2404.18852v1 [cs.PL] 29 Apr 2024

arxXiv

VERT: Verified Equivalent Rust Transpilation with Few-Shot
Learning

AIDAN Z.H. YANG"T, Carnegie Mellon University, USA
YOSHIKI TAKASHIMA*T, Carnegie Mellon University, USA
BRANDON PAULSEN, Amazon Web Services, USA
JOSIAH DODDS, Amazon Web Services, USA

DANIEL KROENING, Amazon Web Services, USA

Rust is a programming language that combines memory safety and low-level control, providing C-like
performance while guaranteeing the absence of undefined behaviors by default. Rust’s growing popularity
has prompted research on safe and correct transpiling of existing code-bases to Rust. Existing work falls
into two categories: rule-based and large language model (LLM)-based. While rule-based approaches can
theoretically produce correct transpilations that maintain input-output equivalence to the original, they often
yield unreadable Rust code that uses unsafe subsets of the Rust language. On the other hand, while LLM-based
approaches typically produce more readable, maintainable, and safe code, they do not provide any guarantees
about correctness. In this work, we present VERT, a tool that can produce readable Rust transpilations with
formal guarantees of correctness. VERT’s only requirement is that there is Web Assembly compiler for the
source language, which is true for most major languages. VERT first uses the Web Assembly compiler to obtain
an oracle Rust program. In parallel, VERT uses an LLM to generate a readable candidate Rust program. This
candidate is verified against the oracle, and if verification fails, we regenerate a new candidate transpilation
until verification succeeds. We evaluate VERT by transpiling a suite of 1,394 programs taken from competitive
programming style benchmarks. Our results show that VERT significantly improves an LLM’s ability to
generate correct Rust transpilations. Combining Anthropic’s Claude-2 and VERT increases Rust transpilations
passing property-based testing from 31% to 54% and bounded model-checking from 1% to 42% compared to
using Claude alone. In addition, we evaluate VERT’s ability to generate non-trivial safe Rust on programs
taken from real-world C projects that make significant use of pointers. Our results provide insights into the
limitations of LLMs to write safe Rust.

CCS Concepts: «» Software and its engineering — Formal software verification; Model checking; «
Computing methodologies — Natural language processing.

1 INTRODUCTION

Rust is a memory- and type-safe programming language that has performance on par with low-level
languages like C. It is often referred to as a “safer C” because the Rust type checker can guarantee
the absence of undefined behavior. Microsoft estimates that 70% of all their security bugs are due to
memory-safety issues [16], which could be mostly or entirely eliminated if the code were written
in Rust. Citing Rust’s security benefits, Rust has been used in major open source projects such
as Firecracker [8], and Linus Torvalds recently announced Rust will be a supported language for
Linux kernel development [50].

Rust’s security and performance benefits have fueled interest in automatically transpiling exist-
ing code written in other languages into Rust [2, 45]. Existing works on transpilation broadly fit
into two categories: rule-based and large language model (LLM)-based. Rule-based approaches use

“Equal contribution.
TWork done at Amazon.

Authors’ addresses: Aidan Z.H. Yang, aidan@cmu.edu, Carnegie Mellon University, USA; Yoshiki Takashima, ytakashi@and
rew.cmu.edu, Carnegie Mellon University, USA; Brandon Paulsen, bpaulse@amazon.com, Amazon Web Services, USA;
Josiah Dodds, jldodds@amazon.com, Amazon Web Services, USA; Daniel Kroening, dkr@amazon.co.uk, Amazon Web
Services, USA.

, Vol. 1, No. 1, Article . Publication date: April 2024.

2 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

Source Program GO C ile-Then-Lift Tr ilation

fn func_4(&mut self) —> Option<i32> {
write_mem_i32(
&mut self.memory,

'
1func uniquePaths(m int, n int) int {
memo := make([][lint, m)

for i :=0; i <m; i++ { (v0.try_as_i32()? + 4) as usize,vl.try_as_i32()?)?;
memo[i] = append(memo[il, 1) "label_4: loop {

} 'labzl_S: Toop {

o Al g Tl A @ mp L v0 = TaggedVal::from(local_4);

v0 = TaggedVal::from(read_mem_i32) (
&self.memory, (v@.try_as_i32()? + 4 as usize)?);
local_65 = v@.try_as_i32()?;
v0 = TaggedVal::from(local_4);
v0 = TaggedVal::from(read_mem_i32(
&self.memory, (v@.try_as_i32()? + 44124) as usize)?);
'label_6: loop {
'label_7: loop {
v0 = TaggedVal::from(local_4);
v0 = TaggedVa om(read_mem_i32(
&self.memory, (v@.try_as_i32()? + @) as usize}
V7
}

memo[0] = append(memo([@], 1)

for i : ;oi<m; ie+ {
for j 1; j <n; j++ {
memo[i] = append(memo[il, memo[i-1][j]+memo[i] [j-1])

+

'
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
'
1
1
1
1
'
return memo [m-1] [n-1] i
1
1
1

LLM Transpilation A\ VERT Transpilation

1
'fn unique_paths(m: 132, n: i32)-> i32 {
let mut memo = vec![vec![1; n

as usizel; m as usizel; fn unique_paths(m: i32, n: i32)-> i32 {

let mut memo = vec![vec![1; n as usizel; m as usizel;

for i in 1..n as usize {

for i in 1..n as usize
{ memo [0] [i] = 1;

memo[0] [i] = 1;

for i in 1..m as usize {
for j in 1..n as usize {
memo [i] [j]1 = memo[i=11[31 + memo[il[j=11:

for i in 1..m as usize {

for j in 1..n as usize {
memo [i] [j]1 = memo[i+1]1[j] + memo[il [j+11;

}
¥ memo[m as usize - 1][n asusize - 1]

memo[m as usize - 1][n as usize - 1]

}

Fig. 1. Examples of transpilations from a source Go program using compile-then-lift, Anthropic’s Claude
LLM, and VERT.

hand-written rules and algorithms that translate a target program into a new language, typically
in a statement-by-statement fashion. Rule-based approaches have human-understandable imple-
mentations that could, in theory, be proved correct. However, as we will show, they often result in
unreadable and unidiomatic code that does not take full advantage of the target language’s useful
features, such as efficient native types.

On the other hand, LLM-based approaches train an LLM that takes a program in one language
as input and attempt to output an equivalent program in the target language [43]. LLM-based
approaches tend to produce code that is similar to their training data, and thus, if the model is
trained on high quality, human written, code, the model will usually produce high quality, idiomatic
transpilations [57]. However, these approaches come with no formal guarantees that the resulting
code will maintain input-output equivalence with the original [34, 38, 55].

In this work, we focus on general, verified, and readable transpilation to Rust. By general, we
mean that it can apply to most major languages. By verified, we mean that input-output equivalence
of the final transpilation has been verified against the source program in some way. The verification
techniques we experiment with are property-based testing (PBT), bounded model checking, and
unbounded model checking. By readable, we mean that the transpilation resembles human-written
code. While readability is a highly subjective measure, we show examples in Figure 1 that we
believe makes this claim self-evident.

To the best of our knowledge, the only general rule-based approach for transpiling to Rust
that could theoretically guarantee equivalence is to compile-then-lift. In this approach, we first
compile the source program to an intermediate language like LLVM or Web Assembly, and then lift

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 3

the intermediate language to the target language (Rust in our case). For example, Web Assembly
compilers exist for most major languages (e.g. C, C++, Rust, Java, Go, C#, PHP, Python, TypeScript,
Zig, and Kotlin), and the recent work riWasm [11] can lift Web Assembly to Rust. While this approach
is very general and, at least in theory, can guarantee equivalence, compile-then-lift approaches
generally can only produce code that is as readable as the intermediate language itself, which for
LLVM and Web Assembly is virtually unreadable [24, 41]. We give an example transpilation using
a Web Assembly compiler and riWasm in Figure 1. As can been seen, rWasm produces Rust that looks
like assembly rather than a high-level language.

There are also many works on transpiling without equivalence guarantees [35, 43, 45, 52, 53, 56],
mainly using language models. While these approaches are also general and usually produce
readable code, language models are notorious for outputting subtly incorrect code [55]. We show
an example language model transpilation in Figure 1 using Anthropic’s Claude-2, which is a state-
of-the-art general purpose LLM. We can see the transpilation is far more readable than the result
of the compile-then-lift approach. However, the LLM has changed a - to a +, which may escape
human review. Such subtle errors may be difficult to debug and only manifest in corner cases.

To overcome these limitations, we combine rule-based and LLM-based transpilation with formal
verification tools, and implement our approach in a tool VERT. Our algorithm takes a source
program as input, and outputs a transpilation that is verified equivalent relative to a rule-based
transpilation. Notably, VERT does not require any additional input beyond the source program.
The main assumption of VERT is that the language of the source program has a Web Assembly
compiler.

VERT first creates an oracle Rust transpilation by using the source language’s Web Assembly
compiler and rWasm, as previously described. This transpilation is equivalent by construction, but
is unreadable. Next, we leverage an LLM to produce a candidate final transpilation, which is far
more readable, but may have implementation errors, ranging from syntax errors to subtle logic
errors. We then enter an iterative repair and verify process. We first attempt to fix compilation
errors by applying a combination of hand-crafted rules and re-prompting the LLM to re-transpile
the source program until the program compiles. Once compiled, we attempt to verify equivalence
using one of the previously mentioned verification techniques. If verification succeeds, then we
stop and output the program. However, if verification fails, which is usually the case, we re-prompt
the LLM to transpile the program.

We evaluate VERT on 1,394 transpilation tasks with source languages in C++, C, and Go curated
from prior work [45, 61]. We focus on C++ and C since these two languages are often used for
similar tasks as Rust [27, 51]. We further evaluate on Go as Rust is often the transpilation target
when cross-platform support is a hard requirement [26]. We experiment with three state-of-the-art
LLMs as the underlying LLM for VERT, namely CodeLlama-2 [42], StarCoder [31], and Anthropic
Claude-2 [4]. With Claude-2 as the underlying LLM, our results show that VERT can produce
transpilations that pass bounded verification for 42% of these programs, and differential testing for
54% of these programs. Moreover, VERT improves the capabilities of existing LLMs — VERT is able
to produce a verified transpilation 45% more often on average (43% for C++, 46% for C, and 43% for
Go) compared to using an LLM alone.

To measure VERT’s ability to produce non-trivial safe Rust, we gather and manually label an
additional 14 programs that make significant use of pointers from the benchmarks of prior work
on C to Rust transpilation [2, 21, 61]. Our results on these additional benchmarks show that VERT
can produce Rust with relatively simple ownership models for small (less than 36 LoC) programs.

In summary, our main contributions are as follows.

, Vol. 1, No. 1, Article . Publication date: April 2024.

4 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

o VERT. We propose and implement an end-to-end technique that can transpile any language that
compiles to Wasm into human-readable Rust. Our data and tool are available for open-source.

o Verified Equivalence with Input Code We use Wasm generated from original input as a
reference model and perform equivalence checking by automatically injecting test harnesses,
allowing the user to verify that the LLM translation is free of hallucinations.

e Empirical evaluation. We evaluated VERT on a set of real world programs and competitive
programming solutions, which include 569 C++ programs, 520 C programs, and 305 Go programs.
We perform an extensive evaluation of several LLMs directly (CodeLlama-2), with fine-tuning
(StarCoder), and with instruction-tuned few-shot learning (Anthropic Claude-2) on different
source code languages.

2 BACKGROUND

We give a brief introduction of the key aspects of our tool. In particular: Rust, the rWasm compilation
strategy, and auto-regressive large language models.

2.1 Rust

Rust is a systems programming language with a focus on performance, reliability, and safety. Rust’s
main goal is to eliminate memory safety errors through a memory-ownership mechanism. Rust’s
memory-ownership mechanism associates each value in memory with a unique owner variable,
which guarantees safe static memory collection. In particular, when we want to create a variable
that aliases a value (i.e., creating a new pointer to the value), we must transfer ownership to the new
variable, either temporarily or permanently. Rust programs are challenging to write and synthesize
as these ownership rules must be obeyed for the program to even compile. LLM-based Rust synthesis
has the additional challenge that these typing rules are not found in popular languages that make
up majority of the training dataset.

2.2 Migrating to Rust

Given the memory-safety properties of Rust, there is a strong incentive to migrate existing codebases
to Rust. While several notable projects have been rewritten in Rust [60], the translation to Rust
remains a challenge owing to the enormous manual effort. For C to Rust translation in particular,
several tools have been developed to automatically translate C functions to Rust [2, 21, 61]. These
tools use the semantic similarity between C and Rust and apply re-writing rules to generate Rust
code. However, these re-write rules are specific to the source language, and do not scale to multiple
languages, especially those whose semantics is not similar to Rust. To the best of our knowledge,
no rule-based automatic translator exists from a garbage-collected language like Go or Java to Rust.

In contrast to transpilers, rWasm differs significantly in its intent. rWasm converts Web Assembly
(Wasm) programs into Rust and leverages the memory-safety properties of safe Rust as a sandbox to
eliminate the Wasm runtime overhead. Since many programming languages already target Wasm
as an intermediate representation [5], we can leverage riWasm for multi-language support.

2.3 Rust Testing and Verification

To establish trust in the LLM-output, we perform equivalence verification of two Rust programs.
We use existing tools that operate on Rust to prove equivalence between the LLM-generated
and the rWasm-generated oracle Rust programs. We use bolero, a Rust testing and verification
framework that can check properties using both Property-Based Testing (PBT) [22] and Bounded

Ihttps://zenodo.org/records/10927704

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://zenodo.org/records/10927704

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 5

Model Checking [17, 18]. An example of a bolero harness for checking equivalence between an
LLM-generated and a trusted reference program is given in Fig. 2.

#[test]
#[cfg_attr(kani, kani::proof)]
fn eq_check () {
bolero::check! ()
.with_type()
.cloned ()
.for_each(|(a, b) : (i32, i32)| 1llm_fn(a, b) == reference_fn(a, b));

[IS B A N SR CRE

Fig. 2. An example bolero harness checking equivalence between 2 functions.

Using a harness like the one in Fig. 2, bolero can check properties via two different methods. The
first method is by random PBT. PBT works by randomly generating inputs to the function under
test, running the harness with these inputs, and asserting the desired properties (e.g. equivalence
between two functions). PBT repeatedly runs this procedure to check the property over the range of
inputs. PBT is a valuable tool for catching implementation bugs, however it is generally infeasible
to run PBT for long enough to exhaust all possible inputs to a program.

bolero performs model checking through Kani [48], a model-checker for Rust. When run with
Kani, bolero produces symbolic inputs rather than random concrete inputs. Executing the harness
with symbolic inputs, we can cover the entire space of inputs in one run and the model-checker
ensures the property holds for all possible inputs. Since symbolic execution does not know how
many times loops are run, Kani symbolically executes loops up to an user-provided bound. To
prove soundness of this bound, Kani uses unwind checks asserting that loop iteration beyond the
bound is not reachable. We say that a verification is bounded if unwind checks are turned off and
exhaustiveness is not known. Conversely, a full verification includes unwind checks and thus is
exhaustive with respect to all reachable executions. Even with full verification, the harness may
not be able to cover enough values of unbounded types like vectors.

While Kani can prove properties of programs, complex programs can take too long to prove.
Conversely, PBT runs exactly as quickly as the program runs, but is not exhaustive. Given the
complementary properties of PBT and Kani, we allow users to use both tools, using bolero and
marking the harness for both PBT (#[test]) and model-checking (kani: : proof).

2.4 Large Language Models

Deep learning (DL) has recently shown promise for program generation [36, 47]. The DL models
that can achieve the closest capabilities to human-written results are large language models (LLMs),
such as GPT-4 [37]. LLMs train billions of parameters using a massive amount of training data. LLMs’
effectiveness for code generation [13] suggests that LLMs are capable of performing specialized
software engineering tasks, such as program language transpilation.

Most modern LLMs are attention-based models. Attention-based models use the Transformer
architecture [49]. In a Transformer architecture model, tokens exchange information across all
other tokens using an attention matrix. LLMs typically produce text in a left-to-right manner
(auto-regressive model), producing each token given its prefix context. In a auto-regressive models,
the learned attention matrix is partially masked out. Specifically, the generation of a new token
depends only on its prefix context (i.e., tokens on the left), and its suffix context (i.e., tokens on the
right) are hidden (i.e., masked out). After a model finishes training all trainable parameters in a

, Vol. 1, No. 1, Article . Publication date: April 2024.

6 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

user specified time, a model can make predictions on future tokens on a sequence of tokens the
model has never seen before.

3 METHODOLOGY

In this section, we describe the key ideas behind our universal transpilation technique. Figure 3
gives an overview of VERT’s entire pipeline. The technique takes as input a source program, and
outputs a verified equivalent Rust program. As shown in Figure 3, we parse the program into
separate functions during the cleaning phase, then split the pipeline into two paths. The first path
outputs an LLM-generated Rust transpilation. The second path produces rWasm Rust code that is
compiled directly from the original program through Wasm. Finally, we create a test harness based
on the original program to verify equivalence of the two paths’ outputs, and only after a successful
verification we output a correct and maintainable Rust transpilation. In the following sections, we
describe each component of VERT in further detail.

3.1 Program repair on LLM output

LLMs often produce incorrect code. When prompting an LLM for Rust code, any slight mistake could
cause the strict Rust compiler (rustc) to fail. Fortunately, rustc produces detailed error messages
when compilation fails to guide the user to fix their program. We create an automatic repair system
based on rustc error messages. For each error, we first classify the error into one of three main
categories: syntax, typing, and domain specific.

As seen in Figure 4, an example syntax error generated by the LLM is the wrong closing delimiter.
For rustc to successfully compile, all syntax errors must be resolved. We track the error code
location (e.g., line 10 in Figure 4), and we use the rustc provided initial delimiter to guide our repair
strategy. For this case, we know to use the right curly bracket } to replace] on line 10.

Typing error messages in Rust generally have a similar structure. In particular, error messages
are usually of the form expected type a, found b. Figure 5 shows the LLM generate a pass-by-
reference variable &132 while rustc expects a pass-by-value 132. Using the compiler message’s
error localization and suggestion line (characterized by the keyword help:), we replace the variable
num by &num.

Finally, domain-specific errors are compilation errors that are specific to the program. The error
messages for domain-specific errors do not share the same structure, and therefore we only use the
rustc error message suggestion line to generate a repair. In Figure 6, which shows the error message
for an immutable assignment, the suggestion line indicates that if the variable x is converted to a
mutable object, the immutable assignment error would be solved. Using this suggestion line, we
replace X by mut x, and observe that the program compiles. It is often the case that even with the
error message suggestion line, we cannot generate a repair that fixes all errors. In these cases, we
regenerate an LLM output using the error as part of the new prompt and restart the process. Our
error-guided repair is significantly faster than the LLM generation (discussed in Section 4.2), so we
only regenerate an LLM output after exhausting all rustc helper messages.

3.2 Transpilation Oracle Generation

Since the LLM output cannot be trusted on its own, we create an alternate trusted transpilation
pipeline for generating a reference Rust program against which the LLM output is checked. The
alternate pipeline does not need to produce maintainable code, but it needs to translate the source
language into Rust using a reliably correct rule-based method. We use Wasm as the intermediate
representation because many languages have compilers to Wasm, allowing it to serve as the common
representation in the rule-based translation. Once the input programs are compiled to Wasm, we

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning

WebAssembly Code

(func (param i32)
(result i32) (local i32)
loop (result i32)

rwasm compiled Rust code

impl WasmModule {
fn push_stack(&mut self,
t: TaggedValue) { /*
push Wasm stack */ }

rwasm function call

fn
() -> 132 {

let mut wasm_module
= WasmModule: : (OF

wasm_module

(OH

unsafe { RESULT }

}

Source
program to
WebAssembly

rwasm entry

Point
Identifier

Source Program

I
I—

Source Program
Cleaning

Regenerate
LLM

Equivalence

Source Program Function

// uniquePaths algorithm

func uniquePaths(m int, n
int) int {

memo := make([][]int, m)

for i :=0; 1 < m; i++ {

}
func main(){..}

Source Program Cleaned

func uniquePaths(m int, n
int) int {

memo := make([][]int, m)
for i :=0; 1 < m; i++ {
}

LLM Generated Rust Program

fn uniquePaths(m: i32, n:
i32) -> i32 {

let mut memo :=
vec![vec![1; n as usize];
m as usize];

for i in 1..m{

Error M

error[E@308]: mismatched
types-->
rust_programs/src/uniquep
aths.rs:11:14

11 | map.insert(num,
index as 132);

| ------ ANA expected
*i32°, found &i32

Test Harness

Check

One Function
Transpiled
to Rust

Safe Rust
Program

kani::check!().with_type:
:<(132,132)>().cloned().f
or_each(|(m, n)|{

let result = fn
unique_paths_11m(i32,
i32);

let result_prime = fn
unique_paths_rwasm(m, n);
assert_eq!(result,
result_prime);

Fig. 3. VERT ’s architecture, which takes as input a source program and produces a formally equivalent Rust

program

, Vol. 1, No. 1, Article . Publication date: April 2024.

8 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

1
2 For more information about this error, try 'rustc --explain EQ433"'.
3 error: mismatched closing delimiter: ']'
4 --> roman_to_integer_test.rs:1:33
5 |
6 1 | fn roman_to_int(s: &str) -> i32 {
7 | * unclosed delimiter
8 ...
9 10 | DN
10 | * mismatched closing delimiter
Fig. 4. Syntax error
1 error[E@308]: mismatched types-->
2 rust_programs/src/uniquepaths.rs:11:14
3 11 | map.insert(num,index as i32);| ------ rrnr expected '&i32', found 132
4 help: consider borrowing here:
"&num’

Fig. 5. Mismatched type error

[

1 error[E@384]: cannot assign to immutable argument 'x

2 --> reverse_integer_test.rs:16:3

3 |

41 | fn reverse(x: i32) -> i32 {

5 |- help: consider making this binding mutable: 'mut x'

6 ...

7 16 | x = x / 10;

8 | ArnrAAAAAAAL cannot assign to immutable argument

9

10 error: aborting due to 2 previous errors

11 For more information about this error, try 'rustc --explain E0384"'.
Fig. 6. Immutable assignment error

1 func callReverse() int {

2 result := reverse(123)

3

4 if result == 321 {

5 return 0

6 } else {

7 return 1

8 3

9}

Fig. 7. An entry point for the reverse function

use rWasm [11], a tool that translates from Wasm to Rust by embedding the Wasm semantics in Rust
source code. While the original authors intended riWasm as a sandboxing tool that leverages the

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 9

1 fn func_4(&mut self,) -> Option<i32> {
2 //

3 let mut local_3 : i32 = 0i32;

4 let mut local_4 : i32 = 0i32;

5 vl = TaggedVal::from(321i32);

6 // mutant: v@ = TaggedVal::from(654i32);
7 local_3 = v@.try_as_i32()7?;

8 vl = TaggedVal::from(123i32);

9 // mutant: v@ = TaggedVal::from(456i32);
10 local_4 = vO.try_as_i32()7?;

11 //

12 %

Fig. 8. The difference between the original rWasm output and the mutated one (highlighted).

memory safety properties of safe Rust, we use it to generate trusted Rust code with same semantics
as the original input.

3.3 Mutation Guided Entry Point Identification

Given the assembly-like output of riasm, we must perform analysis to identify the entry point
of the rWasm transpiled function. VERT provides the option for the user to manually identify the
entrypoint, but we can find it automatically using a simple heuristic, such as a function call or
a single test case. We note that this heuristic could be generated automatically using LLMs or
search-based software testing and thus we can assume an entrypoint generator in the source
language. VERT uses a function call in the source language with constant inputs to the function to
be transpiled and an assertion on the output of that function. One such function is given in Fig. 7.

We leverage this function call to identify the input and output of the function. While one option
for such analysis is to perform decompilation, we find that a mutation-guided approach is sufficient
for our purposes. In Fig. 7, we know that the input is 123 and the output is 321. Now, we wish
to identify the equivalent constant in the rWasm output. While it is possible to just perform a
linear scan of the rWasm output for this constant, that risks spurious matches, especially for simple
types like 132. Instead, we guide this identification by leveraging the function call and mutating it.
Suppose we swap 123 with 456 and 321 with 654 and re-transpile with riWwasm. These constants
will change, but the rest of the rWasm output remains the same. Taking the diff, we can identify
inputs and outputs by what changed. The diff in the rWasm output is shown in Fig. 8.

3.4 Equivalence Harness Generation

In our final step, we generate harnesses to check for equivalence given the input and output
locations. We define equivalence here in functional terms: for all inputs, running both functions
yields no crashes and identical outputs. To check this property holds, we automatically generate
a wrapper to the Wasm function and a harness where the LLM-synthesized and wrapped rWasm
functions are called with the same inputs, and the outputs are asserted to be equal. To ensure
this equivalence holds for all inputs, we leverage property-based testing with random inputs and
model-checking with symbolic inputs. For the remainder of this section, we refer to both of them
together as “the input”

The wrapper consists of two parts: input injection, and output checking. Since the original
program runs with a set of constant inputs, we must replace these constant inputs with the inputs
of the harness like input: 132. The challenge here is to inject the inputs into the middle of the

, Vol. 1, No. 1, Article . Publication date: April 2024.

10 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

Rust code representing a Wasm module. Instead of replacing the parameters to the function, we use
globals in Rust to inject the inputs right at the location where constants used to be. An example
is given in Fig. 9, with func_4 being the Wasm equivalent of the test. VERT replaces constant
inputs with global reads, generalizing the test and allowing us to vary the inputs fed into the
Wasm-generated function. Note that, while this injection requires unsafe code, it is fine as this is
only done in the oracle and the oracle is discarded once the equivalence is checked.

Now that we can feed various inputs into the Wasm function, we must also provide a way to
assert that the output is equal. Recall that in Fig. 9, the output is compared to a baseline and 0
is returned if the check succeeds. Because of this comparison check, it is sufficient to inject the
baseline value and then leverage the check to assert that the return value is 0. Injection is done in
the same way as the inputs.

We note that while this approach is sound, it may falsely identify some equivalent programs as
faulty due to semantic differences between Rust and the target language, or between the target
language and rWasm embedding. We note two cases where we permit the analyst to add assumptions.
First, when the input type is an unsigned integer. In this case, we have a mismatch were Wasm
has only signed integers. So the output of rWasm will represent unsigned integers by encoding it
in signed. However, the true valid range will be smaller (u32 will become 164 to the full range of
u32 values but the extra bits are not used). In this case, it is soundly permissible to assume that
the values lie in the valid range of u32. Another case of valid assumptions occurs with strings:
strings in C are ASCII while in Rust are Unicode. Therefore, a valid range of Rust strings will crash
a C-derived Wasm module spuriously. We assume the string’s range to valid ASCII only.

3.5 Equivalence Checking

With the equivalence checking harness built, we must now drive the harness and check that the
equivalence property holds for all inputs. VERT provides 3 equivalence checking techniques with
increasing levels of confidence and compute cost. This procedure is shown in Fig. 11. First, we run
the equivalence-checking harness with PBT using bolero up to the time limit, generating random
inputs and checking equivalence of the outputs. If the candidate diverges from the oracle, then PBT
will return the diverging input as a counterexample. If no counterexample is found within the time
limit, we say this candidate passes PBT.

If the PBT stage succeeds, we now perform bounded verification with Kani. In the bounded
verification phase, we run Kani with an unwinding bound of k and no unwind checks. This means that
paths up to k loop iterations is exhaustively explored, but any divergences between the candidate
and the oracle with traces containing more than k loop iterations are missed. We run this phase for
120 seconds, and terminate with 3 potential results. First, Kani returns with a counterexample that
causes the oracle and the candidate to diverge or one of the two to crash. Second, Kani does not
return with an answer within the time limit, which we also consider to be a failure as we cannot
establish bounded equivalence. Finally, Kani verifies that, limited to executions with at most k loop
iteration, there are no divergences or crashes. We consider the third case alone to be successful.
Bounded verification does not check whether k is exhaustive.

If bounded verification succeeds, we perform full verification. VERT increases the unwinding
bound until verification can be achieved with all checks enabled, including unwind checks that
ensure the unwinding is fully exhaustive and the program cannot go beyond the code that was
unwound. This ensures the equivalence and safety properties holds for every input the harness
generates. Once again, three outcomes are possible. First, Kani can return a counterexample. Second,
Kani can fail to return an answer within the time limit. Finally, Kani successfully verifies the harness.
Again, we consider the third case alone to be successful. However, unlike with bounded verification,

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 11

1 static mut INPUT_1 = 0;

2 static mut OUTPUT_1 = 0;

3 impl WasmModule {

4 /// returns @ if the output matches

5 fn func_4 (&mut self,) -> Option<i32> {

6 /7

7 let mut local_3 : i32 = 0i32;

8 let mut local_4 : i32 = 0i32;

9 vl = TaggedVal::from(unsafe {INPUT_13});
10 local_3 = v@.try_as_i32()7?;

11 vl = TaggedVal::from(unsafe {OUTPUT_13});
12 local_4 = vO.try_as_i32()7?;

13 /7

14 }

15 %

16 /// equivalence-checking harness.
17 fn equvalence() {
18 bolero::check! ()

19 .for_each (| (input: i32)]| {

20 let 1lm_fn_output = llm_generated_reverse();
21 unsafe {

22 INPUT_1 = input;

23 OUTPUT_1 = 1lm_fn_output;

24 }

25 let mut wasm_module = WasmModule::new();

26 wasm_module._start().unwrap();

27 assert!(wasm_module.func_4().unwrap() == 0);
28 »;

29 }

Fig. 9. Equivalence-checking harness for func_4.

successful full verification guarantees that the translation is without any error. If the oracle crashes
at any point in the equivalence checking, VERT provides the user with a counterexample which
can be used to diagnose the crash in the original program.

We support complex types through their primitive parts. Given a struct or enum, that Kani
or PBT does not initially support, we construct values of that type by abstracting the primitive
parameters of that type and any required discriminants for enums. For types of finite size, this is
sufficient. However, we provide bounded support for handling vector types. The challenge here
is to vary the length of the vector in the rWasm output, which is done by having a fixed-length
vector of varying inputs and then pruning the length down to the actual length dynamically. Our
approach is sound and complete for primitive types, and by extension, any type that comprises
solely of primitive types such as tuples of primitives. For unbounded types like vectors, hashmaps
and user-defined types containing such, VERT synthesizes harnesses that generate inputs up to the
size encountered in the sample function call. As a limitation, any divergences that require bigger
vector than encountered will be missed.

3.6 Few-shot Learning

The main focus of this work is on verifying the output of LLMs for program transpilation, and
not LLM prompt engineering. Therefore, we keep the prompts simple and short. Complicated

, Vol. 1, No. 1, Article . Publication date: April 2024.

12 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

1 {Original code}
3 Safe Rust refactoring of above code in {language}, with code only, no comments

Use the same function name, same argument and return types.

Make sure the output program can compile on its own.

// If there exists counter examples from prior failed equivalence checking
Test that outputs from inputs {counter_examples} are equivalent to source

S-S 'S

program.

Fig. 10. LLM Prompt template.

— v v v VA= —
— rustc Bounded Full | —
Compile Verification Verification
~~ H I
LLM-Generated ~o 1 Formally Verified
Rust Function \.A* LLM-Generated Rust Function
Compile Fail Counterexample Timeout

Fig. 11. Evaluation procedure.

and repeated querying of the same prompts do not provide additional benefits on the accuracy of
outputs for small sized models, and too expensive for an average practitioner for industry sized
models (i.e., Anthropic Claude). To achieve few-shot learning on our transpilation queries, each
failed transpilation attempt provides its equivalence checking counter examples as a few-shot
learning example for future transpilation attempts.

Figure. 10 shows our template for few shot learning. We start with querying the LLM to refactor
the source code into safe Rust. Although we filter for safe Rust LLM output, we experimentally
found that asking the LLM to always produce safe Rust gives more accurate results. We prompt the
LLM to use the same argument and return types as the original, and can compile without external
dependencies. Finally, we collect the counter examples from prior failed equivalence checks as
part of the prompt. Specifically, we ask the LLM to consider the specific inputs that caused a test
or verification failure from the previous iterations. We observed that providing specific inputs as
information to the LLM results in subtle bug fixes within the program output.

4 EVALUATION

In this section, we present our approach and results for the following research questions.

RQ1. How does VERT perform vs. using the respective LLM by itself? We evaluate our
technique’s performance on a benchmark dataset, showing that VERT significantly increases the
number of verified equivalent transpilations vs. using the LLM by itself.

RQ2. How does each component of VERT’s approach impact its performance? We conduct
an ablation analysis, which shows that our prompting and error-guided refinement helps produce
more well-typed and more correct programs. We further measure the runtime performance of each
part of VERT, showing that time costs of error-guided refinement is reasonable and VERT spends
most of the time in verification.

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 13

RQ3. Does VERT produce safe, readable, and idiomatic Rust transpilations? To evaluate
VERT’s ability to produce safe Rust, we collect programs from real world C projects that make use
of pointers. In addition, we report on the frequency of linter warnings of transpilations produced
by VERT, and compare lines of code between the translations produced by VERT, rWasm, and
CROWN [61], a rule-based C to Rust transpiler. VERT’s transpilations do not produce linter
warnings, and has far fewer lines of code than the other approaches.

RQ4. How extensible is VERT to future verifiers? While we use Kani [48] for most of the
benchmarks to leverage automation, we encountered a large number of timeouts. We show that
VERT is able to work with multiple verifiers by using Verus [30] and show that manual verification
is possible albeit costly.

4.1 Setup
4.1.1 LLMs. We use the following LLMs to generate the candidate transpilations in VERT:

o TransCoder-IR [45]: A language model trained by low-level compiler intermediate representa-
tions (IR) for the specific purpose of programming language translation. TransCoder-IR improves
upon the TransCoder model [43] by incorporating IR into the training data and decompiling
into IR as a training target. Both TransCoder and TransCoder-IR are trained on roughly 2.8
million repositories from GitHub?. Since TransCoder-IR’s input is the original code alone and
no prompt is taken, we do not perform error-guided few-shot prompting. To the best of our
knowledge, TransCoder-IR is the only LLM-based general transpilation tool for Rust. Therefore,
we use TransCoder-IR as baseline for our evaluation.

e CodeLlama-2 [42]: A 13B parameter model initialized from Llama-2 [46], then further fine-tuned
on 500 billion tokens of code data.

o StarCoder Fine-tuned [31]: A 15.5B parameter model trained on 1 trillion tokens sourced from
The Stack [28]. StarCoder prompted achieves the highest HumanEval [13] score of 40.8 over
comparable open-source LLMs, such as LLaMA-65B [46] with a score 23.7 and CodeGen-16B [36]
with a score of 29.3. To investigate the effectiveness of Rust fine-tuning on prior LLMs, we
fine-tune StarCoder for transpilation using LeetCode problems that have solutions for Rust,
C, C++, and Go. In total, we collect solutions in each language for 94 LeetCode problems. We
fine-tune the LLM to take C, C++, or Go solution as the input, and produce the corresponding
Rust solution as output.

e Anthropic Claude-2 [4]: A production-grade, proprietary LLM accessible through Anthropic’s
APIs with roughly 130 billion parameters. Claude-2 costs about $0.0465 per thousand tokens.

4.1.2 LLM Fine-tuning. The availability of Rust code in open source is scarce as compared code
written in most other programming languages. Incoder [23] estimates that Rust is only the 20th
most common language in their training database, which is a 159GB code corpus taken from Github
BigQuery ®. Due to the lack of Rust data available on open-source, we opt to not train an LLM
targeted at Rust code generation. Instead, we directly use an off-the-shelf industry grade LLM, and
also fine-tune on a separate open-source pretrained LLM. Specifically, we use Anthropic Claude-2 *
for the industry grade LLM, and StarCoder [31] for the pretrained LLM.

We use light weight and parameter efficient adapter layers [25, 33, 58] for fine-tuning StarCoder.
Instead of retraining StarCoder entirely, we taken the final hidden states of StarCoder and add
adapter layers at the end using small amounts of data. We collect 94 LeetCode type question
solutions in C, C++, Go and Rust. Although there are existing code bases for all four languages, we

Zhttps://console.cloud.google.com/marketplace/details/github/github-repos

3https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
4https://www.anthropic.com/product

, Vol. 1, No. 1, Article . Publication date: April 2024.

14 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

find that LeetCode has the most consistent translation between other languages and Rust. We were
able to collect 94 LeetCode questions of which have a direct translation between all 3 languages.
For each LeetCode type question, we have a corresponding source program (written in Go, C, or
C++), and a target program (written in Rust). We encode all code words into tokens using the GPT-2
tokenizer. We fine-tune with 4 Transformer layers, 300 total epochs, and a final model dimension
of 6144.

4.1.3 Benchmark selection. We draw our benchmarks from two sources. Our first source is the
benchmark set from TransCoder-IR [45], which is primarily made up of competitive program
solutions. In total, this benchmark set contains 852 C++ programs, 698 C programs, and 343 Go
programs. We choose this dataset to avoid potential data-leakage (i.e., LLM memorization) [9] in
our evaluation. We note that the Rust programs produced by TransCoder-IR were released after
June 2022, which is the training data cutoff date of our chosen LLMs [4, 31, 42]. We select programs
from the TransCoder-IR dataset that can directly compile to Wasm using riWasm. After filtering, we
collect a benchmark set of 569 C++ programs, 506 C programs, and 341 Go programs. These types
of benchmarks are common for evaluating LLMs’ coding ability. However, the programs themselves
often do not make extensive use of pointers, so they do not adequately challenge VERT’s ability to
generate safe Rust.

To provide insight into VERT’s ability to write safe rust, we gather 14 additional pointer-
manipulating C programs from prior work on C to Rust transpilation [2, 21, 61]. We note, however,
that the benchmarks in these prior works use open-source programs written before our chosen
LLM’s training data cutoff (June 2022). To avoid LLM data-leakage, we select and customize snippets
from these C projects to transpile to Rust. We manually label the input output pairs for each snippet
for verifying equivalence on the transpiled Rust programs. Many of the benchmarks we select
involve multiple functions. The explicit goal when selecting benchmarks from these projects is to
discover the limitations of VERT in terms of writing safe Rust, therefore we gather benchmarks of
increasing complexity in terms of the number of pointer variables, and the number of functions in
the benchmark. We present several complexity metrics for the benchmarks and discuss them in
more detail in Section 4.2.

In total, we evaluate our approach on 569 C++ programs, 520 C programs, and 341 Go programs.

4.1.4 Evaluation Metrics. Neural machine translation (NMT) approaches use metrics that measure
token similarity between the expected output and the actual output produced by the LLM, in which
a higher score indicates the two outputs have many tokens in common. While these approaches are
often meaningful when applied to natural language, for programming languages, small differences
in the expected output and actual output could result in different compilation or run-time behavior.
Conversely, two programs that share very few tokens (and hence have a very low text similarity
score) could have identical compilation or run-time behavior.

For programming languages, metrics based off of passing tests have been proposed. Roziere
et al. [43] and Szafraniec et al. [45] use the computational accuracy (CA) metric, which counts a
translation as correct if it passes a series of unit tests. However, there is no accepted standard for
the number of required passing tests when using the CA metric. Furthermore, the CA metric does
not take into account the quality or coverage of the unit tests.

To improve upon the metrics used for prior NMT approaches and remove the overhead of writing
high-coverage unit tests, we use formal methods to measure the correctness of the output. We
insert the LLM-generated code and rWasm-generated code in an equivalence-checking harness
that asserts equal inputs lead to equal outputs. An example of such a harness is given in Figure 9.
Our full procedure is shown in Fig. 11. Since the three metrics used are significantly slower than
checking a series of unit tests, we set a time limit for our metrics. For all three metrics, we set a 120

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 15

seconds limit. For PBT, no counterexamples within 120 seconds counts as success. For Bounded
and Full verification, success requires establishing verified equivalence within 120 seconds. If any
of the three verification step fails, VERT terminates.

4.1.5 Environment. The experiments for all benchmarks were run on an Ubuntu 22 instance with
32 Intel Xeon 2.30 GHz processors, 240GB RAM, and 4 Tesla V100 GPUs.

4.2 Results

We present results on the TransCoder-IR benchmarks in Table 1. We present VERT operating in
three different modes. Single-shot means that VERT uses the LLM once to create a single candidate
transpilation, and then proceeds directly to verification. If verification fails, then VERT does not
attempt to regenerate. Few-shot repair means that, if verification fails, then VERT will prompt the
LLM to regenerate the transpilation repeatedly. In each iteration, we apply the syntactic repair
described in Section 3.1 to the output of the LLM. Finally, Few-shot repair & counter examples
means that we use counter examples produced by previous failed verification attempts as part of
the LLM’s few-shot learning, as described in Section 3.6. Few-shot repair & counter examples only
works for instruction-tuned models. We re-prompt the LLM up to 20 times for few-shot modes.
For each LLM and each mode of VERT, we report the number of transpilations that compiled
and that passed the various verification modes. As seen in Table 1, we only perform single-shot
for Transcoder-IR (baseline) to replicate results from prior work. We perform few-shot repair on
CodeLlama2 and StarCoder fine-tuned to investigate the effectiveness of few-shot and rule-based
repair on open-source, non-instruction tuned LLMs. Finally, we perform single-shot, few-shot repair,
and few-shot repair with counter examples with Anthropic Claude-2 to investigate how each part of
VERT impacts an instruction-tuned LLM’s ability to perform Rust transpilation.

RQ1. How does VERT perform vs. using the respective LLM by itself?

As seen in table 1, VERT with Claude-2 compiles for 76% more programs for C++, 75% for C,
and 82% for Go as compared to baseline (i.e., Transcoder-IR). VERT with Claude-2 can pass PBT
for 49% more programs for C++, 37% for C, and 56% for Go as compared to baseline. VERT with
Claude-2 can pass bounded verification for 40% more programs for C++, 37% for C, and 47% for
Go as compared to baseline. For passing full verification, VERT with Claude-2 can transpile 19
C++ programs, 15 C programs, and 9 Go programs. Transcoder-IR cannot pass full verification on
any of the tested programs. VERT with both CodeLlama2 and StarCoder fine-tuned also improve
upon baseline on number of programs passing compilation, PBT, bounded verification, and full
verification. We observe that few-shot learning with rule-based repair on general code-based LLMs
can perform more accurate Rust transpilations than an LLM trained with transpilation as its main
target.

To confirm that VERT yields a statistically significant improvement over baseline, we perform a
Wilcoxon rank test [54], which indicates if the metric performance between VERT and baseline are
statistically different. We use the Wilcoxon signed-rank test to see if the statistically significant
difference is also positive (i.e., our approach is different and better as measured by our three
metrics). We observe Wilcoxon signed-rank p-values ranging from 1 x 107 to 4 X 10~° for PBT,
bounded-verification, and full-verification.

VERT with CodeLlama2, StarCoder fine-tuned, and Anthropic Claude-2 can produce more PBT,
bounded verification, and full verification passing Rust transpilations than baseline. In particular,
VERT with Claude-2 can pass bounded verification for 40% more programs for C++, 37% for C,
and 47% for Go as compared to baseline.

, Vol. 1, No. 1, Article . Publication date: April 2024.

16 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening
Table 1. VERT performance across with different LLMs and modes.
LLM Source Technique Compiled PBT Bounded-ver. Full-ver.
Lang
C++ .
Transcoder Single-shot 107 23 3 0
(569)
IR
(Baseline) C . _
(520) Single-shot 101 14 1 0
Go .
(341) Single-shot 24 3 0 0
C++ .
CodelLlama2 (569) Few-shot repair 307 25 6 2
13B C
(520) Few-shot repair 160 18 4 2
Go .
(341) Few-shot repair 104 15 2 0
C++ .
StarCoder Few-shot repair 253 79 8 2
(569)
fine-tuned
15.5B C .
(520) Few-shot repair 179 76 4 2
Go .
(341) Few-shot repair 134 59 2 0
Single-shot 240 55 6 0
C++ Few-shot repair 539 292 41 2
(569) Few-shot repair & 539 295 233 19
Anthropic counter examples
Claude-2 (VERT)
1308 Single-shot 239 49 6 0
C Few-shot repair 339 195 29 4
(520) Few-shot repair & 339 209 193 15
counter examples
(VERT)
Single-shot 126 26 3 0
Go Few-shot repair 276 157 39 4
(341) Few-shot repair & 317 195 159 9
counter examples
(VERT)

RQ2. How does each component of VERT impact its performance? Table 1 shows the
transpilation results across CodeLlama-2 and StarCoder fine-tuned in a few-shot setting. We
observe that VERT with CodeLlama-2 and StarCoder fine-tuned improve over Transcoder slightly
for compilable Rust translations. Since Rust is an underrepresented language in all LLMs trained on

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 17

Table 2. VERT’s average runtime per component for a Single-program translation

Component type Component Time (s)
Transcoder-IR 8
LLM CodeLlama-2 43
Starcoder fine-tuned 45
Anthropic Claude 30
rustc <1
Rust compilation Error guided repair 1
rwasm <1
PBT 25
Testing and verification Bounded-ver. 52
Full-ver. 67

GitHub open-source repositories and The Stack dataset [28], we see that light-weight fine-tuning on
a small dataset shows immediate improvement. In particular, we observe that StarCoder fine-tuned
has fewer transpilations than CodeLlama-2 passing compilation, but more transpilations than
CodeLlama-2 passing bounded verification. Fine-tuning with Rust code has an immediate impact
on transpilation accuracy. StarCoder’s results are limited by its ability to pass compilation, even
with VERT’s rustc error guided program repair in place. VERT with StarCoder fine-tuned compiles
47% fewer programs for C++, 41% fewer for C, and 63% fewer programs for Go as compared to
VERT with Claude-2. While adding fine-tuning on Rust syntax increases the number of compilable
translation generated, we observe that an industry-grade LLM with more trainable parameters and
a larger training dataset performs significantly better for our metrics.

We observe that VERT using few-shot plus repair with either StarCoder fine-tuned or Claude-2
yields better transpilation across all our three languages and three metrics. In particular, few-shot
plus repair with Claude-2 passes 43% more PBT checks for C++, 46% more for C, and 43% more
for Go as compared to single-shot with Claude-2. Table 1 does not show single-shot results for
CodeLlama-2 and StarCoder fine-tuned as we observed no transpilations passing PBT. Few-shot
plus repair with Claude-2 passes 6% more bounded-verification checks for C++, 4% more for C, and
12% more for Go as compared to single-shot with Claude-2. We find that the few-shot prompting for
Claude-2 yields a greater improvement over single-shot compared to our repair technique. For C++
and C in particular, few-shot and repair with Claude-2 does not provide any additional passes on
bounded verification nor full verification as compared to only few-shot with Claude-2. We observe
that few-shot learning with counter examples of failed previous verification attempts provides the
largest improvements on both bounded-verification and full-verification. Modern LLMs that are
instruction-tuned can learn to generate more correct program when given specific test failures in
few-shot settings.

Table 2 shows the average runtime of each of VERT’s components across our entire evaluation
dataset. We observe that in the non-timeout failure cases (i.e., Kani does not establish equivalence
within 120s), Kani’s full verification (full-ver.) uses an average of 67 seconds per program. Kani’s
bounded verification uses an average of 52 seconds per program, and Bolero’s property testing
uses an average of 25 seconds per program. Of the LLMs, both CodeLlama-2 and StarCoder use
about 3 seconds per each prompt attempt, and Anthropic Claude-2 about 2 seconds. Not counting
the failure cases (i.e., the LLM does not generate any program that can pass equivalence after 20
attempts), we observe an average of 15 tries before the LLM can achieve compilation. Transcoder-IR

, Vol. 1, No. 1, Article . Publication date: April 2024.

18 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

uses 8 seconds on average per transpilation, which we prompt only one time as the baseline of our
evaluation.

Our ablation study shows that fine-tuning an LLM with Rust yields a higher accuracy of tran-
spiled programs, as seen by a higher number of programs passing PBT and bounded verification
by StarCoder fine-tuned compared to CodeLlama2. However, few-shot learning with counter
examples provides the largest improvements on transpilation accuracy. Finally, we observe that
VERT spends most of its runtime in verification.

RQ3. Does VERT produce safe, readable, and idiomatic Rust transpilations? To measure
VERT’s ability to generate safe Rust, we use VERT few-shot + repair with Claude-2 to transpile the
14 C programs described previously. Table 3 presents the results of VERT on these 14 benchmarks as
well as several metrics that provide a rough idea of the complexity of the benchmarks. Specifically,
we present the number of pointer variables, function definitions, LoC, and the number of structs
defined in each benchmark. The avl_* benchmarks are taken from a library that implements an AVL
tree. The brotli_x benchmarks from the Brotli compression library. The buffer_x benchmarks
allocate and resize a buffer respectively. The ht_* benchmarks compute a hash key, and create a
hash table, respectively, the 1ibcsv_x* benchmarks initialize a struct with pointer variables, and
retrieve members from the struct. libtree determines if an array of pointers to int64s is sorted.
urlparser parses a url.

VERT can produce transpilations for 7 of the 14 C programs that pass PBT, and 2 of those can
pass bounded verification. Two benchmarks cannot pass compilation due to Rust’s borrow checker
(ht_create and urlparser). In particular, VERT was unable to generate safe Rust on ht_create
due to transferring a variable into byte representation in two lines of code.

The results show that VERT tends to struggle as the programs get larger, have more pointer
variables, and also on programs with multiple functions. Still on smaller programs, the LLM can
still determine basic ownership needs. For example, it can determine if a variable or parameter
reference needs a mut permission. On the avl_insert benchmark, the LLM successfully assigns
ownership to the newly created node. To evaluate the readability, we compare lines of code in the
transpilations produced by VERT, rWasm, and CROWN [61], the rule-based C to Rust transpiler.
After running rustfmt [44], the official formatter of Rust, CROWN'’s output is more than 5x larger
than VERT, and rWasm’s output more than 10x as large. Given the strong negative association
between LoC and code readability [12], we conclude that VERT’s outputs are more readable than
CROWN and rWasm.

To evaluate the idiomaticity, we run Clippys, the official linter of Rust, on VERT’s transpilations.
Clippy checks Rust code for potential issues in the categories of correctness (e.g. checking if an
unsigned int is greater than 0), performance (e.g. unnecessarily using a Box or collection type),
stylistic (e.g. not following naming conventions, unnecessary borrowing), and conciseness (e.g.
unnecessary type casting or parentheses). On average, Clippy produces 10.9 warnings per function
for CROWN, and 372 warnings per function for riWasm. Clippy does not produce any warnings on
VERT’s transpilations, thus we conclude that they are reasonably idiomatic.

VERT targets the broader and more difficult problem of general, verified translation to Rust,
whereas CROWN only targets unsafe to safe rust (after running C2Rust [2]) without verification.
For the 14 programs, both VERT and CROWN output safe Rust. However, VERT ’s output is more
Rust-native than CROWN’s, using standard Rust types while CROWN and C2Rust use C-foreign

Shttps://doc.rust-lang.org/clippy/

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 19

Table 3. Benchmark information and results on the 14 C pointer manipulation programs. The symbols ¢/, X,
and @ indicate pass, fail (with counterexample), and timeout.

Benchmark Structs Functions Po‘mter LOC Compiled PBT Bounded
variables Ver.

avl_minvalue 1 1 4 17

avl_insert 1 2 4 30 o
avl_rotate 1 3 7 32 o
avl_delete 1 4 27 111 X X X
brotli_parse_int 0 1 2 15 o
brotli_filesize 1 1 1 28 X X
buffer new 1 1 3 16 ([
buffer resize 1 3 3 22 X X
ht_hashkey 0 1 2 13

ht_create 2 1 3 36 X X X
libcsv_get_opts 1 1 1 29 X X
libcsv_init 1 1 4 55 X X X
libtree 0 1 1 7 o
urlparser 0 9 28 158 X X X

types/functions. VERT ’s lack of reliance on C-foreign functions is a qualitative strength. VERT ’s
output is more self-contained and reviewable to Rust programmers [7]. VERT can catch buggy C
API calls in the input program instead of translating the incorrect API calls to Rust libc :: calls that
remain buggy. Finally, we note that CROWN assumes correctness on their output, and only runs
deterministic test suites on 6 example benchmarks (corresponding to 4/14 of our selected pointer
benchmarks). VERT performs three layers of equivalence checking on all its output.

VERT can produce transpilations for 7 of the 14 C programs that pass PBT, and 2 of those can
pass bounded verification. VERT tends to struggle as programs have more pointer variables, or
have multiple functions. However, VERT is far more readable than prior work. VERT produces 5X
less LoC than CROWN, 10x less LoC than rWasm, and its transpiled Rust programs do not show
any linter warnings.

RQ4. How extensible is VERT to future verifiers? We observe in Table 1 that few transpiled
Rust programs can pass full-verification with Kani, which is a bounded model checker (BMC).
Full-verification using a BMC results in complete unrolling of a program, which does not scale to
programs that loop over their inputs. We consider using Verus [30] as the verifier instead of Kani.
Given that the verification failures are due to Kani unrolling loops, we use Verus to specify loop
invariants and algebraic specifications for proving equivalence.

VERT handles multiple verifiers for the equivalence checking step. This is useful when different
verifiers have different strengths and weaknesses. For example, Kani is a bounded model checker so
loops are difficult to verify. Verus is a autoactive verifier [30], so it can verify loops more effectively
via invariants, but at the cost of lower automation. To understand the need for an autoactive verifier,
we run lightweight analysis using regex matching on our benchmarks that Kani failed to verify.
86% of the benchmarks had explicit iteration over an input. Furthermore, this is an undercount
because it ignores loops that happen in API calls and library functions like strcpy.

, Vol. 1, No. 1, Article . Publication date: April 2024.

20 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

Table 4. We manually verify 5 timeout cases in RQ4 using Verus. LoC is the lines of code while Spec. Loc is
the lines of specification. No Spec. LoC is given when verification is not successful. The symbols ¢ and
indicate pass and feature limitation respectively.

Benchmark Code LoC Spec. LoC Verus Ver.

avl_insert 30 -
avl_rotate 32 -
brotli_parse_int 15 92
buffer new 16 1
libtree 7

Given the manual effort required to manually verify each of the LLM’s outputs, we limit ourselves
to the 5 cases in the CROWN benchmark where PBT succeeded but bounded Kani failed. The results
are show in the Table 4. We succeed in verifying equivalence for 3 of the 5 failed benchmarks while
we fail to verify AVL benchmarks due to Verus’s limitations on returning mutable pointers. In each
of the successful cases, checking equivalence required fully specifying and verifying the resulting
programs. Given that, the spec to code ratio varied substantially depending on the benchmark.
For brotli_new the program simply allocates a large buffer that caused Kani to time out. So the
specification is a one line, and would have probably passed with Kani using the new contract feature
or with a lower buffer size. libtree benchmark is a function that, given a list of integers, checks
if it is sorted. This one required a quantifier-based specification to assert an invariant over the
range of the array that has checked as sorted. While the spec size is not substantial, the presence
of quantifiers over unbounded arrays will have been difficult to specify with Kani. The final and
heaviest benchmark is brotli_parseint, which required 92 lines of specification and supporting
proof. This function parses an integer from an array of chars, and specifying that required recursive
specs involving exponentiation that would be difficult with Kani. The sheer size of the spec also
stems from proofs required to show that the spec is well-behaved while recursing over the array.
Overall ratio of spec to code is 2.6.

We go over brotli_parseint detail to describe the supporting specification proofs for equiva-
lence. We give the specification used to prove brotli_parseint function correct in Fig. 12. The
main specification is right_parse, which defines parsing of the array from right to left upto tthe
given index. The induction proof right_parse_continues extends this specification over the
array of char. We also prove the absence of arithmetic overflows in the output program by relating
the maximum array length to the size of the parsed integer. We omit the precise specification for
conciseness.

We give the LLM’s output and supporting specifications in Fig. 13. We use the ensures to specify
that a valid vector parses correctly and invalid or out-of-range values are not returned. The main
loop verifies through the invariant that the integer parsed out is correct up to the current index
of the array. For this to hold, we also trivially specify that the vector remains valid through the
loop. Finally, we put an invariant that the integer parsed is below 10, which we use to show no
integer overflow occurs. The rest of the requirements dispatches naturally through the conditional
cases. We note that full specification, while possible, is not compatible with the automatic nature
of the tool. We expect that further improvements, such as automatic invariant synthesis through
LLMs [59] might make this approach more amenable to users who have neither the specification
nor the formal methods expertise to use tools like Verus.

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 21

1 spec fn right_parse(s: &Vec<char>, upto: int, value: int) -> bool

2 decreases upto,

3 {

4 if @ <= upto && upto <= s.len() {

5 if upto > 0 {

6 (value % 10 == (s[upto - 1] as u32 - '0' as u32)) &&

7 right_parse(s, upto - 1, value / 10,)

8 } else { value == 0 }

9 } else {false}

10 3

11 proof fn right_parse_continues(s: &Vec<char>, upto: int, value: int)

12 requires

13 valid_vector(s),

14 right_parse(s, upto, value),

15 0 <= upto < s.len(),

16 ensures

17 right_parse(s, upto + 1, (value x 10) + ((s[upto] as u32) - ('0' as
u32)),

18 { /* Verus figures out by definition you
19 can append a digit by parsing one more char. =%/}

Fi

g. 12. Specification of brotli_parseint. We prove this spec on both the LLM and reference programs.

We manually verify 5 programs with Verus that previously timed-out using Kani. We succeeded
in verifying equivalence for 3 of the 5 failed benchmarks by leveraging loop invariants.

5 RELATED WORK
5.1 Language model transpilers

Recent advances in language modelling using code as training data have shown that LLMs can
perform code completion [20] and generate code based on natural language [40] with impressive
effectiveness. Large Language Models (LLMs) have raised performance on these tasks using signif-
icantly more trainable parameter and training data [13]. Transcoder and Transcoder-IR [43, 45]
use unsupervised machine translation to train neural transcompilers. As both Transcoder versions
are trained on program translation pairing, they perform better on program translation tasks than
similar sized but generic auto-regressive LLMs.

However, recent work shows that LLMs can generate buggy and vulnerable programs [10, 13, 39].
Transcoder-IR [45] show in their evaluation that a significant portion of their translated code do not
compile, especially for target programming languages that are underrepresented in their training
data (e.g., Rust). Our work helps both generate memory-safe code and establish equivalence, to
safely harness the code output of an LLM.

5.2 Rust transpilers

Prior Rust transpilers convert C/C++ to Rust. C2Rust [2] automatically converts large-scale C
programs to Rust while preserving C semantics. Citrus [3] and Bindgen [1] both generate Rust FFI
bindings from C libraries, and produce Rust code without preserving C semantics. Bosamiya et
al. [11] embedded WebAssembly (Wasm) semantics in safe Rust code for the Rust compiler to emit
safe and executable Rust code. Bosamiya et al. [11] implemented all stages of their tool in safe Rust,

, Vol. 1, No. 1, Article . Publication date: April 2024.

22 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

1 fn llm_parseint(s: &Vec<char>, low: u32, high: u32) -> (ret: Option<u32>)
2 ensures

3 valid_vector(s) && ret.is_some() ==> right_parse(s, s.len() as int,
4 ret.unwrap() as int),

5 valid_vector(s) && ret.is_some() ==> low <= ret.unwrap() <= high,
6 lvalid_vector(s) ==> ret.is_none()

7 {

8 let mut value = Qu32;

9 let mut i: usize = 0;

10 while i < 5

11 invariant

12 valid_vector(s) && value < exp(i as int) &&

13

14 right_parse(s, i as int, value as int),

15 {

16 let mut c: char = s[i];

17 if (c as u32) < ('@0' as u32) || (c as u32) > ('9' as u32) {

18 return None;

19 }

20 assert(i < 6);

21 assert(value < exp(6)) by {

22 exp_monotone_any(value, i as int, 6);

23 1

24 assert(exp(6) == 1000000) by (compute_only);

25 value = 10 * value + (c as u32 - '0' as u32);

26 i += 1;

27 }

28 ... // Return None for error

29 return Some(value);

30 3}

Fig. 13. Code of brotli_parseint. We prove the right_parse specification from Fig. 12 onto the function
with invariants. Note that both the original code in C and the LLM output assumes input length of at most 5.
and no stage of compiler needs to be further verified or trusted to achieve safety. Our work focuses
on generating readable and maintainable Rust code with Rust semantics directly.

Existing tools for making unsafe Rust safer focus on converting raw pointers to safe references.
Emre et al. [21] localized unsafe Rust code from C2Rust and converted unsafe Rust to safe Rust by
extracting type and borrow-checker results from the rustc compiler. Zhang et al. [61] converts
unsafe Rust from C2Rust to safe Rust by computing an ownership scheme for a given Rust program,
which decides which pointers in a program are owning or non-owning at particular locations.
Zhang et al. [61] evaluates their tool CROWN on a benchmark suite of 20 programs, and achieve
a median reduction rates for raw pointer uses of 62.1%. Ling et al. [32] removed non-essential
“unsafe” keywords in Rust function signatures and refined the scopes within unsafe block scopes
to safe functions using code structure transformation. Our work is the first to propose a general
Rust transpiler that does not depend on the source language’s memory management properties to
produce safe Rust.

5.3 Equivalence Verification

Equivalence verification has been studied in settings where two copies of should-be-equivalent
artifacts are available. Churchill et al. applied equivalence checking to certify compiler optimizations

, Vol. 1, No. 1, Article . Publication date: April 2024.

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 23

with program alignment [14, 15]. Antonopoulos et al. leverage an extension to Kleene Algebra
with Tests (KATs) for a more formal calculus [6]. Rule-based approaches have been combined
with machine learning by Kommrusch for automated equivalence verification [29]. Conversely,
Dahiya and Bansal leverage equivalence-checking in black-box settings without relying on the
translator [19]. Our work uses equivalence verification for program language translation. Our work
is the first to combine LLMs with established equivalence checking techniques (i.e., property based
testing and bounded model checking) to generate both readable and verified code.

6 LIMITATIONS AND DISCUSSION

Threats to internal validity are concerned with the degree of confidence on our dependent variables
and our results. As VERT uses the LLMs StarCoder and Claude, which take as training data GitHub
repositories up to June 2022, we can not fully mitigate the bias introduced by potential training
data contamination — i.e. the possibility that the competitive coding questions in our evaluation
datasets could be included in their training data. To mitigate this threat, we select and evaluate
our tool on Rust solutions written and labeled after June 2022. Furthermore, our evaluation is
primarily to show that our iterative repair procedure can significantly improve the number of
correct transpilations produced by an LLM, and that we can verify equivalence between rWasm
Rust and the LLM produced Rust. This result is not affected by training data contamination. Thus
we believe potential training data contamination does not invalidate our results.

Threats to external validity lie in whether results on our benchmarks will generalize to real-world
contexts. One of our benchmark sets is a collection of competitive programming solutions across
three languages, used by Transcoder-IR [45]. Although the collected programs cover a wide range
of input and output types, real-world code bases are often much more complicated than competitive
solution programs. To reduce this threat, we further evaluate on 14 selected functions from real
world programs taken from the Crown and Laertes benchmark [21, 61].

VERT’s equivalence checking is performed in 3 stages with increasing guarantees: PBT, bounded,
and full verification. The first 2 phases do not always provide any exhaustive guarantees. The
quality of PBT depends heavily on the inputs generated, and thus the seed used to generate the
random inputs. Bounded verification may miss bugs or divergences in LLM and rWasm-generated
programs if they occur beyond the loop unwinding bound. Full verification provides exhaustive
guarantees but few programs actually reach that stage due to performance limitations of Kani. As
Kani improves, the performance of unbounded verification will improve as well.

7 CONCLUSION

Rust is a growing language with C-like performance, but provides further safety guarantees. Rust’s
improvements on security and performance over other languages have prompted recent research
on transpiling existing code-bases to Rust. However, rule-based transpilation approaches are
unidiomatic, fail to follow the target language conventions, and do not scale for larger programs. On
the other hand, ML-based approaches (i.e., LLMs) cannot provide formal guarantees, thus removing
the security benefits of Rust. In this work, we show how to use both LLMs and formal verification
to transpile verified and readable Rust programs. We evaluate our tool VERT by transpiling 1,394
programs from C++, C, and Go. Our tool with the Claude LLM can verify with bounded model
checking for 40% more programs for C++, 37% for C, and 47% for Go as compared to baseline.

8 DATA AVAILABILITY

The software that supports the experiments, the benchmark programs, and the LLM Rust tran-
spilations is available at https://zenodo.org/records/10927704. The TransCoder-IR model can be
obtained from https://github.com/facebookresearch/CodeGen.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://zenodo.org/records/10927704
https://github.com/facebookresearch/CodeGen

24 Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

REFERENCES

1] [n.d.]. bindgen. https://github.com/rust-lang/rust-bindgen.

[n.d.]. C2Rust. https://c2rust.com/.

[n.d.]. citrus. https://gitlab.com/citrus-rs/citrus.

[n.d.]. claude. https://www.anthropic.com/index/introducing-claude.

Stephen Akinyemi. 2023. Awesome WebAssembly Languages. https://github.com/appcypher/awesome-wasm-langs

original-date: 2017-12-15T11:24:02Z.

[6] Timos Antonopoulos, Eric Koskinen, Ton Chanh Le, Ramana Nagasamudram, David A. Naumann, and Minh Ngo. 2023.
An Algebra of Alignment for Relational Verification. Proceedings of the ACM on Programming Languages 7, POPL (Jan.
2023), 20:573-20:603. https://doi.org/10.1145/3571213

[7] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller, and Alexander] Summers. 2020. How do
programmers use unsafe rust? Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1-27.

[8] Jeff Barr. [n.d.]. Firecracker — Lightweight Virtualization for Serverless Computing. AWS News Blog ([n.d.]). https:
//aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/

[9] Stella Biderman, USVSN PRASHANTH, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivanshu Purobhit,
and Edward Raff. 2024. Emergent and predictable memorization in large language models. Advances in Neural
Information Processing Systems 36 (2024).

[10] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large scale autoregressive language
modeling with Mesh-Tensorflow. If you use this software, please cite it using these metadata 58 (2021).

[11] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. 2022. Provably-Safe multilingual software sandboxing using We-
bAssembly. In 31st USENIX Security Symposium (USENIX Security 22). 1975-1992.

[12] Raymond P. L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code Readability. IEEE Trans. Softw. Eng. 36, 4
(jul 2010), 546-558. https://doi.org/10.1109/TSE.2009.70

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021).

[14] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence
checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). Association for Computing Machinery, 1027-1040. https://doi.org/10.1145/3314221.3314596

[15] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound Loop Superoptimization for Google Native
Client. ACM SIGARCH Computer Architecture News 45, 1 (April 2017), 313-326. https://doi.org/10.1145/3093337.3037754

[16] Catalin Cimpanu. [n.d.]. Microsoft: 70 percent of all security bugs are memory safety issues. ZDNET ([n.d.]).
https://www.zdnet.com/article/microsoft-70-percent-of -all- security-bugs-are-memory-safety-issues

[17] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded model checking using satisfiability
solving. Formal Methods in System Design 19 (2001), 7-34.

[18] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In TACAS (LNCS,
Vol. 2988). Springer, 168-176. https://doi.org/10.1007/978-3-540-24730-2_15

[19] Manjeet Dahiya and Sorav Bansal. 2017. Black-Box Equivalence Checking Across Compiler Optimizations. In Pro-
gramming Languages and Systems (LNCS), Bor-Yuh Evan Chang (Ed.). Springer, 127-147. https://doi.org/10.1007/978-
3-319-71237-6_7

[20] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, and Subhajit Roy. 2016.
Program synthesis using natural language. In Proceedings of the 38th International Conference on Software Engineering.
345-356.

[21] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. 2021. Translating C to safer Rust. Proceedings of the
ACM on Programming Languages 5, OOPSLA (2021), 1-29.

[22] George Fink and Matt Bishop. 1997. Property-based testing: a new approach to testing for assurance. ACM SIGSOFT
Software Engineering Notes 22, 4 (1997), 74-80.

[23] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke
Zettlemoyer, and Mike Lewis. 2022. Incoder: A generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999 (2022).

[24] Peter Garba and Matteo Favaro. 2019. Saturn-software deobfuscation framework based on llvm. In Proceedings of the
3rd ACM Workshop on Software Protection. 27-38.

[25] Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Soujanya Poria. 2023.
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models. arXiv preprint
arXiv:2304.01933 (2023).

[26] Shashank Mohan Jain. 2023. Why Choose Rust. In Linux Containers and Virtualization: Utilizing Rust for Linux

Containers. Springer, 145-180.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://github.com/rust-lang/rust-bindgen
https://c2rust.com/
https://gitlab.com/citrus-rs/citrus
https://www.anthropic.com/index/introducing-claude
https://github.com/appcypher/awesome-wasm-langs
https://doi.org/10.1145/3571213
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3093337.3037754
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1007/978-3-319-71237-6_7

VERT: Verified Equivalent Rust Transpilation with Few-Shot Learning 25

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40

[t

[41]

[42]

[43]

[44
[45]

[l

[46]

[47]

[48]

Ralf Jung. 2020. Understanding and evolving the Rust programming language. (2020).

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Murfioz Ferrandis, Yacine Jernite,
Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. 2022. The stack: 3 TB of permissively licensed source code. arXiv
preprint arXiv:2211.15533 (2022).

Steve Kommrusch, Martin Monperrus, and Louis-Noél Pouchet. 2023. Self-supervised Learning to Prove Equivalence
Between Straight-Line Programs via Rewrite Rules. IEEE Transactions on Software Engineering 49, 7 (July 2023),
3771-3792. https://doi.org/10.1109/TSE.2023.3271065

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno,
and Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7,
OOPSLAL1, Article 85 (apr 2023), 30 pages. https://doi.org/10.1145/3586037

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161
(2023).

Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R Cordy, and Ahmed E Hassan. 2022. In Rust we trust: a
transpiler from unsafe C to safer Rust. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings. 354-355.

Haokun Liu, Derek Tam, Mohammed Mugqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A Raffel. 2022.
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in Neural Information
Processing Systems 35 (2022), 1950-1965.

Marcus J Min, Yangruibo Ding, Luca Buratti, Saurabh Pujar, Gail Kaiser, Suman Jana, and Baishakhi Ray. 2023.
Beyond Accuracy: Evaluating Self-Consistency of Code LLMs. In The Twelfth International Conference on Learning
Representations.

Ansong Ni, Daniel Ramos, Aidan ZH Yang, Inés Lynce, Vasco Manquinho, Ruben Martins, and Claire Le Goues. 2021.
Soar: a synthesis approach for data science api refactoring. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 112-124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.
CodeGen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

OpenAL 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris
Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced
by large language models while translating code. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1-13.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. 2021. An empirical
cybersecurity evaluation of github copilot’s code contributions. ArXiv abs/2108.09293 (2021).

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In Proceedings
of the 35th ACM SIGPLAN conference on programming language design and implementation. 419-428.

Alan Romano and Weihang Wang. 2020. Wasim: Understanding webassembly applications through classification. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 1321-1325.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, et al. 2023. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. 2020. Unsupervised translation of
programming languages. Advances in Neural Information Processing Systems 33 (2020).

Rust Contributors. [n.d.]. rustfmt. https://github.com/rust-lang/rustfmt

Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick Labatut, and Gabriel Synnaeve. 2022. Code
translation with compiler representations. arXiv preprint arXiv:2207.03578 (2022).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023).

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language models. In CHI conference on human factors in computing systems
extended abstracts. 1-7.

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Sampson. 2022. Verifying dynamic trait
objects in Rust. In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in
Practice. 321-330.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1109/TSE.2023.3271065
https://doi.org/10.1145/3586037
https://arxiv.org/abs/2303.08774
https://github.com/rust-lang/rustfmt

26

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]

[61]

Aidan Z.H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

Steven Vaughan-Nichols. [n. d.]. Linus Torvalds: Rust will go into Linux 6.1. ZDNET ([n.d.]). https://www.zdnet.com/
article/linus-torvalds-rust-will-go-into-linux-6-1/

Graf von Perponcher-Sedlnitzki and Philipp Christian. 2024. Integrating the future into the past: Approach to seamlessly
integrate newly-developed Rust-components into an existing C++-system. Ph.D. Dissertation. Technische Hochschule
Ingolstadt.

Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross, Fernando Martinez, Mayank Agar-
wal, and Kartik Talamadupula. 2021. Perfection not required? Human-Al partnerships in code translation. In 26th
International Conference on Intelligent User Interfaces. 402-412.

Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie Houde, Mayank Agarwal, Kartik Ta-
lamadupula, and John T Richards. 2022. Better together? An evaluation of Al-supported code translation. In 27th
International Conference on Intelligent User Interfaces. 369-391.

Robert F Woolson. 2007. Wilcoxon signed-rank test. Wiley Encyclopedia of Clinical Trials (2007), 1-3.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2024. Hallucination is inevitable: An innate limitation of large language
models. arXiv preprint arXiv:2401.11817 (2024).

Aidan ZH Yang. 2020. SOAR: Synthesis for open-source API refactoring. In Companion Proceedings of the 2020 ACM
SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity.
10-12.

Aidan ZH Yang, Sophia Kolak, Vincent J Hellendoorn, Ruben Martins, and Claire Le Goues. 2024. Revisiting Un-
naturalness for Automated Program Repair in the Era of Large Language Models. arXiv preprint arXiv:2404.15236
(2024).

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. 2024. Large Language Models for Test-Free
Fault Localization. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. 1-12.
Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. 2023. Leveraging Large Language Models for Automated
Proof Synthesis in Rust. arXiv:2311.03739 [cs.FL]

Handong Zhang. 2023. 2022 Review | The adoption of Rust in Business. https://rustmagazine.org/issue-1/2022-
review-the-adoption-of-rust-in-business

Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. 2023. Ownership guided C to Rust translation. In Computer
Aided Verification (CAV) (LNCS, Vol. 13966). Springer, 459-482.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://www.zdnet.com/article/linus-torvalds-rust-will-go-into-linux-6-1/
https://www.zdnet.com/article/linus-torvalds-rust-will-go-into-linux-6-1/
https://arxiv.org/abs/2311.03739
https://rustmagazine.org/issue-1/2022-review-the-adoption-of-rust-in-business
https://rustmagazine.org/issue-1/2022-review-the-adoption-of-rust-in-business

	Abstract
	1 Introduction
	2 Background
	2.1 Rust
	2.2 Migrating to Rust
	2.3 Rust Testing and Verification
	2.4 Large Language Models

	3 Methodology
	3.1 Program repair on LLM output
	3.2 Transpilation Oracle Generation
	3.3 Mutation Guided Entry Point Identification
	3.4 Equivalence Harness Generation
	3.5 Equivalence Checking
	3.6 Few-shot Learning

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Related Work
	5.1 Language model transpilers
	5.2 Rust transpilers
	5.3 Equivalence Verification

	6 Limitations and discussion
	7 Conclusion
	8 Data availability
	References

