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Abstract

We study the communication complexity of (∆ + 1) vertex coloring, where the edges of
an n-vertex graph of maximum degree ∆ are partitioned between two players. We provide a
randomized protocol which uses O(n) bits of communication and ends with both players knowing
the coloring. Combining this with a folklore Ω(n) lower bound, this settles the randomized
communication complexity of (∆ + 1)-coloring up to constant factors.

1 Introduction

Graph coloring is a fundamental problem in computer science. Given an undirected graph, we are
asked to assign each vertex a color such that no two adjacent vertices have the same color. Mini-
mizing the number of colors used, even approximately [LY94; KLS00], is known to be NP-hard. On
the other hand, for a graph with maximum degree ∆, there is a simple greedy algorithm that finds
a (∆ + 1)-coloring in linear time. Due to the sequential nature of this algorithm, the problem has
received a great deal of attention in the sublinear and distributed models of computation, with re-
cent sublinear time [ACK19], semi-streaming space [ACK19], distributed [Lin92; BEPS16; CLP20;
GK22] massively parallel computation [CFGUZ19; CDP21], and dynamic [BCHN18; BGKLS22;
HP22] algorithms.

We look at this problem in the two-party communication model of [Yao79]. The edges of
the input graph G are partitioned between two players, Alice and Bob, who wish to compute
some function (or relation) on G while minimizing the number of bits they send to each other.
We refer readers to [KN97; RY20] for an extensive overview of the field. Communication lower
bounds have been used to obtain an astonishing breadth of impossibility results in distributed
computing [SHKKNPPW11; BCDELP19], streaming [IW03; CR12], data-structures [MNSW98],
and circuit complexity [KW90].

Several graph problems that have fast classical algorithms have been studied in the two-party
communication model, often leading to creative algorithms that get very close to somewhat trivial
lower bounds. For example, deciding whether a graph is connected has an easy O(n log n) communi-
cation protocol (either player just sends a spanning forest of their subgraph); finding the minimum
cut has an O(n log n) communication protocol, and an Ω(n log log n) randomized communication
lower bound [AD21]; finding a maximum matching in bipartite graphs has an O(n log2 n) communi-
cation protocol [BBEMN22]. All of these problems have an Ω(n log n) deterministic communication
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lower bound [HMT88], and an Ω(n) randomized communication lower bound via a reduction from
set-disjointness. Closing the gap between this linear lower bound and nearly-linear upper bounds
in the randomized case has been a longstanding open problem in communciation complexity.

1.1 Our Contributions

In this paper, we settle the randomized communication complexity of (∆ + 1)-coloring. For this
problem, the current state of the art is similar to the aforementioned graph problems. The best
upper bound (to our knowledge) is O(n log2∆), alluded to by [ACGS23] (see Remark 4.5 for a
description of this protocol). It would be natural to expect Θ(n log∆) to be the “right answer” for
this problem — after all this is the number of bits one would use to write down a (∆+1)-coloring.
However, we show that if Alice has all the edges of the graph, there is a deterministic O(n)-bit
protocol with which she can communicate a (∆ + 1)-coloring to Bob. This is formalized as a non-
deterministic communication upper bound in Theorem 2. The upshot is that we can hope to beat
n log∆ in the general case, and indeed, our main result is a randomized protocol that uses O(n)
bits of communication to find a (∆ + 1)-coloring:

Theorem 1. There exists a zero-error randomized protocol that given an n-vertex graph G
and its maximum degree ∆, finds a (∆+1)-coloring of G using O(n) bits of communication in
expectation.

Using Markov’s inequality, the protocol of Theorem 1 can be adapted to provide worst-case
guarantees if we allow the algorithm to fail with constant probability. We also assume players have
access to a source of shared randomness. This assumption can be removed by a classical result of
Newman.

Corollary 1.1. There exists a private-randomness protocol that given an n-vertex graph G and its
maximum degree ∆, outputs a proper (∆ + 1)-coloring of G with probability 2/3 and use O(n) bits
of communication in the worst-case.

To complement this result, we show a (folklore) communication lower bound ruling out constant-
error o(n) communication protocols, via a reduction from the identity function (i.e. on an n-bit
string x, the output is x). We also investigate better bounds on the probability of linear communica-
tion. We show that when ∆ is small compared to n, the protocol runs in O(n) communication with
high probability. When ∆ is large, we show a slightly weaker O(n log∗∆) bound on communication
holds with high probability.

1.2 Technical Overview

The Non-Deterministic Upper Bound. We rely on a result of Csikvári [Zha17] about the
number of proper (∆ + 1)-colorings of an n-vertex graph which tells us that a uniformly random
coloring is proper with probability e−n. With a straightforward application of the probabilistic
method, this gives us a set of 2O(n) colorings which contains a proper coloring for any n-vertex
graph, which immediately implies the non-deterministic communication upper bound in Theorem 2
(the prover can just point out a valid coloring).

The Randomized Upper Bound. The first insight is that if we run the greedy algorithm on
a random (instead of arbitrary) order of the vertices, each vertex has (on average) ∆/2 colors
available (instead of just 1) when we try to color it. (This is also the core of the proof of Csikvári.)
We can exploit this glut of available colors by sampling random colors from [∆ + 1], and paying 2
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bits of communication per sample to decide if it is valid. One can show this yields an O(n log ∆)
communication protocol (see Section 4.1). However, this is not enough to go all the way; e.g. on a
(∆ + 1)-clique, this algorithm uses Θ(∆ log∆) bits of communication.

On the other hand, there is a well known [ACGS23] deterministic algorithm that can find an
available color for a single vertex in O(log2 ∆) communication, which we briefly sketch here (see
Lemma 4.4 for more details). Because the edges of the graph are partitioned, when Alice and Bob
try to color the vertex v, the number of colors blocked in NA(v) and NB(v) sum to less than ∆+1
(as opposed to just their union being less than ∆+ 1). Hence, at least one part of any partition of
[∆+1] retains this “slack” of 1, which allows a binary search to find an available color in O(log2 ∆)
communication.

To get to O(n) communication, we combine the two ideas above. Consider some vertex v and
let k be its number of available colors. If Alice had all the edges incident to v, she could describe a
sampled color that works using O(log(∆/k)) bits. To approach this ideal complexity, we implement
a form of palette sparsification: Alice and Bob restrict themselves to a random color space of size
roughly (∆/k)2. When k is large (i.e., very often for a random permutation), this color space is
much smaller than ∆ + 1, but it still retains the critical “slack” property required by the binary
search protocol (see Lemma 4.6). This yields an O(log2(∆/k)) communication protocol for coloring
a single vertex, which in turn is enough to get our main theorem (see Section 4.3).

2 Preliminaries

Notation. Throughout this paper, we will work with input graphs G = (V,E) on the vertex set
V = [n] := {1, 2, . . . , n}, with maximum degree ∆. Let N(v) denote the neighborhood of v in G,
and dv = |N(v)| its degree. For any integer q > 1, a q-coloring of G is a vector C ∈ [q]n. We say
the coloring is proper if for all edges {u, v} ∈ E we have C(u) 6= C(v).

Model. In the classic two-party model, Alice and Bob are given n and ∆. The edges of a graph
G are adversarially partitioned between the two parties. We will use EA and EB to denote the
edges given to Alice and Bob respectively, and NA(v) and NB(v) for the neighborhood of v in EA

and EB . At the end of the protocol both players should agree on the color of each vertex. We
assume both players have access to public randomness. This can be relaxed to needing only private
randomness while adding only O(log n+ log(1/δ)) bits to the communication cost [New91], where
δ is the success probability.

In the non-deterministic version of the model, the randomness is replaced by a prover who has
access to all the edges of the graph. The prover sends a single message to Alice and Bob, who
do not communicate with each other, and must agree on a proper coloring. In particular, if the
prover’s message encodes an improper coloring, at least one of them must reject it. The cost of the
protocol is the length of the prover’s message.

Proposition 2.1. Let a1 6 . . . 6 am be a sequence of real numbers, with m > 2. Then for any
1 6 j < m,

1

j

j
∑

k=1

ak 6
1

m

m
∑

k=1

ak 6
1

m− j

m
∑

k=j+1

ak.

(In words, adding bigger numbers to an average cannot decrease it, and adding smaller numbers
cannot increase it.)

Proof. Note that each term on the left side is at most aj , and each term on the right side is at
least aj+1, which immediately gives us that the left side is smaller than the right. To complete the
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proof, we can rewrite the the average of the whole sequence as a convex combination of the two:

1

m

m
∑

k=1

ak =
j

m
·
(

1

j

j
∑

k=1

ak

)

+
m− j

m
·





1

m− j

m
∑

k=j+1

ak



 .

2.1 Concentration Inequalities

Throughout the paper we use a handful of classic concentration bounds.

Proposition 2.2 (Chernoff Bound [DP09]). Let X1,X2, . . . ,Xn be independent random variables
in [0, 1] and X =

∑n
i=1 Xi. Then, for any ε > 0,

Pr
[

X < (1 + ε)E[X]
]

, Pr
[

X > (1 + ε)E[X]
]

6 exp

(

−ε2 E[X]

2 + ε

)

.

Proposition 2.3 (Chernoff Bound for Geometric Variables [DP09, Problem 2.5]). Let X1, . . . ,Xn

be independent geometric variables of parameter 1/2 and X =
∑n

i=1 Xi. Then, for any r > 3,

Pr[X > (2 + r)n] 6 exp
(

−rn

4

)

.

Proposition 2.4 (Hoeffding Bound [Hoe94]). Let X1, . . . ,Xn be independent random variables and
a1, . . . , an, b1, . . . , bn reals such that for each i ∈ [n], with probability one ai 6 Xi 6 bi. Then, if
X =

∑n
i=1 Xi, for any t > 0,

Pr
[

X > E[X] + t
]

6 exp

(

− 2t2
∑n

i=1(bi − ai)2

)

.

Proposition 2.5 (Bounded Differences [DP09, Corollary 5.2]). Let X1, . . . ,Xn be independent ran-
dom variables and f(x1, . . . , xn) a function such that whenever x and x′ differ in just the i-th
coordinate, then |f(x)− f(x′)| 6 di. Then, for all t > 0,

Pr
[

X < E[f(X)]− t
]

, Pr
[

X > E[f(X)] + t
]

6 exp

(

−2t2

d

)

,

where d =
∑n

i=1 d
2
i .

3 Non-deterministic Upper Bound

In this section, we will prove our non-deterministic communication upper bound.

Theorem 2. There exists a non-deterministic protocol that given an n-vertex graph G with maxi-
mum degree ∆, finds a (∆ + 1)-coloring coloring of G using O(n) bits of communication.

We will show that, for each n > 1, there is a set of colorings Cn,∆ in [∆ + 1]n of size 2O(n) such
that any n-vertex graph with maximum degree ∆ has a proper coloring in Cn,∆. Note that this
immediately gives an O(n)-bit non-deterministic communication protocol, since the prover can just
point out a coloring in Cn,∆ that works for the given graph, with Alice and Bob accepting if and
only if there are no monochromatic edges in their respective subgraphs.

Our first observation is that any graph G has many (∆ + 1) colorings. More formally:
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Lemma 3.1. The number of (∆ + 1)-colorings of a graph G on n vertices with maximum degree
∆ is > (∆+1

e
)n.

The proof is an easy modification of a result of Csikvári [Zha17, Thm 8.3] which lower bounds
the number of q-colorings of d-regular graphs for all q > d+ 1.

Proof. Let π be a random permutation of [n]. We color the vertices in the order of π. For each
v ∈ V , let dπv be the number of neighbors of v coming before v in π. When we color v, there are at
least ∆ + 1− dπv choices of colors. Hence, the total number of colorings we can obtain by coloring
in this order is

♯ colorings from π >
∏

v∈V

(∆ + 1− dπv ) .

After taking the logarithm, the righthand side becomes
∑

v log(∆+1−dπv ). Now, observe that d
π
v is

uniformly distributed in {0, 1, . . . , dv}. Hence by linearity of expectation, Eπ[log ♯ colorings for π]
is at least:

∑

v∈V

1

dv + 1

dv
∑

i=0

log(∆+1−i) >
∑

v∈V

1

∆ + 1

∆
∑

i=0

log(∆+1−i) =
∑

v∈V

1

∆ + 1
log((∆ + 1)!) > n log

(

∆+ 1

e

)

,

where the first inequality is by Proposition 2.1, and the second inequality holds because (∆+1)! >
(∆+1

e
)∆+1 by Stirling’s approximation. To get the lemma, we apply Jensen’s inequality on log x to

obtain that logEπ[♯ colorings for π] > Eπ[log ♯ colorings for π].

Fix a graph G on n vertices, with maximum degree ∆. Lemma 3.1 implies that a uniformly
random coloring from [∆+1]n is proper for G with probability 1/en. This means that if we construct
Cn,∆ by sampling t = en · n2 colorings at random in [∆ + 1]n, the probability that none of them is
proper for G is at most:

(1− 1/en)t 6 exp(−t/en) = exp(−n2).

Since there are at most 2(
n

2) graphs with n vertices (and maximum degree ∆), a union bound over
all such graphs yields the probability that Cn,∆ does not contain a proper coloring for one of them

is at most 2(
n

2) · e−n2
< 1. Hence, there exists a set Cn,∆ of en · n2 6 22n colorings in [∆ + 1]n such

that any n-vertex graph with maximum degree ∆ has a proper coloring in Cn,∆.

4 Two Randomized Upper Bounds

In this section, we will prove our main theorem, which we restate below.

Theorem 1. There exists a zero-error randomized protocol that given an n-vertex graph G and its
maximum degree ∆, finds a (∆+1)-coloring of G using O(n) bits of communication in expectation.

4.1 The First Attempt

We will start by presenting a simple O(n log ∆) communication protocol for the problem, and
then show that making one of its subroutines (even slightly) more efficient results in an O(n)
communication protocol.
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Algorithm 1. A O(n log∆) communication protocol for (∆ + 1)-coloring.

1. Alice and Bob choose a random permutation π of [n] with public randomness.

2. They iterate over the vertices ordered by π, and on vertex v:

(a) With public randomness, they sample a color c uniformly at random from [∆ + 1],
and Alice (respectively Bob) sends a bit indicating whether c is already assigned to a
vertex in NA(v) (respectively NB(v)).

(b) If they both send 0 (i.e. c is not used in NA(v) or NB(v)) they assign c to v, and move
on to the next vertex. Otherwise, they go to Step 2a.

Lemma 4.1. Algorithm 1 uses O(n log ∆) bits of communication in expectation.

Proof. Before we analyze the algorithm, we need to set up some notation. For a vertex v and a
permutation π, let dπv denote the number of neighbors of v in G = (V,EA ∪EB) that appear before
v in π, and kπv := ∆ + 1 − dπv (think of kπv as a lower bound on the number of colors that will be
available when we try to color v).

First, we will use the randomness of Step 2a: Observe that on each sample in Step 2a, the proba-
bility of sampling a valid color for v is at least kπv /(∆ + 1). The number of trials required to find
a valid color is a geometric random variable, and hence its mean is upper bounded by (∆+ 1)/kπv .
Since Alice and Bob send 1 bit each per trial, the communication cost of coloring v is 6 2(∆+1)/kπv
in expectation.

Next, we will use the randomness of π: Note that kπv is uniformly random from the set {∆ +
1 − dv ,∆ + 2 − dv, . . . ,∆ + 1}. Because the analysis of Step 2a holds for any permutation π, the
expected cost of coloring v is upper bounded by:

1

dv + 1
·

∆+1
∑

i=∆+1−dv

2(∆ + 1)

i
6

1

∆ + 1
·
∆+1
∑

i=1

2(∆ + 1)

i
= 2H∆+1 = O(log∆),

where the first inequality is by Proposition 2.1, and Hm is the m-th harmonic number. Summing
up over all vertices, by linearity of expectation, the expected communication cost of the algorithm
is O(n log ∆).

Remark 4.2. Note that this algorithm also works if EA and EB are not disjoint, unlike the algo-
rithm in our main result.

4.2 A Haystack With Many Needles

The analysis of Algorithm 1 is tight when G is a collection of disjoint (∆ + 1)-cliques. This is
because we are spending 2 bits of communication per sampled color, and to even sample all ∆ + 1
colors, we need Ω(∆ log∆) samples per clique by Coupon Collector. Now suppose we have an
“ideal” vertex v, where Alice has all the edge in G incident on v. Then Alice could just point
out the first sampled color that works for v in O(log(∆/kπv )) bits of communication, instead of
the O(∆/kπv ) we spent. To get (close to) this ideal, we abstract coloring a single vertex into the
following set-intersection type problem:

Problem 1 (k-Slack-Int). Alice and Bob are given sets X and Y ( [m] respectively, such that
|X|+ |Y | 6 m− k for some k > 1. Both of them are also given the integer m, but neither of them
knows k. They wish to find an element in the intersection of X := [m] \X and Y := [m] \ Y .

6



To see why it is relevant, we recast coloring a single vertex as an instance of Problem 1. As
before, fix some vertex v and permutation π in Algorithm 1. Let A and B denote the sets of colors
used so far in NA(v) and NB(v) respectively; then coloring v is equivalent to solving Problem 1
with m = ∆+ 1, X = A, Y = B and k = kπv . We emphasize that the promise |X| + |Y | 6 m− k
holds because sets NA(v) and NB(v) are disjoint (the edges of G are partitioned between Alice and
Bob). The main lemma of this section gives an efficient algorithm for this problem.

Lemma 4.3. There exists a randomized protocol that solves k-Slack-Int in O(log2(m/k)) bits of
communication in expectation.

Note that the promise on |X|+|Y | is crucial. For example, if we only knew |X∪Y | < m, then this
is just the set-intersection problem, which is known to require Θ(m) bits of communication [KS92].

In this language, the coloring step in Algorithm 1 was taking random samples in [m], succeeding
in each step with probability at least k/m, for an expected communication cost of 2m/k. To get
a better algorithm, we will first focus on the hardest case for this random sampling algorithm (i.e.
k = 1). Using the promise of k-Slack-Int, we can binary search for an element.

Lemma 4.4. There exists a deterministic protocol that solves k-Slack-Int in O(log2(m)) bits of
communication, for any k > 1.

Proof. The key observation is that we can binary search for the target element. Let L = [m/2]
and R = [m] \ L, and consider |X ∩ L| + |Y ∩ L| and |X ∩ R| + |Y ∩ R|. The two numbers add
up to |X| + |Y |, which is smaller than m. Hence |X ∩ L|+ |Y ∩ L| must be smaller than m/2, or
|X ∩R|+ |Y ∩R| smaller than m−m/2, giving a smaller instance of the same problem. Alice and
Bob can send |X ∩ L| and |Y ∩ L| respectively, in 6 2 logm bits, and then recurse on the correct
half. This gives a protocol for finding an element in X ∩ Y in O(log2m) communication.

Remark 4.5. Note that Lemma 4.4 gives an O(n log2∆) deterministic communication protocol for
(∆ + 1)-coloring, since coloring each vertex (ordered by an arbitrary permutation) is a k-Slack-Int
instance (but with no guarantee on k other than k > 1).

The upshot of the binary search protocol is that the condition |X|+ |Y | < m can be preserved
while recursing on smaller subproblems. However, this costs too much communication, and we are
not exploiting the fact that we have a lot of slack (|X|+ |Y | 6 m− k, not just m− 1).

We know that if we sample m/k elements from [m], we expect to see at least one element from
X∩Y . And indeed, if we let S denote the set of sampled elements, we are trying to solve Problem 1
on S∩X and S∩Y , with the caveat that |S ∩X|+ |S∩Y | may not be 6 |S|−k (or for that matter
even < |S|). It turns out that with roughly m2/k2 samples in S, we get |S∩X|+ |S∩Y | < |S| with
Ω(1) probability. This means that we can run the binary search protocol of Lemma 4.4 on this
smaller instance instead, and pay only O(log2(m2/k2)) = O(log2(m/k)) bits of communication.

A downside of the sketch above is that we need to know k (to compute p). This turns out to
not be an issue, since any guess k̃ 6 k suffices (as we will see in the following lemma), and we can
arrive at such a k̃ in O(log(m/k)) guesses starting from m (as we will see after the lemma).

Lemma 4.6. Let X,Y ( [m] be a k-Slack-Int instance, and let p = min{150m/k̃2, 1}, for some
k̃ 6 k 6 m. Define the random set S by sampling each element of [m] independently with probability
p. Then

Pr
S

[

|S ∩X|+ |S ∩ Y | > |S|
]

6 1/2.

7



Proof. For brevity, let s := |S|, sx := |S ∩X| and sy := |S ∩ Y |. By linearity of expectation E[s] is
m · p, and E[sx + sy] 6 (m− k) · p. This means that sx + sy < s as long as:

• sx 6 E[sx] + k · p/5,

• sy 6 E[sy] + k · p/5,

• s > E[s]− k · p/5.

Using a Chernoff bound from Proposition 2.2 on sx when ε 6 1, we have:

Pr
[

sx > (1 + ε) · E[sx]
]

6 exp

(

−ε2 E[sx]

2 + ε

)

6 exp

(

−ε2 E[sx]

3

)

Plugging in ε = k · p/(5E[sx]),

Pr
[

sx > E[sx] + k · p/5
]

6 exp

(

−(k · p)2 E[sx]
75E[sx]2

)

6 exp

(

− k̃2p2

75E[sx]

)

(k > k̃)

We can afford to be lazy and upper bound E[sx] by m · p, and get:

6 exp

(

− k̃2 · p2
75m · p

)

= exp

(

− k̃2 · p
75m

)

= exp

(

−150k̃2 ·m
75m · k̃2

)

= e−2.

If ε = k · p/(5E[sx]) > 1, Proposition 2.2 gives

Pr
[

sx > (1 + ε) · E[sx]
]

6 exp

(

−εE[sx]

3

)

6 exp

(

− k̃p

75

)

6 exp

(

−150m

75k̃

)

6 e−2 (k̃ 6 k 6 m)

We can repeat the same argument for sy and s to obtain the lemma.

Remark 4.7. The choice of the sampling probability p in Lemma 4.6 may seem strange at first,
and we attempt to explain it here. Since we are paying O(log2(|S|)) bits of communication for the
binary search, we want the size of S to be poly(m/k). This restricts us to p ∈ {1/k,m/k2, . . .}.
The most natural choice in this sequence, p = 1/k, makes it so that the gap between E[sx + sy]
and E[s] is only a constant, whereas the expectations themselves are Ω(m/k), which means we
cannot hope for sx + sy < s with significant probability. The second most natural choice makes the
expectations O(m2/k2) while making the gap Ω(m/k), which is exactly the area where a binomial
random variable is concentrated.

Using the lemma, we have the following algorithm for k-Slack-Int:

Algorithm 2. A O
(

log2(m/k)
)

communication protocol for k-Slack-Int.

Input: Alice gets a set X ( [m], Bob gets a set Y ( [m] such that |X|+ |Y | 6 m− k.

Output: Any element from X ∩ Y .

1. For k̃ = m,m/2, . . . , 1 (a sequence of exponentially decreasing guesses for k):

8



(a) Alice and Bob choose S by sampling each element of [m] independently with proba-
bility p = min{1, 150m/k̃2}, using public randomness.

(b) They test if |S ∩ X| + |S ∩ Y | < |S|. If not, they continue to the next value of k̃,
otherwise:

(c) They run the binary search protocol to find an element in S \ (X ∪ Y ), and return it
as the answer.

Note that the algorithm always terminates with a correct answer, since for k̃ small enough,
p = 1, and we just run the binary search on all of [m]. To finish the proof of Lemma 4.3, we bound
the communication cost of Algorithm 2:

Proof of Lemma 4.3. Observe that we spend O(log(m/k)) iterations before k̃ 6 k and we can
apply Lemma 4.6. On each of these iterations, the test in Step 1b costs only O(log(m/k)) bits of
communication, since k̃ > k for all of them. If we get lucky, and the test passes, the binary search
takes O(log2(m/k)) bits, and we are done.

Otherwise, once k̃ 6 k, the cost of each iteration increases beyond log(m/k), but the probability
of reaching these values of k̃ drops exponentially. By applying Lemma 4.6 inductively, we obtain
that the probability that k̃ 6 k/2i when the algorithm terminates is at most 1/2i. This means the
expected communication cost of Algorithm 2 after k̃ 6 k is (up to a constant) upper bounded by:

∑

i>0

log2(2i ·m/k) · 2−i =
∑

i>0

(

i2 + log2(m/k) + 2i log(m/k)
)

· 2−i,

which is O(log2(m/k)).

4.3 Stitching Things Together

To get our O(n)-bit communication protocol for (∆+1)-coloring, we simply plug Algorithm 2 into
the coloring steps of Algorithm 1.

Algorithm 3. An O(n) communication protocol for (∆ + 1)-coloring.

1. Alice and Bob choose a random permutation π with public randomness.

2. They iterate over the vertices ordered by π, and on vertex v, they run Algorithm 2 with
m = ∆+1, X (respectively Y ) equal to the set of colors used in NA(v) (respectively NB(v)).

Proof of Theorem 1. As before, for a vertex v and permutation π, let dπv denote the degree of
v among its predecessors in π, and kπv denote ∆ + 1 − dπv . By Lemma 4.3, Algorithm 2 colors
v in O(log2((∆ + 1)/kπv )) bits of communicaiton. To finish proving Theorem 1, we will use the
randomness of π to show that this quantity is a constant in expectation.

Since π is a uniformly random permutation, kπv is uniformly random over {∆+1−dv, . . . ,∆+1},
and the expected cost of coloring v is (for some constant c):

1

dv + 1

∆+1
∑

i=∆+1−dv

c log2
(

∆+ 1

i

)

6
1

∆ + 1

∆+1
∑

i=1

c log2
(

∆+ 1

i

)

6
1

∆ + 1

∆+1
∑

i=1

3c ·
√

∆+ 1

i
,
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where the first inequality is by Proposition 2.1, and the second inequality holds because log2(x) 6
3
√
x for all x > 1. Then by using the standard integral upper bound, this is at most:

1

∆ + 1

∫ ∆+1

1
3c ·

√

∆+ 1

x
· dx 6

3c√
∆+ 1

∫ ∆+1

1

1√
x
· dx 6

3c√
∆+ 1

· 2
√
∆+ 1 = O(1).

Remark 4.8. The analysis above goes through as long as we solve a k-Slack-Int instance in
(m/k)1−ε bits of communication for any ε > 0. This may be useful for other problems where
the “coloring a single vertex” task does not admit a very efficient algorithm.

4.4 High Probability Analysis

To complete our analysis, we investigate the probabilistic guarantees given by Algorithm 3. We
first show by standard concentration techniques that when ∆ is small compared to n, our algorithm
uses O(n) bits with high probability. Formally,

Lemma 4.9. Algorithm 3 communicates O(n) bits with probability 1− 2e
− n

2∆2 log2 ∆ .

Proof. Sample independent random variables X = (X1,X2, . . . ,Xn) uniformly in (0, 1). With prob-
ability one, all Xi’s are different and induce the permutation π(v) = |{u ∈ [n] : Xu < Xv}|+ 1 (the
plus one is to have the smallest index at one). By coupling, it suffices to analyze permutations
produced by the Xi’s. For each vertex v, define Kv := ∆ + 1 − |{u ∈ N(v) : Xu < Xv}|. We first
show S =

∑

v log
2( ∆

Kv
) is concentrated around O(n). We will then argue that with high probability,

Algorithm 3 uses O(S) communication.

We use the method of bounded differences. Let i ∈ [n] and x, x′ ∈ (0, 1)n be two vectors which
differ only in the i-th coordinate. Let S(x) and S(x′) be the value of the sum when X = x and X = x′.
Compared to x, changing xi only affects the 6 ∆ neighbors of i by increasing or decreasing Kv by
exactly one. Hence, we bound | log2(∆

k
)− log2(∆

k′
)| when |k− k′| 6 1. The function f(y) = log2(∆

y
)

is differentiable when y > 1, and |f ′(y)| = 2 log(∆
y
)/y2 6 2 log(∆). Using the mean value theorem,

this implies |f(k)− f(k′)| 6 2 log(∆). Hence, Proposition 2.5 implies

Pr[S > E[S] + n] 6 exp

(

− 2n2

n · (∆ · 2 log∆)2

)

6 exp

(

− n

2∆2 log2 ∆

)

.

As shown in the proof of Theorem 1, we have E[S] = O(n), thus we condition on the high probability
event that S = O(n). We now bound the communication of the algorithm. In Algorithm 2, the
number of trials before k̃ 6 k is bounded deterministically. Once k̃ 6 k, each sampling succeeds
with (at least) 1/2 probability, and after log∆ unsuccessful trials, it succeeds with probability one.
Hence, the number of trials for vertex v is stochastically dominated by Tv, a geometric variable
of parameter 1/2 capped at log∆. It is easy to verify E[Tv] 6 2. The total cost of the algorithm
is bounded (up to constant factors) by

∑

v Tv log
2( ∆

Kv
), which is 6 2S = O(n) in expectation. As

{Tv} are independent, the Hoeffding bound (Proposition 2.4) on variables Tv log
2( ∆

Kv
) 6 log3∆

(recall Kv are now fixed) implies

Pr

[

∑

v

Tv log
2

(

∆

Kv

)

> 2S+ n

]

6 exp

(

− 2n

log6 ∆

)

.

The reason we fail to provide high probability guarantees when ∆ is large is that, when sampling
a uniform permutation, changing the position of a single element may affect the cost of many
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vertices. By revealing the permutation “in batches”, we provide better probabilistic guarantees for
large ∆ at the cost of a slightly weaker bound on communication.

Lemma 4.10. When ∆ >

√
n

c log3 n
, Algorithm 3 communicates O(n log∗ ∆) bits w.p. 1−e

−Θ
( √

n

log5 n

)

.

Proof. Let r = log∗∆− 3. For each i ∈ [r], define Vi inductively as the last ni =
n

(log(i) ∆)2
vertices

in V \ (V1 ∪ . . .∪ Vi−1) according to π. For brevity, write V6i = V1 ∪ . . . ∪ Vi (and similarly for < i,
> i, > i). We also define Vr+1 = V \V6r. The algorithm colors all vertices in Vr+1 first, then those
in Vr and so on and so forth until it finishes by coloring V1. The crux of the proof is to show the
following property about sets Vi holds with high probability:

For each i ∈ [r] and v ∈ V \ V6i with dv > ∆/2 has |N(v) ∩ V6i| > ki =
∆

8(log(i)∆)2
. (P)

Before proving P , we assume it holds and show the lemma. Let k0 = 1. We focus on vertices with
dv > ∆/2 as low degree vertices always have ∆/2 available colors (hence, Algorithm 2 ends in O(1)
trials). We assume henceforth dv > ∆/2. Observe that each v ∈ Vi has k

π
v > ki−1 for all i ∈ [r+1].

By Lemma 4.6, each trial in Algorithm 3 succeeds with probability at least 1/2. Therefore, the
Chernoff Bound on geometric variables (Proposition 2.3) implies the total number of trials for
coloring Vi is O(ni) w.p. 1 − exp(−ni). In particular, coloring Vi takes O(ni log(∆/ki−1)) = O(n)
communication. By union bound, communication exceeds O(nr) with probability 6

∑

i exp(−ni) 6

exp(−Ω(n1)) = exp
(

−Ω( n
log2 n

)
)

. Hence, coloring all vertices takes O(nr) = O(n log∗∆) bits.

We now prove P to wrap up. Fix some i ∈ [r] and v /∈ V6i with dv > ∆/2. We show it
has at least ki neighbors in V6i with high probability, and the result follows by union bound.
Fix V<i such that v has fewer than ki neighbors in V<i (otherwise v already satisfies P). The
set Vi is constructed by sampling ni vertices without replacement from the set V \ V<i of size
N = n−∑j<i nj > n− 2nj > n/2. Note that v has |N(v) \ V<i| neighbors which can be sampled
in Vi, which is M := dv − |N(v) ∩ V<i| > ∆/2 − ki > ∆/4 vertices. Let K count the number of
neighbors of v sampled in Vi. We expect E[K] = M

N
ni > 2ki. The samples are not independent,

since Vi is sampled without replacement, but as Hoeffding showed in [Hoe94, Theorem 4], the
Chernoff Bound for variables sampled with replacement can be transferred to variables without.
Hence, using Proposition 2.2,

Pr[K < ki] = Pr
[

K < E[K]/2
]

6 exp
(

−E[K]/12
)

6 exp

(

−
√
n

12c log5 n

)

,

where the last inequality holds from the assumption that ∆ is large.

5 Lower Bound

In this section, we provide a simple lower bound matching our upper bounds.

Theorem 3. Any constant-error randomized protocol for computing a ∆+1-coloring on n-vertices
graphs requires Ω(n) communication in the worst-case.

The proof is by a simple reduction from the problem of sending an n-bit string. Alice constructs
a degree-2 graph G with 4n vertices such that if Bob knows a proper 3-coloring of G, he can recover
x. We remark that in this construction, Alice has all the edges. Hence, it also lower bounds the
non-deterministic complexity of ∆ + 1-coloring.
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Proposition 5.1. Suppose Alice is given a uniformly random string x ∈ {0, 1}n and Bob wants to
learn x. Any deterministic protocol where Bob can recover x with probability 1/2 must communicate
Ω(n) bits.

The proof of Proposition 5.1 is easy, for example by using Fano’s inequality to show that the
mutual information between the transcript of any constant error deterministic protocol and the
random string x must be Ω(n). By Yao’s minimax principle, a distributional lower bound against
deterministic protocols implies a worst-case lower bound against randomized protocols.

We describe the reduction to complete the proof of Theorem 3.

Figure 1: The gadget encoding a single bit. The dashed red edges are present when the bit is 0, and the
dotted blue edges are present when the bit is 1. The solid black edges are always present.

1 2

34

Proof of Theorem 3. Suppose Alice is given a uniformly random string x ∈ {0, 1}n. Let v1, . . . , v4n
be the vertices of G. Gadget i ∈ [n] uses vertices v4(i−1)+1, v4(i−1)+2, v4(i−1)+3, v4(i−1)+4. We
describe two graphs H0 and H1 on four vertices VH = {1, 2, 3, 4}. For each i ∈ [n], Alice constructs
a copy of Hxi

by mapping each vertex j ∈ [4] to v4(i−1)+j . Clearly, if Bob can deduce whether
H = H0 or H = H1 from a proper coloring of H, he can recover x from a proper coloring of G.
Proposition 5.1 implies Alice must send Ω(n) bits to Bob for the protocol to succeed with constant
probability. We now describe the gadget graphs H0,H1 (see also Figure 1).

Let x ∈ {0, 1}. We describe edges of Hx on vertex set [4]. For any value of x, add edges {1, 3}
and {2, 4}. If x = 0, put edges {1, 2} and {3, 4}. Otherwise, if x = 1, put edges {1, 4} and {2, 3}.
Let C be a proper 3-coloring of H0. Either C(1) = C(4) or C(2) = C(3). Indeed, if C(1) 6= C(4),
then only one out of three colors remain available to 2 and 3. On the other hand, no proper coloring
of H1 can have C(1) = C(4) or C(2) = C(3). Hence by checking these two equalities, Bob can
deduce x from a proper coloring of Hx, which concludes the proof.

6 Open Problems

The most immediate open problem from our work is:

Problem 2. What is the communication complexity of finding the maximum degree ∆ of a graph?

If we had an O(n)-bit communication protocol for this problem, we could remove the require-
ment of knowing ∆ in Theorem 1. However, we know that the communication complexity of this
problem is ω(n). Consider the following problem: Alice (respectively Bob) is given as input the
sequence of integers a1, . . . , an ∈ [n]n (resp. b1, . . . , bn), and they wish to compute maxi{ai + bi}.
This problem can be reduced to finding the maximum degree of a graph on n + 2n vertices as
follows: For each each i ∈ [n], Alice (resp. Bob) adds ai edges from i to vertices in {n+ 1, . . . , 2n}
(resp. {2n+1, . . . , 3n}), starting one vertex ahead of where the last edge was added, cycling at 2n
(resp. 3n). Note that verifying a guess x for the answer to this problem is equivalent to deciding if
there is an i such that ai > x−bi, which has a well known lower bound of Ω(n log log n) (see [AD21,
Proposition 3.1] for some details).
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Next, can we remove the assumption that the edges are partitioned between Alice and Bob?

Problem 3. What is the communication complexity of (∆+1)-coloring when the edge sets EA and
EB are not disjoint?

Typically, when we drop this assumption, even trivial decision problems (isG a clique, or a clique
minus an edge) balloon to Ω(n2) communication complexity. However, we observed in Remark 4.2
that Algorithm 1 still works when the edge sets are not disjoint (albeit with foreknowledge of ∆),
so the answer is between n and n log∆.

Problem 4. What is the deterministic communication complexity of (∆ + 1)-coloring?

We saw in Remark 4.5 that there is an O(n log2 ∆) communication deterministic protocol.

Finally, we look at two problems where our algorithmic techniques completely break down.

Problem 5. What is the communication complexity of ∆-coloring?

The crucial difference between ∆ and (∆ + 1)-coloring is that a proper partial ∆-coloring may
not necessarily extend to a complete coloring. This means that the greedy algorithm that is the
backbone of both Lemma 3.1 and our protocols no longer works on an arbitrary permutation of the
vertices. It is possible to adapt Lovász’s proof [Lov75] of Brooks’ Theorem to a O(n log n+n log2 ∆)
deterministic communication protocol, using the protocol of Remark 4.5 as a sub-routine.

Problem 6. Let κ denote the degeneracy of the input graph G. What is the communication
complexity of (κ+ 1)-coloring?

Recall that the degeneracy of a graph is the minimum over all permutations of the maximum
left-degree of a vertex. The classical algorithm to find a (κ + 1)-coloring is to greedily color the
vertices ordered by a permutation achieving minimum left degree κ.

A recent manuscript [AGLMM] shows that this permutation can be found deterministically in
O(n log3 n) bits of communication, and hence there is an O(n log3 n + n log2 ∆) communication
protocol for (κ+ 1)-coloring.
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