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Abstract. Toroidal Alfvén eigenmodes (TAEs) can transport fusion-born
energetic particles out of the plasma volume, thereby decreasing plasma self-
heating efficiency and possibly damaging reactor walls. Therefore, understanding
TAE destabilisation and identifying saturation mechanisms is crucial to achieving
burning plasma. While TAEs have been studies extensively in the past using
kinetic-MHD codes, here a fully gyrokinetic study is employed which allows
for additional physics. In the case studied, the primary drive mechanism is
identified as the resonance between the magnetic drifts and the TAE, and this
is seen to be disrupted by equilibrium flow shear which can stabilize the mode
by rotating it in the the poloidal plane. It is found that zonal flows do not play
a significant role in the saturation of these TAEs, and there are no saturation
mechanisms present in the local gyrokinetic picture that are able to saturate the
mode at physically relevant transport levels in the case of TAE-only turbulence.
Instead, we confirm that the global profile flattening of fast-ion density is the
key saturation mechanism. The nonlinear excitation of TAE travelling along the
electron diamagnetic direction and its beating with the ion diamagnetic TAE,
resulting in large amplitude oscillations that may help detect TAEs more easily
in tokamaks, is also reported.

http://arxiv.org/abs/2404.18910v1
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1. Introduction

Alfvénic modes such as Toroidal Alfvén Eigenmodes
(TAEs) [1, 2] can be detrimental to tokamak operation
as they can transport significant fast-ion population
out of the plasma. In addition to decreasing the
thermonuclear alpha population necessary for self-
burning, the expelled fast-ions may strike and damage
the reactor walls. Hence, a proper understanding
of TAE destabilisation, damping and saturation
mechanisms is crucial.

Many damping mechanisms such as continuum
damping [3, 4], landau damping [2, 5], radiative
damping [6], finite-orbit width effects [7] etc. can
stabilise TAEs linearly. However, once destabilised,
usually by the radial gradient of fast-ion pressure,
the level at which TAEs saturate nonlinearly becomes
relevant for transport prediction. Fast-ion profile
relaxation is one of the obvious ways by which
it saturates. Other possible saturation pathways
may include trapping of fast-ions by finite amplitude
TAEs [8], nonlinear coupling to other micro/MHD
instabilities or zonal modes.

Kinetic treatment of fast-ions is necessary to
model the fast-ion destabilisation of TAEs. Therefore,
hybrid codes [9, 10, 11] where the background
species are treated using MHD equations and the
fast-ions are treated kinetically are usually used.
However these codes lack the ability to model
certain physics that influence mode saturation, such
as the nonlinear coupling [12] between short scale
structures associated with the continuum, wave-
particle interaction necessary for ion induced scattering
of TAEs [13], trapped particle effects that play an
important role in zonal flow structure generation [14],
etc., and hence a full gyrokinetic formalism may be
necessary [15].

In this paper, we explore TAE-only turbulence
with the help of the gyrokinetic code Gene [16, 17]
to study the destabilisation process and identify the
saturation mechanisms. Other works [18, 19, 20] have
looked at coupled scenarios where complex interactions
between drift waves and Alfvénic modes have been
found to affect transport properties. Hence, the
relevance of studying the simplest case of TAE-only
turbulence can be understood in context.

We show the resonance of the magnetic (curvature
and ∇B) drift of fast-ions with the TAE in velocity
space which facilitates the destabilisation mechanism.
The poloidal localisation of the destabilisation region
is shown and the stabilisation of TAE by E × B flow
shear in medium-high flow-shear tokamaks is discussed.
TAEs are found to excite significant zonal flows but
they are not found to play a role in saturation. Global
flattening of the profile gradient is identified as the
most important saturation mechanism with the help

of a global code and the inadequacy of the local code
to predict TAE transport quantitatively is stressed.

This paper is organised as follows. In section 2,
the simulation setup is explained, followed by linear
results on the mode structure and the destabilisation
mechanism in section 3. In section 4, the saturation
mechanisms are explored with the help of nonlinear
simulations, and finally the conclusions are presented
in section 5.

2. Simulation set-up

The GENE simulations use a field-aligned coordinate
system [21] where x is the radial coordinate, y the
binormal coordinate and z the parallel coordinate.
Parallel velocity v‖ and magnetic moment µ are the
velocity space coordinates.

Two versions of the code, local [22] and global [17,
23] are used. The local version assumes radially
constant background gradients, making the set-up and
the physics simpler. The global version allows radially
varying background gradients, and as will be discussed
in detail in section 4.2, is necessary to predict the flux
levels accurately in the case of TAEs.

Given that the primary motivation behind this
work is to study the fundamentals of TAE destabili-
sation and saturation, the parameters are chosen such
that a simple TAE-only dominated regime is obtained
in our simulations rather than one taken directly from
experiments which might be a mix of many instabili-
ties. The well studied Cyclone Base Case (CBC) [24]
parameters are chosen and then tweaked. A fast-ion
species (denoted by subscript f) is added along with
electrons (e) and thermal ions (i). Concentric circu-
lar flux-surface geometry [25] is considered with an in-
verse aspect ratio of ǫ = x0/R = 0.18. Mass ratios of
mf/mi = 1 and me/mi = 2.5× 10−4, density ratios of
nf/ne = 0.01 and ni/ne = 0.99, temperature ratios of
Tf/Ti = 100 and Te/Ti = 1, charge ratios of qf/qi = 1
and qe/qi = −1, and a normalised electron pressure of
βe = 0.001 are considered. Collisions and δB‖ fluctu-
ations are not included. Numerical hyperdiffusion [26]
is included with coefficients Dz = 3.0 and Dv = 1.0
along the parallel and parallel velocity coordinates re-
spectively.

In the local simulations, the inverse of the density
or temperature background gradient scale lengths,
normalized to the major radius R, are R/LN,f = 25.0,
R/LN,i = 0, R/LN,e = 0.25, R/LT,f = 0, R/LT,i =
0 and R/LT,e = 0. A safety factor of q0 = 1.4
and magnetic shear of ŝ = 0.8 are considered. The
default nonlinear simulation has a minimum binormal
wavenumber of ky,minρi = 0.01 (Ly = 628.3ρi) where
ρi is the thermal ion Larmor radius, radial box size of
Lx = 125.0ρi and velocity space box sizes of Lv‖ =
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3
√
2vth,i (vth,i =

√
T0,i/mi) and Lµ = 12T0,i/B0,axis.

The grid resolutions are Nx ×Ny ×Nz ×Nv‖ ×Nµ =
64×20×32×36×12. A larger radial box-size simulation
with Lx = 1000ρi and Nx = 512 is also used.

The global simulation, centered at x0 = 0.5a,
where a is the tokamak minor radius, spans a radial
width of Lx = 62.5ρi, with ρ⋆ = ρi/a = 0.0036. A
quadratic q-profile of the form q(x) = 0.84+2.24(x/a)2

is considered such that both the safety factor and
magnetic shear match that of the local simulations at
the center. For practical reasons in GENE related
to satisfying quasi-neutrality, an extra electron species
labelled en is included such that ne = 0.99n0, nen =
0.01n0, ni = 0.99n0 and nf = 0.01n0. The radial
background temperature and density profiles are of the
form As = exp[−κA,s ǫ ∆As tanh((x − x0)/(a∆As))]
where As represents the temperature or density of
species s, κA,s denotes the peak gradient and ∆As

denotes the radial width of the gradient profile; κn,e =
0, κn,en = 95, κn,i = 0, κn,f = 95, κT,e = κT,en =
κT,i = κT,f = 0, and ∆nen = ∆nf = 0.05. The
minimum binormal wavenumber is ky,minρi = 0.02
corresponding to minimum toroidal mode number n0 =
2 and the numerical resolutions are Nx × Ny × Nz ×
Nv‖ × Nµ = 48 × 10 × 32 × 36 × 12. Krook heat
and particle sources (see Ref. [27] for details) are also
employed with a source rate of γh = γp = 0.015vth,i/R
which is approximately an order of magnitude lower
than the maximum growth rate so that the time scale
on which the source rate changes the profile is smaller
than the characteristic time of turbulence.

3. Investigating the destabilisation mechanism

using linear simulations

Linear simulations are used to probe the details of
the linear TAE mode including its mode structure,
the destabilisation mechanism and ballooning angle
dependence. The local results are given in section 3.1
followed by global results in section 3.2.

3.1. Local linear results

3.1.1. Growth rate, frequency and mode structure.

TAEs are found to be unstable at wavenumbers lower
than those where Ion Temperature Gradient (ITG)
modes are most unstable in a standard CBC scenario.
See figure 1 where the growth rates and frequencies are
plotted as a function of the binormal wavenumber. The
TAE mode frequencies clearly lie within the analytic
TAE frequency gap that is estimated as 3ǫ|k‖vA|
following Fu and Van Dam [2]. The gap is centered at
the mid-frequency ωTAE = k‖va. Here, k‖ = 1/(2Rq0)
is the parallel wavenumber at (the half-mode-rational
surface of) intersection of modes with poloidal mode

numbers m and m+ 1, and vA = B0/
√
µ0

∑

s nsms is
the Alfvén speed [28].
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Figure 1. (a) Growth rate and (b) frequency as a function of
binormal wavenumber ky in linear local simulations. TAE and
ITG modes are shown in black and red colors respectively.
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Figure 2. (a) Electrostatic potential Φ and (b) parallel
component A‖ of the vector potential plotted on the x− z plane
for the TAE mode with kyρi = 0.04. (c) Φ of the ITG mode
with kyρi = 0.4.

The TAE mode has peak amplitude near the half-
rational surface, as can be observed in figure 2(a and b)
where the electrostatic potential and vector potential
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respectively are plotted on the x − z plane for the
most unstable TAE having kyρi = 0.04. Note that in
linear flux-tube GENE simulations, the mode rational
surfaces are located at the middle of the radial domain
(x = 0) and the half-mode-rational surfaces are located
at the edges [29]. In contrast, the ITG mode simulated
with kinetic electrons has peak amplitude near the
mode rational surface [30, 31] as shown in figure 2(c).

The default normalised fast-ion density gradient
R/LN,f = 25.0 is well above the marginal value
R/LN,f = 18.0 as can be seen in figure 3.
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Figure 3. Growth rate of TAE (kyρi = 0.04) mode plotted as s
function of normalised fast-ion density gradient ωn,f = R/LN,f .

3.1.2. Investigating the destabilisation mechanism.

To investigate the basic destabilisation mechanism
of TAEs, the method employed by Di Siena et
al. [19] to study fast-ion stabilisation of ITG is used.
This involves individually removing terms from the
gyrokinetic equation responsible for each of the main
physical process.

The relevant gyrokinetic equation in the GENE
field aligned coordinates, assuming Maxwellian back-
ground distribution function, reads

− ∂

∂t
f1,j =

1

C

[

dlnno,j

dx
+

(
mjv

2
‖

2T0,j

+
µB0

T0,j

− 3

2

)

dlnTo,j

dx

]

∂Φ̄

∂y
f0,j

︸ ︷︷ ︸

background drive

+
µB0 +mjv

2
‖

mjΩj

KxΓx,j

︸ ︷︷ ︸

radial magn. drift

+
µB0 +mjv

2
‖

mjΩj

KyΓy,j

︸ ︷︷ ︸

binormal mag. drift

+
Cv‖

B0Jxyz
Γz,j

︸ ︷︷ ︸

parallel advection

− Cµ
mjB0Jxyz

∂B0

∂z

∂f1j
∂v‖

︸ ︷︷ ︸

trapping

(1)

where, C = B0/|∇x × ∇y|, Γα,j =
∂f1j
∂α

−
qj

mjv‖

∂Φ̄1

∂α

∂f0j
∂v‖

,Kx = − 1
C
γ2

γ1

∂B0

∂z
,Ky = 1

C

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)

,

γ1 = gxxgyy − (gxy)2, γ2 = gxxgyz − gxygxz, γ3 =

Terms removed γR/vth,i
None (Original) 0.33
Background drive 0
Par. adv. and trap. 0.48

x-curvature 0.31
y-curvature 0

Table 1. Growth rate of the kyρi = 0.04 TAE modes when
terms in the gyrokinetic equation are removed.

gxygyz − gyygxz, gαβ = ∇α · ∇β, with α, β = x, y, z,
and Φ̄ denotes the gyro-averaged Φ. In the above equa-
tion, the neoclassical and nonlinear terms have been
excluded since they don’t affect the evolution of f1,j in
the linear flux-tube limit.

The background drive term determines the
evolution of perturbed distribution function due to
spatial gradients of the background distribution, and
appears as a source term. Other terms appear as
phase space advection velocity, such as the magnetic
(curvature and ∇B) drifts and the parallel motion
and trapping terms. The magnetic drifts are further
separated into their radial and binormal components.
The results are summarized in table 1. Numerical
hyperdiffusion is not included in these simulations for
simplicity and hence the growth rates are slightly off
from those in figures 1 and 3.

As expected, removing the fast-ion background
drive term stabilises the TAE. Removing the fast-
ion parallel advection and trapping terms leads to
higher growth rate, indicating that they provide a net
stabilising effect. Radial magnetic drift is found to have
little effect on the mode. The most insightful result is
the stabilisation of the mode in the absence of fast-ion
binormal magnetic drift term, indicating the relevance
of this term in TAE destabilisation.

As the modes are close to ideal MHD, the parallel
electric field is close to zero, and the drive from fast
ions is mostly due to the (perpendicular) magnetic
drifts allowing a J · E energy exchange to the mode,
but this also requires background pressure gradients.
Therefore, net growth requires that both of these terms
be positive. This mechanism also mostly involves drifts
in the binormal direction, which is the main way the
electric field is oriented.

One can obtain better insight on the fast-ion-
TAE resonance by visualising the wave-particle energy
transfer in the velocity space. For this purpose, a
free-energy based diagnosis [32, 19] is used. The total
system free energy E in the electrostatic case is defined
as

E =
∑

j

Real

[∫

dzdµdv‖
πB0n0T0

2f0,j
(Φ∗ + f∗

1,j)f1,j

]

.

A free-energy based growth rate γj for each species can
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be obtained such that

γ =
∑

j

γj =
1

E

∑

j

∂Ej

∂t
,

where ∂Ej/∂t is essentially obtained by multiplying the
gyrokinetic equation (1) with (Φ∗ + f∗

1,j). The fast-ion
growth rate is plotted on the v‖ − µ velocity space in
figure 4(a).
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Figure 4. Fast-ion free-energy based growth rate γf plotted on
the v‖−µ velocity plane for ballooning angles (a) χ0 = 0 and (b)
χ0 = 0.2π for the kyρi = 0.04 TAE. Red Dashed line indicates
the magnetic (curvature and ∇B) drift resonance curve.

Considering only the background drive and
magnetic drift terms in the gyrokinetic equation for
fast-ions, and assuming perturbations (i.e. Φ and f1,f )
to be of the form exp[−iωt + ikxx + ikyy] in Fourier
space, the perturbed distribution function f1,f can be
expressed as a fraction where the denominator contains
the resonance between the real frequency ωr of the
wave and the fast-ion magnetic drift frequency, which
can be expressed as

ωr = −
µB +mfv

2
‖

qfB
κyky. (2)

For more details, see equations (2-8) in reference [19].
In figure 4, this resonance curve is denoted by the
red dashed line. One can observe significant fast
ion growth rate contribution overlapping with the
resonance curve in figure 4(a), confirming that indeed
magnetic drifts play a crucial role in the destabilisation
mechanism.

The significant contributions at µ ≃ 3 inside
the resonance curve in figure 4(a) result from the
parallel advection and trapping contribution, which
is confirmed by their absence in a similar figure (not
shown) corresponding to the simulation where the
parallel advection and trapping terms are removed.
These terms have a net stabilising effect as confirmed
in table 1.

3.1.3. Ballooning angle dependence. The curvature
and ∇B magnetic drifts, which are primarily oriented

along the vertical direction (≈ B0 × ∇B0) can res-
onantly drive TAEs only at those poloidal locations
where the TAE phase fronts (oriented approximately
along the poloidal direction) have significant compo-
nent along the same vertical direction. More precisely,
these correspond to those poloidal locations where the
geometric factor κy is negative.

In the default case of zero ballooning angle when
the mode is localised at the outboard mid-plane and
both the phase fronts and the magnetic drifts are
oriented along the same vertical direction, maximum
destabilisation happens. This is verified in figure 5.
The growth rate is seen to decrease with increasing
ballooning angle, fully stabilising at χo = 0.25π.
Further evidence can be seen in figure 4(b) for the case
with a finite ballooning angle of χ0 = 0.2π, where the
free-energy based growth rate contributions along the
resonance curve can be seen to be mostly destroyed.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

Figure 5. Linear growth rate of the kyρi = 0.04 TAE mode as
a function of ballooning angle χ0.

3.2. Global linear results

The fast ion density profile used in global simulations
is shown in figure 6. In contrast to local simulations, a
much higher critical gradient is necessary to destabilise
TAEs in global simulations. The growth rate as a
function of the peak fast-ion density gradient κnf is
plotted in figure 7 for the only unstable mode with
kyρi = 0.04 (n = 4); modes with other ky’s are
stable. The linear mode structure, shown in figure 8,
peaks near x = 135ρi = 0.48a corresponding to safety
factor q = 1.375, which is the half-rational surface of
intersection of the m = 5 and m = 6 poloidal modes
for n = 4. Various global effects can explain the higher
pressure gradients required for destabilisation. For
instance, the fast particle drifts may be comparable
to the width of the strong pressure gradient region and
so the effective drive may be smoothed out. Profile
shearing, reduced TAE continuum gap closer to the
magnetic axis (gap width is proportional to aspect
ratio) etc. are other possibilities.
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Figure 6. Background fast-ion (a) density n0,f and (b)
normalised logarithmic gradient ωn,f plotted as function of the
radius in global simulations.
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Figure 7. Growth rate of the global TAE mode as a function
of normalised logarithmic fast-ion gradient ωn,f .
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Figure 8. (a) Φ and (b) A‖ plotted on the x − z plane for
the global TAE mode with kyρi = 0.04, n = 4. Red dashed line
indicates the q = 1.375 surface, which is the half-rational surface
of intersection of the m = 5 and m = 6 poloidal modes for n = 4.

4. Investigating saturation mechanisms using

nonlinear simulations

4.1. Nonlinear local results

Local nonlinear simulations of TAE-only turbulence
give much higher heat flux levels than the typical
heating power available in tokamaks. See figure 9,

12(a) and 13(a) where the fast-ion heat flux time-trace
for the default case is plotted in blue; the latter figure
is plotted with a higher time resolution. Even when
the background fast-ion density gradient is decreased
closer to the marginal value, the flux-levels still remains
unphysically high, for instance, as shown in 12(b)
in magenta for the case with R/LN,f = 20. The
fluxes drop to zero once the linear critical gradient at
R/LN,f = 18 is crossed.

The local simulations have extremely large
streamers extending several hundreds of thermal ion
Larmor radii. For the default case with a radial
box size of Lx = 125ρi, the streamers extend all
through the radial domain as seen in figure 10(a).
The flux-tube formalism assumes that the radial box-
size is larger than the characteristic radial length of
turbulent eddies. Hence, to contain the eddies within
the radial domain, simulations with a much larger
radial box-size of Lx = 1000ρi(> Ly) is required; see
figure 10(b). However, the local (flux-tube) ordering
is not well satisfied at such large length scales and
a global approach will be more appropriate. These
larger radial box size simulations too give unphysically
high heat fluxes, as shown in figure 11. Despite the
shortcomings of the local model, we can still use these
simulations to make certain deductions, as will be
discussed in the following.

Given the low wavenumbers of the unstable TAEs,
it is unsurprising that the eddies are radially large,
however other instabilities, such as microtearing modes
for instance, that are unstable at similar wavenumbers
have been known to isotropise and saturate to much
lower flux levels [33]. This indicates that many of the
standard saturation mechanisms such as that via zonal

20 40 60 80 100 120
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2000
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8000

10000

12000

14000

16000

18000

Figure 9. Fast-ion electrostatic heat flux normalised by the the
gyro-Bohm value plotted as a function of time in local nonlinear
simulations with Lx = 125ρi. The original simulation is denoted
by blue, and the ones with zonal flow (Φ) and zonal density
deleted are denoted by black and green respectively.
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Figure 10. Electrostatic potential Φ plotted on the x− y plane
for the case with radial box-size of (a) Lx = 125ρi and (b)
Lx = 1000ρi, both for the zero background shear-flow (S) case .
(c) Lx = 1000ρi and SRvth,i = 0.05.

flows, local profile flattening at rational surfaces, etc
may not be as relevant for TAE turbulence.

4.1.1. Role of zonal flows in saturation. Significant
zonal flows are driven by TAEs in our simulations,
however they do not play an important role in

50 100 150 200

10-2

100

102

104

Figure 11. Fast-ion electrostatic heat flux normalised by the
the gyro-Bohm value plotted as a function of time in local
nonlinear simulations with Lx = 1000ρi. The original zero flow-
shear simulation is denoted by blue. Purple and red correspond
to flow-shear rates of SRvth,i = 0.005 and 0.05 respectively.

saturation. To confirm this, simulations with
artificially deleted zonal flows are carried out. Much
higher heat flux would be expected had zonal flows
played an important role in saturation [34]. However
the heat flux-time trace of these simulations, also
shown in figure 9, are comparable to the original.

4.1.2. Role of local profile flattening in saturation.

Another mechanism by which turbulence can saturate
in flux-tube simulations is by locally flattening
the profiles at those radial locations of higher
diffusivity. This has been demonstrated for the
case of microtearing turbulence [33] where the mode
and the corresponding diffusivity is localised near
the mode rational surfaces of each toroidal mode,
and hence the zonal Te perturbations are modified
such that the effective (drive) Te gradient locally
flattens significantly at these locations to facilitate
saturation. In the case of TAEs, the diffusivity is
localised near second order mode rational surfaces,
however the corresponding flattening of fast-ion density
at these radial positions is insignificant at only at most
3% of the background density gradient as shown in
figure 12(c). The maximum flattening remains less
than the critical gradient even in cases closer to the
marginal value. Furthermore, the simulation with
artificially deleted zonal density perturbations, so that
the local flattening saturation mechanism would be
absent, shown in figure 9 using the green trace, does
not show much higher heat flux. These results indicate
that local profile flattening mechanism is not effective
to saturate TAE turbulence.

4.1.3. Role of equilibrium flow shear in saturation.

E × B equilibrium flow shear can stabilise TAE
turbulence by rotating the mode phase fronts in the
poloidal plane, from the outboard mid-plane where
the modes are maximally unstable to the unfavourable
curvature side (see discussion on ballooning angle
dependence in subsection 3.1.3). The default case
with a radial box size of Lx = 125ρi has insufficiently
resolved kx (ballooning angle) modes to properly
capture the effects of flow shear [35], and hence
Lx = 1000ρi simulations were used. Simulations
with several values of flow-shear rate S were carried
out, where S = −(r0/q0)(dΩtor/dx), with Ωtor being
the toroidal angular velocity. The flow is set to be
purely toroidal [36]. The fast-ion heat flux time trace
of these simulations is plotted in figure 11. While
SRvth,i = 0.005 has negligible effect, SR/vth,i =
0.05 (a realistic value of flow-shear in a typical
tokamak) appears to linearly stabilise these TAE
modes. However, nonlinear effects could still allow
subcritical turbulence [37]. In the time period t ∈
[0, 60]vth,i/R typical Floquet mode behaviour [38, 39]
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can be seen for SR/vth,i = 0.05. During the initial
transient growth phase, the modes are radially aligned
and can extract energy from fast ions, followed by
damping once they are sufficiently tilted. Figure 10(c)
shows the tilted mode structure at the end of this time
period. These results suggest that flow shear could
be an important suppression mechanism for TAE-
driven transport of fast ions in medium-high flow-shear
tokamaks.

4.2. Profile flattening in nonlinear global simulation

The relaxation of profile gradients is one of the primary
mechanisms by which microturbulence transport in
general is quenched. However in local simulations,
which assume the gradients and the resulting flux
to be the same across the radius, such a relaxation
is not always possible, especially when the modes
are elongated along the radius as already discussed
in section 4.1. However there are exceptions such
as for example in microtearing instability where
the diffusivity is extremely confined near low order
rationals and a local flattening at these radial positions
can be properly captured even in local simulations [33].

In global simulations on the other hand, it is
possible to flatten the profiles at those positions where
the instability is most unstable, thereby quenching
transport. This is observed in TAE global simulations,
where unlike in local simulations, the transport is fully
quenched, as shown in figure 12(b). This emphasises
the need to model TAE turbulence via global codes for
proper quantitative predictions.

To demonstrate the global profile flattening, the
effective fast-ion density gradient ωeff

f is plotted in
figures 12 (c) and (d) for the local and global cases
respectively, as a function of the radius, for two specific
times. ωeff

f is the total gradient, defined as the sum of
the contributions from the background density gradient
and the zonal perturbed density gradient, i.e.

ωeff
f = −dn0,f/dx

n0,f/R
− 〈∂δnf/∂x〉yz

n0,f/R
.

The blue curves in figures 12 (c) and (d) correspond to
that time when the perturbed amplitudes and heat flux
peak (denoted by blue vertical dotted lines in figures 12
(a) and (b)), and there is maximum flattening in the
zonal perturbed density gradient. A second curve, red
in color, corresponds to a random later time. For the
local simulation in figures 12 (a) and (c), an additional
set of plots, denoted in magenta [and green], is added
for a case with R/LN,f = 20, closer to the marginal
value.

For the global simulation, the maximum effective
gradient, denoted in blue, can be seen to be below
the critical gradient, denoted by the dashed black

curve, for a significant portion of the radial domain,
sufficient enough to stabilise the mode and drop
the corresponding flux-levels to zero. The effective
gradient, in fact reduces by a maximum of 15% from
the default value denoted in solid black curve. For
the corresponding local simulations, there is only a
maximum of 3% flattening; the effective gradient
remains well above the critical gradient and hence the
profile flattening saturation mechanism is not being
properly captured.
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(b)(a)

(c) (d)

Figure 12. Fast-ion heat flux plotted as a function of time in
(a) local and (b) global simulations. Effective fast-ion density
gradient plotted as a function of the radius in (c) local and (d)
global simulations at the time instance indicated by the vertical
dotted lines in figures (a) and (b) respectively. Solid black lines
denote the original background gradients and dashed lines denote
the corresponding critical gradients.

4.3. Beating of TAEs travelling along the ion and

electron diamagnetic directions

Another interesting observation in TAE turbulence is
the intense beating of counter-propagating TAEs in
the ion and electron diamagnetic directions. This is
illustrated in figure 13. In figures (a) and (b), the
zoomed fast-ion heat flux as it transitions from an
initial linear phase to the nonlinear phase is plotted
for the local and global simulations respectively. In
the linear phase, only that TAE travelling along the
ion diamagnetic direction is made unstable by the
fast-ion magnetic drift resonance. This is confirmed
in figures 13 (c) and (d) where the fast Fourier
transform of the electrostatic potential only has
peaks on the positive frequency side corresponding to
ion-diamagnetic direction as per GENE convention.
Whereas, once the simulation reaches the the nonlinear
phase, significant oscillations can be seen on the fast-
ion fluxes and other perturbed quantities, having
a frequency equal to the most unstable TAE.
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This essentially results from the nonlinear excitation
of electron diamagnetic direction TAE and the
subsequent beating with the ion-diamagnetic one. This
too is verified in figures 13 (c) and (d) where the
Fourier transform has peaks both in the positive and
negative frequencies. The beating results in high
amplitude oscillations in flux surface quantities, which
might potentially be directly observed in diagnostics.
External magnetic diagnostics are often able to resolve
the direction of mode propagation, and this phenomena
would be seen as comparable magnitudes in the
positive- and negative- propagating mode.
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Figure 13. Fast-ion heat flux in (a) local and (b) global
simulations, zoomed near the linear-nonlinear transition. The
fast Fourier transformed electrostatic potential in the linear
and nonlinear phases are plotted in violet and orange colors
respectively for (c) local and (d) global simulations.

5. Conclusions

Gyrokinetic simulations of TAE turbulence were
carried out to study the fast-ion destabilisation and
saturation mechanisms. With the help of free-energy
based diagnostics, the destabilisation mechanism
has been demonstrated to involve the resonance of
magnetic drift of fast-ions with the TAE mode.
This resonance is more destabilising at the outboard
midplane, and hence when the mode gets rotated
in the poloidal plane by equilibrium flow shear, it
is stabilised. Our simulations predict that TAE
turbulence is low or insignificant in medium-high flow-
shear tokamaks. Saturation mechanisms such as that
via zonal flows and local profile flattening are shown
to be less effective and local codes are found to give
unphysically transport levels. Global profile flattening
on the other hand is shown to be an important
saturation mechanism, and therefore the necessity for
global codes to quantitatively predict fluxes resulting
from TAE turbulence is identified. The nonlinear
excitation of electron diamagnetic direction TAEs
and their beating with the ion-diamagnetic TAEs,

producing large oscillations in observable quantities,
is also reported.
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