬁf (zx) = 0 for all k € N. Moreover, y is not equal
to AT (resp. A7) if mg(f;;,()) =0 (resp. m (LL ,0) = 0). We can assume A\, = «(ty) for some
(tx) C [0, 1] converging to t € [0, 1].

Fix 0 < § < 21. Let Qj satisfy Proposition 6.10 and Lemma 6.11 By Proposition 6.8,
passing to a subsequence (if necessary) we may assume: each xy is C* and a critical point of
Ly |7llc2 < 0 Yk and |lzg]|c2 — 0. Then each v, := ®5(zx) € Qs is a C° solution of the
corresponding problem (1.18) with A = A\g, k= 1,2, -+, and (%) converges to 4 on any compact
interval I C R in C2-topology as k — co. We can assume that all ;, are distinct each other. By
Lemma 6.11 each v has at most [ R-same points in {7 | k¥ € N}. Hence () has a subsequence
(7k;) consisting of completely R-distinct points. The required assertions are proved. ]

6.4 Proofs of Propositions 6.7,6.8

Proof of Proposition 6.7. Step 1(Prove that A x U 3 (A, z) — Lx(z) € R is continuous).
Indeed, for any two points (A, z) and (Ag,x¢) in A X U we can write

B = Lagla) = | ["Eattato)atonde — [ Eateaole) ol
| [ Eatatrdonie — [ L teanto) o]
0 0

As (A, z) = (Ao, o), we derive from (L6) in Lemma 6.1 and [37, Prop.B.9] or [35, Proposition
C.1] (resp. (L6) in Lemma 6.1 and the Lebesgue dominated convergence theorem) that the first
(resp. second) bracket on the right side converges to the zero.
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(Actually, we only need that A x UX 5 (A\,z) — L(x) € R is continuous. This can easily
be proved as follows. For any fixed point zy € UX, we can take a positive p > 0 such that
p > sup, |#o(t)]. Since E5 is an orthogonal matrix, and L : A xR x BE(0) x R* — R is
continuous, we deduce that L is uniformly continuous in A x R x B (0) x B}(0). This and
(6.12) lead to the desired claim.)

Step 2(Prove that AxUX 3 (\,z) — Ax(z) € X is continuous). For (A1, z), (A2,y) € AxUX,
and ¢ € H, since

dly, (z)[€] — dlx, (y)[€] = /OT (0 LAy, t,2(t), @ (t)) — DgL(Aa, t, y(t), 9(t))) - £(t)dt
+ /T (aUL (A, t, 2(t), 8(t) — ByL (Mo, t, y(t), (2))) -g'(t)) dt,
0

we have

y . T 1/2
VL (2) = VL0, )2 < </O |0, LA, t, (1), (1)) — BgL (Ao, t, y(1), 9(t))] dt)

’ v 1/2
+ </0 |06 LA, £, (), (t)) — Do Loty (1), ‘dt> |

Fix a point (A;,z) € A x UX. Then {(A1,t,z(t),(t)) |t € [0,7]} is a compact subset of A x
[0,7] x Bg,(0) x R™. Since 94L and 0, L are uniformly continuous in any compact neighborhood
of this compact subset we deduce that

IV (2) = VExs@)llco < CrlIV L, (&) = Vi ()12 — 0 (6.33)

provided (A\g, ) € A x UX converges to (A, z) in A x UX.
By (6.19) and (6.21), we have

%VL,\( ) = / * (0gLx (s, 2(s),4(s)) — R3(s)) ds

[ a9 5(9) - 9)(5) s
+0u Ly (t, 2(t),(t)) + ,‘Jﬁ/OT L (s,2(s),i(s))ds, (6.34)

where RY is given by (6.20). Let T5(¢) denote a column vector

sin 6; 0 —1 1
<@l<p2—2(30891( L0 ) - 2[2p> @ diag(ap+1(t), ] / 19) L)\ s, x(s), (s ))ds

Then we have a constant C(E5) > 0 only depending on Ex such that for all ¢,

15, (0) — T, ()] < () (1 + 1) / [0uL, (s 2(5). () — D (5.(9). 3(5)) |ds. (6.35)

By (6.20) and (6.21) we observe

—/0 OvLr(s,2(s),3(s))ds + T5(t), (6.36)



%TI im/ OvLx(s,2(s),3(s))ds.

For 0 <t <, let

et

Ii@)t): = B /tooe (9g L (s, 2(s),2(s)) — Mi(s)) ds,

e—t t

y(z)(t): = > (9gLx(s,2(s),2(s)) — Ri(s)) ds.

— 00

It follows from (6.34) that

VR @0 - £VEL00)

< Ty, (@) (@) = T, @) (@) + [Ty, (2)(t) = Ty, (v)(t)]
+|8'UL)\1 (ta l‘(t), x(t)) - 8’UL)\2 (ta y(t)a y(t)) |

+[m /OT |00 L, (5, 2(5), 2 (s)) = OuLrg (5, y(5), 5(s)) lds.

Let us estimate terms in the right side.
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(6.37)

(6.38)

(6.39)

(6.40)

Suppose kT < t < (k + 1)1 for some integer k > 0. By L(\,t + 7,z,v) = L(\,t, Esx, E5v)

and (6.35) we deduce

[R5, (1) — ], ()]

IA

(k+1)T B
/0 }&;L)\l (S,x(s),az( )) Oy Ly, (s y(s) )‘ ds + }S

IN

(k+1) ' ’81,[:,\1 (s,2(s),3(s)) — O, (s, y(s), s))| ds
0

+ C(Ey) 1+ (k+1)7) /OT Bu L, (5,2(s),8(s)) — Bulin, (5,(s)

Similarly, for (—=k — 1)7 <t < —k7 for some integer k£ > 0. We have also
R3, (1) — N3, (1)

0
/ ‘&,I:Al (s,2(s),2(s)) — L, (s, y(s) (s))] ds + |T5, (
(=k=1)7

IA

IN

(k+ 1)/0T ‘&,LM (s,x(s) (s )) Oy L;Q (s y(s) )‘ds

©CE)(+ (k+ D7) /0 " |0uLa, (5, 2(5). 8(5)) — BuLn, (s, 4(s),

For 0 <t < 7, it follows from (6.38) and (6.41) that

z)(t) = T3, (1) (1)
eT o (k+1)T i 5
< QkZZO o (5, w(5),8(9)) = Oulna (5,(5),9(5)) | ds

o0 (k+1)7
&
+—= E / e ®
2 k=0 Y kT

0

RE (s) — R, (s)’ ds

-, )]
‘ds (6.41)
-, )]
(ds (6.42)

(6.43)
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< 2%6_}”/0 ‘ﬁqLAl (s,2(s),2(s)) — BgLx, (s,y(s) )‘ds
_,_L;T e "k +1) /T ‘&,Ivo\l (s,x(s),x( )) OvLy, (s y(s), )‘ ds
k=0 0
+C(E’7)%6T Ze—kT(l + (k+1)7) /T &,L,\l (s,x(s),x( )) Oy L)\Q (s y(s), ‘ds
k=0 0
Similarly, for 0 < ¢ <7, (6.39) and (6.42) lead to
Ty, (@)(8) = T3, () (#)] (6.44)
1 o0 ( k+1) _
< 52 . e’ |8qL>\1 (s,2(s),&(s)) — O, Lo (s,y(s), |ds
k=0" "7
1 (=k+1)T o lona
2 k=0 /—kT e 195, (5) — mgg(s)‘ ds
< kaoe’”/o ‘(%IZM (s,2(s),2(s)) — O, L,\2(3 y(s) )‘ds
TS e 1) [ [0, (5,2(5),(5)) — Dol (5,4(s). 5(5)) | ds
k=0 0
—l—C(E@)TTGTZe*kT(l + (k+1)7) /OT DyLy, (s,2(s),2(s)) — Dy L)\Q(s y(s),y(s ))‘ds.

From these and (6.40) we get
TR0 - VR W0)
< (0oL, (t,2(t), 2(8)) — BoL, (£, y(), 5(1))]

+(C(E5)Cr + 1)) /OT |0uLx, (5, 2(5), 2(5)) = QuLr, (5, y(5), 9(s))|ds

+Cr /O |0 L, (5,2(s),3(5)) — gLy (5,y(5), 9(s))|ds (6.45)

for some constant C* > 0 and for all 0 <t < 7.

As above, for a fixed (A, x) € A x UX, by uniform continuity of 9,L and 0,L on a compact
neighborhood of a compact subset {(Al,t z(t), 2(t)) |t € [0,7]} of A x [0, 7] x BE(0) x R?, we
can derive from these and (6.45) that

d _ -
7VL)\2 (y)

7 =0

v
Co

provided (A2,y) € A x UX converges to (A, z) in A x 4X. This and (6.33) lead to the second
claim. O

Proof of Proposition 3.11. It is enough to prove sufficiency. Since z € By (0,¢) is a critical
point of the restriction of £y to By (0,¢),

dly(x)[€] =0 V¢ € T, By.(0,6) = HE. (6.46)
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We shall prove d£y(z) = 0 in four steps.
Step 1. Prove that = is C*. By (6.46) we have u(), z) € R such that
Vix(z) = p(\ x)C. (6.47)
That is, dCx(z)[€] — p(\, 2)(Co, &) 1.2 = 0 for all ¢ € H. Tt follows that

[ H@LAw(0). ). )z + (OuLa((0), (0. €D
~ [ WD Gle) €0 + 10 ) Gale) Dl =0 e € B
Define Ly (t,q,v) = La(t, ¢, v) — (X, 2)(o(t), @)rn + (A, 2)(Co(t), v)rn. Then (t) satisfies
[ 1O 2(0). 0. )z + (OuLne,2(0,5(0), EOeoldt =0 e H. (6)

Since (p is C®°, Ly is C* and satisfies the conditions in Lemma 6.1, by Remark 6.2 we obtain
that  is C4.

Step 2. For any € > 0 there exists § > 0 such that ||z||; 2 < & implies [u(\, )| < e. Since A € R
is compact and sequential compact, L(\,t 4+ 7,q,v) = L(\,t, E5q, E5v), and partial derivatives

8qL)\(')7 8UE)\(.)7 8(]UL)\<')7 aquA(')a 8UUL)\(')7 8vtEA<')

depend continuously on (A, t,q,v) € A xR x B2 (0) x R™, by shrinking ¢ > 0 (if necessary) it
follows from (L3) in Lemma 6.1 that

‘8qlv//\(t> q, ’U) - 8qLA(t7 Oa O)‘

< ‘8qL/\(t> Q7U) - 8qL)\(t7 q, 0)| + |8qL>\(t7 q, 0) - aqLA(ta Oa 0)|

< sup [Ogla(t,q,sv)| - |v] + sup [OgqL(t,sq,0)]-[q]
0<s<1 0<s<1

< C(lvl + vf*) + Clal.

Hence we have a constant C’ > 0 such that
|8q[:,\(t, g, v)| <C'(1+v|?), VY(\tqv)e A xR x B%.(0) x R™, (6.49)
Similarly, we can increase the constant C’ > 0 so that
0L (t,q,0)] < C'(1+ [v]), V(A t,q,v) € AxRx BE(0) x R™ (6.50)
Since V.£)(0) = 0, by (6.47) we have

(N 2)(Co, )12 = dLa(x)[€] — dLA(0)[¢]
= /o [(BgL(t, (1), (1)), £(t))rn — (0gLA(£,0,0), £(t))gn]dt

+ / [(8’UL)\ (ta ':U(t)a ':U(t)’ g(t))R” - (6UL)\(ta 0, 0)7 g(t))R"]dt
0
For the first integral, by the mean value theorem, (L3) in Lemma 6.1 and (2.3) we derive

| [ Ot (0. (0) = B, (2.0,0). (1) i
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< | [ ] kst sa(0).si0)a(0), 60z it
# [ 10nLattsa(0)si0)i 0,60z itds|
< c// (1+ |52 (0)]2)|=(8)||& (¢ ydtds+c// (1+ |52 (0)))|#(8)]|€(£) | deds
< o) ,(T+2H:cH1,2)+CCTH€H1,2(W qul,wuxul,». (6.51)

Similarly, we may estimate the second integral as follows:

| [ Ot a(0). 01,0z = @0 (1.0,0). (0ot

< ‘/0 /0[(81;@[:)\(75,sx(t),si(t))i(t),é(t))ﬂgn]dtds‘
T 1
+‘/0 /0[(aquA(t,Sl'(t),Si:(t))l‘(t),é(t))]}{n]dtds‘
< COllzlliz2llélh2 + CCxlfl1,2( ) 652

Hence we get

o)l < OO ellia(r +2]zli2) + CC-(Vrlaliz + Izl 2)
2(VT + llz12)-
The desired claim immediately follows because (g # 0.

Step 3. For any € > 0 there exists ¢ > 0 such that ||z||;2 < € implies ||z]|c2 < e. By (L2) in
Lemma 6.1 and the mean value theorem of integrals we deduce

1
C|’U‘2 < / (8UUEA(t7 q, SU)[U],’U)Rn ds
0
= (81)L)\(t7 q, U) - 8UL)\(t7 q, 0)7 U)Rn

and so ) )
C|’U| < ’aULA(t7Q7v) - avL)\(ta Q70)} (653)

for any (A, t,q,v) € A x R x B (0) x R™. Since we have proved that z is C* in Step 1, (6.47)
also holds in the sense of pointwise, i.e.,

VL(2)(t) = p(\, x)Co(t) V. (6.54)
From this and (6.34) it follows that
P () = / * (Bula(sa(5), () — 95(5)) ds
—7 3 e* (9gL (s, 2(5), 2(5)) — B3)(s)) ds

+0u Ly (t, 2(t),4(t)) + zm/OT DL (s, 2(5),(s))ds, (6.55)

where Y is given by (6.20). In particular, taking z = 0 we get

(X, 0)G(t) = / * (94L(5,0,0) — M3 (s)) ds
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€_t t

-5 e’ (aqLA (S, 0, 0) - %())\)@)) ds

—0o0

+0,L(t,0,0) + zm/ DyLx(5,0,0)ds. (6.56)
0

(6.55) minus (6.56) gives rise to
AL (t,0,0) — 0Ly (¢, z(t), 2(1))
= / * (8g L (s, 2(s),4(s)) — OL,\(SOO))derZ/t e (RY(s) — R (s)) ds

—7 [ 0, (s.2(5),8(9) — 0,00(,0,0)) ds+ S [ e (5(s) — W(s)) ds
+9)T/8L)\sx() i(s)) — ByL(5,0,0)]ds
+u(X, 0)Go(t) = (A, 2)Co(t) (6.57)

For 0 <t < 7, it follows from (6.43) and (6.44) that

9,
< {62 kf; e 4 % ki)eh(k 1)+ C(EV)% ki)e’”u + kot 1)7)] «
x| OT [0, (s, 0(s), (5)) = 0. La(5,0,0))ds| (6.58)
and
‘ - e; /_ ;e (9yLn (5. 2(s),(s)) — yLx (5,0,0)) ds + e; /_ ; e* (935 (s) — 90(s)) ds
< [iie—’ﬂ + % ie—h(m 1) +C’(E7)% :ooe_kT(l +k+ 1)7)] <
<| [ 0L (s 209 () — 0L (5.0.0)] s (6.50)

An elementary calculation yields

B d e+ % d e k+1)+ C(E;Y)% D e+ (k+ 1)7)]
k=0 k=0 k=0
2T AT

< C(By, )= 2+ C(By)T+ C(By)r) —
Hence (6.57), (6.58) and (6.59) lead to
’8 L,\(t:E ()) aL)\(tOO)’
‘/ DL (5,2(5), () — L (s,0,0)]ds

rzm\\/ (00 (s,2(5), 5(5)) — BuFa (50,0 ]ds| + (X, 0) = (0, 2)] - [Go(0)].
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From this, (6.53) and (6.57), (6.58) and (6.59) we deduce

clz(t)] < ‘(%L)\( ,x(t) ,a: )) — DyLa(t, 2(t), 0)|
< ‘OLA(,a:t () — 8L,\t00)\~|—\D L(t,x(t),0) — 8,L(t,0,0)]
< C(E5,T) ‘/ BLA s:c )) 8L>\(300)]ds‘
+[1(A, 0) — p(A, 2)| -+ [Go(t)] + [ DuLn(t, 2(t),0) — 8L (t,0,0)] (6.60)

forall 0 <t <. :
Since |(p(t)| are bounded on [0, 7], by Step 2 we have |u(\,0) — p(\, z)| - sup, |Co(t)| — 0 as
||z|[1,2 — 0. It follows from (6.50) and [37, Prop.B.9] ([35, Proposition C.1]) that

‘/ 8L>\sx )) BL,\(SOO)]ds‘—H)

uniformly in X as ||z[[12 — 0. These and (6.60) show:
For any € > 0 there exists € > 0 such that ||z||12 < € implies ||z|c1 < e. (6.61)

By (6.48) we have

0 = 1(8DL,\(t,x(t),i(t))>—8qL,\(t,a:(t),5c(t))

= (Bl (1), 5(0) + O 2)o(1)) — Dy La(t,2(0), #(0)) + (N, )G (1)

= OuoLa(t, (), 2(t))3(t )+5vqf{5(t7x( ), ())& (t) + Do La(t, x(t), (1))
—0gLa(t,z(t), (1)) + p(A, 2)Co(t) + p(X, 2)Go(2). (6.62)

In particular, taking x = 0 we get
0 = Ay La(t,0,0) — A, L (t,0,0) + (X, 0)Co(t) + p(X, 0)¢o(t). (6.63)
(6.62) minus (6.63) gives rise to

0 = OuLa(t, (1), &(t)(t) + g La(t, x(t), 2(1))2(2)
+0utLn(t, z(t),2(t)) — Opt L (t,0,0)
— 0y Lx(t,z(t), 2(t)) + O L>\(t 0,0)
(A 2)Co(t) = (A, 0)Go(8) + p(A, 2)Co(t) — (A, 0)Co(t). (6.64)

Note that (L2) of Lemma 6.1 implies |[0y, L (t, (1), 2(t))]71¢| < 1|¢| V€ € R™. (6.64) leads to

)
) =

F0] < 1Ot w(0), #0)| - [0)] + 10, La(t, 2(1), (1)) — B, (1,0,0)]
+% |8vtLA(t7 ZL’(t), ZL‘(t)) - 8vtLA(t> O> O)‘ + %|6qlv//\(t7 ZL’(t), ZL‘(t)) - anv/)\(t, 0> O)|
O ) — O O] + |u(h, 2) — 1(h, 0)[1Go(®)] (6.65)

Since |¢o(t)| and |(y(t)| are bounded on [0, 7], the desired claim may follow from this, Step 2 and
(6.61).
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Step 4. Prove d{y(x) = 0. Since ||(lco > 0, by Step 3 we get € > 0 such that ||z[l12 <e
implies ||z||c2 < po. In particular, z € UX. Since L = L* on A x R x B3, /2(0) x B, (0), it holds
that

E@) = [ Lalta(®) ()it = £5(2) = Ex(®:(a).

Note that ®5(z) € X5(M,1,). [—a,a] - ®5(z) is a C* submanifold of dimension one. Therefore
by these and the arguments below (6.4) we get that

Sz = @5 ([—a,a] - D5 () N Im(®5) N X} (M, L))
is a C? submanifold of X!(B% (0), E5) containing 0 as an interior point. Observe that

d

T o) (=] - ©5(2) N Im(®5) 1 XL (M,1,)) = R (5 05(2)| | = R(®s(2))
and that €, is constant on [—a, a] - ®<(z). Hence
A€ (@5 (2))[(®5(x))] = 0.
Let ¢ = (d5(2))) " (®5(2))) € ToSs. Then
AL (2)[Ca] = d5(B5(2)[(®5(x))] = 0. (6.66)

Since ®5(£)(t) = d5(t,£(t)) and dos(t, p)[(1,v)] = Gad5(t, p)[v] + D195(t, p) we get
O2¢5(t, (1)) [2()] + O195(t, (1)) = (P5(2)) () = (dPs(2)[C])(¢)

= L st s = | o3l + sGa(1)

= oy (t, 2(t))[Ca(t)]

and thus
O1¢5(t, 2(t)) = D2 (t, x(t))[Ca(t) — 2(2)]- (6.67)
As ||z||c1 — 0 we deduce that ||(z — (ollco — 0, that is,

Go(t) = @(t) + (D25 (t, (1)) ™H (D5 (8, (1)) — (D295 (2, 0)) "1 (7(2)) = Go(t) (6.68)

uniformly on [0, 7].

We hope to prove that [|(z — (ol|c1 — 0 as ||z|1,2 — 0.

Fix t € [0,7] and a C” coordinate chart (©,W) around ¥(f) on M, where W is an open
neighborhood of 4(#) and © is a C7 diffeomorphism from W to an open subset in R™. Then
there exists a closed neighborhood J of ¢ in [0, 7] such that §(¢t) € W for any ¢ € J.

Shrinking J we have a positive number v < 2: such that z(]0,7]) C B}'(0) and that

¢3¢ = ¢5(t,-) maps By (0) into W for each t € J. (6.69)

Define T : J x B2(0) — R, (t,p) — O(¢5(t,p)). It is C5, and for each t € J, Y(¢,-) is a C°
diffeomorphism from B}}(0) onto an open subset in R"”. Let 0T and 02X denote differentials of
T with respect to t and p, respectively. For ¢t € J, since

dO(p5(t, (1)) © (G2p5(t, x(t))) = d(© 0 ds,¢)(x(t)) = BT (2, (1)),

40(0s(t,2(D)[0165 (1, (0)] = 3. Os(sp))| = Y(t,z(0),
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composing dO(¢=(t,z(t))) in two sides of (6.67) we obtain
Y (t,z(t)) = Y (t, x(1))[C(t) — &(¢)], VEeEJ (6.70)
Differentiating this equality with respect to t gives rise to

O (L, x(1)) + 0201 (¢, x(t)) [ (1)]
= 010X (t,x(t))[Ca(t) — ()] + 0202 (¢, (1)) [ (1), Cx (t) — (1))
+O0 Y (t, (1)) [Co () — E(8)]

and so

Glt) = &(t)— (azT(t,J:( ) D10 (¢, 2(1))[Ca(t) — (1))
- (@71, )18282 () (2), G (t) — i(0)]
+ (00t 2(1)) Y (t a (1)) + (DXt 2(8))) " Badn Y (E, 2(8))[(1)],

where Y (t,2(t)) may be understand as matrixes. As ||z|c2 — 0 it follows that

Cot) — (827(t,0))) 9101 Y (¢,0) = Co(t)

uniformly on J, and hence that [|(z — ol|¢1() — O by (6.68).

Note that [0,7] can be covered by finitely many neighborhoods of form J. We arrive at
I¢z — Coller — 0, in particular, ||(; — (olli,2 = 0. Then for € > 0 small enough, the orthogonal
decomposition H = (R(p) & H' of Hilbert spaces implies a direct sum decomposition of Banach
spaces H = (R(,)+H™*. From this, (6.66) and (6.46) we may deduce that d{y(z) = 0 because
TxBHL (O, E) = T()BHL (0, 8) = HJ‘.

]

6.5 Strengthening of Theorems 1.23, 1.24, 1.25, 1.26 for Lagrangian systems
on R"

When M is an open subset U of R" and I, is an orthogonal matrix E of order n which
maintains U invariant, Assumption 1.21 in Theorems 1.23, 1.24, 1.25, 1.26 can be replaced by
the following weaker:

Assumption 6.12. For an orthogonal matrix E of order n, and an E-invariant open subset
UCR"let L: AxU xR"” — R be a continuous function such that for each A € A the function
Ly() = L(),-) is C* and partial derivatives

OgLa()s FLA()s Ogla(), Oggla(), Dwwla(:)

depend continuously on (A, ¢,v) € A x U x R™. Moreover, for each (\,q) € A x U, L(\,q,v) is
convex in v, and satisfies

L(\, Eq, Ev) = L(\, q,v) V(A q,v) € AxU xR" (6.71)

A nonconstant C2? map 7 : R — U satisfies (5.8) for each A € A (so 7 is C*), and the closure of
7(R) has an E-invariant compact neighborhood Uy contained in U (thus there exists v > 0 such
that CI(3(R)) + By (0) C Up). For some real p > sup, |¥(t)| and each (X, q) € A x U, L(X,q,v)
is strictly convex in v in BJ(0).
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In fact, taking an orthogonal matrix = such that Z~'E= is equal to the right side of (6.2)
and replacing Ly and ¥ by

(E7'0) xR" = R, (x,v) = Lx(Ex,Ev)

and 2714, respectively, we may assume E = diag(Sy,---,S,) € R™" as in (6.3).
Take ¢ = 1y/3 and define ¢ : R x BE(0) — U by ¢5(t,x) = J(t) + x, which is clearly C*.
Then ¢~ gives rise to a C° coordinate chart around 4 on the C*° Banach manifold X (U, E),

&, : XL(BL,(0), ET) > X}(U, F)
given by ®=(£)(t) = 4(t) + £(t). For any ¢ € XY(B%,(0), ET) and v € X}(U, E) there holds
T XY (B (0), ET) = XU, E) = X := X(R", ET).
Clearly, d®=(0) = idx. Since d¢5(t,z)[(1,v)] = ¥(t) + v, we define
L* :AXRx B (0) x R" = R, (A t,z,v) = L(A\5(t) +z,75(t) +v).

It is continuous and satisfies (6.8) with E5 = E. Moreover, each L} is C*. Take py > 3¢ such
that p > po > sup, [¥(t)|. Then for a given subset A C A which is either compact or sequential
compact, Lemma 6.1 yields a continuous function L : A x R x B (0) x R" — R. Put

H:={¢ e WLA(R;RY) | E(£(t)) = £(t+7) YVt € R} and

U= {¢ e WA(R; BL(0) | B(E(t) = £(t+ 1)Vt € R}, UX :=UNX.
Define £ : U — R as in (6.12), and £y : U/ N H* — R as in (6.14), where
H' = {zcH|(#,2)12=0} and X' :=XnH.

The other arguments are same, except that “C%” is replaced by “C*”, I, by E, etc. Actually,
the proof of Proposition 3.11 are much simpler in this situation.

7 Proofs of Theorems 1.29, 1.30, 1.31
Following the paragraph above (3.2) we take a path ¥ € EC7(S,; M) such that
disty (v, (t),7(t)) < ¢Vt € R. (7.1)
We first assume:
dg((1),7(t)) <¢, V(A t) € AxR. (7.2)

(For cases of Theorems 1.29, 1.31, by contradiction we may use nets to prove that (7.2) is
satisfied after shrinking A toward p.) Then (7.1) and (7.2) imply

dg(y(£),7u([0, 7])) < dg(YA (1), yu(t)) <2t V(A1) € A xR. (7.3)

By Claim A.2 we have a unit orthogonal parallel C® frame field R — F*T'M, t +— (e1(t), - ,en(t))
to satisfy

(e1(Txt), - ,en(T b)) = (e1(t), -+ ,en(t)) VteR. (7.4)
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Let B3, (0) := {z € R"||z| < 2.} and exp denote the exponential map of g. Then
n
¢35 1 R x B3,(0) = M, (t,x) — expsy <Z :Eiel-(t))
i=1

is a C® map and satisfies

dy(T £t x) = ¢px(t,x) and %%(T +t,2) = (P5)) (T £ t,2) (7.5)

for any (t,7) € R x B%(0). By [48, Theorem 4.3], we have a C? coordinate chart around % on
the C* Banach manifold EC*(S,; M),

&~ : ECY(S,; BE(0) = {€ € CH(SHR™) | ||€]lco < 2t} — ECH (S5 M) (7.6)
given by ®5(£)(t) = ¢5(t,£(t)), and
d®5(0) : EC'(S-;R") — TyEC' (S M), £ > ey,
j=1
It is easy to proved that
O5(EC(Sr; B3, (0))) =U(7,20) = {y € EC'(S;, M) | doo(7,7) < 2},

where doo(71,72) = maxieg, disty(v1(t),12(t)) for v € ECY(S;, M), i =1,2.
Since the injectivity radius of g at each point on 7(S;) is at least 2¢, by (7.2) there exists a
unique map uy : R — BJ*(0) such that

A(t) = ¢5(t, ur(t)) = expy (Z uf\(t)ez'(t)> vt € R,
=1

Note that 7 is even and 7-periodic. From (7.4) we derive
AT £ 1) = expy(ray) <Z ul (7 £ t)e;(r £ t)) = exPxy) (Z ul (7 £ t)ei(t)) .
i=1 1=1
Hence uy, € ECY(S,; B*(0)) N C%(S,; B*(0)). By Lemma 3.1, 3.2 we also see that
()‘7t) = u)\(t)v (Aat) = 1'1)\(1:) and ()‘7t) = ﬁ)\(t)
are continuous maps from A x R to R".
Define L3 : R x B3, (0) x R" — R by
L(t,2,v) = Ly (t, d5(t, ), (67)1 (8 2) + (65)3(t, 2)[v]) - (7.7)
Then it follows from (7.5) that L3 (7 + ¢, z,v) = L} (t,2,v) and
Li(r = t,x,—v) = Ly (1 —t,¢5(7 — t,2), (¢5)1 (T — t, ) + (d5)5(7 — t, ) [-v])
= Ly(r—t, cHt,SL‘) —(#7)1(t; 2) — (d7)a(t, )[v])
]

Y
= Ly (t, d5(t, ), (99)1(t, ) + (67)3(t, 2) v
= Li(t,z,v) Y(t,z,v) € R x BL(0) x R™. (7.8)
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As before we also define L* : A x R x B*(0) x R” — R by

L*(\t,q,v) = Li(t, q,v) = L*(\ t,q 4+ up(t), v + 1y(1)). (7.9)
It satisfies Proposition 3.3 after the interval [0, 7] is replaced by R. Moreover, (7.8) leads to
L*(\ 7T —t,q,—v) = L*()\ T—tqg+uy(r —1t),—v+ay(r —1))

= L' 7 —tg+un(t), —v—ux(t))

= L*()\ t,q+ux(t),v+ax(t))

= L*(\t,q,0)

because uy (7 — t) = uy(t) implies —ay (7 — t) = ay(t).

Now we have a family of C? functionals
LY ECY(S; B™0) - R, z+ / Ly (t,z(t), &(t))dt, A €A

0

(see the proof of the first claim in [35, Proposition 4.2]). For & € ECY(S,; B*(0)), since

i O3(€ +wn) (1) = (&7)1 (1 E(1) +ur()) + (69)5(t, E(1) + ur()[E(1) + ar(t)] Yt € R, (7.10)

we deduce
LX(&) = LY (P5(¢+wy)) ¥ € BCY (S5 BL(0)) (711)
and therefore that
m; (LY,0) =m; (LY, y) and m)(LY,0) = md(LY, 7).
For the function L* in (7.9), a positive number pg > 0 and a subset A C A which is either

compact or sequentlal compact, as in Lemma 3.8 using Lemma 2.4, 2.7 we can construct a

continuous function L : A x R x Bg/4( ) x R® — R satisfying the properties (L0)-(L6) in

Lemma 3.8 on A x R x By, 4(0) x R™ and the following equality
L(\, —t,q,—v) = L\ t,q,v) = L\, 7+ t,q,v)
for all (\,t,q,v) € A x R x B3 /4( ) x R™. Let us write
H:=W"(S;R"), X:= GI(ST;R%
U=W"(S;;Bl,(0), UX =uUnX=EC" (ST,BL/2(0)>
H, := EW"?(S;R") = {z € Wl’Q(ST;R”) |2(—t) = x(t) Vt}, X := EC'(S;R"),
LQF{UEW”(&J%2)>M@ﬂ:u@V%,
UX =UnX = {uE@(&J%Q))MGﬂ:u@V*.
For each A € A define functionals

EMM%RxH/LMw@ﬂMﬁaM.ﬁJ@%RmH/LW@@ﬂM%
0 0

Clearly, Ly, = L¥. As a special case, {(£x,U,UX)| X € A} has the same properties as
{(Ex,U,UX) | X € A} in Section 4.2. By the arguments in [29], {(£F U,,UX) |\ € A} has also
the same properties. (In fact, from the expression of V£, it is not hard to prove that VL, (z) is
even for each = € U,. Therefore VLY (z) = VL) (z) for each x € U,.) This implies that for each
x € U, the operator By(z) € Ls(H) defined by (6.24) maps H, into H.. Almost repeating the
proofs in Section 3 we can obtain the required results. Of course, the next section also provides
a way.
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8 An alternate method for bifurcations of Lagrangian systems
on open subsets in R"

In this section, we will show that for the main results in Section 1, except for Theorems 1.23,1.24,

1.25, 1.26, all others, when restricting to Lagrangian systems on open subsets in R", may be
almost derived from bifurcation results for Hamiltonian systems in [37].

Assumption 8.1. Let Assumption 2.2, 2.5 be satisfied and let E be a real orthogonal matrix of
order n such that (EU) NU # (). Consider the Lagrangian boundary value problem (2.5)-(2.6)
on U. Suppose that each z in Assumption 2.5 also satisfies (2.6).

Then CL([0,7];U) is a nonempty open subset in CL([0, 7]; R™) [cf. (4.3)],
Ly : Cp([0,7];U) = R, x H/ L(t,x(t), (t))dt (8.1)
0

is a C? functional, each z) € C%([0,7];U) satisfies d€y(x)) = 0, and the second variation at
is given by

Szl = [ [Pai+ Q)+ Qi+ Ry 2] b (52)
for all y, 2 € CL([0,7]); R™), where Py (t) = yuLy (t, 2 (t), 2 (t)) and
Q/\(t) = ava)\ (ta x)\(t)v $/\(7f)) ) R)x(t) = axa:LA (ta :E)\(t)v x)x(t)) . (83)

The form £ (z) can be extended into a continuous symmetric bilinear form on Wé’Z([O, T]; R™),

whose Morse index and nullity are called the Morse index and nullity of £, at x), denoted
by
m7(Ly,xy) and mi(Ly,zy) (8.4)

respectively. Both are finite because P () is positive definite.
For a given compact or sequential compact subset A C A let L : A x [0,7] x Bf(0) x R” — R
be given by (2.14). Define

Ly : CL([0,7); B} (0)) = R, z — /07 Lx(t, z(t), &(t))dt. (8.5)

It is C2 because £y (z) = Ly(x + xy) for all z € CL([0,7]; B#(0)). It is clear that 2% : [0,7] —
R™, t +— 0, satisfies the following boundary value problem:

& (0uLa(t.2(1), 5(1))) = B, La(t. 2(0), 5(1)) = 0, (8.6)

B(2(0)) =a(r) and (ET)™|8,L1(0,2(0),2(0)| = duLa(ra(r),é(r)).  (87)
Therefore dy(2°) = 0, £ (2°) = £%(xy) and

m=(Lx,2°) = m7(Lx,zy) and m2(Ly,2°) = m2(Ly, z)). (8.8)

The following is easily proved.

Claim 8.2. For A € A, a curve x € C%([0,7],U) satisfies (2.5)-(2.6) and |z —xzx||c1 < po—poo if
and only if t—xy € C2([0,7],R™) is a solution of (8.6)-(8.7) satisfying ||x—xx—2°||c1 < po—poo-
Specially, the bifurcation problem (2.5)-(2.6) around (p,x,) with respect to the trivial branch
{(\,z)) | A € A} is equivalent to that of the corresponding problem (8.6)-(8.7) around (i, x°)
with respect to the trivial branch {(X,z°) |\ € A}.
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For each (A, t,q) € Ax [0, 7] x B§(0), by [12, Exercise 1.3.4]), (2.15) implies that v Ii,\(t, q,v)
is superlinear, and therefore the associated Legendre transform

Lrtg :R" = R")*=R", v 81)[3)\(15, q,v)

is a C! diffeomorphism ([12, Corollary 1.4.7]). (Here the dual space (R")* of R" is naturally
identified with R™.) Since

A x [0,7] x By(0) x R" = R", (A, t,q,v) — valx(t,q,v)
is continuous, we derive from [12, Lemma 2.7.2] that
£:A % [0,7] x BR0) x R™ = A x [0,7] x BR0) x R?, (A\,t,q,0) — (A t,q,05L(t, q,v))
is a homeomorphism. Similarly, for each \ € A, the Legendre transform
€5 :[0,7] x BE(0) x R® = [0, 7] x BH0) x R", (t,q,v) — (t,q, 0L (t, q,v)),

is a C'! diffeomorphism, and (), ¢, qlv) — (t,q, Oy L A(t, ¢, v)) is continuous by the implicit function
theorem. Hence for (A, ¢,q,p) € A x [0,7] x B (0) x R" we have a unique v € R" such that
dyL(t,q,v) = p. Define H : A x [0,7] x R" x BF(0) — R by

H\t,p,q) = (p,0)rn — La(t, q,0). (8.9)

Claim 8.3. H is continuous, each JEI()\, t,-) is C? and all possible partial derivatives of it depend
continuously on (A, t,p,q) € A x [0,7] x R" x B#(0). For A\ € A, if a curve x € C?([0,7],U)
satisfies (2.5)-(2.6) and |z — xx||c1 < po — poo, then

0,7] 5 ¢ > 22 () = ( x(t)y/\—(fv))\(t) ) € R

where yx(t) := Oy La(t, x(t) — xA(t), 2(t) — ZA(t)) = OuLa(t, x(t), 2(t)), satisfies
3(t) = JVHy(2(t)) and Ez(0) = 2(7) (8.10)

E 0

write E = (
0

) (a symplectic orthogonal matriz of order 2n), and

[ 5@ m@m + HOa@)] dt = ~£3@) = - ["Lata0.a0)an 51
0 0

in particular, for yox(t) == dyLa(t,0,0) = 9, Lx(t,2°,2°) = 9, Lx(t, zA(t), £A(t)), the curve
[0,7] 2 t = ugA(t) == (yor()T,0)T € R*" (8.12)

satisfies (8.10). Conversely, if z(t) = (p(t)T, z(t)T)T is a solution of (8.10) near ug \ (which can
be required to be close in Cl-topology by [37, Proposition 1.3]), then x + x satisfies (2.5)-(2.6)
and

La(z+xy) = L)\((L') = — /OT |:;(J2‘J)\(t),2)\(t))R2n + FI()\,t,Z)\(t)) dt. (8.13)
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Proof. Step 1[Prove the assertions for H]. Because of dependence on A we cannot directly use
[12, Proposition 2.6.3]. But the proof is almost same as that of [12, Proposition 2.6.3]. By (8.9),
it holds that for any (A, ¢,q,v) € A x [0,7] x By (0) x R",

H'()\,t, avf/A(t,q,v), q) = Zav].ﬁA(t, q,0)vj — f/A(t, q,v). (8.14)
j=1

Differentiating both sides with respect to the variable v;, we get

n n
Z 8pjﬁ()\7 t, avL)\(t7 q, U)a Q)avivj L/\(t, q, ’U) = Z 'Ujavivjff)\(ta q, U)7 1= 17 e, N
=1 j=1

(Note: hereafter we understand Oy, L = 0y, (0y,L). Otherwise, the desired result cannot be

i

derived.) But 9y, Ly (t, ¢, v) is invertible. It follows that
8pjlﬁf()\,t,<9vﬁ,\(t,q, v),q) =v;, j=1,---,n. (8.15)

Differentiating both sides of (8.14) with respect to the variable g;, and using (8.15) we obtain

n n
8qu()‘7 t7 avL)\(ta q, ’U), Q) + Z Ujaqi’l)j L)\(tu q, U) = Z vjaqi’l}j L)\(tu q, U) - 8qiL)\(t7 q, U)
j=1 7=1
and hence
Oy HN 1,0y La(t,q,v),q) = =0y La(t,q,v), i=1,---,n. (8.16)

Differentiating both sides of (8.14) with respect to the variable ¢ and using (8.15) lead to

8tﬁ()\7 i, avi/)\(t> q, ’U), Q) + Z Ujatvj f/)\(ta q, U) = Z vjatvj f/)\(tv q, /U) - at-i/k(tv q, /U)
J=1 j=1
and so
8tﬂ—()\7tﬂp7 q) - _8tf1)\(t7q7'0)- (817)

By the implicit function theorem we have a continuous map
v:Ax[0,7] x BR0) x R" = R", (A, t,q,p) = v(\ t,q,p),
such that the following holds:
(i) &)IA/)\(t,q,v()\,t,q,p)) = p for all (\,t,q,p) € A x [0,7] x B§(0) x R";

(ii) v(At,q,p) is Clin (t,q,p), and (A, t,q,p), Oy, v(A, t,q,p) and dy,v(A,t,q,p) are contin-
uous (A, t,q,p).

(iii) aqv(/\at7Q7p) = _[8v}1£)\(ta%v(/\7t7q,p) ]7laqvff)\(tv%v()‘vt7q)p)) and
apv()\v ta Q7p) = [8UUL>\(t7 Qa U()\a tv Q7p))]_1‘
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It follows from (8.15) and (8.16) and (8.17) that

O, H(N t,p,q) = vj(\ t,q,p), (8.18)
aqj'H()‘a tapa Q) = _aqj L)\(tv q, U()\v ta Q7p))a (819)
atﬁ()‘vtvpv Q) = _atj;)\(t7Q7v()‘7ta Q7p)) (820)

for (A, t,p,q) € A x [0,7] x R x B#(0) and j = 1,--- ,n. These imply that
OH(Nt,p.q), O, H(\t,p.q) and 9y, H(\t,p,q)

are continuous in (\,t,p,q) € A x [0,7] x R" x B2(0), and C" in (p, q), and hence that

H is continuous, and C2 in (p,q) and and all its partial derivatives
depend continuously on (A, ¢,p,q) € A x [0,7] x R™ x B(0).

Step 2[Prove that z) satisfies (8.10)-(8.11)]. Suppose a curve x € C?([0,7],U) satisfies (2.5)-
(2.6) and ||z — x|l o1 < po — poo By Claim 8.2, x —x) € C%([0,7],R") is a solution of (8.6)—(8.7)
satisfying ||z — xa|lc1 < po — poo- Put

yni(t) = Oy, La(t, x(t) — (), &(t) — @x(t), i=1,---,n. (8.21)

Then vi(\, t,z(t) — xa(t), ya(t)) = @x:(t) — Exi(t), ¢ = 1,--- ,n. From (8.18), (8.19) and (8.6)
we derive

&i(t) — @x0(t) = p, H\ Ly (), 2(t) — 2a (1)), (8.22)
9ni(t) = =0 H\ £, ya(t), x(t) — 2a(1), ) (8.23)

fori=1,--- ,n, that is, 2)(t) := (yx(t)T, 2(t)T — (zx(t))T)7T satisfies the first equation in (8.10).
Moreover, that x — x) satisfies (8.6)—(8.7) implies Fy,(0) = (E7)~1y,(0) = yr(7) by (8.21).
This and E(x(0) —zx(0)) = x(7) — xA(0) show that z)(¢) satisfies the second equation in (8.10).
In order to prove (8.11), note that (8.14) and (8.21) yield
) =

La(t,2(t) — ax(t), (8) — (1)) = (2(t) — an(t), ya(£) )k — Ha(t, 2(t) — @x(8), 2(t) — 2x()[8.24)

Since E is an orthogonal matrix, E(z(0) — zx(0)) = x(7) — 2x(0) and Eyx(0) = yr(7), a direct
computation leads to

/()T(i(t) — (1), ya(t))rndt = —% /OT(JZ'A(t)aZA(t))R%dt

as in [43, pages 36-37]. Then (8.11) follows from this and (8.24).
Step 3[Prove the converse part]. Suppose that z(t) = (p(t)T, z(t)T)T near ug  is a solution of
(8.10), i.e., Ez(0) = z(7), and for ¢ = 1,--- ,n it holds that

ii(t) = Op, H(\ t,p(t),2(t)) and  pi(t) = —9g, H(N t, p(t), 2(t)). (8.25)
Then the former and (8.18) lead to @(t) = v(\, ¢, z(t),p(t)), and so
DuLa(t, 2 (t), (1)) = BuLa(t (t), v(\ b, (), p(1))) = p(t) (8.26)
by (i) below (8.17). From this, (8.25) and (8.19) we derive

 (Dua(t,2(0), #(1))) = Pl1) = Lt 2(0), o 1, 2(0), p(1) = By a1, 2(t), £(1)).
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Moreover, E is an orthogonal matrix, and Ez(0) = z(7) if and only if
Ez(0) =z(r) and Ed,Lx(0,z(0),4(0)) = d,Ly(r, z(7), &(1))

by (8.26). Therefore x satisfies (8.7). By Claim 8.2 = + ) satisfies (2.5)-(2.6). With the same
proof as (8.11) we may obtain (8.13). O

Let P(\,t,p,4) = QoL (t,4,0), QA t,p,4) = ol (t,q,v) and R(A,t,p,q) = 84qLx (. q,v).
with v = v(A, t,¢,p). It follows from (iii) in Step 1 and (8.18)-(8.19) that

OgpH (M t,p,q) = 04(0,H(\, t,p,q)) = Oqu(\ 1, q,p) = —[P(\, £, )] ' QN t,p, ),

OppH (N1, p,q) = 0p(OpH (N, t,p,q)) = Opv(\, t,¢,p) = [P(\,t,p, )] ",

OpgH(N t,p, q) = 0p(0gH(A, t,p,q) = —Q(A\,t,p, ) [P(\ t,p, )],

OggH(N 1, p,9) = [QUA\ £, 0, )] P\ £, 0, 0)] 'Q(N £, p @) — R(A, £, p, q).
Therefore

1 DopH (N 1.0, q) Oy H (N 1,p,q)
HE;,q)(>Utapaq)( pp ( p q) qp D, q )

8pqﬁ()\ t,p,q) 3qu At p,q)

_( [P\t p, )] ~[P(\t,p,9)] ' QN £, p,q) >
—[Q(\ t,p, )] POt @)™t QN 0, @) PN 62 g)] QA tpg) — RN Epq) )

(8.27)

By Claim 8.3, ugx(t) = (yox(t)T,0)7 satisfies (8.10). It follows that ug is C? and that
up (1), Uoa(t) and iigx(t) are continuous in (A,¢). These imply that the Hamiltonian H :
A x [0,7] x R™ x B2(0) — R defined by

H(At,2) = Hya(2) = (Jito(t), 2)uzn + Ha(t, 2 + o (1)) (8.28)

is continuous and each Hy(-) is C? and all its partial derivatives depend continuously on (A, t, 2).
Clearly, (8.28) implies

VHy(2) = Juga(t) + VHy (2 4+ uga(t)), (8.29)
HY (2) = HY (2 + uo A (1)) (8.30)
Recall that yo () := 9yLa(t,0,0) = 8, L(t,2°,2°) = D, La(t, zA(t), #x(t)). We have ¢ = 0,
P = yo(t) and v(A,¢,0 ( )) = 0, and hence
P()‘vt7y0 )\(t)vo (t 0 0) 6 L)\(tu .’E)\(t),m')\(t)) = P)\(t)u
Q()‘)tayo )x(t)vo) (t 0 0) 8 L)x(tvl‘k(t%x')\(t)) = Q)\(t)a

R()\,t,yo,\ t),O) (t 0 0) 8 LA(t,$A(t),.i'A<t)) = R)\<t).
by (8.3). These, (8.27) and (8.30) lead to
HY,(0) = HY y(uo(1)) = H{}, ) (A, t, 50, (t), 0)

_ P)\(t)il _P)\(t)ilQ)\(t)
B ( —Q®)TPA®) Y Qa()TPA()T1Qa(t) — Ra(2) > (8.31)

It follows from Claim 8.3 and (8.29) that

) —doa(t) = JVHy(2a(t) — do(t)
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JVH); (22(t) — ugA(t) +uoa(t)) — do(t)
J(VHy(22(t) — uo(t) — Jiga(t)) — o (t)
= JVH) (2x(t) — ug(t)).

Hence we obtain:
Claim 8.4. For any X € A, by (8.29) the constant path z° : [0,7] — R?", t +— 0, satisfies
2(t) = JVHy4(2(t)) and Ez(0) = z(7); (8.32)

and (p, x,) s a bifurcation point of the problem (2.5)—(2.6) in A x CL([0, 7]; R™) with respect to
the trivial branch {(\,x)) | A € A} if and only if (u, 2°) is that of (8.32) in A x CL([0,7]; R*™) (or
equivalently A x WE’Q([O, 7]; R?™) ) with, respect to the trivial branch {(\,z°) | A € A}. Precisely,
if a sequence (\g, z*) in A x C2([0,7],U) converges to (,x,) in A x C*([0,7],U) and each ¥
satisfies (2.5)-(2.6) with A = X\, k =1,2,---, then

(- _ z (1) — o (1)
S < 0,Lat. (1), (1) ) ot < 0L (1 4¥0) () ~ o, 1) )

satisfies (8.32) with A = A\, and
1 k k T k K
—/ {2(Jz (t),2"(t))r2n + H(Ag, t, 2 (t))] dt = Lx(z) :/ Ly, (t,z"(t), 2" (t))dt
0 0

for each k € N, and 2% # 20 (if 2% # z),), 2¥ — 20 in CL([0,7);R*™) (by [37, Proposi-
tion 1.3]); conversely, if a sequence z¥(t) = (pF(t)T,2*#)T)T in CL([0,7];R?™) converges to z°
in CL([0,7];R?™) and each 2* satisfies (8.32) with A = My, then x* + x, satisfies (2.5)-(2.6)
with A = A\, and

Ly, (aF +xy,) = — /OT B(Jz’“(t), K ())gen + H( M, t, zk(t))} dt, (8.33)

PF (1) + you (B) = BuLn (8, 2(£), 85 (1)) = Oy Lx, (¢, 2" (8) + 2, (1), & (8) + a, (1)) (8.34)

(The latter implies that p* = 0 if and only if ¥ = 0, and hence that 2* = 0 if and only if
w8 =0.)

Let 6" € (0,9) be close to 6. We can choose a C* function ¢ : R™ — [0, 1] such that it is equal
to 1 in BY(0), has support supp(¢) C B§(0) and satisfies ¢(q) = ¢(|g|) for all ¢ € R™. Clearly,
Claim 8.4 is still true if H is replaced by

Following the notations below (8.1) let S\(¢) denote the matrix in (8.31). We have obtained
HY (2°(t) = HY (uoA(t)) = Sx(t). Let Ty : [0,7] — Sp(2n, R) be the fundamental solution of
the problem u(t) = JS)\(t)u. Then

m2(Ly, zy) = m2(Ly,2°) = dim Ker(Ty(7) — E) (8.36)
by [18, Lemma 3.1], and T gives rise to a path of Lagrangian subspaces

[0,7] 3t = Gr(Ty)(t) := {(T, (TA(t)v)))T |v € R*™}
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in the symplectic vector space (F,Q) := (R?® ®R?", (—wg) ® wp). (Recall that all vectors in R™
are understand as column vectors.) Let L£(F,(2) denote the manifold of Lagrangian subspaces
of (F,§2). Then Gr(E) € £(F,Q). Recall that the Cappell-Lee-Miller index u“™ characterized
by properties I-VI of [7, pp. 127-128] assigns an integer &M (A, A’) to every pair of Lagrangian
paths A, A" : [a,b] — L(F,Q).

Let P-(2n) = {Y € C([0,7],Sp(2n,R)) | Y(0) = I2,}. As extensions of the Maslov-type
index (i-(Y),v-(Y)) of ¥ € P-(2n), Dong [10] and Liu [24] defined the Maslov type index of
T € P;(2n) relative to P € Sp(2n,R) via different methods, respectively denoted by

(irp(Y),vrp(Y)) and (L(Y),v2(Y)) (8.37)

T rUT

for the sake of clearness (though both were written as (ip(Y),vp(Y)) in [10] and [24]), where
vr.p(T) = dimKer(Y(7) — P) = v (). (8.38)
Lemma 8.5. (i) m;(£Ly,zy) +dimKer(E — I,) = u$"™M(Gr(E), Gr(Y5)).
(ii) i2(T) = pEM(Gr(P), Gr(Y)) Y(P,T) € Sp(2n,R) x P, (2n).
(iii) i, p(YT) =iL(Y) V(P,T) € Sp(2n,R) x P (2n).

T

These three equalities come from [18, Theorem 1.2], [26, Theorem 5.18(2)] and [27], respec-
tively. Therefore from this lemma, (8.36) and (8.38) we derive

m(Ly,2y) =m2(£Ly,2%) = v, 5(Ty), (8.39)
my (L, z\) +dimKer(E —I,) =iz (Ty). ’

Remark 8.6. (i) Under Assumptions 2.2, 2.5, suppose also that U is a symmetric open
neighborhood of the origin in R™, and that for each (), t) the function L(\,t,q,v) is even
in (¢g,v). If zx = 0 VA, then H defined by (8.28) can be required to be even in z. In
fact, by Lemma 2.4(vi) f)()\,t,q,v) can be chosen to be even in (g,v). Since z) = 0 VA,
the function L defined by (2.14) is even in (¢,v), and so 0, Ly (t, —q, —v) = —9yL(t, ¢, v).
(This implies yo x(t) = dyL(t,0,0) = 0 and hence ug A (t) = (yor(t)T,0)T = 0.) Suppose
that GUZAL,\(t,q,v) =p. Then —p = 8vf/A(t, —q,—v). By (8.9) we deduce that

H\t=p,—a) = (=p,—v)rr = La(t; =g, —v)
= (p,v)rr — La(t,q,v) = H(A\ £, p, q)
and therefore that H(\,t, z) is even in z by (8.28).
(ii) We make the following assumption:
Assumption 8.7. Under Assumption 2.3 with F = I,,, suppose that L also satisfies
L\, —t,q,—v) = L(\, t,q,v) Y(t,q,v) € AXRxU xR" (8.40)

For each A € A, let 2 : R — U be a C? map satisfying

il (%(t,x(t),a’:(t))) — Gt x(t), () =0Vt €R } (8.41)

x(—t)=z(t)=z(t+71) VteR
and such that maps A x R > (\,t) = z\(t) € U and A x R > (\,t) — @) (t) € R™ are also
continuous. Moreover, for any compact or sequential compact subset A C A there exists
p > 0 such that sup{|ix(t)| | (A7) € A x [0,7]} < p and that A x [0,7] x U x B2(0) >
(A t,q,v) — Ly(t,q,v) is strictly convex with respect to v.
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Then we have a corresponding result to Lemma 2.4, in which [0, 7] is replaced by R and
L:AXRxUxR"— R is defined by

L(At,q,0) = LA £,.0,0) + $pg.py (J0]) (8.42)
as in (2.8). Clearly, it is 7-periodic in ¢ and (8.40) implies
i()\, —t,q,—v) = IZJ(/\,t,x,v) V(A t,q,v) € AXRxU x R™ (8.43)
As in (2.14) we define L : A x R x B?(0) x R* — R by
LA\ t,q,v) = LAt g+ 2A(t), v + a(1)). (8.44)
By Assumption 8.7 and (8.43) it is 7-periodic and

ix(A,—t,%—’L)) = L()‘a_t7Q+xA(_) _U_‘/L‘)\(t))
L\t g+ zA(t),v+ix(t) = LN t,q,0) (8.45)

for any (A, ¢,q,v) € A x R x Bf(0) x R™. Thus &JL(A, —t,q,—v) = —8vf/(A,t,q,v). Let
v:AXRXxB§0) xR" = R", (A t,q,p) — v(\t,q,p)
be the unique solution of
duLa(t,q,v(\t,q,p) =p Y(A\t,q,p) €A xR x BY0) x R? (8.46)
obtained by the implicit function theorem as in (8.46). Then we have
v(\, —t,q,—p) = —v(\, t,q,p) V(N t,q,p) € A xR x By(0) x R". (8.47)
As in (8.9) we define H : A x R x R™ x Bj(0) = R by
H(\ t,p,q) = (p,v)rn — La(t.q,v),
where (A, t,¢,v) € A x R x B}(0) x R" satisfies avf/A(t,q,v) = p, that is,
H(\t,p,9) = (p, (A t,q,p))rn — La(t,4,0(A 1,4, p)). (8.48)
Then from (8.45) and (8.47) we derive

ﬂ-(/\v —t, _p7Q7) = ( p:”( —t,q, p))R" - i’A(_t7Q7v(A7 —t,q, _p))
= (p,U()\ t y 4,5 p))R" - L)\( 3 » 4, ’U()‘at7Q>p))
= (p ()‘ t,q, p))R" - L)\(t q,v ()\ataqvp))
= ()‘7t7p7 ) (849)
for any (A, t,p,q) € A x R x R" x B§(0). Let us define H : A x R x R" x B{(0) — R by
(M 1,2) 1= (Jioa(£), 2 gan + Fix(t, 2 + g (1) (3.50)

as in (8.28), where z = (¢7, pT)T and ug x(t) = (0,90, (t)T)T with yo \(¢) = dyL(t,0,0). Tt
is clear that H (A, t+7,2) = H(A,t,2). Because yp (—t) = AyL\(—t,0,0) = —9,L(t,0,0) =
—yo,x(t) we have ug y(—t) = —ug (t) and hence

H(\, —t,N2) = (Jugx(—t), N2)gon 4+ Hy(—t, Nz + ug (—t))
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= HO2) (8:51)

-1, 0
0o I,
function on A x R x R™ x R", also denoted by H, which satisfies

by (8.49), where N = ( ).According to (8.35) we modify this H to get a new

H\ —t,Nz) = H(\t,z2) = H\t+7,2), Y\t z2)€AxRxR™ (8.52)

By (8.31) we have HY} ,(0) = S\(t). Let T : [0,7] — Sp(2n,R) be as above (8.36), and let

Ta(r/2) = ( éﬁ‘ g)‘ ), where Ay, By, Cy, Dy € R"*". For U; = {0} x R", Long, Zhang
A A

and Zhu [28] used the Cappell-Lee-Miller index ™™ to define

MI,T(TA) = ,LLI%%N (Ul, T)\Ul, [0,7’/2]) and Vl’T(T)\) = dim Ker(B)\). (853)
The author and Wang proved in [41, Theorem 3.4]:
my (£5,0) = m; (L5, 23) = s (X)) and  mQ(LY,0) = m)(LY,2) = v1,7(Ty),

where for x € ECY(S,;U) and y € EC'(S;; B*(0)),

£B(x) = /0 " Latx(t) i)t and  £B(y) = /0 "Ll (), §()dt.

Corresponding to Claim 8.4, we have: For any A € f\, the constant path 20 : [0,7] —
R?", t > 0, satisfies

2(t) = JVH)4(2(t)), z(t+7)=2(t) and z(—t)=Nz(t),teR; (8.54)

and (p, z,,) is a bifurcation point of the problem (8.41) in Ax ECY(S;; R™) with respect to
the trivial branch {(A, )| A € A} if and only if (4, 20) is that of (8.54) in A x Cl(STiR2”)
(or equivalently A x W12(S,;R?")) with respect to the trivial branch {(),2°) |\ € A}.

For the bifurcation problem of (2.5)—(2.6), using the above arguments the following results can
directly be derived from Theorems 1.4, 1.7 in [37] about bifurcations for Hamiltonian systems
respectively.

Theorem 8.8 (Necessary condition). Under Assumption 8.1, suppose for some pn € A that (p1, )
is a bifurcation point along sequences of the problem (2.5)—(2.6) with respect to the trivial branch
{(\zx) | A € A}. Then m2(L,,z,) > 0.

Theorem 8.9 (Sufficient condition). Under Assumption 8.1, let A be first countable. Suppose
for some p € A that there exist two sequences in A converging to p, (X, ) and ()\;), such that
for each k € N,

[m;(LA;,$Alz),mT_(LA;,:E)\]:)—f-m?.(ﬁ)\;,aj)\;)]ﬂ[m;(ﬁ)\;,x)\z),mT_(LAZ,x)\z)—i-mg(L)\z,x)\z)] =0

and either mg(L)\:,xA:) =0 or mg(L/\;,x)\;) =0. Let A := {p, ML |k € NY. Then (p, )

is a bifurcation point of the problem (2.5)—(2.6) in A x CL([0,7];U) with respect to the trivial
branch {(\,z)) | X € A} (and thus a bifurcation point along sequences of the problem (2.5)—(2.6)
in A x CL([0,7];U)).
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Theorem 8.10 (Existence for bifurcations). Under Assumptions 2.2, 2.5, let A be path-connected.
Suppose that there exist two points X, A\~ € A such that

[z (Lo, 2a-),ms (La-,2a-) + m2(La—, 2x-)] N [my (Lye, zae ), my (Lxr, 2at) + m2 (L, Ta+)]

is empty, and either mQ(Ly+,xx+) = 0 or mQ(Ly—,zy-) = 0. Then there exists u € A such
that (u,x,) is a bifurcation point along sequences of the problem (2.5)(2.6) in A x CL([0,7];U)
with respect to the trivial branch {(\,z)) |\ € A}, and p is not equal to A\t (resp. \7) if
m(Lyr,xx+) =0 (resp. m2(Ly—,25-) =0).

Theorem 8.11 (Alternative bifurcations of Rabinowitz's type and of Fadell-Rabinowitz's type).
Under Assumptions 2.2, 2.5 with A being a real interval, let m9(L,,x,) > 0 for some u €
Int(A). Suppose that m2(Ly,zy\) = 0 for each A € A\ {u} near u, and that m;(Ly,xy) take,
respectively, values my (L, x,) and my (L, 2,) + m(Ly,z,) as X € A wvaries in two deleted
half neighborhoods of . Then one of the following alternatives occurs:

(i) The problem (2.5)-(2.6) with A = p has a sequence of solutions, xy, # x,, k = 1,2,---,
which converges to x, in C*([0,7],U).

(ii) For every A € A\ {u} near p there is a solution yy # xx of (2.5)—(2.6) with parameter
value A, such that |[yx — zxllcz — 0 as A — p.

(iii) For a given meighborhood W of z,, in C*([0,7],U), there is an one-sided neighborhood
A° of p such that for any A € AY\ {u}, (2.5)-(2.6) with parameter value \ has at least
two distinct solutions in W, y}\ % )\ and yi % x), which can also be chosen to satisfy
La(y3) # La(y3) provided that m2(L,,x,) > 1 and (2.5)-(2.6) with parameter value X
has only finitely many distinct solutions in WW.

In addition, if we also assume that U is a symmetric open neighborhood of the origin in R™,
xx =0V and each L(\,t,-) is even, then either (i) holds or the following occurs:

(iv) There exist left and right neighborhoods A~ and A* of p in A and integers nt,n~ > 0,
such that n* +n~ > m2(L,,0), and for X € A=\ {u} (resp. A € AT\ {u}), (2.5)-(2.6)
with parameter value X\ has at least n~ (resp. n™) distinct pairs of nontrivial solutions,
{yi,—yi}, i=1,---,n~ (resp. n™), which converge to zero in C%([0,7],U) as A\ — p.

Proof of Theorem 8.8. By the assumption (cf. Definition 1.3) there exists a sequence (A;) C
A converging to p and solutions z* # x), of (2.5)—(2.6) with A = )\ such that z* — z, in
C'([0,7],R™). By Lemma 2.6(ii) we have also ||z — x, [|c2 — 0 as k — oo. Let A = {u, A\ |k €
N}. It is a compact and sequential compact subset of A. For this A let L be as above (8.5).
By Claim 8.4 (u,2°) is a bifurcation point of (8.32) in A x CZ([0,7]; R?®) with respect to the
trivial branch {(), 2°) |\ € A}. We conclude v, 5(Ty) > 0 by [37, Theorem 1.4(I)], and hence
m2(L,, ) > 0 by (8.39). O

Proof of Theorem 8.9. Note that A = {p, A A |k € N} is first countable, and not only
compact but also sequential compact in A. For this A let L be as above (8.5). Under the
assumptions of Theorem 8.9, from (8.39) we deduce that for each k € N,

[iT,E(TA;)a iT,E(TA;) + VT,E(T)\; )] N [Z.T,E(Txg)a Z.T,lE(TAz) + VT,E(T)J)]

— . _ . 0
= [m; (LAE’$>‘2) +dimKer(E — I,),m; (LAE’CEAE) +dimKer(F — I,,) + mT(LA;,xA;)]
Almy (Lyr,254) + dimKer(E — In),my (L4, 2,4) + dimKer(E — 1) + mg(L/\Z,x)\:)]
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-y

and either v, g(YTy,+) = mg(LA:,x/\z) =0 or I/TE(T/\;) = mg(L/\;,xA;) = 0. By [37, Theo-
rem 1.4(IT)] we get that (u,2°) is a bifurcation point of (8.32) in A x Ci([0,7); R?™) (or equiv-
alently A x WEQ([O,T];R%)) with respect to the trivial branch {(\,z°)|A € A}. Then the
required conclusion follows from Claim 8.4. O

Proof of Theorem 8.10. Since A is path-connected, there exists a path a : [0,1] — A from
AT = a(0) to A~ = a(1). Let A = a([0,1]), which is a compact and sequential compact subset
of A. For this A let L be as above (8.5). From the assumptions of Theorem 8.10 and (8.39) we
derive that

s (0 )yin(Ta) & vr(Ta)] O st ) ire(Tas) + v e(os)]
[m- (Ly—,zy-) +dimKer(E — I,),m; (L5, x\-) +dimKer(E — I,,) + m2(L,—, )]
A[m; (Lys, ozt ) +dimKer(E — 1), m; (L, 2yt ) + dimKer(E — 1,) + m2(Lyr, 251 )]
=0

and either v, g(Ty+) = m2(Ly+,25+) = 0 or vrg(Ty-) = m2(Ly-,x)-) = 0. As above the
required conclusions follows from Claim 8.4 and [37, Theorem 1.4(III)]. O

Proof of Theorem 8.11. Since A is a real interval and p € Int(A) we can assume A = A =
[0 — &, p + €] for some € > 0, which is compact and sequential compact. For this A let L be as
above (8.5). It follows from the assumptions of Theorem 8.11 and (8.39) that

o vrp(Ty) =m2(L,,x,) #0, vrr(Ty) =ml(Ly, x)) =0 for each A € A\ {u} near p,

e as A € A varies in two deleted half neighborhoods of 1, i, k(T )) = m; (L, x))+dim Ker(E—
I,,) take, respectively, values m; (L, x,) + dim Ker(E — I,,) = i, g(Y,) and

Mz (Lps )+ (L ) HdimKer (B —1In) = irg(Yp) +m2(Lp, 2) = irm (L) +vrm(T ).

Hence by [37, Theorem 1.7] one of the following assertions holds:

(A) The problem (8.32) with A = p has a sequence of distinct nontrivial solutions converging
to 20 in CL([0, 7]; R™), 2F(t) = (W* ()T, 2*®) )T, k=1,2,---.

(B) For every A € A\ {u} near p there is a solution 2* # 2% of (8.32) with parameter value \,
such that z* converges to zero in CL([0,7];R?") as A — p.

(C) For a given neighborhood V of 2% in CZ(]0, 7]; R?") there is an one-sided neighborhood A°
of uu such that for any A € A%\ {u}, (8.32) with parameter value A has at least two distinct
solutions z'* # 20 and 22* # 20 in V, which can also be required to satisfy

I B(Jz-l*(t), ) + HOL, z”<t>>} di
0

A Buz”(t), () + HL, z”(t)ﬂ dt

provided that v, g(Y,) > 1 and (8.32) with parameter value A has only finitely many
solutions in V.



93

Moreover, if all H(\,t,-) are even, then either (A) holds or the following occurs:

(D) There exist left and right neighborhoods A~ and A" of p in A and integers n™,n~ > 0,
such that n™ +n~ > v, g(Y,), and for X € A~ \ {u} (resp. A € AT\ {u}), (8.32)
with parameter value A has at least n~ (resp. m™) distinct pairs of nontrivial solutions,
{2 —2"} i =1,--- ,n (resp. n), which converge to zero in Cg([0, 7];R?") as A — p.

In the case of (A), Claim 8.4 shows that z* + z,, # x,, satisfies (2.5)-(2.6) with A = p and

-
Lou(ah +x,) = —/0 B(Jék(t),zk(t))RQn + H(u,t,28(t))| dt, Kk eN.
Hence (i) of Theorem 8.11 occurs.

In the case of (B), let 2*(t) = (p*(t)T,2*(t)T)T. By Claim 8.4, 2 # 0, 2" + ) satisfies
(2.5)-(2.6), and ||z* — 2]l c2 — 0 as A — p because of Lemma 2.6. Namely, (ii) of Theorem 8.11
occurs.

In the case of (C), for a given neighborhood W of z,, in C?([0,7],U), by Lemma 2.6 we can
choose a neighborhood A* of y and a positive number € > 0 such that if z € CL([0, 7]; R") satisfies
|z||c1 < € and x + x) solves (2.5)—(2.6) with parameter value A € A* then x 4+ z) € W. Let us
take the above neighborhood V of 2V in Cg([0,7]; R*) as V = {z € CL([0,7]; R*") | ||2]|cr < €}
We can require that the corresponding A? is contained in A*. Let zA(t) = (p™ ()T, 2*(1)T)7,
i = 1,2. Since (8.34) implies that z'* = 22} if and only if p'* = p?*, we obtain z'* # 22
Clearly, for i = 1,2, |[|[2™||c1 < € and 2™ + z) solves (2.5)~(2.6) with parameter value A € A*,
and therefore ' 4+ x) € W,

La(z 4 2)) = — /OT B(Jz”(t), ZA())gan + HN t,22(1)) | dt.

Suppose m?(£,,, z,) > 1, which implies v, g(Y,) > 1, and that (2.5)-(2.6) with some parameter
value A € AY has only finitely many distinct solutions in WW. Then by Lemma 2.6, (8.32) with
this parameter value A\ has only finitely many distinct solutions in V. Hence £y (z' 4 x)) #
L (2%* + ). These show that (iii) of Theorem 8.11 occurs.

When U is a symmetric open neighborhood of the origin in R", )y = 0 VA and each
L(\,t,-) is even, it has been proved in Remark 8.6(i) that all H(\,¢,-) are even. Let zA(t) =
P, )T, i=1,--- ,n~ (resp. nt), be as in (D). As above, using Claim 8.4 we deduce
that {2, —2**}, i =1,--- ,n~ (resp. n1), satisfy (iv) of Theorem 8.11. O

Clearly, Theorems 8.8, 8.9, 8.11, 8.11 imply Theorems 3.5, 3.5(11.3), 3.6(iii), 3.7, respectively.

Similarly, Under Assumption 8.7, by Remark 8.6(ii) some corresponding bifurcation results
of the problem (8.41) may follow from Theorems 1.23, 1.24, 1.26 in [37] directly.

For Lagrangian systems on R™ we may use [37, Theorem 1.14] to derive the following strength-
ening version of Theorem 1.20.

Theorem 8.12 (Alternative bifurcations of Fadell-Rabinowitz's type and of Rabinowitz's type).
Under Assumption 2.3 with A being a real interval, suppose also that L is independent of t, the
orthogonal matriz E satisfies E' = I,, for some l € N. Let

A> X —x\eUnKer(E —1I,) be continuous and } (8.55)

aqL,\(xA,O) =0VAeA.

Suppose that for some p € Int(A) and 7 > 0,
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(a) OuwwLy (x,0) is positive definite;
(b) OgqLy (x,,0)y =0 and Ey =y have only the zero solution in R";

(c) m2(Ly,x,) # 0, mO(Ly,z\) = 0 for each X € A\ {u} near p, and m7(Ly,x) take,
respectively, values my (L, x,) and mz (L, x,) + m(Ly,x,) as X € A varies in two
deleted half neighborhoods of .

Then one of the following alternatives occurs for the problem:

5 (OuLala(t). #(1))) = Oy La(a(t), (1)) = 0Vt € R (8.56)
Ex(t)=z(t+71) VteR.

(i) Equation (8.56) with A = p has a sequence of R-distinct solutions, xy, k =1,2,---, which
are R-distinct with x,, and converges to x, in X2(R", E).

(ii) There exist left and right neighborhoods A~ and AT of u in A and integers n™,n~ > 0,
such that n™ +n~ > m%(L,,x,)/2, and for X\ € A=\ {u} (resp. A € AT\ {u}), (8.56) with
parameter value A has at least n= (resp. n™) R-distinct solutions solutions, % ¢ R -y,
i=1,---,n" (resp. n") such that all x — x) converge to zero in X2(R", E) as A — p.

Moreover, if m(L,,x,) > 3, then (i) may be replaced by the following alternatives:

(iii) For every A € A\ {u} near p there is a solution yx ¢ R-xy of (8.56) with parameter value
A, such that yy — x\ converges to zero in X2(R™, E) as A — u.

(iv) For a given € > 0 there is an one-sided neighborhood A° of u in A such that for any
A € A%\ {u}, (8.56) with parameter value \ has either infinitely many R-distinct solutions
g% ¢ R-xy such that H??l,{@o,r] = 2aljonlle: <& k=1,2,---, or at least two R-distinct
solutions y} ¢ R-xx and y3; & R -z such that ||[y}| 0. — zalpqllc2 < e, i=1,2, and that
La(yy) # La(y3)-

Proof of Theorem 8.12. Take asmall e > 0 so that A = [u—e, p+e] C A. By Assumption 2.3,
Ow Ly (x,v) continuously depends on (A, z,v) € A x U x R™. Because of this, (8.55) and the
condition (a), by shrinking e > 0 and U toward x,, we can assume that there exists some small
real p > 0 such that L(}, g,v) is strictly convex in v in B}(0) for each (X,q) € A x U.

Since E' = I,, implies E! = I, where E is as in (8.10), each solution of (8.56) is I7-periodic.
Note that all solutions of (8.56) near x, sit in a compact neighborhood of z, € R". We have
the corresponding Lagrangian

L:Ax BM0) x R® = R, (A, q,v) — L(\,q+ zx,v)
as in (2.14). By Lemma 2.4 and (8.55), for any (X, q,v) € A x B}(0) x R™ it holds that
L(X, Bq, Bv) = L(\, Bq + 2, Bv) = L(\, E(q + 25), Ev) = L(A, ¢ + 2,0) = L(A, ¢, ).

This shows that d,L(Eq, Ev) = Ed,Ly(q,v) because E is an orthogonal matrix. Obverse that
for (A, p,q) € AxR"™ x B} (0) we have a unique v = v(\, ¢,p) € R" such that 0, Lx(q,v(X, q,p)) =
p. It follows that v(\, Eq, Ep) = Ev(\,q,p). Let us define H : A x R" x By (0) — R by

]:I()\,p, q) = (pav()‘v%p))R" - f/)\(%v()‘aq’p))
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as in (8.9). Clearly, f[()\, Ep,Eq) = ﬁ()\,p, q) since F is an orthogonal.

Note that (8.55) implies the constant path z) to satisfy (8.56) for each A € A. By Claim 8.3
uoy = (yg,,0)T with yo\ = dyL(0,0) = 9,Ly(x,0) satisfies (8.10). As in (8.28) we get a
corresponding Hamiltonian H : A x R"™ x B}(0) — R,

H(X, ) = Hy(2) := Hx(z + up ) (8.57)

From Eyp ) = EO0y,L)(x,0) = 0yLx(Exy,0) = 0yLx(xx,0) = yo,, it follows that Eug y = ug x
and H(\ Ez) = H(\, z) for all (A, z) € A x R" x Bf(0).
By (a corresponding result of) Claim 8.4, for any A € A, 20 : R — R?", ¢+ 0, satisfies

2(t) = JVH)(2(t)) and Ez(t) =z(t+ 1)Vt € R; (8.58)
and x € X?(R", E) near z,, satisfies (8.56) if and only if
2(8) = (Do La(t, 2(8), 5(0)T, 2(t)T — o)
satisfies (8.58). As in (8.31) we have also
. P—l _P_lQu
(Hu)"(2°) = (Hpu)"(uop) = Sy = ( e )
—Quby QuB Qu— Ry
where P, = Oy L, (2,,0) and Q,, = Ogo Ly (24,0) and Ry, = Ogq Ly (24,0). We claim
Ker(E — I»,) NKer((H,)"(2°)) = {0}.
Indeed, suppose that (u”,v")T belongs to the left side. Then
Eu=u, FEv=ou, Pljlu — P;lQ,/u =0, —QgP;lu + QgP;lQ,/u — R,v=0.

The latter two equations imply R,v = 0. By the assumption (b) we get v = 0 and so u = 0.
Let YT (t) = exp(tJHY(2°)) for t € R. By (8.36), (8.38) and the assumption (c), we get

vrE(Yulio) = mY (L xu) #0 and v p(Talpq) = m2(La,2x) =0

for each A € A\ {u} near . As in the proof of Theorem 8.11 we may also derive from (8.39) that
irE(Taljo,r) takes, respectively, values irg(Ypulj0,-) and irg(Lpljo,r) + vrE(Tuljor) as A € A
varies in two deleted half neighborhoods of y. By Claim 8.4, a solution 2 near z,, € X2(R", E)
of (8.56) gives rise to a solution

Ay o aM(t) — 3 2 \(t) —
“) = ( By La(t, 2 (1), 4 (t)) — yo(t) ) B ( DuL\(t, zM(t), 27 (t)) — Oy La(z,0) >

of (8.58) near 20 € X}(R*",E). Clearly, R-different 2* corresponds to R-different z* and vice
versa. Using these [37, Theorem 1.14] may lead to the required conclusions. O

Assumption 8.13. Let Assumption 2.2, 2.5 be satisfied and let Vj, V1 be two linear subspaces
in R™. Consider the boundary value problem on U:

% (0uLa(t 2(0), 5(1))) = B, La(t 2(8), i(1)) = 0,
9yL(0,2(0),4(0))[ve] =0 Vug € Vb, (8.59)
avL)\(T,:E(T),i'(T )[Ul] =0 \V/’U1 e V.

)
Suppose that each z) in Assumption 2.5 also satisfies (8.59).
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The cotangent space T*R™ of the vector space R" is naturally identified with the symplectic
space R?" = (R?"(p, q),wp), where the standard symplectic form wg = dp A dq is given by

wo [(P1,@1) 5 (P2, @2)] := (1, @2)R" — (P2, q1)Rn

If V is a linear subspace of R”, and V' is the orthogonal complementary of V in R™ with respect
to the standard inner product, then the conormal space N*V of V is the linear subspace of R?"
defined by N*V := V-, x V via the above T*R" = R?". N*V is a Lagrangian subspace of R?".

Let the Hamiltonian H : A x [0,7] x R” x B(0) — R be as in (8.28). We have the following
analogue of Claim 8.4.

Claim 8.14. Under Assumption 8.13, for any X € A, the constant path 20 : [0,7] — R?", t 0,
satisfies
2(t) = JVHy4(2(t)), 2(0)e N*Vy and z(r) e N*Vi; (8.60)

and (p,x,) is a bifurcation point of the problem (8.59) in A x C‘l/oxv1 ([0, 7]; R™) with respect to the
trivial branch {(X\, zx) | A € A} if and only if (1, 2°) is that of (8.60) in AxC} voxn+v; ([0, 75 R2")
(or equivalently A x Wl’*QvoxN*Vl([Ov 7]; R?™) ) with respect to the trivial branch {(X,z°)| A € A}.

Under Assumption 8.13, each x), is a critical point of the functional
T
Ext Oy (10,7 RY) 5 R, / Lt A(8),3(8))dt. (8.61)
0

Let m~(Ey,xy) and m®(Ey, xy) be the Morse index and nullity of £, at zy. Let Ty : [0,7] —
Sp(2n,R) be as above (8.36). We have the (N*Vy, N*V})-index of it

(z%:%(“ﬁ) NV (TA)> cZx{0,1, - ,2n} (8.62)

introduced by Liu-Wang-Lin [25], where l/N Vl(TA) = dim(YTx(7)N*Vo N N*V1). According to
[25], [26, Theorem 5.18] and [7, 11] it holds that

mP(Ex,2) = UNayt (T2) m ™ (Ex,0) = iyt (Tr) + £(Vo, V1, ),

where ((Vp,Vi,n) is an integer only depending on (Vp,Vi,n). Using these, under Assump-
tion 8.13, the corresponding results with Theorems 8.8, 8.9, 8.10, 8.11 may follow from Theo-
rems 1.33, 1.34 in [37].

Part 11
Bifurcations of geodesics

As pointed out in Remark 1.32, bifurcations of geodesics on Riemannian manifolds may be
obtained as examples for those of solutions of Lagrangian systems in Part I; for instance, some
of them are listed in Section 14 for clearness. The focus in this part is to study bifurcations
of geodesics on Finsler manifolds. After reviewing some necessary definitions and preliminary
results on Finsler geometry in Section 9, by refining techniques in [31] we can directly derive some
bifurcation results of geodesics on Finsler manifolds in Sections 10, 11, 12, 13 from theorems in
Part L.



97

9 Preliminaries for Finsler geometry

Without special statements, let (M, g) be as in “Basic assumptions and conventions” in Intro-
duction and let I, be a C7 isometry on (M, g). Let P and Q be two connected C7 submanifolds
in M of dimension less than n = dim M and without boundary. For an integer 2 < ¢ < 6, a C*
Finsler metric on M is a continuous function F' : TM — R satisfying the following properties:

(i) F is C* and positive in TM \ Orypz, where Oz is the zero section of TM.
(ii) F(x,tv) =tF(x,v) for every t > 0 and any (z,v) € TM.

(iii) L := F? is fiberwise strongly convex, that is, for any (z,v) € TM \ O7ys the symmetric
bilinear form (the fiberwise Hessian operator)

1 02
gl T, M < T,M — R, (u,w) — 3

L 1
Y, [L(z,v+ su+ tw)] o (9.1)

is positive definite. (gf is called the fundamental tensor of F at v.)

A Finsler metric F' is said to be reversible (or absolute homogeneous) if F(x, —v) = F(x,v) for
all (z,v) € TM. We say a differentiable curve v : [a,b] — M to be admissible (or regular)
if 4(t) € TM \ Orps for all ¢. Such an admissible curve v = «(t) in (M, F) is said to have
constant speed if F(vy(t),7(t)) is constant along . The length of an admissible piecewise C*
curve v : [a,b] — M with respect to F' is defined by lp(y) = fab F(~(t),4(t))dt. According to
[4, Proposition 5.1.1(a)], an admissible piecewise C! curve « is called a F-geodesic in (M, F)
if it minimizes the length between two sufficiently close points on the curve (hence C'). The
distance between any pair of points p,q € M is defined by

dr(p,q) = inf{lp(v) |7 : [a,b] — M is a piecewise C* curve from p to ¢}.

Let W12([0,7], M) denote the space of absolutely continuous curves v from [0, 7] to M such
that [ (¥(t),%(t))dt < oo, where (u,v) = gz(u,v) for u,v € T, M. By [48, Theorem 4.3],
Wh2([0, 7], M) is a C* Riemannian-Hilbert manifold. A C” submanifold N C M x M determines
a Riemannian—Hilbert submanifold of W12([0, 7], M),

AN(M) = {y € WH([0,7], M) | ((0),~(r)) € N}

with tangent space T, AN (M) = Wy (YT M) = {€ € WY2(v*TM) | (£(0),£(T)) € Ti(0) () N}-
We also consider the C* Banach manifold

Crn(M) = {y € C1([0, 7], M) [ (7(0), (7)) € N},

which is equal to C};XQ([O,T]; M) [resp. Cﬂlg([O,T]; M)] if N is the product P x @ (resp. the
graph of the isometry I,). It has the following open subset

CrN(M)reg = {7 € Crn(M) | v is admissible, i.e., ¥(t) # 0Vt € [0, 7]}. (9.2)

Claim 9.1 ([8, 23, 44]). For a C* Finsler metric F on M with 3 < { <6, a curve v € An(M)
is a constant (non-zero) speed F-geodesic satisfying the boundary condition

950y (1, 3(0)) = g5y (0,4(7)) - V(u,v) € Tiy0) ()N (9.3)
if and only if it is a (nontrivial) critical point of the C?>~0 energy functional of F given by
Lian(n) SRy [T P60 5@)ar (9.4)
0

(In this case ~y must be C*.)
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Therefore under Claim 9.1 a curve v € AN(M) is a constant (non-zero) speed F-geodesic
satisfying the boundary condition (9.3) if and only if it belongs to C; N(M)reg and is a critical
point of the following C? functional

EN:CrN(M)peg = R, v+ /O ' F2(y(t),4(t))dt.

We may denote the Morse index and nullity of £ at a critical point v € C; N(M )reg by
m~(En,y) and mP(En,7), (9.5)

respectively. (See the explanations above Assumption 1.2 [resp. (1.16)] for N = P x @ [resp.
N = Graph(ly)].) In particular, for N = P x Q we write & as

Epq : Chxq([0,7]: M)reg — R, 7 > /OT[F(V(t)d(t))]Zdt» (9.6)

whose critical point v corresponds to a C* constant (non-zero) speed F-geodesic with boundary
condition

F : _
{ 90, 7(0)) =0 Vu € Ty P, 07)

95(7—) (’U,"}/(T)) =0 Ve T’y(T)Q

(cf. [6, Chap.1, §1], [8, Proposition 2.1] and [20, Prop. 3.1, Cor.3.7]). (Such geodesics are said
to be gs-orthogonal (or perpendicular) to P and ).) When ¢ = 6, the geodesic v, m™(Ep,g, )
and m®(Epg,~y) have direct geometric explanations. See the second half of this section.

Assumption 9.2. {F) |\ € A} is a family of C* Finsler metrics on M with 3 < ¢ < 6 parame-
terized by a topological space A, such that A x TM > (\,z,v) = F)\(x,v) € R is a continuous,
and that all partial derivatives of each F) of order less than three depend continuously on
(A, z,v) € A X (TM \ Orpr).

Assumption 9.3. Under Assumption 9.2 with an integer 4 < ¢ < 6, for each A € A let
Y ¢ [0,7] = M be a constant (non-zero) speed Fy-geodesic satisfying the boundary condition

9520 (@ (0)) = g2 (0,90 (7)) - V(w,0) € Tiyy 0) 3 () N (9.8)

where N C M x M is a C” submanifold. (Therefore v, is C* by Claim 9.1.) It is also required
that the maps A x [0,7] 5 (A\,t) — 7 (t) € M and A x [0,7] > (A t) — ga(t) € TM are
continuous.

Let m™(ExN,72) and m®(Ex N, 7a) denote the Morse index and nullity at v, of the C? func-
tional

En : o (M)reg — R, 7 s /0 By (0), (1)), (9.9)

For conveniences, a constant (non-zero) speed Fy-geodesic satisfying the boundary condition
(9.8) is called a constant (non-zero) speed (F), N)-geodesic.

Definition 9.4. Under Assumptions 9.2, 9.3, constant (non-zero) speed (F), N)-geodesics with
a parameter A € A is said bifurcating at 4 € A along sequences with respect to the branch
{7 A € A} if there exists an infinite sequence {(Ag,7*)}52, in A x CH([0,7], M)\ {(1, )}
converging to (4, ,), such that each k£ Yx, 1s a constant (non-zero) speed (F), , N)-geodesic,
k=1,2,---. (Actually it is not hard to prove that v* — ~, in C2([0, 7], M).)
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Here are the problems we study and answers:

e For a constant (nonzero) speed F-geodesic v which is perpendicular to P at v(0), we shall
provide where « bifurcates and depict a rough bifurcation diagram near it.

e Under Assumptions 9.2, 9.3, using the Morse index m™ (€x N, 7a), the nullity m®(Ex N, 72)
and critical groups Cy(Ex N, 7a; K), we give the conditions under which constant (non-zero)
speed (F), N)-geodesics with a parameter A € A bifurcate at some p € A along sequences
with respect to the branch {7, |\ € A}, characterize the location of such a parameter u,
and depict the bifurcation diagram near pu.

Our ideas are suitably modifying F) and converting the above questions into those studied
in Part 1. Firstly, suitably modifying the proof of [31, Proposition 2.2] we have:

Proposition 9.5. Under Assumption 9.2 let Ly := (Fy)?. Suppose that

F)\ F)\
ag = inf inf inf 9> (1, v) and f4 = sup sup sup 90> (4, 0)
AEA (z,0)€TM, [vo],=1u#0 gy (u,u) AEA (20) €T M, |o]a=1uz0 Yo (U; 1)
are positive numbers, and that for some constant C7; > 0,
|2 < Ly(z,v) < Ci|v|2 Y\, x,v) € A x TM. (9.10)

Hereafter |v|; = \/g:(v,v). For each A\ € A define C* functions L} : TM — R by

Li(x,v) = ¢ 5(La(2,0)) + dup([vfz) — b (9.11)

and by LX(xz,v) = (L (z,v) — 00)/K, where Ve 5, ¢up and k, 0, 00,b are as in Lemma 2.1. Then
for a given ¢ > 0 we can choose k > 0 so large that these L) satisfy the following:

(i
(ii

(iii

Li(xz,v) = Ly(z,v) if Ly(z,v) > 32—6?1,
L attains the minimum, and L} (z,v) = min L} <= v =0,
Li(z,v) < Ly(x,v) for all (z,v) € TM,

Opu L (2, 0)[u, u] > min{Z—“ lag}\uﬁc.

(iv .5

(v) If Fy is reversible, i.e. Fx(x,—v) = Fx(x,v) Y(z,v) € TM, so is L}.

)
)
)
)
)
)

(vi) If Fy is Ly-invariant for a g-isometry Iy : M — M, (i.e., it satisfies F)\(Iy(z),Ig«(u)) =

Fy(x,u) for all (x,u) € TM), so is L.

Moreover, A x TM > (X, z,v) = Li(x,v) € R is continuous and all partial derivatives of each
L5 of order less than three depend continuously on (A, x,v) € A x TM.

Proof. By the assumptions, for any (z,v) € TM \ {0} and (x,u) € TM we have
aglul2 < g5 (u,u) < Bylul?, VYA€ A. (9.12)

Suppose that (2.4) is satisfied an(i that £ > . Since ¢}, <0, ¢Z7b(\v]:26) =0 for |v|2 > 32—6?1, and
2c

Zb(|v|§) is bounded for |v|? € (5675 50-), We may choose k> 0 so large that

8c 1
2K0y + 3701¢Z’b(’v|i) 2 5’%‘9-
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By the proof of [31, Proposition 2.2], L} satisfies [31, Proposition 2.2] and therefore L} meets
conditions (i)-(iv) in Proposition 9.5. Clearly, (9.11) implies (v)-(vi).

Since A x TM > (A, z,v) — F(x,v) € R is a continuous, by (9.11) we see that A x TM >
(A, z,v) = Li(x,v) € R is continuous. Note that {(\,z,v) € A x TM |Ly(z,v) < €} is an
open neighborhood of A x Oy in A x TM and that 1. 5(Lx(z,v)) = 0 for all (A, z,v) in this
neighborhood. It follows from this and (9.11) that all partial derivatives of each L} of order
less than three depend continuously on (A, z,v) € A x T'M because all partial derivatives of
each F) of order less than three depend continuously on (A, z,v) € A x (T'M \ Oras). (Actually,
AxTM > (N z,v) = Li(z,v) € Ris C* in {(\,z,v) € A x TM | Ly(z,v) < e}.) O

(Note: If M and A are compact, for any Riemannian metric ¢ on M both o4 and f, are
positive numbers, and (9.10) always holds if g is replaced by a small scalar multiple of g.)

Under Assumption 9.3, let A C A be either compact or sequential compact. Since the map
A x [0,7] 3 (\,t) = (t) € M is continuous, the image of A x [0,7] under it is a compact
subset of M and therefore there exists an open subset M of M with compact closure such that
([0,7]) € M for all A € A. Then the conditions in Proposition 9.5 can be satisfied. By
Assumption 9.3 A x [0,7] 3 (A1) —= Fx(7a(t),a(t)) is continuous and positive. Therefore we
have ¢ > 0 such that

2c

o V(A t) e A x [0,7], (9.13)

[Fx(a(8), ()] >

where C7 > 0 is as in Proposition 9.5. Let L} : TM — R, X € ]\, be given by Proposition 9.5
with (M,A) = (M, A). Then the C? functional

S Conlil) 2 R, v [ L0030 (9.14)

and the functional £\ N in (9.9) coincide in the following open subset of C; N(M )reg,

~

CT,N(M, {F\| )\ € A},C/Cl) = {a €eCrn(M)

min  [Fy(a(t), &(t)))? >2c/01}. (9.15)
(A\t)eAX]0,7]

Since {7x | A € A} € Con(M, {Fy| X € A}, ¢/Ch) by (9.13), they are critical points of &\ n and

m~(EAN, ) =m” (Exn7n) and mo(é’)\’N,w\) = mO(EiN,W)\), (9.16)
Cm(gA,N7’7A§ K) = Cm(gs\k’N’y)\; K) YmeZ (9.17)

for any Abel group K.

Claim 9.6. Under Assumption 9.3, if v : [0, 7] — M is a constant (non-zero) speed F)-geodesic
(hence Ct) with boundary condition (9.8) is close to vy in CY([0,7]; M) then it is a critical point

of
Con(0T) 37 Ei () = /0 L5 (4 (1), 3(1)) . (9.18)

Conversely, if v € CT,N(M) near vy s a critical point of £5  then it is a C* constant (non-zero)
speed F\-geodesic with boundary condition (9.8) and is near v in C%([0,7]; M).

Proof. If d€, n(v) = 0 and 7 is close to 7y in C'-topology then v € Con(M,{F\| )€ A},c/Ch)
and therefore d€y n(v) = 0. Conversely, we only need to prove that v is also near 7, in
C?([0,7]; M). This may follow from Lemma 2.6(ii) by localization arguments. O
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Geometric characteristics of F-geodesics and their Morse indexes and nullities.
Without special statements, from now on we always assume ¢ = 6, i.e., F is a CS-Finsler
metric on M. In this case the Christoffel symbols of the Chern connection V (on the pulled-
back tangent bundle 7*T'M) with respect to a coordinate chart (2, z%) on M are C3 functions
I, : TQ\ Orq — R such that

vaxz‘axj (’U) - Zl—ém(’l})amm, i, € {1, T 7n} (9.19)

(cf. [38]); and there exist C? functions R}kl :TQ\ Opqg — R, 1 < 4,7,k,l < n, such that the
trilinear map R, from 1o,y M X TryM x Tr ()M to Tr(,)M given by

Ry(&m)¢ =Y &R (0)0uil () (9.20)

i7j7k7l

defines the Chern curvature tensor (or [4, (3.3.2) & Exercise 3.9.6]) Ry on Q C M (cf. [38]).

For a curve ¢ € Wh2([a,b], M) and r € {0,1} let W™2(c*T M) denote the space of all W"?
vector fields along c¢. Then ¢ € L2(c*TM) := W92(c*TM). Let (2%, ') be the canonical coordi-
nates around ¢(t) € TM. Write ¢(t) = ¢(t)0,i ey and ((t) = C'(£)Dil o) for ¢ € W (c*TM).
Call ¢ € CO(c*T M) admissible if £(t) € TM \Oryy for all t € [a,b]. The Chern connection induces
a covariant derivative of ¢ along ¢ (with this admissible £ as reference vector) is defined by

Di¢(t) = (C™(0) + D ) (T (e(t), (1)) Dam legey- (9.21)
,J

m

Clearly, DgC belongs to L(¢*T' M), and sits in C™™1L7} (¢*T'M) provided that ¢ is of class C™+1,
¢ € C™Y(c*TM) and € € C™(c*TM) for some 0 < r < 6; Dg((t) depends only on &(t), é(t) and
behavior of ¢ near ¢. If ¢, € and ¢ are C3, C'! and C?, respectively, then Dg(’ is C! and DngC is
well-defined and is C°. It may be proved that a C? admissible curve v in (M, F) is a F-geodesic
of constant speed if and only if D%W(t) = 0. In this case v must be CS.

For the above C7 submanifolds P and @, define the normal bundle of P in (M, F) by

TP+ :={veTM\Ory | 7(v) € P, g} (v,w) = 0 Vw € Ty, P}

(though it is not a vector bundle over P). In fact, it is only an n-dimensional C® submanifold
of TM and the restriction 7 : TP+ — P is a submersion ([20, Lemma 3.3]). For v € TP+
with 7(v) = p, there exists a splitting T,M = T,P @ (T,P);, where (T,P), is the subspace
of T,M consisting of g,-orthogonal vectors to T,P. Notice that v € (T,P)+ and that each
u € T, M has a decomposition tan?’(u) 4+ norf (u), where tan?’ (u) € T, P and nor? (u) € (T,P),.
Let SP - T,P — T,P be the normal second fundamental form (or shape operator) of P in the
direction v. Then (9.7) implies 4(0) € TP+ and #(r) € TQ" . In terms of these the Hessian of

Epg at 7y is given by

D2epgVW] = [ (53R V)3 0) + 5 (DIV, DIW) )

950 (S0 (V) W(0)) = g3y (SE,,(V(r), W(n))  (9.22)

for VW € C}DXQ(V*M) = T,C*[0,7]; M, P,Q). (Here we use the equality RY(¥,V)y =
R+ (¥, V)% in [20, page 66].) The right side of (9.22) can be extended into a continuous symmet-
ric bilinear form I']YD’Q on W}D’iQ(v*TM), called as the (P, Q)-index form of 7. Since all R;kl are
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C? it can be proved that V € W}g’fQ(y*TM) belongs to Ker(I}éQ) if and only if it is C* and
satisfies

DIDIV — Ry(%,V)y =0, 093
tantl) ((DIV)(0)) = 855, (V(0), tan ((DIV)(7)) = 82, (V(7)). } (9-23)

Let 7 : [0,7] — M be a F-geodesic of (nonzero) constant speed. (It is C%.) A C? vector field
J along + is said to be a Jacobi field if it satisfies the so-called Jacobi equation

DIDIJ — Ry(%,J)y = 0. (9.24)

(Jacobi fields along v must be C* because each R;'- 4 18 C2.) The set J., of all Jacobi fields along
v is a 2n-dimensional vector space. For 0 < t; < to < 7 if there exists a nonzero Jacobi field
J along 7|, 1, such that J vanishes at ~(t1) and 7(t2), then (1) and ~(t2) are said to be
mutually conjugate along 7|, 4,]- Suppose that the geodesic v orthogonally starts at P. That
is, 7(0) € P and #(0) is gg(o)—orthogonal to P. A Jacobi field J along = is called a P-Jacobi if

J(0) € T,yP and  tanfy,, ((DjJ)(O)) = 85, (J(0)). (9.25)

An instant ¢ty € (0,7] is called P-focal if there exists a non-null P-Jacobi field J such that
J(to) = 0; and 7(tp) is said to be a P-focal point along . The dimension of the space 35 of all
P-Jacobi fields along ~ is equal to n = dim M. The dimension ;ﬁ (to) of

3 (to) == {J €38 | J(to) = 0}

is called the (geometrical) multiplicity of v(¢9). For convenience we understand ,u5 (to) = 0 if
v(to) is not a P-focal point along . Then the claim near (9.23) implies that for any ¢t € (0, 7],

Ker(I} )= 3t (t)  with v = |- (9.26)

In particular, Ker(I}’q) = 35(7’) with ¢ = (7). If v is gff—orthogonal to @ at y(7), elements in
Bf’Q = Ker(I},,Q) are called (P, Q)-Jacobi fields along . Then with ¢ = (7) we have
m®(Epg,7) = dimgi(T) and m%(Epg,7) = dimHi’Q. (9.27)

For a constant (nonzero) speed F-geodesic 7 : [0,7] — M orthogonally starting at P, (9.26)
shows that an instant ¢ty € (0, 7] is P-focal if and only if it is a P-focal point along the Euler-
Lagrange curve v of L = F? and their multiplicities are same, i.e., uf (to) = ,uf (to). Therefore
Theorem 3.14 with ¢ = v(7) gives:

Corollary 9.7. Under the above assumptions it holds that
Index(T},) =m™ (Epg,v) = > vV(t)= Y ul(to). (9.28)
toe(0,7) toe(0,7)

Moreover, if v is also perpendicular to @ at ¢ = v(7), and {X(7)| X € Hfj} 2 TynQ (the

latter may be satisfied if (7) is not a P-focal point), [38, Theorem 1.1(iii)] gives
Index(I'IYJ7Q) = Index(I%q) + Index(A,) (9.29)

with ¢ = y(7), where A, is the bilinear symmetric form on 35 defined by

Ay (1, 1) = gy (DI (T) + SF (D7), (7))
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Remark 9.8. When M, F, P and @ are smooth Ioan Radu Peter [47] proved (9.28) and (9.29)
if the Morse index form, P-Jacobi field and the shape operator are introduced by the Cartan
connection. Recently, in [38] the author proved the Morse index theorem in the case of two
variable endpoints in conic Finsler manifolds by employing the Chern connection to introduce
the Morse index form, P-Jacobi field and the shape operator. (9.28) and (9.29) are included in
[38, Theorem 1.1(iii)].

Recall that the exponential map of a C® Finsler matric F on M is exp’ : D ¢ TM — M,
where D is the set of vectors v in T'M such that the unique geodesic v, satisfying 7, (0) = 7(v)
and 4,(0) = v is defined at least in [0,b) D [0, 1], and exp’ (v) = 74,(1). D is a starlike open
neighborhood of the zero section 07y of TM, exp’ is C', C3 in TM \ Oryz, and D(expf;)(op) :
T,M — T,M is the identity map at the origin 0, € T,M for any p € M, where expg is the
restriction of exp? to D, :=DNT,M. For v € D, and w € T,M, by [20, Proposition 3.15] or
[54, Lemma 11.2.2]) we have D exp} (v)[w] = J(1), where J is the unique Jacobi field on 7, such
that J(0) = 0 and J'(0) = w. It follows that Dexp,(v) : To(T,M) = T,M — T, M is singular if
and only if ,(1) is a conjugate point of p along =, (cf. [4, Proposition 7.1.1]). Moreover, the
multiplicity (or order) of the conjugate point 7, (1) is dim Ker (Dexp” (v)).

More generally, let P ¢ M and TP be as above, and let exp™ be the restriction of exp’’
to DN (TP+U0rn|p), where Oraz|p is the restriction of the zero section Oy of TM to P. We
say exp/™ to be the normal exponential map. Note that v € DN (TP U Ory|p) if and only if
tv € DN(TPLUOry|p) for all 0 <t < 1. A point ¢ = exp’ V¥ (v) with v € DN(TP-UOr|p) is
a P-focal point along [0,1] 5 t — v, (t) = expf(];[) (tv) if and only if it is a critical value of exp™,
and in this case the multiplicity (or order) of the focal point ¢ is equal to dim Ker (Depr N (v))
(by the definitions above (9.26) and [38, Proposition 3.4]). (See also Lemma 4.8 in [52, page 59]
for the case in Riemannian geometry.) Therefore, if v € D N (T P+ U O7pr|p) is such that
exp™(v) is not a focal point along [0,1] > t + exp™(tv), and u € DN (TP U O7p|p) is
sufficiently close to v, then expf™ (u) can not be a focal point along [0,1] > ¢ — exp’™(tu)
either. Moreover, applying Sard theorem to the C? map exp’™ between n-dimensional C°
manifolds D N (TP+ U Orpr|p) and M we obtain that the focal set of P (i.e., the set of all
P-focal points) has measure zero in M.

10 Bifurcations points along a Finsler geodesic

Assumption 10.1. Let M be a n-dimensional, connected C” submanifold of RV, and let P
be a C7 submanifold in M of dimension less than n. For a C* Finsler metric F' on M with
3</¢<6letv:[0,7] = M be a constant (nonzero) speed F-geodesic which is perpendicular to
P at 4(0), i.e., 95(0) (%(0),u) = 0 Vu € T, ) P. (Note that v is C*.)

Because of Definition 1.8 and [49, Definition 6.1] we introduce:

Definition 10.2. Under Assumption 10.1, y(u) with g € (0, 7] is called a bifurcation point on
~ relative to P if there exists a sequence (t;) C (0,7] converging to u and a sequence constant
(non-zero) speed F-geodesics 7y : [0, tx] — M emanating perpendicularly from P such that

’yk(tk) = ’}/(tk) for all k£ € N, (10.1)
0< HVk — ’Y|[07tk”|01([07tk}7RN) — 0 as k — oo. (10.2)

Remark 10.3. As pointed out below Definition 1.8, using Lemma 2.6(ii) we can prove that the
limit in (10.2) is equivalent to one of the conditions: (1) 7%(0) — ~(0) and 4%(0) — 4(0), (2)
17 = Yj0,t1 lc2((0,44], ) — 0 as k — oo.
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Theorem 10.4. Under Assumption 10.1, the following are true.
(i) There exists only finitely many P-focal points along 7.

(i) If y(u) with p € (0,7] is a bifurcation point on v relatively to P, then it is also a P-focal
point along .

(iii) If y(p) with p € (0,7) is a P-focal point along 7y, then it is a bifurcation point on v relative
to P and one of the following alternatives occurs:

(iii-1) There exists a sequence of distinct C* constant (non-zero) speed F-geodesics ema-
nating perpendicularly from P and ending at v(n), oy : [0,u4] — M, ar # Yo,
k=1,2,---, such that i, — ||, in C2([0, ), RY) as k — oc.

(iii-2) For every A € (0,7) \ {u} near p there exists a C* constant (non-zero) speed F-
geodesics emanating perpendicularly from P and ending at y(\), ay : [0,A] = M,
ax # Vo), such that [lox = Y[ llczoxry) = 0 as A — p.

(iii-3) For a given small € > 0 there is an one-sided neighborhood A* of p such that for
any A € A*\ {u}, there exist at least two C* constant (non-zero) speed F-geodesics
emanating perpendicularly from P and ending at Y(A), B 0,0 = M, B # Yo
i = 1,2, to satisfy the condition that ||8) — ¥ljoxllc1(o.x,rN) < € @ = 1,2. Moreover,
the geodesics B}\ and Bi can also be chosen to have distinct speeds (or lengths) if the
multiplicity of v(p) as a P-focal point along v is greater than one and there exist only
finitely many C* constant (non-zero) speed F-geodesics emanating perpendicularly
from P and ending at y(X\), a1, ,am, such that |la; — vl llcrqonry) < € 0=
1,---,m.

Proof. For any A € (0,7], vx := 7|jp,\ is a critical point of the C?-functional

A
Epr) : Chrtoay (0N M)re — B, > /0 [F(a(t), a(t))]d.

Since ([0, 7]) is compact in M and the geodesics involved are near this compact subset we
may assume that M is compact. Therefore there exists an Riemannian metric g on M and an
constant C7 > 0 such that [v]|2 < [F(z,v)]? < Cy|v|2 for all (z,v) € TM, where v, = \/g.(v,v).
Clearly, there exists a constant ¢ > 0 such that [F(y(t),7(¢))]> > 2¢/C; for all t € [0,7]. As in
Proposition 9.5 we define L* : TM — R, (z,v) = v s([F(z,v)]%) + ¢u0(|v|2) — b, which is C*
and gives a family of C?-functionals

A
b Choiroo ([0, A M) = R, o /0 L*(a(t), a(t))dt, A e (0,7].

By Proposition 9.5(i), L*(z,v) = L(z,v) if L(z,v) > 32761 Hence the functionals Ep () and

5}77( ») agree on the following open subset of Cp., ™ )\)}([O, Al; M )yeg containing vy,
C’}DX{V(A)}([O, A; M, F,c/Cy) = {a € Olljx{w(A)}([Ov A; M) ’ mtin[F(oz(t),d(t))]? > 20/01} .
Then each ~, is also a critical point of 5}'37( N and the Hessians

D?Ep (1) = D*Ep iy (0), - YA€ (0,7]. (10.3)
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By Assumption 10.1 we see that L* satisfies Assumption 1.7 with Sy = P and v is a L*-curve
emanating perpendicularly from P. From Theorem 1.9(i) and (10.3) there only exist finitely
many numbers 0 < s1 < -+ < 8, < 7 such that

dim Ker(D25PN(Si)(fySi)) = dim Ker(D25},y(3i)(75i)) >0, i=1,---,m.

These and (9.27) lead to (i).

Suppose that «y(u) with g € (0, 7] is a bifurcation point on ~ relatively to P. By Definition 10.2
it is easy to see that p is a bifurcation instant for (P,7) where «y is as a L*-curve. Therefore
Theorem 1.9(ii) tells us dim Ker(D?5_ 1 (7,)) > 0. Combing the latter with (10.3) and (9.27)
we arrive at (ii).

Finally, let us assume that v(u) with p € (0,7) is a P-focal point along . Then by (10.3) we
see that p is a P-focal point along 7 (as a L*-curve relative P). It follows from this result and
Theorem 1.9(iii) that p is a bifurcation instant for (P,v) and that one of Theorem 1.9(iii-k),
k = 1,2,3, holds after L is replaced by L*. These and (10.3) easily yield the desired results
because

(1)

e we can take € > 0 so small that for o € C};X{V(A)}([O, Al; M) the inequality ||0‘_’Y’[0,>\] HCl([O,A],RN)
< e implies a € C})X{V(A)}([OJ\];M; F, C/Cl)v and

e relations

A . A .
| s Ao = [ rEio.so

0

A . A .
N AT O O 2 ORE O
0 0

imply that 6/1\ and ﬂi have different speeds since 6)1\ and Bf have constant (nonzero) speeds.

O

Theorem 10.4 has the following deep geometrical consequence.

Theorem 10.5. Let M and P be as in Assumption 10.1, and let F be a C® Finsler metric
on M. Suppose that v € DN (TP UOra|p) is a critical point of exp™™. Then expt™ is not
injective near v, precisely one of the following alternatives occurs:

(i) There exists a sequence (vy,) of distinct points in D N (TP U Ora|p) \ {v} converging to
v, such that exp™™ (vy) = exp’ N (v) for each k =1,2,---.

(ii) For every A € R\ {1} near 1 there exists vy € D N (TPXUOrum|p) \ {v} such that
exp™N (A\vy) = expf™ (M) and vy — v as A — 1.

(ii) Given a small neighborhood O of v in DN(TP+U0r|p) there is an one-sided neighborhood
A* of 1 in R such that for any X\ € A*\ {1}, there exist at least two points v} and v3 in
O\ {v} such that exp™™ (Av}) = exp™ (\v) for each k = 1,2. Moreover the points vi
and v} above can also be chosen to satisfy F(vy) # F(v3) if dim Ker(Dexp™™ (v)) > 1 and
O\{v} only contains finitely many points, vi,--- ,vm, such that expt™ (\v;) = exp™ (\v),
i=1,---,m.
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Proof. Let «,(t) = exp™ (tv). It is well-defined on [0, 7] for some 7 > 1 because D is a starlike
open neighborhood of the zero section Opjy; of TM. By the last paragraph of Section 9 the
assumption about v implies that ¢ = exp?™(v) is a P-focal point along +y,. Therefore ¢ = 7,(1)
is a bifurcation point on =, relatively to P by Theorem 10.4(iii).

Let () be as in (iii-1) of Theorem 10.4 with p = 1 and v = ,. Then vi := (a(0), &x(0)) —
(75(0), 4, (0)) and all vy, sit in DN(T P-U07y|p) by the definition of D. Since ay,(t) = exp’ N (tvy,)
for t € [0, 1], we have exp™ (v;,) = ax(1) = 7,(1) = exp”™ (v) and v # v for all k. (i) is proved.

Similarly, let a;, be as in (iii-2) of Theorem 10.4 with 4 = 1 and v = ~,. Then as A — 1
we have vy = (ax(0),@x(0)) = (7(0),%(0)) = v because 0 < [lax — Vo ljo,xllc2(j0,3,rY) — 0
as A\ — 1. Hence shrinking A* towards 1 (if necessary) we may assume that all geodesics ay
are well-defined over [0,1] (because 7, is well-defined on [0,7] for some 7 > 1). Therefore
vy € DN (TP UO0rn|p) \ {v} and exp™™ (Avy) = ax(A) = 7(A) = exp™ (W) for all X € A*.
(ii) is proved.

Finally, let us show how (iii-3) of Theorem 10.4 leads to (iii) of Theorem 10.5. Since 7, is
well-defined on [0, 7] for some 7/ > 7, we may take a neighborhood O of v in DN (T P+ U0r|p)
such that for each u € O the geodesic t — 7, (t) = exp’™(tu) is well-defined on [0, 7].
By Remark 10.3, for a given small number § € (0,1) there exists a small ¢ > 0 such that
((0),é(0)) € O for any C* constant (non-zero) speed F-geodesic a : [0,\] — M ema-
nating perpendicularly from P and ending at v,(A) with A € [1 — §,1 + J] and satisfying
o = Yol lleronryy < € Let A* and Bi with A € A* be as in (iii-3) of Theorem 10.4
with g =1 and v = 7,. We may shrink A* towards 1 so that A* C [1 —9,14]. Then the choice
of € implies that

Ui = (ﬁﬁ\(O),Bg\(O)) € O\ {v} and eXpFN(Avi) = exp’ N () for j = 1,2, and v} # v3.

Suppose that dim Ker(DeprN(v)) > 1, i.e., the multiplicity of 7,(1) as a P-focal point along
v is greater than one by the last paragraph of Section 9, and that O \ {v} only contains
finitely many points, v1,- - , v, such that eprN(/\vi) = eprN(/\v), i=1,---,m. The second
assumption implies that there are no infinitely many C* constant (non-zero) speed F-geodesics
emanating perpendicularly from P and ending at 7,(\), a; : [0,A] - M, i = 1,2,---, such
that [[a; — Yol llerqoryy < € @ = 1,2,---. (Otherwise, by the choice of € we have v; :=
(@i (0),;(0)) € O\ {v} and exp™(A\v;) = exp™(\v) for each i = 1,2,---.) Therefore there
exist only finitely many such «, saying «g,--- ,ax. In this case, by (iii-3) of Theorem 10.4 the
geodesics 31 and (3 above can also be chosen to have distinct speeds, i.e., F(vl) # F(v3). The
proof of (iii) of Theorem 10.5 is complete.

O

11 Bifurcations of geodesics with two kinds of special boundary
conditions

Let (M, g), I, and submanifolds P, @ be as at the beginning of Section 9. In order to use
the results in Section 1.1 conveniently, we write P and @ as Sy and S7, respectively. Then the
boundary condition (9.8) becomes

F .
g"y(AO) (U, ’Y(O)) =0 Vue T’y(O)SOa (111)
g"y(>\1) (’U, 7(7)) =0 Ve T’y(r)Sl

if N =5 x 51, and

gf(xo) (u,¥(0)) = 95()}) (Igeu,¥(7)) Vu € Ty M (11.2)
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if N = Graph(ly). In these two cases the Morse index and nullity in (9.5) have more precise
explanations. See (9.27), (9.28) and (9.29) and [32, §6].

Theorem 11.1. Under Assumptions 9.2, 9.3 with N = Sy x S1 or Graph(ly), for p € A such
that ~,(0) # v,(7) in the case dim Sy > 0 and dim Sy > 0, there holds:

(I) (Necessary condition): Suppose that constant (non-zero) speed (Fy,N)-geodesics with a
parameter X\ € A bifurcate at some p € A along sequences with respect to the branch
{va| X € A}, Then m2(E, N, ) # 0.

(IT) (Sufficient condition): Suppose that A is first countable and that there exist two sequences
in A converging to p, (A, ) and ()\Zr), such that one of the following conditions is satisfied:

(I1.1) For each k € N, either Tt is not an isolated critical point of ‘S‘A;f,Nf O Yz, s not an
1solated critical point ofé')\;N, O Yyt (resp. '7/\;) 1s an isolated cm’tical.point OféjA,j,N
(resp. SA;,N) and Cm(&:,N"Y/\;?K) and Cm(SA;7N,’yA;;K) are not isomorphic for
some Abel group K and some m € Z.

(IL.2) For each k € N, there exists A € {)\z,)\;} such that -y is an either nonisolated or
homological visible critical point of Exw , and

[m_ (g)v;Na’Y)\;% m- (SA,:,N’ ’7)\;) + mO(OEAI:’N,’Y)\; )] (‘k)
m[mi(g)i,Nv 7,\2)7 m- (‘i\iﬁN?’Y}%) +m (g)\g,Na ’Y,\:)] = @

(IL.3) (1)707“ each k € N, (#y,) holds true, and either mo(é’/\;,N,'y/\g) =0 or mO(EA;N,q//\;) =

Then there exists a sequence () C A= {1 /\;, ;| B € N} converging to p and constant
speed Fy, -geodesic v* : [0,7] — M satisfying the boundary condition (9.8) with \ = A,
k=1,2,---, such that v* — ~, in C2([0,7]; M). In particular, constant (non-zero) speed
(F\, N)-geodesics with a parameter A\ € A bifurcate at u € A along sequences with respect
to the branch {yx |\ € A}.

Proof. Step 1 [Prove (I)]. By Definition 9.4 there exists an infinite sequence {(Ag,7*)}2, in
A x CY([0, 7], M) \ {(1,7,)} converging to (i,7,), such that each % # v, is a F),-geodesic
satisfying the boundary condition (9.8) with A = A\, k= 1,2,---. Let A = {u} U {\ |k € N}.
It is compact and sequential compact. (Note that all 4 and vy are C¢, 4 < ¢ < 6.) Tt is easy
to find an open subset M of M with compact closure such that the closure

Cl (Ui ([0,7]) U™ ([0,7])) < AT

Then the conditions in Proposition 9.5 can be satisfied with (M, A) = (M, A). Therefore for
the constant C; > 0 as in Proposition 9.5 with (M, A) = (M, A) we have ¢ > 0 such that for all
(m, A\, t) e Nx A x[0,7],

. 2¢ M em 2¢

[Ex(na(8), (1)) > o and [Py, (") 7 )i ok

1 1
Let L} : TM — R, A € A, be given by Proposition 9.5 with (M,A) = (M,A). Then the
corresponding C? functional &3 N given by (9.14) and the C?70 functional £, N in (9.9) coincide

in the open subset of C; N (M )reg as in (9.15),

C.n(M,{Fy, Fy,, | (\,m) € A x N}, ¢/Cy) (11.3)
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consisting of all a € C; (M) such that

min  [Fy(a(t),a(t))]? > 2¢/Cy  and min  [Fy,, (a(t), @(t))) > 2¢/C.
(At)ehx[0,7] (m,t)ENx[0,7]

For any (m,\) € N x A, since v, and v™ belong to CﬁN(M, {F\,F\, |(A\,m) € A x N}, ¢/Ch),
each ) (resp. ™) is a critical point of &5  (resp. &5 ) and we have also (9.16). Hence
when N = Graph(Iy) (resp. N = Sy x S1), 7(/1,7”) is a bifurcation point of the problem (1.13)
[resp. (1.5)~(1.6)] with respect to the trivial branch {(\,~v) | X € A} in C1([0, 7]; M). Tt follows
from Theorem 1.13(I) [resp. Theorem 1.4(I)] that mO(c‘:;’N,%) > 0 and so m%(£,N,7,) > 0 by
(9.16).

Step 2 [Prove (II)]. Since A = {p, AL AL | k € N} is compact and sequential compact, as above
we can find an open subset M of M with compact closure such that the closure

Cl (U(A,m)ef\xN’Y)\([O’ T]) U '7)\;([07 T]) U 'Y)\;n([oy T])) C M.

For the constant C7 > 0 as in Proposition 9.5 with (M, A) = (M, A) we have ¢ > 0 such that
for all (m,\,t) € Nx A x [0, 7],

. 2c .
[Fx(a(1), A (8))])* > o ad [Fans 0,9 ()] > =
Let L3 : TM — R, A € A, be given by Proposition 9.5 with (M, A) = (M, A). As above, for all
(m,\) € N x A we have

7)\7’7)\:;77,\;” € CT,N(M7 {F)\aF)\ﬁﬁF,\;l ’ (Aam) € ]\ X N},C/Cl),
and (9.16) and (9.17) lead to

m_(g)\rimNa'YAj;) = m_(é‘;i,N”y)\i) and mo(g)\%“N,fy/\%) = mo(é’;rimN,'y)\%),
Ck(g)\rin7N77)\%:L; K) = Ck((‘;;i NafY)\i; K) V(k,m) €ZxN
for any Abel group K. By these we see that for N = Sy x Sy [resp. N = Graph(l,)] the
conditions (II.1), (I1.2) and (II.3) in Theorem 11.1, respectively, give rise to the corresponding
conditions (II.1), (I.2) and (II.3) in Theorem 1.4 (resp. Theorem 1.13). Hence there exists an
infinite sequence {(Ag, )}, in A x C2([0, 7], M) \ {(1,7,)} converging to (p,7,), such that
each y* Y, satisfies

d

7 (OuLX(E, (1), 7(8))) — 0uLX(2,7(2), (1)) = 0 (11.4)

with A = A\ and the boundary condition (1.6) [resp. (1.13)] with A = Ay if N = Sy x Sp [resp.
N = Graph(ly)], k£ = 1,2,---. From these and Claim 9.6 we conclude that for each k large

enough, v* is a constant (nonzero) speed F),-geodesic satisfying the boundary condition (11.1)
[resp. (11.2)] with A = A, if N = S x S1 (resp. N = Graph(ly)), k =1,2,---. O

Theorem 11.2 (Existence for bifurcations). Under Assumptions 9.2, 9.3, let N = Sy x Sy or
Graph(Iy). Suppose that A is path-connected and there exist two points XT, A\~ € A such that
one of the following conditions is satisfied:
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(i) Either yx+ is not an isolated critical point of Ex+ N, or V- N is not an isolated critical
point of Ex- N, or Ya+ N (Tesp. ya- N) is an isolated critical point of Ex+ N (Tesp. Ex- N)
and Cp(Ex+ N, v+ K) and Cr(Ex- N, 72— K) are not isomorphic for some Abel group K
and some m € Z.

(i) The intervals [m™(Ex- n, A=), M~ (Ex- Ny A=) + MY (Ex- N, 7a-)] and
[ (Exr s Yok )s 1 (Ext s k) + MO (Exe Ny Yo+ )]

are disjoint, and there exists X € {\*, A"} such that vy is an either non-isolated or homo-
logical visible critical point of ExN.

(iii) The intervals [m™(Ex- n;a-), M (Ex- N0 1) +m0(Ex- N, 7)) and
[ (Ext s Yot )s M (Ext s k) + MO (Exe Ny Yot )]
are disjoint, and either m®(Ex+ n, va+) =0 or m¥(Ex- N, 72-) = 0.

Then for any path o : [0,1] — A connecting \* to A\~ such that Ya(s)(0) # Ya(s)(T) for any
s € [0,1] in the case N = Sy x S7 and dim Sy dim Sy > 0, there exists a sequence ()\k) C a(]0, 1])
converging to some p € o([0,1]), and constant (non-zero) speed Fy, -geodesics % : [0, ]
satisfying the boundary condition (9.8), k = 1,2,---, such that 0 < ||v* — 7>\k||02( RN) —
0 as k — oo. Moreover, p is not equal to AT (resp. \~) if m (6}\+,N,’7)\+) = (resp

m2(Ex- N 7a-) =0).

Proof. As above, since A := a([0,1]) is a compact and sequential compact subset in A we can

find an open subset M of M with compact closure such that the closure C1 <U reixn A ([0, T])) -

M. For the constant C; > 0 as in Proposition 9.5 with (M, A) = (M,A) we have ¢ > 0 such
that

: 2¢c . A
[Fx(ya (), Aa())? > o and  [Fyx (7 (1), oz (8)]2 > a for all (\,t) € A x [0,7].
Let L5 : TM — R, A € A, be given by Proposition 9.5 with (M,A) = (M, A). As above, we
have Y, Yot Ta- € Con(M, {Fx, Fy+, Fx- | X € A},¢/Cy) for all A € A, and (9.16) and (9.17)
lead to

m(Exeno M) =M (Exa o naz) and mO(Exe Ny ax) = MmO (Exs Ny at),
Cr(xnt Ny K) = Cp(Exe no e K) VEEZ

for any Abel group K. As above, for N = Sy x S; [resp. N = Graph(I,)] the corresponding
results may follow from these and Theorem 1.5 (resp. Theorem 1.14). O

Theorem 11.3 (Alternative bifurcations of Rabinowitz's type). Under Assumptions 9.2, 9.3 with
A being a real interval, suppose that N = Sy x S1 or Graph(ly), and that u € Int(A) satis-
fies conditions: 7, (0) # v,(7) (in the case dim Sy > 0 and dim Sy > 0), m*(E,nN,7u) > 0,
mP(Exn, ) = 0 for each X € A\ {u} near pu, and m~(ExN,vn) take, respectively, values
m™ (€N V) and m™ (€N, vu) +mP(EuN, i) as X € A varies in two deleted half neighborhoods
of . Then one of the following alternatives occurs:

(i) There exists a sequence C* constant (non-zero) speed F,,-geodesics v™ # v, satisfying the
boundary condition (9.8) such that ™ — ~,, in C%([0,7], M).
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(ii) For every A € A\ {u} near p there is a C* constant (non-zero) speed F\-geodesic 75 # v
satisfying the boundary condition (9.8) such that ~4 —~, converges to zero in C*([0,7],RY)
as A\ — .

(iii) For a given neighborhood W of ~y,, in C*([0,7],RY), there is an one-sided neighborhood A°
of u such that for any A € A°\ {u}, W contains at least two distinct C* constant (non-
zero) speed F)-geodesics satisfying the boundary condition (9.8), ’y)l\ % v\ and ’yi Z Y,
which can also be chosen to satisfy Fx(7s(t), 43 (t)) # Fx(v3(t),%3(t)) V¢ provided that
m?(é’MN,'yu) > 1 and W only contains finitely many distinct constant (non-zero) speed
Fy-geodesics satisfying the boundary condition (9.8).

Proof. Since A is a real interval and p € Int(A), for some real p > 0 the compact set A=
[t — p, 1+ p] is contained in A. The continuous map A x [0,7] 3 (X, ) = yx(t) € M has compact
image set and therefore the latter is contained in an open subset M of M with compact closure.
For the constant C; > 0 as in Proposition 9.5 with (M, A) = (M, A) we have ¢ > 0 such that

Fy( (0, ) > 2=, YA 1) € A x [0,7].

Cy’

Let L} : TM — R, A € A, be given by Proposition 9.5 with (M,A) = (M,A) Then for all
A € A we have v\ € Con(M, {Fy\| X € A}, ¢/Cy), and

m”(ExN, ) =m (Exnsa) and mO(Exn, 1) = m°(EX N, Tn)-

By these and the assumptions of Theorem 11.3 we obtain that mO(EI’;N, V) > 0, mO(E5 ns ) =
0 for each A\ € A \ {¢} near u, and m*(é’:\*,N,’yA) take, respectively, values m*(é'*,N,'yu) and

o
m™ (€ N> V) + mY( N+ i) @8 A € A varies in two deleted half neighborhoods of p. Hence the
desired results may follow from Theorems 1.15, 1.6 and Claim 9.6 as above. O

12 Bifurcations of [ -invariant geodesics

For an I -invariant Finsler metric ' on M, a F-geodesic v : R — M said to be I-invariant if
v(t+1) =1,;(y(t)) Vt € R. Clearly, s- is also an [ -invariant F-geodesics for any s € R, where
(s-7)(t) =~(t+s) for t € R. Two [4-invariant F-geodesics 1 and 72 are said to be R-distinct if
there is no s € R such that s-v; = 2. If a F-geodesic v : [0,1] — M satisfies [4.(7(0)) = (1),
then it may be extended into an I -invariant F-geodesic v* : R — M via

V() =IJ(y(t — [t]) VE € R, (12.1)

where [s] denotes the greatest integer at most s, called the corresponding (maximal) I -invariant
F-geodesic (determined by 7).

Assumption 12.1. Under Assumption 9.2 with £ = 6, all F)\ are also I -invariant, and ¥ : R —
M is an [g-invariant constant (non-zero) speed Fj-geodesic for each A € A.

Under this assumption, each element in R -4 := {5(0 + -) |0 € R} (R-orbit) is also an I,-
invariant constant (non-zero) speed F)-geodesic for each A € A. Because of this reason, similar
to Definition 1.22 we have:
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Definition 12.2. R-orbits of I;-invariant constant (non-zero) speed Fy-geodesics with a param-
eter A € A is said sequently bifurcating at p with respect to the R-orbit R - % if there exists a
sequence (\;) C A converging to u, and I -invariant constant (non-zero) speed F),-geodesics
¥,k =1,2,---, such that: (i) v¥ ¢ R -7 Vk, (ii) all ¥ are R-distinct, (iii) 'yk][(),l] — Yjo,1 in
C*(]0,1]; M). [Passing to a subsequence, (i) is implied in (ii).]

By definition of the fundamental tensor g in (9.1), I-invariance of F) implies that

9™ (Ly(x), Lgs (0)) [Lgs (w)), Igu (w))] = "™ (2, v)[u, ]

for all (x,v) € TM \ Oppr and u,w € T M. The following claim easily follows from these and
the I -invariance of g.

Claim 12.3. For a given sequential compact subset A C A and a given open neighborhood
M of 3([0,1]) with compact closure, on the open submanifold M~::~Ukez(ﬂg)k(/\/l) of M the
corresponding numbers defined by Proposition 9.5 with (A, M) = (A, M),

F Fy
Gy := inf inf inf 9u* (u; 1) — inf inf inf 9> (u, u) and
AEA (z0)eTM, |v|o=1 u#O gg;(u u) AEA (z,w)ETM, |v|z=1u#0 gy (u’ u)
Fy
59 = sup sup sup M = sup sup sup w

AEA (z, v)ETM [v]o=1 u#0 Yz (U u) AEA (z,0)€TM, v]|z=1u#0 Yz (U, u)
are positive, and by scaling down or up g (if necessary) it holds that for some constant Cy > 0,

2 < Ly(x,v) < Cyv)?

vl 2 V(\z,v) € AxTM.

Moreover (since 7 is Ig-invariant) there exists ¢ > 0 such that

2c

== Y\ t) e A xR (12.2)
Cy

[ (3(1),3(#))]* >

Claim 12.4. Under Claim 12.3 let L} : TM — R, A € A, be given by Proposition 9.5 with
(A, M) = (A, M). Then there exists a neighborhood U of Yo,y in C1([0,1], M) such that if
v : R = M is a constant (non-zero) speed lg-invariant Fy-geodesic whose restriction to [0,1] sits
in U, where A € A, then it is C°, sits in M and satisfies

%( L, L% (y(b), ))) — 0. L3(7(1),7(t)) = 0Vt € R, (12.3)
T, (y t) (t+1) vVt e R.

Conversely, for a solution v of (12.3), which must be C®, if Yo, is in U, then 7y is a constant
(non-zero) speed 1g-invariant Fy-geodesic.

Proof. Since A C A is sequential compact, it follows from (12.2) that there exists a neigh-
borhood U of 7[jp 1) in C'([0,1], M) such that if the restriction of an Iy-invariant C' curve
v :R — M to [0,1] belongs to U then [F\(v(t),¥(t))]> > 2% for all (A,t) € A x R. Therefore
for an I -invariant C? curve v : R — M, if Yo,y is in U then ~ satisfies

(0 LAO0),9(0)) — DLI (D), 4(0)) = 5 (DuLa(1(0), (1)) — eLa(4(1), (1)

by Proposition 9.5(i) with (A, M) = (A, M). These imply the desired conclusions. O
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Let X! (M,HQ) be the C* Banach manifold defined in (1.20), which may be identified with
C]%g ([0,1]; M). Define functionals

1
Eny, t XL, 1)) 5 R, v /0 (FA(4 (1), 5(t))dt.

1
&1, XN I)) = R, 4 = /O L3 ((8), A(8)) .

Clearly, they agree on the open subset

CY(R; M, 1, {F\| X € A},c/Cy) = {a € xXN(M,1,) ( min  [Fy(a(t),a(t)]? > 20/01}
(M) EAX[0,1]

of X}(M, I;) containing 7, and their critical points on XTIN(M ,I) near 7 correspond, respectively,
to constant speed Ig-invariant Fy-geodesics near 4 in M and solutions of (12.3) near ¥ in M.
For each A € A we write

m”(Exg,» V) =m (Exg,, V1) and m°(Exg,, ) == m(Exg,V01]),
m_(é’;’ﬂg,fy) = m_(5;7ﬂg7’7|[071]) and mO(gng’,—y) = m0(5;7H97W|[0,1}).

Then m™ (g;’ﬂg,f_y) =m- (5}\’]19’ ’7) and m0(€;7ﬂg,’7) = mU(S)\,]Iga'_Y).

Theorem 12.5 (Necessary condition). Under Assumptions 12.1, if R-orbits of I4-invariant con-
stant (non-zero) speed F-geodesics with a parameter X € A sequently bifurcate at p with respect
to the R-orbit R -5, then m®(€,1,,7) > 2.

Proof. By the assumption there exists a sequence (Ax) C A converging to u € A, and constant
(non-zero) speed ]I -invariant F) -geodesics v¥ : R — M (Which must be C6) k=12,
such that these 4" are R-distinct each other and satisfy v*|jo1) — |1y in C*([0,1]; M). Let
A= {1, Ak | k € N}, which is Sequentlal compact. Choose M as in Claim 12.3, and L% : TM — R,
A € A, as in Claim 12.4. Since v \ 01] = Yo,y in Cl([O 1]; M), for the nelghborhood U of |j,1)
in C1([0,1], M) in Claim 12.4, we can assume that all ~ | 0,1 belong to U. By Claim 12.4 each o
is O, sits in M and satisfies (12.3) with A = \;. Then Theorem 1.23 concludes mo(c‘,’/’\",ﬂg,"y) > 2
and so m%(Exg,,7) > 2. O

Theorem 12.6 (Sufficient condition). Under Assumption 12.1 suppose the following conditions
hold.

(a) 7 is periodic, and mo(é'uyﬂg,'?) > 2.

(b) There exist two sequences in A converging to ju, (A, ) and ()\z), such that for each k € N,
[m;(g/\;]lg,’_y), m;(g)\;jgv:y) + mg(g)\;,ﬁga'_y) - 1]
m[m;(g)\$7]1ga’?)7m;(‘€)\2‘7]1g3'7) + mg(g)\:’ﬂg,ﬁ/) -1]=90

and either m?(é’)\;’ﬂg,fy) =1 or mg(é’)\zvﬂg,fy) =1.

(c) For any constant (non-zero) speed lg-invariant F,-geodesic v : R — M, if there exists a
sequence (si) of reals such that sy -~y converges to 5 on any compact interval I C R in
C*-topology, then =y is periodic. (Clearly, this holds if (1,)! = idys for somel € N.)
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Then there exists a sequence (\) C A == {pu, AL |k € N} converging to pand C® constant
(non-zero) speed lg-invariant F),-geodesics YR = M, k=1,2,---, such that any two of
these v, are R-distinct and that 7k|[071] = Ao, in C?([0,1); M). In particular, R-orbits of
I4-invariant constant (non-zero) speed F-geodesics with a parameter A € A sequently bifurcate
at p with respect to the R-orbit R - 4.

Proof. Since A = {1, )\:, A, |k € N} is compact and sequential compact, we may choose M as
in Claim 12.3, and L3 : TM — R, A € A, as in Claim 12.4. Clearly, the assumptions (a) and
(b) lead to the corresponding conditions (a) and (b) in Theorem 1.24 with (M, Ly) = (M, L}),
respectively.

For any solution v of (1.23) with (M, Ly) = (M, L%) and A = g, that is, a solution of (12.3)
with A = u, suppose that there exists a sequence (si) of reals such that si - v converges to
4 on any compact interval I C R in C'-topology. Then sy, - v 0,1 = Yo in c([o,1]; M).
By Claim 12.4, for each k large enough, sj - v and hence v is a constant (non-zero) speed I,-
invariant F),-geodesic. The assumption (c) assures that v is periodic. Hence the condition (c)
in Theorem 1.24 with (M, Ly) = (M, L}) is satisfied.

By Theorem 1.24 there exists a sequence (\;) C A converging to 1 and C® solutions 7* of
(12.3) with A = A\, k = 1,2,---, such that any two of these v are R-distinct and that (7*)
converges to ¥ on any compact interval I C R in C?-topology as k — oco. By Claim 12.4, for
each k large enough +* is a constant (non-zero) speed I,-invariant F),-geodesic. O

Theorem 12.7 (Existence for bifurcations). Under Assumption 12.1, suppose that A is path-
connected, (]Ig)l = idps for some l € N, and the following is satisfied:

(d) There exist two points \T, A\~ € A such that

(M7 (Ex-1,:7),ms (Ex-1,.7) + mI(Ex-1,.7) — 1]
N[m; (Exe1,57)s my (Exe 1,7) +mI(Exe 1,,7) — 1] =0

and either m9(5A77Hg7’7) =1or mg(g,\tﬂgﬂ) =1

Then for any path « : [0,1] — A connecting AT to A~ there exists a sequence (\;) in a([0,1])
converging to i1 € «([0,1]) C A, and C% constant (non-zero) speed 1,-invariant F, -geodesics,
k=1,2,---, such that any two of these vy are R-distinct and that () converges to 5 on any
compact interval I C R in C*-topology as k — co. Moreover, this p is not equal to A\t (resp.

A7) if m2(Exey,, ) =1 (resp. mQ(Ex-1,,7) = 1).

Proof. Since A := a([0,1]) is a compact and sequential compact subset in A we may choose
M as in Claim 12.3, and Ly - TM — R, A € A, as in Claim 12.4. Then the assumption (d)
yields the corresponding condition (d) in Theorem 1.25 with (M, Ly) = (M, L}). Hence there
exists a sequence (\x) in «([0,1]) converging to p € a([0,1]) C A, and C® solutions 7, of the
corresponding problem (1.23) on (M, L)) = (M,Lﬁ) with A = A\g, £k = 1,2,---, such that any
two of these 7, are R-distinct and that (%) converges to 4 on any compact interval I C R in
C2%-topology as k — oco. Moreover, this u is not equal to AT (resp. A7) if mg(c‘/’,\+7ﬂgﬂ) =1
(resp. m? (€x-1,,7) = 1). The required results easily follow from these as before. O

Theorem 12.8 (Alternative bifurcations of Rabinowitz's type). Under Assumption 12.1 with A
being a real interval, suppose

(a) p€Int(A), I, =idpy and 5 have least period 1;
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(b) mO(Et,7) > 2, m¥(Exg, 7) = 1 for each A€ A\ {z} near p;

(¢) m™(Exy,,7) take, respectively, values m°(E,1,,7) and m™(E,1,,7) + m?(Eur,,7) — 1 as
A € A wvaries in two deleted half neighborhoods of .

Then one of the following alternatives occurs:

(i) There exists a sequence CS constant (non-zero) speed 1,-invariant F),-geodesic v* : R — M,
k=1,2,---, such that these v* are R-distinct each other and converge to 5 on any compact
interval I C R in C?-topology as k — oc.

(ii) For every X € A\ {u} near u there is a C% constant (non-zero) speed I,-invariant F)-
geodesic v, which is R-distinct with 7 and converges to 5 on any compact interval I C R
in C%-topology as \ — L.

(iii) For a given neighborhood W of 4 in C*(R; M,1,), there exists an one-sided neighborhood
A° of u such that for any X € A°\ {u}, there exist at least two R-distinct CO constant
(non-zero) speed Ig-invariant Fy-geodesics, vx ¢ R -5 and 43 ¢ R -7, which can also be
chosen to have different Fy-speeds (i.e., Fx(vi(t), 55 (t)) # Fa(v3(t),%3(t)) Vt) provided
that m2(€,1,,7) > 3 and there exist only finitely many R-distinct C® constant (non-zero)
speed Ig-invariant Fy-geodesics in VW which are R-distinct from 7.

Proof. As in the proof 9f Theorem 11.3 we have a number p > 0 such that the compact (and
sequential compact) set A := [ —p, pu+p] C A. Choose M as in Claim 12.3, and L} : TM — R,
A € A, asin ?laim 12.4. Since m*(S:\k’Hg,’_y) = m~(Exng,,7) and mo(é'j\‘vﬂg,'_y) = m"(€xg,, )
for each \ € NA, the assumptions (b) and (c) imply that mo(é’;’ﬂg,'_y) > 2, m0(€§7ﬂg,7) =1
for each A € A\ {u} near p and that m_(€;7ﬂg,'7) take, respectively, values mo(é‘;yﬂg,ﬁ) and

m- (5;7]19,7) + mo(é’;ﬂgﬂ) — 1 as A € A varies in two deleted half neighborhoods of . Hence

the desired results may follow from Theorem 1.26 and Claim 12.4 as above. O

Remark 12.9. As noted below Theorem 1.26, if M is an open subset U of R" and I, is an
orthogonal matrix E of order n which maintain U invariant, “Assumption 12.17 and all “C%” in
Theorem 12.5, 12.6, 12.8 can be replaced by “Assumption 12.1 with £ = 4” and “C*” respectively.

13 Bifurcations of reversible geodesics

For a reversible Finsler metric F' on M, and any geodesic of F', v : (—r,r) — M, the reverse
curve v~ : (=7, 1) — M defined by v~ (t) = v(—t) is a geodesic of F' that coincide pointwise with
7. (See [42, Remark 3.1]). The irreversibility of a Finsler metric is a very strong restriction that
excludes a lot of interesting examples, for instance Randers metrics, which are Finsler metrices
of form F' = a + 3, where « is a Riemannian metric and [ is a nonzero 1-form on M.

Assumption 13.1. Under Assumption 9.2, for each A € A suppose that F) is reversible and
that vy : R — M is a l-periodic F)-geodesic of constant (non-zero) speed, (which must be ct
and satisfies v\ (—t) = ya(t) for all t € R). It is also required that the maps A x R 3 (\,t) —
() € M and A x R 3 (A, t) — Aa(t) € TM are continuous.

Definition 13.2. Under Assumption 13.1, 1-periodic F)-geodesics of constant (non-zero) speed
with a parameter A\ € A is said bifurcating at 4 € A along sequences with respect to the branch
{7 A € A} if there exists an infinite sequence {(Ar,7¥*)}$2, in A x ECY(S1, M)\ {(1,v.)}
converging to (f,7,), such that each vk £ Ya, 1s a l-periodic F), -geodesic of constant (non-
zero) speed, k = 1,2,---. (Actually it is not hard to prove that 4* — Yy in C2(Sy1, M).)
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Under Assumption 13.1 nonconstant critical points of the C2~0-functional

1
7H$w=éwmwmmwt (13.1)

on the Banach manifold EC!(Sy; M) given by (1.27) correspond to 1-periodic Fy-geodesics of
constant (non-zero) speed. Since Sf is C2 near such a critical point 7, the Morse index and
nullity m=(EE,v) and m®(£F,~) are well-defined as before.

Theorem 13.3. Let Assumption 13.1 be satisfied, u € A.

(I) (Necessary condition): Suppose that 1-periodic Fy-geodesics of constant (non-zero) speed
with a parameter A € A bifurcate at p € A along sequences with respect to the branch
{7 | A€ A}. Then mo(gf,wu) > 1.

(IT) (Sufficient condition): Let A be first countable. Suppose that there exist two sequences in A
converging to p, (A, ) and ()\Z), such that one of the following conditions is satisfied:

(I1.1) For each k € N, either Vot is mot an isolated critical point of 8/@, or Y- 18 not an
1solated critical point of 55;?’ OT Ypt (resp. ’y)\;) is an isolated critical point of 552
(resp. ng) and Cm(é'f:,'y)\:; K) and Cm(g)é,'y)\g;K) are not isomorphic for some
Abel group K and some m € Z.

(IL.2) For each k € N, there exists A € {/\+,)\,:} such that «yy is an either nonisolated or
homological visible critical point of 5){3 , and

—(¢cFk —(¢cF 0O(cFE
ﬂ[mf(g)\;r,r)/)\ﬁ)’mf(g)\z")/)\;) +m (8/\?77)\;)] = @

(o)

(IL.3) For each k € N, (&) holds true, and either mo(é’g,’y)\;) =0 or mO(Efz,*y)\ﬁ) =0.

Then there exists a sequence (\) C A := {u, X}, A |k € N} converging to p, 1-periodic
F,-geodesics Ak £ Y, of constant (non-zero) speed, k = 1,2,---, such that S Y
in C%(S1; M). In particular, 1-periodic Fx-geodesics of constant (non-zero) speed with a
parameter A € A bifurcate at p € A along sequences with respect to the branch {y\ |\ € A}.

Proof. Step 1 [Prove (I)]. By the assumptions there exists a sequence (A;) C A converging to
p € A such that for each k there exists a nonconstant reversible and 1-periodic F),-geodesic
7k £ 45, to satisfy ¥¥ — 4, in C1(Sy; M). Let A ={u}U{\, |k € N}. It is sequential compact.
Then we can choose an open subset M of M with compact closure such that A (S1)Uy™(S1) C M
for all (A\,m) € A x N, and therefore the conditions in Proposition 9.5 can be satisfied with
(M,A) = (M,A). For the constant Cy > 0 as in Proposition 9.5 with (M, A) = (M, A) we have
¢ > 0 such that for all (m, A,t) € N x A xR,

. 2c ) 2c

AW AN > 2 and (B, (670, 4" (O) > 2.

1 1
Let L : TM — R, A € A, be given by Proposition 9.5 with (M, A) = (M, A). Then Ly (z,v) =
L} (z,—v) for all (z,v) € TM, and on EC'(S1; M) the corresponding C? functional EF* given
by (9.14) with 7 = 1 and the C?7° functional £F in (9.9) with 7 = 1 coincide in the open subset

ECY(Sy, M, {F\},¢/C}) := {a € EC(S1, M) | \ tgrélAn s [Fy(a(t), a(t)]* > 2¢/Cy}  (13.2)
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of EC'(S1; M). Moreover, at a critical point 5 of them on EC'(Sy, M, {Fy},¢/C}) it holds that
their Morse indexes and nullities satisfy m ™ (EE*,v) = m™(EF,~) and mP(EF*, ) = mO(EF, ).
As in Step 1 of proof of Theorem 11.1 the desired conclusion may follow from Theorem 1.29(I).

Step 2 [Prove (IT)]. Since A = {u, A\, A, | k € N} is sequential compact, as above we can find
an open subset M of M with compact closure such that vy (S;)U Yk (S1)U7y- (51) C M for all
(A,m) € A x N. For the constant C; > 0 as in Proposition 9.5 with (M, A) = (M, A) we have
¢ > 0 such that for all (m,\,t) € Nx A x R,

FAAO O > o and (B, (1 0 s () >

Let L} : TM — R, X € A, be given by Proposition 9.5 with (M,A) = (M, f\) As above, for all
(m,\) € N x A we have Yo Vak s Yoz, € EC’I(Sl,M, {F\},¢/C}), and

m- (g)\ETf; ) ’Y)\i) =m (gf£7 7)\%) and mU (5)\Erin7 f}/)Win) = mO (g/\E£7 ’Y)\niq)a

Cr(€7s 732 K) = Cr(E, 7,55, K) V(k,m) € ZxN

for any Abel group K. The other reasoning may be derived from Theorem 1.29(II) as in Step 2
of proof of Theorem 11.1. O

Theorem 13.4 (Existence for bifurcations). Under Assumption 13.1, suppose that A is path-
connected and there exist two points AT, A\~ € A such that one of the following conditions is
satisfied:

i) Either y\+ is not an isolated critical point of EE. , or v\— is not an isolated critical point of
A
EE., orvyze (resp. ya-) is an isolated critical point of EF, (resp. EF.) and Cry (€L, 73+ K)
and C’m(é'f,,fy)\— ; K) are not isomorphic for some Abel group K and some m € Z.

(ii) The intervals [m=(EF ,ya-),m™(EE  vy-) + mP(EL,v\-)] and
[m_(g,\Eﬂ’YM), m_(g,@ﬁv) + mo(g,\Eﬂ’YM)]

are disjoint, and there exists X\ € {\*, X"} such that vy is an either non-isolated or homo-
logical visible critical point of Ef.

(iii) The intervals [m*(é'f_,’yk),mf(gf_,’yk) + mo(gf—ﬁ,\* )] and
[m_ (g)?-F » IA+ )7 m- (6,€+ ) 7)\4') + mo(gf+ y A+ )]
are disjoint, and either mo(é’/@,’yH) =0 or mo(é‘f,,%\,) —0.

Then for any path « : [0,1] — A connecting A\t to A\~ there exists a sequence (\;) in «([0,1])
converging to some pu € a([0,1]), and 1-periodic F), -geodesics v of constant (non-zero) speed,

k=1,2,---, such that 0 < ||y — Y llc2(syryy = 0 as k — oo. Moreover, i is not equal to A*
(resp. A=) if mAEL, ) = 0 (resp. mO(EE ,73-) = 0).
Proof. Since A := «([0,1]) is compact and sequential compact subset we can find an open

subset M of M with compact closure such that the closure C1 (U/\e/“\xN’YA(Sl)> C M. For the
constant C1 > 0 as in Proposition 9.5 with (M, A) = (M, A) we have ¢ > 0 such that

[Py (1 (6), A (E)])2 > éﬁ for all (\,¢) € A x S
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Let L3 : TM — R, X € A, be given by Proposition 9.5 with (M,A) = (M, A) Then L}(z,v) =
L3 (xz,—v) for all (z,v) € TM, and on EC*(S1; M) the corresponding C? functional EE* given
by (9.14) with 7 = 1 and the C?~° functional £F in (9.9) with 7 = 1 coincide in the open subset
ECY(S1, M,{F\},c¢/C}) in (13.2), which contains {y| A € A}. Therefore

m_(gfi,%\i) = m_(g,\Eikﬁ,\i) and mo(gfia%\i) = mo(gff,%\i),
Cr(E3e, i+ K) = Cr(E5, e+ K) Yk eZ

for any Abel group K. The desired results may follow from these and Theorem 1.30. O

Theorem 13.5 (Alternative bifurcations of Rabinowitz's type). Under Assumptions 13.1 with
A being a real interval, let p € Int(A) satisfy mO(SE,Vu) # 0. Suppose that m*(EF,v\) = 0
for each A € A\ {u} near p, and that m=(EF, ) take, respectively, values m_(SME,'y”) and
m_(gf,vﬂ) + mo((‘,’f,vu) as A € A varies in two deleted half neighborhoods of u. Then one of

the following alternatives occurs:

i Th€7e exiStS a Sequence 0 nonconstant 1-p€7 ?;OdZIC F -geodesics Vk Y115 k - 1, 2, ey, Such
© §23
th(lt ’Yk > ’Yu m C (»S']_7 M)

(ii) For every A € A\ {u} near p there is a nonconstant 1-periodic F)-geodesic ay # vx, such
that ay — 7 converges to zero in C?(S1,RY) as A — pu. (Recall M C RV.)

(iii) For a given neighborhood W of 7, in C?(S1, M), there exists an one-sided neighborhood
A® of pu such that for any X € A\ {u}, there exist at least two distinct 1-periodic F)-
geodesics of constant (non-zero) speed in W, ’y/l\ # v\ and fyi # v, which can also be
chosen to have different Fy-speeds (i.e., Fx(7i(t), 41 (t)) # Fa(v3(t),75(t)) Vt) provided
that mo(Sf, Yu) > 1 and there exist only finitely many 1-periodic Fy-geodesics of constant
(non-zero) speed in W .

Proof. As in the proof of Theorem 11.3 we have a number p > 0 such that the compact
set A = [ — p,p+ p] € A. Choose an open subset M of M with compact closure such
that v5(S1) € M for all A € A. Then for the constant C; > 0 as in Proposition 9.5 with
(M,A) = (M, A) we have ¢ > 0 such that [Fy(y(t), 42 (£))]? > 2¢/Cy for all (A, t) € A x R. Let
Ly - TM — R, X € A, be given by Proposition 9.5 with (M,A) = (M,f\) The other reasoning
may be derived from Theorem 1.31 as in the proof of Theorem 11.3. O

14 The Riemannian case

14.1. Let M and P be as in Assumption 10.1. For a C* Riemannian metric h on M with
3< ¢ <6lety:[0,7] = M be a nonconstant h-geodesic which is perpendicular to P at ~(0),
i.e., h(¥(0),u) = 0 Vu € Ty () P. (Note that 7 is C*.) Definition 1.8 directly yields the notion of
bifurcation points along the geodesic v (cf. Definition 9.4). The notion of P-focal points along
v can be founded in [52]. Applying either Theorem 1.9 to L(t,q,v) = hy(v,v) and Sy = P or
Theorem 10.4 to F = h'/? we arrive at:

Theorem 14.1. Under the above assumptions, (i)-(iii) are still true after phrases “constant
(non-zero) speed F'-geodesics” are changed into “h-geodesics”.

This result directly leads to the following deep geometrical consequence (a special case of
Theorem 10.5):
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[ 2

Theorem 14.2. Theorem 10.5 also holds after “F'” and “exp™ ” therein are changed into
and “exp"™ 7, respectively.

Example 14.3. Let M = S? with the round metric hg and P = St = {(x,y,0) | 2% + y? = 1}.
The cut locus of P is S° = {e3, —e3}, where e3 = (0,0,1). For any given p € P, if the norm
of v € T,S™ is equal to m/2, then expp(v) € S is the north pole e3. Consider the geodesic
Yy : [0,00) — S? given by 7,(t) = epoUN(tv). e3 = 7,(1) is the first P-focal point along ~, and
so a bifurcation point on ~, relative to P. It is easily seen that only (iii-1) in Theorem 14.1
for (M,h) = (S?, ho) (i.e., Theorem 10.4 for (M, F) = (S?, hg)) with v = v, and u = 1 occurs.
Hence we have only (i) in Theorem 10.5 (i.e., Theorem 14.2 for exp™™ = exp/) with this v).

14.2. The following is a special case of Assumptions 1.1, 1.2 and 1.11.

Assumption 14.4. {hy|\ € A} is a family of C* Riemannian metrics on M with 4 < ¢ <
6 parameterized by a topological space A, such that A x TM > (A, z,v) — hy(z,v) € R
is a continuous, and that all partial derivatives of each h) of order less than three depend
continuously on (A, z,v) € A x TM. For each A € A let 7, : [0,7] — M be a hy-geodesic
satisfying the boundary condition

ha(u, 72 (0)) = hx(v,42(7)) V(u,v) € Ty 0) 0 () N, (14.1)

where N C M x M is a C7 submanifold. (Therefore v, is C* by Claim 9.1.) It is also required
that the maps A x [0,7] 2 (A\,t) = Y (t) € M and A x [0,7] © (A, t) — a(t) € TM are
continuous.

Without occurring of confusions, we use £, v to denote the functional

Con(M) S R, 7 / " ha(r(8). 4 (), (14.2)

and m~(ExN, 7)) and mO(E)\vN,'yA) to denote the Morse index and nullity at ~, of it. For
N = Sy x S [resp. Graph(ly)], the following theorem may directly follow from Theorem 1.4
(resp. Theorem 1.13).

Theorem 14.5. Under Assumption 14.4 with N = Sy x Sy or Graph(ly), for u € A there holds:

(I) The phrase “constant (non-zero) speed (Fx, N)-geodesics” in (I) of Theorem 11.1 is changed
into “(hy,N)-geodesics”.
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(IT) The phrases “constant speed F, -geodesic v* : [0, 7] — M satisfying the boundary condition
(9.8) with X = A\,” and “constant (non-zero) speed (Fx,N)-geodesics” are changed into
“hy, -geodesic v* : [0,7] — M satisfying the boundary condition (14.1) with X\ = \,” and
“(hx,N)-geodesics”, respectively.

For N = Sy x S [resp. N = Graph(I;)] Theorem 1.5 (resp. Theorem 1.14) directly leads to:

Theorem 14.6 (Existence for bifurcations). The phrases “Assumptions 9.2, 9.8” and “ constant
(non-zero) speed F,-geodesics v* : [0,7] — M satisfying the boundary condition (9.8)” in
Theorem 11.2 are changed into “Assumption 14.4” and “hy, -geodesics vk 1[0, 7] = M satisfying
the boundary condition (14.1)”, respectively.

Similarly, for N = Sy x S; [resp. N = Graph(I,)] from Theorem 1.6 (resp. Theorem 1.15)
we directly derive:

Theorem 14.7 (Alternative bifurcations of Rabinowitz's type). The phrase “Under Assump-
tions 9.2, 9.8” in Theorem 11.8 is changed into “Under Assumption 14.4”; and

e “constant (non-zero) speed F),-geodesics v # =, satisfying the boundary condition (9.8)”
in (i) of Theorem 11.3 is changed into “h,-geodesics v™ # =, satisfying the boundary
condition (14.1)”;

e “constant (non-zero) speed Fy-geodesic vy # ~x satisfying the boundary condition (9.8)” in (ii)
of Theorem 11.3 is changed into “hy-geodesic v\ # v\ satisfying the boundary condition
(14.1)”

e “constant (non-zero) speed Fy-geodesics satisfying the boundary condition (9.8), v # i
and 73 # ya, which can also be chosen to satisfy Fx(vi(t),¥i(t)) # Fx(v3(t), %3 (t)) Vt”
in (1) of Theorem 11.3 is changed into “hy-geodesics satisfying the boundary condition
(14.1), v+ # vr and 3 # v, which can also be chosen to satisfy hx(vi(t),¥x(t)) #
ha(22(8), 33(0)) Ve

e “constant (non-zero) speed Fy-geodesics satisfying the boundary condition (9.8)” in (iii) of
Theorem 11.83 is changed into “hy-geodesics satisfying the boundary condition (14.1)”.

14.3. Replaceing Assumption 12.1 we make:

Assumption 14.8. {h)|A € A} is a family of C® I -invariant Riemannian metrics on M
parameterized by a topological space A, such that A x TM > (A, xz,v) — hy(x,v) € R is a con-
tinuous, and that all partial derivatives of each h) of order less than three depend continuously
on (A, z,v) € Ax (T'M \ Orpr). 7 : R — M is an I-invariant nonconstant hy-geodesic for each
AeA.

As consequences of results in Section 12 or Theorems 1.23, 1.24, 1.25, 1.26 we obtain:
Theorem 14.9. The following is true.

e In Theorem 12.5, “Assumptions 12.1”7 and “constant (non-zero) speed Fx-geodesics” are
changed into “Assumptions 14.8” and “nonconstant speed hy-geodesics”, respectively.

e In Theorem 12.6, “Assumption 12.1”, “constant (non-zero) speed lg-invariant F),-geodesic”,
“CC constant (non-zero) speed I -invariant Fy, -geodesics” “constant (non-zero) speed F)-
geodesics” are changed into “Assumption 14.8”, “nonconstant I -invariant hy,-geodesic”,

“C% nonconstant I,-invariant hy, -geodesics” “nonconstant hy-geodesics”, respectively.
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o In Theorem 12.7, “Assumptions 12.1” and “constant (non-zero) speed l4-invariant Fy, -geodesics”

are changed into “Assumptions 14.8” and “nonconstant speed hy, -geodesics”, respectively.

o In Theorem 12.8, “Assumption 12.1”, “constant (non-zero) speed lg-invariant F),-geodesic”,
“constant (non-zero) speed Iy-invariant Fy- geodeszc” “constant (non-zero) speed I4-invariant
F\-geodesics”, “F\-speeds (z e, Ex(3 (1), 41(1)) # Fa(3(t),743(t)) Vt)” are changed into
“Assumption 14.87, “nonconstant Iy-invariant h,-geodesic”, “nonconstant I -invariant
ha-geodesic”, “nonconstant Ly-invariant hy-geodesics”, “hy-speeds (i.e., hx(¥i(t),¥x(t)) #
ha(%3(1),75(t)) Vt)”, respectively.

A  Proofs of some lemmas

Exponential map We begin with the standard knowledge from textbooks in Riemannian
geometry. Let M be a n-dimensional, C*-smooth manifold. Its tangent bundle TM is a C*~1-
smooth manifold of dimension 2n, whose points are denoted by (x,v), with z € M and v €
T,M. Let g be a C*~! Riemannian metric on M. Let ¢ : U — ¢(U) C R™, ¢ = ©(q) =
(z'(g),- -+ ,2"(q)) be a coordinate chart on M, g;; = g(%, %) and (¢g") = (g;;)~". Then the
Christoffel symbols

I = %gkj <agu N g;; 3gij>

oxi = Oxt ozl

are C*~2 and hence the exponential map exp : TM — M is a C*~2 map. There exists a fibrewise
convex neighborhood U (0ryps) of the zero section of TM such that the map

F:UOrn) — M x M, (q,v) = (g, exp,v) (A.1)

is a C*=2 immersion.
For a H'-curve v : [a,b] — M, a vector field V along v and ¢ € 7_1(U) we can write

o0
V(t)zzvj(t)@H(t) and (¢ 27 8:1:3

where 77 (t) = 27(vy(t)). The covariant derivative of V along

DV Dvt 9 dv’ ] 0
B = 2 0 = 3 (2 4 T 0r 00 )) ol

7

The vector field V' is called parallel if D V = 0.
Let m: TM — M be the bundle prOJeCtIOH and U = 7~ }(U). ¢ induces a chart on M,

®:U— U) xR, (q,v) = (z'(q,v), -, 2"(q,v),u"(¢,v),--- ,u"(q,v)), (A.2)
where z'(q,v) = 2%(q) and u'(q,v) = dz*(q)[v] for i =1, - ,n, ie., v =" ul(q, v)%\q. It is

computed in the standard textbooks in Riemannian geometry that

0.0 | 500 = (5@ 5 @) Fa0) | 500)] = (0.55@) . (4

Let {e1, -+ ,en} be a parallel frame field and v : [a,b] — R be C* for each i = 1,--- ,n. Put
V(t) =" vi(t)ei(t). Suppose that (y(t),V(t)) € U(Orpr) for all t. Define

T(V)(1) = expy g V().
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Claim A.1. Let k > 2 and A(t) = (y(t),V(t)). Suppose for some t € y~H(U) that () = 0,
ie., ¥(t)=0,j=1,---,n, and that |V (t)|, is so small that

A(®) : TaU(0rar) = TyiyM < Trqvy M
is an isomorphism by (A.3). Then LY (V)(t)|i—f = 0 if and only if ¥/ (£) =0, j=1,--- ,n.

Proof. Then for t € y~1(U) it holds that

Al) = Lal A (AW + -+ o (A) s (A)

d B d B
+ @ul(A(t))w(A(t))erJr@u (A(t) 5 (A1))-

For each i = 1,--- ,n, note that 2'(A(t)) = z*(v(t)) = 7*(t) and
u (A1) = da' (y(O) V()] = Y v (t)da’ (v(t))[er(D)] = Y 0" (t)ei(t)

since eg(t) = >0, ei(t)a%l('y(t)). We obtain %xi(A(t)) = 4%(t) and

d n ) n
U (A() = (el (1) + ) vF(t)el(t), i=1,---,n
k=1 k=1
Because {e1,- - ,e,} is a parallel frame field along ~, that is,

i) + T ()P Ok () =0, =1, n,

we deduce that é;(ﬂ:Ofor i,k=1,---,n and hence
A = Ao (AD) + -+ 4D o (AD)
(Zv (Dek( a) e <t‘>>+~~+< @k@eza‘)) 0 (D).
k

=1

Moreover E(A(t)) = ), Y(V)(t)) implies
(wf), G0 ) = el
Since 4(t) = 0 it follows that

Lew)n| =0 & AH=0 & FH=0j=1-.n

O]

Claim A.2. Let k > 2. For an even and T-periodic C*~2-curve v : R — M, there exist unit
orthogonal parallel C*=2 frame fields along v, {e1,--- ,en}, such that for allt € R,

(er(=t), - en(=1)) = (e1(t), -+, en(?)), (A.4)
(e1(t+7), - en(t+7)) = (e1(t), - ,en(t)). (A.5)
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Proof. Starting with a unit orthogonal frame at T, gy M and using the parallel transport along 7
with respect to the Levi-Civita connection of the Riemannian metric g we get a unit orthogonal
parallel C® frame field R — v*TM, t +— (e1(t), -+ ,en(t)).

Firstly, we prove that (A.4) is satisfied. In fact, let (U;27) be a local coordinate system
around a point in y(R). Then we can write

lt) = YD (D) Ve U), k=1,
=1

Since {e1, -, ey} is a parallel frame field,

Doty + T ) (D) =0, ey (U), i=1--n

dt
Note that y(—t) = v(¢) implies ¢t € y~1(U) if and only if —t € v~ }(U). We have
%(6?(-&) = —¢(=t) = Tuly(=0))F (=t)ef (1)
= T (6 (e (1)
d, i

= —Fék(’Y(m%(’W (t))er (—1).

It follows that {e1(—:), -+ ,en(—)} is also a parallel frame field along v. Since ex(t) and ex(—t)

agree at t = 0, k = 1,--- ,n, by the theorem of existence and uniqueness of ODE we obtain
(A.4).
Next, we prove that for any k € N there holds
(er(kT —t), - yen(kT —1)) = (e1(t), -+ ,en(t)) Vte[0,kT]. (A.6)

Since for any t € [0, k7] it holds that t € v~1(U) if and only if —t € y~1(U), as above we get

d i i i j

lakr —t)) = =&kt —t) = DIi(y(kr —1)3 (k7 — tyef (kr —t)

i d, ;
= (=) (o (k7 — 1)) (kr — 1

= _Fék(V(t))%(vj(t))ef(kT —t), I=1,-,n.

Hence [0, k7] — ¢;(t) and [0, k7] — e;(kT —t) are parallel frame fields along ([ x,] and have the
same value at ¢t = k7/2, we deduce that e;(kT —t) = ¢;(t) for any t € [0,k7] and [ =1,--- | n.
Finally, we prove (A.5). For any ¢ > 0, let us choose k € N such that ¢ < k7. Then

e(t+t)=e((k+1)7—(7+1) =e(kr —1t) = ¢(2).
If ¢ < —r, this and (A.4) lead to
e(t+t)=e(—7—t)=e(T+ (=7 —t)) = e(—t) = e (t).
If —7 <t <0then0<t+r<r By (A6) and (A.4) we derive
a(r+1) = et — (1 +1)) = e(-t) = ea(l).

Summarizing these (A.5) is proved.

Note: Since 7 is even, as a loop v : S; — M is contractible. Thus v*T'M — S; has an
orthogonal trivialization. This can only lead to the existence of an unit orthogonal frame fields
along ~ satisfying (A.4). O
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Proof of Lemma 3.1. By Lemma 2.6 it suffices to prove the third and fourth assertions. Fol-
low the notations above Lemma 3.1.

Step 1(Prove that (\,t) — uy(t) is continuous, and C? with respect to t). By (#) in the first
paragraph in Section 3.1.1 and (3.2), for all ¢ € [0, 7] we have

F <v(t),ZUR(t)ez > ( , €XPr (1) (Z u&(ﬂ@(ﬂ)) = (Y(8), (1)) - (A7)
=1

i=1

By (3.4), (A, t) = () is a continuous map from A x [0, 7] into the open subset Us,(v,([0,7]))
of M. These and (&) in the first paragraph in Section 3.1.1 imply the composition

A% [0,7] = TM, (A t) = (Fhwogy) " (70, (¢ ( Zux Jeilt )

is continuous, and C? with respect to t. Since g is a C® Riemannian metric on M, we obtain

AXx[0,7] = R, (A ¢) (( ZU,\ et ) ; W(t)aej(t))> = u{\(t)

is continuous, and C? with respect to ¢, for each j = 1,--- ,n.
Step 2(Prove that (A, t) — ,(¢) is continuous). Fix a point ¢y € [0,7]. Let ¢ : U — ¢(U) C
R", ¢ — ¢(q) = (z'(q), - ,2"(q)) be a coordinate chart centered at 7(ty). For example, we

can take U = ¢x(to, B (0)) and ¢ = (¢5(to,-)) . It has the induced chart (7~1(U), ®) on TM
as in (A.2). Let J = (¥)~}(U), which is an open neighborhood of ¢ in [0, 7]. For each t € J, we
have two basses of Ty M,

e1(t), -+ ,en(t) and @H(t%'”vﬁﬁ(ﬂ

Hence there exists a unique non-degenerate matrix (A4;;(t)) of order n such that

n 9 .
t):ZAij(t)@H(t)’ ’Lzl,--- , .
=1

Then
z;u,\(t)ei(t) = Z;ux(t) *:1A i(t )8 7 Z (Z u (¢ ) 57 By (t)-
Let o(%(t)) = (z*(%(¢)),- - ,2™(F(t)). Then for each t € J we have
¢ <7(t)7 Z ug\(t)ei(t)> = (xl('y(t))7 T 71,71(7(75)’ Z ug\(t)Ail(t% T Z uz)\(t)Am(t)> :
i=1 i=1 i=1

It is clear that

p X @:UxU— By (0) x By, (0), (z,y) = (¢(x),¢(y))-

is a chart on M x M centered at (F(to),7(to0)). Take a small neighborhood Jy C J of tg in [0, 7]
such that dq(7(t),7(tp)) < ¢ for all t € Jy. Then (3.3) implies

dy( (1), 7(to)) < 26, V(A t) € A x Jo. (A.8)
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Hence {7y (¢)| (A, t) € A x Jo} is contained in the chart (U, ). Let
(% ) (1), () = (B, -, 2 F(E), 2 (a(8), -+, 2" (1 (1))
By this, (A.7) and (A.8) we obtain
o (F) " o(px @)t (' (1), 2" (V1) 2 (ya (). -+ L2 (1))
= (' (30, w"(v(t%iua(t)fumw, - ,iu3<t>Ain<t>) V(A1) € A x Jo. (A.9)

Note that U := ®o (F|W(0TM))_1 o (¢ x p)~tis a C® diffeomorphism onto its image set. Taking
the derivative of ¢ for the equation in (A.9) we arrive at

d d d

Dw (‘rl(i(t))v T 71‘”(7(75)7 :El(VA(t))’ T 7xn(7)\(t))) [%le(ﬁ(t)), R %xn(i(t)’ %xl ('YA(t))y
4.
(0]
- <§tw1(v(t)), SR ZCO ST RN u3<t>thm<t>>
- (jtxw», (0, DD S04 (), iu&(tmmu))
=1 i=1
VA1) € A x Jo. (A.10)

Since all A;; are C°, DV is C*, (A, t) — u,(t) is continuous (by Step 1), and

1) o 2 ((0) and (1) = ot (a(0)

are continuous in A x Jy (by Assumption 1.2), it follows from (A.10) that

"\ d “\d d d
AxJy> O\t — k(DA (@), -, ) —uk(O)Am@) | = [ —=udk(®), -+, —ub(t) ) (A;(t
xJo 3 (\t) = (: 504 (0 00+ 30 k(04 >> (k0 50 ()
is continuous. Moreover, all (A4;;(t)) are invertible. These lead to
d 1 d n
A X J[) > (A,t) — <dtu>\(t), ey, dtuA<t)>
is continuous. Since ty € [0, 7] is arbitrarily chosen, the required claim is proved. ]
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