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Abstract

Chiral magnets are materials which possess unique helical arrangements of mag-
netic moments, which give rise to nonreciprocal transport and fascinating physics
phenomena. On the one hand, their exploration is guided by the prospects of
unconventional signal processing, computation schemes and magnetic memory.
On the other hand, progress in applications is hindered by the challenging mate-
rials synthesis, limited scalability and typically low critical temperature. Here, we
report the creation and exploration of artificial chiral magnets (ACMs) at room
temperature. By employing a mass production compatible deposition technology,
we synthesize ACMs, which consist of helical Ni surfaces on central cylinders.
Using optical microscopy, we reveal nonreciprocal magnon transport at GHz fre-
quencies. It is controlled by programmable toroidal moments which result from
the ACM’s geometrical handedness and field-dependent spin chirality. We present
materials-by-design rules which optimize the helically curved ferromagnets for
3D nonreciprocal transport at room temperature and zero magnetic field.

Keywords: Nonreciprocity, Artifical Chiral Magnet, Brillouin Light Scattering, 3D
Magnonics
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1 Introduction

Chirality is a characteristic quality of objects which are non-superimposable mirror
images of each other. It plays a crucial role in nature, various scientific disciplines
and technologies [1–4]. Manifested by nonreciprocal transmission of signals [5, 6], chi-
ral objects manipulate the polarization of electromagnetic waves. In communication
technologies, chirality is being widely integrated for signal isolation, noise reduction
and efficient energy transfer. In condensed matter physics and materials science, chiral
crystals form a fascinating class of magnetic materials, which give rise to rich physi-
cal phenomena. Among them, there are the nonreciprocal propagation of phonons [7]
and magnons [8], skyrmions as topologically protected spin structures, the magnon
Hall effect [9], bulk electronic diode effect [10] and emergent inductor [11]. Magnetic
chirality arises from breaking spatial-inversion and time-reversal symmetries simulta-
neously [12, 13], which occurs in specific noncentrosymmetric crystals [14]. Typically,
the crystals require complex synthesis routes and possess the relevant magnetic order-
ing at low temperatures. These aspects delay the development of room-temperature
applications.

In recent years, the advancements in nanotechnologies [15] have opened the possi-
bility of endowing conventional materials with complex topologies in all three spatial
directions [16]. They allow one to artificially design optical [17], mechanical, and
electrical properties. In magnetism, the interplay between 3D geometry and magnetic
properties is intensively investigated [18–22]. It has been found that curved surfaces
and geometric topology lead to the emergence of an extrinsic Dzyaloshinskii-Moriya
interaction (DMI) [23, 24], chiral symmetry breaking and unconventional magnetic
anisotropies. For spin waves (magnons), nonreciprocal band structures are expected.
Nonreciprocity means that the energy flow is different in opposite directions. In a non-
reciprocal magnonic device, either the signal intensity, the frequency, or both differ
for magnons propagating with opposite wave vectors −k and +k. For bulk crys-
tals and thin films nonreciprocity was examined by means of broadband electrical
spectroscopy with coplanar waveguides [8], magnetoelastic spectroscopy with surface
acoustic waves [25, 26], and Brillouin light scattering (BLS) spectroscopy with wave
vector resolution [27–29], confocal microscopy [30] or time-resolved scanning trans-
mission X-ray microscopy (TR-STXM) [31]. The symmetry breaking and magnon
nonreciprocity arose from interfacial DMI provided through an additional heavy metal
layer, magnetic surface anisotropy [32, 33], dipolar coupling and asymmetric coupling
of hybridized modes [34]. In a more general picture, the spatial-symmetry breaking
of a magnetic system via e.g. a heavy-metal interface, antiferromagnetically coupled
bilayers, a Bloch domain wall, or curved shapes generates a non-zero toroidal moment
vector τ =

∑
i ri × mi with ri (mi) the position vector (magnetic moment) at

site i (Fig. 1a). It is used to estimate the helicity χ of a magnetic configuration via
integration across its cross-sectional area A using [35]

τ (m0)
def
=

1

A

∫∫

A

dxdy r ×m0(r), (1)
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where m0 represents the static magnetization. If the relation

k · τ (m0) ̸= 0 (2)

is fulfilled, the spin-wave dispersion relation exhibits nonreciprocity which is induced
by dipolar interaction between the spins [35]. Via non-zero τ and the dipole-induced

Fig. 1 Helical spin texture of artificial chiral magnets, toroidal moments and repro-
grammable nonreciprocity of magnons at zero magnetic field. a, Sketch of ferromagnetic
tubes with helical magnetic states of left- and right-handedness in a small magnetic field H (top) and
corresponding toroidal moment vectors τ motivating nonreciprocal (NR) propagation of magnons
with wave vectors +k and −k along z-direction (bottom). b, Ferromagnetic tubes incorporating
screw-like surfaces with left-handedness and right-handedness prepared by additive manufacturing.
The surface topology of the Ni shell gives rise to an artificial chiral magnet (ACM). c, Magnon spec-
tra obtained on a RH-ACM (pink symbols) and LH-ACM (green symbols) in a field µ0H = +250 mT
at position z = −0.5 µm. Curves reflect Lorentzian fits. d, Nonreciprocity parameter INR extracted
from spectra taken at µ0H = 0 mT after applying a magnetic field of 30 mT in opposite axial direc-
tions of a LH-ACM. INR was measured at f = 10 GHz five times (cycles) before realizing a reversed
magnetic field history at position z = −0.7 µm. The data reflect reprogrammable nonreciprocity at
zero field. e, Micromagnetic simulation revealing nonreciprocal magnon transport into negative z-
direction when exciting an LH-ACM in its central region at zero field (here, at 3 GHz) after it has
been exposed to a field pointing in positive z-direction beforehand.

symmetry breaking a helical spin structure, one can introduce chirality in a conven-
tional but curved magnet. Since the beginning of this decade, considerable efforts have
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been dedicated to investigating the spin dynamics of curved ferromagnetic shells form-
ing nanotubes [36–38] and lattices of interconnected ferromagnetic curved segments
[20, 22]. However, a conclusive experimental evidence of NR magnon propagation has
remained elusive as noted in Ref. [37]. Helicity and chirality are two closely related
physical concepts but refer to different characteristics of an object. A helical spin
texture stands for spins rotating relative to an axis in space, while a chiral spin tex-
ture describes a non-superimposable arrangement of spins. In a bulk chiral magnet,
spins relax into the helical texture at zero magnetic field. Its toroidal moment van-
ishes [39], and the chiral magnet does not exhibit an asymmetric dispersion relation
in zero field [29].

Beyond the intriguing physics emerging from curved surfaces, 3D nanomagnetic
structures captivate vast attention from a technological perspective. Compared with
planar thin-film devices, 3D magnetic architectures innately come with a greater
data storage capacity and higher dimensional connectivity. These aspects are key
for sustainable nanoelectronics with low energy consumption and high computational
power. Towards magnonics-based signal processing, nonreciprocal waveguides are of
utmost importance for an efficient routing of signals. Furthermore, artificially created
3D magnetic objects naturally have a higher degree of design flexibility. If prepared
from magnetically ordered materials with high critical temperature the materials-by-
design approach is expected to enable chiral properties ready for room-temperature
applications.

Here, we present a novel route to chirality in magnetic materials at room temper-
ature. Using the materials-by-design approach and additive manufacturing of nickel,
we create artificial chiral magnets (ACMs) and explore their unprecedented magnetic
properties by means of inelastic light scattering and simulations. By combining two-
photon lithography (TPL) and mass production compatible atomic layer deposition
(ALD), we prepare tubular ferromagnetic structures with screw-like surface topology
of left-handedness (LH) and right-handedness (RH). The ACMs consist of a photo-
resist template (illustrated in gray color in Fig. 1a,) which is covered by a uniformly
thick nickel shell (green). A scanning electron microscopy image of LH-ACMs is shown
in Fig. 1b. The suspended magnetic tubes (bright) are investigated in the present
work. The helical relief (helix region) is integrated into an otherwise cylindrical Ni
tube (tube region). In a magnetic field H applied parallel to the ACM, the magne-
tization in the tube region aligns with H while in the helix region it spirals around
the tube forming locally a screw-like spin texture. The handedness of the texture fol-
lows the corresponding structural chirality, generating oppositely polarized toroidal
moments ∓τ in LH- and RH-ACMs and inverted nonreciprocities τ · k (Fig. 1a). By
means of micro-focused Brillouin light scattering microscopy (µ-BLS) (Fig. 1a and
c), we detect nonreciprocal spin dynamics with high spatial resolution. By studying
Stokes and anti-Stokes scattering processes of the focused laser light with magnons,
we identify differences in both resonance frequencies ∆f (Fig. 1c) and intensities of
BLS peaks (Fig. 1d) which we describe by the asymmetry parameter INR. We antici-
pate that the observed nonreciprocities originate from asymmetric dispersion relations
induced by chiral spin textures following the helical reliefs. By scanning the laser spot
across the curved surfaces of the helices, we resolve a gradual evolution of Stokes and
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anti-Stokes peaks. We attribute the variations to momentum conservation dependent
on the light scattering geometry. The nonreciprocities are inverted by either changing
the polarity of the applied magnetic field or exploring an ACM of opposite handed-
ness. We demonstrate also a programmable magnetic chirality at zero field through
the magnetic field history applied to the helical Ni tubes. Exploring the remanent
state of the same tube after applying either +30 or −30 mT, we detect opposite non-
reciprocities at zero magnetic field (labelled ±0 mT) by means of µ-BLS (Fig. 1d).
Micromagnetic simulations show that the surface curvature of the helical relief added
to the Ni tubes stabilizes a chirally arranged magnetic texture. The observed signa-
tures of nonreciprocity are qualitatively reproduced by numerical simulations (Fig.
1e). Hence, our research unveils the possibility of empowering a conventional single-
layered ferromagnet such as Ni with chiral properties in the remanent state through
engineered helical surface curvature. Using an additive manufacturing strategy to cre-
ate the observed nonreciprocity of spin dynamics, we facilitate a mass production
technology for chirality-based nanoelements which offer unidirectional signal trans-
mission in 3D nanomagnetic architectures. We expect them to enhance connectivity
in hardware-implemented 3D neural networks.

2 Observation of asymmetric magnon spectra in
artificial chiral magnets

We investigated the spin dynamics of ACMs by µ-BLS at room temperature (Fig. 2a).
The scattering process between photons and magnons in an opaque thin film obeys
the momentum conservation law for the in-plane momenta. In the BLS spectrum, the
Stokes (anti-Stokes) peak corresponds to the creation (annihilation) of magnons. In
the µ-BLS setup, the focused laser light offers a cone of incidence angles around the
optical axis of the lens. The backscattered light hence contains photons which interact
with magnons exhibiting a specific distribution of in-plane wave vectors leading to the
inhomogeneous broadening of BLS peaks. Assuming isotropic scattering processes, a
frequency asymmetry (nonreciprocity) of the magnon band structure with respect to
wave vectors k parallel to the film plane is not resolved. This is no longer true if the
laser light is focused on a curved surface whose normal direction does not coincide with
the optical axis of the lens. In Fig. 2b and c we depict the scattering configurations near
the helix of an ACM. At z < 0 µm and z > 0 µm the Stokes (anti-Stokes) signal mainly
comes from magnons propagating in parallel with (anti-parallel to) the momentum of
the incident light projected into the film, i.e., the resulting magnon wave vectors k are
in −z- and +z-direction, respectively (+z- and −z-direction, respectively), depending
on the laser spot position. The resulting imbalance in BLS spectra allows one to
qualitatively analyze the frequency nonreciprocity of magnon band structures and
propagation directions −k versus +k, respectively, along the z-axis.

In Fig. 1c, we show spectra taken on an RH-ACM (pink) and LH-ACM (green)
with a field of +250 mT applied in z-direction. Strikingly, the height difference between
Stokes and anti-Stokes peaks is reversed for the two samples. Consequently, the sign
of intensity asymmetry parameter INR depends on the geometrical handedness of the
ACMs only as their Ni shells were deposited in the same ALD process. Also the
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Fig. 2 Nonreciprocal magnon spectra detected along right- and left-handed ACMs via
Brillouin light scattering spectroscopy. a, Sketch of micro-focus BLS spectroscopy performed
along the long axis of an RH-ACM. The black arrow on the ACM indicates the scanning direction
in a field H applied the long axis. Light scattering geometry at positions b z < 0 µm and c z >
0 µm leading to transferred magnon wave vectors with oppositely directed propagation directions as
sketched for the Stokes signal. Color-coded spectra taken along an RH-ACM in a field of d +250 mT
and e -250 mT. Color-coded spectra taken along a LH-ACM in a field of f +250 mT and g -250 mT.
h Quantitative analysis of the nonreciprocity in terms of frequency shift ∆f for the LH-ACM (top)
and the RH-ACM (center) extracted from spectra shown on the left. The bottom panel shows the
magnitude of fNR(H) for the RH-ACM (pink) and LH-ACM (green) as a function of position z.

asymmetry in frequency ∆f (Fig. 1c) is inverted when changing the handedness. We
attribute the handedness-dependent signal asymmetries to magnetochiral properties
and nonreciprocal magnon characteristics in the ferromagnetic shell. The nonrecipro-
cal characteristics introduced by geometry are further verified by spatially resolved
measurements presented in Fig. 2d to g. The magnon spectra were taken at differ-
ent positions along the long axis of the tubular shell. The position z = 0 is put near
the topmost point on the surface helix. The z-position-dependent spectra show clear
asymmetries with respect to both z = 0 and f = 0 in signal strength and frequencies
of signal maxima. As a function of position, both the frequency of the signal maximum
and its intensity vary characteristically for the Stokes (left) and anti-Stokes (right)
spectra. The observed asymmetries are reversed by either an opposite field direction
(Fig. 2d,f versus Fig. 2e,g) or opposite handedness (Fig. 2d,e versus Fig. 2f,g). In the
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central position z = 0 the spectra show BLS peaks with local minima of the reso-
nance frequency. At this position, the asymmetric intensity distribution and frequency
difference between Stokes and anti-Stokes signals change sign.

To quantitatively analyse the asymmetries in frequency as a function of spot posi-
tion (Fig. 2h), we apply a Lorentzian fit to the peak of each Stokes and anti-Stokes
spectrum according to

Itotal = I0 +
I

(f − fc)2/Γ2
f + 1

, (3)

where Γf is the half width at half maximum (HWHM), fc is the central frequency,
I is the signal strength at the maximum, and I0 is the background signal in the
spectrum. We then calculate ∆f = |fc,Stokes | − |fc, anti-Stokes | and ∆I = IStokes −
Ianti-Stokes. However, a systematic frequency shift f ′, independent on z, is inevitably
present due to a slight misalignment of the laser scanning path with respect to the
center of the magnetic tubes. In order to compensate for this systematic offset, we
introduce ∆f ′ = ∆f − f ′ and ∆I ′ = ∆I − I ′, representing the position-dependent
component of ∆f and ∆I. Using the extracted parameters ∆f ′ and ∆I ′, we calculate
the asymmetry parameters as a function of z-position. The parameters ∆I ′ for RH-
and LH-ACMs at ± 250 mT (red and blue symbols) are summarized in Fig. S5,
while values ∆f are summarized in the two top panels of Fig. 2h. The parameters
∆f and ∆I for RH- and LH-ACMs at ± 250 mT are summarized in Fig. S8. The
maximum asymmetry amounts to 0.67 GHz (0.8 GHz) in case of the LH-ACM (RH-
ACM). Considering ∆f ′ = (2γ/πMS)Dk [27, 28], and taking the maximum possible
wave vector value k = 4π/λlaser offered by the focussed laser light, we estimate an
extrinsic DMI constant D′ > 0.112 mJ/m2(D′ < −0.134 mJ/m2) for LH-ACM and
RH-ACM, respectively. The extracted D′ values are comparable to interfacial DMI
constants reported for magnetic multilayers incorporating a heavy metal [40]. The
latter component introduces relativistic spin-orbit interaction and enlarges magnetic
damping in ferromagnetic metals. The curvature-induced ACM reported here avoids
the detrimental effect of the heavy metal.

To analyze the relative strength of the magnetochiral effect in ACMs and com-
pare them to natural materials, we evaluate the relative magnitude of frequency
nonreciprocity according to

βNR(H) =
∆f ′(+H)

fS(+H) + fAS(+H)
− ∆f ′(−H)

fS(−H) + fAS(−H)
(4)

where fS refers to |fc,Stokes| and fAS refers to |fc, anti-Stokes |. We note that βNR

is nominally equivalent to gMCh as defined in Refs. [7, 41]. In the bottom panel of
Fig. 2h we display βNR as a function of position for the RH-ACM (pink) and the
LH-ACM (green). Each dataset is anti-symmetric with respect to z = 0. The consis-
tent anti-phase variations observed for all three different asymmetry parameters as
a function of BLS spot position are a clear signature of chirality effects controlled
by geometrical handedness and magnetic field direction. The maximum peak-to-peak
difference amounts to 5.4 × 10−2 at z = −0.5 µm for RH-ACM. This value is more
than three orders of magnitude larger than gMCh reported for a natural chiral material
(gMCh ≈ 40 × 10−6) in Ref. [7, 41].
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3 Helical magnon channel around an ACM

In the following we interpret the observed frequency variation in Fig. 2d to g. For a
polycrystalline thin film of Ni one expects a magnetic hard axis along the surface nor-
mal. Along the scanned path, the hard axis of the ACM shells gradually rotates from
the −z-direction via the −y-direction toward the +z-direction (Fig. 2a). Considering a
magnetic field of 250 mT applied collinear with the z-axis, the LLG equation assumes
the largest effective field in the straight part of the tube (Fig. 2a) and a smaller effec-
tive field in the topmost point of the surface helix. At both of these positions, the
applied field is tangential to the Ni film and the local hard axis is perpendicular to the
field, Consistently, the BLS spectra shown in Fig. 2d to g show local maxima (minima)
of the eigenfrequencies detected within the tube (helix) regions. To further explore the
microscopic nature of the low-frequency BLS signals near z = 0 we present further
experimental BLS spectra and micromagnetic simulations in the following.

We scanned the BLS laser focus over three neighboring devices as sketched in
Fig. 3a. The spatially resolved BLS signal (magnon distribution) was obtained by
moving the sample in the xz-plane with 100 nm steps along x− and z−directions
while keeping a field of +250 mT along the z-direction and a fixed BLS detection
frequency of -15 GHz (Fig. 3b). Further data taken at ±13 and ±17 GHz are displayed
in Supplementary Fig. S6. The BLS mapping of Fig. 3b shows a spatial intensity
distribution which exhibits a weak signal strength in the tube region and a large one in
the helix region. The largest signals are found in the elevated helical reliefs indicated by
the dashed ovals. Within an oval, the signal distribution at -15 GHz is inhomogeneous
suggesting a nonreciprocal character of magnons along the helical surface relief. The
signals at ±13 GHz are strong in the ovals as well. However, at ±17 GHz the large
signals occur in the tube region (compare Supplementary Fig. S6).

Using the GPU-accelerated software MuMax3 [42] we simulated a Ni ACM con-
sisting of a tube with inner radius of 220 nm and thickness of 30 nm which intersects
a hollow helix with an ellipsoidal cross-section. The helix had a pitch of 2000 nm,
diameter of 740 nm, cross-sectional inner major and minor radii of 120 nm and 70
nm, respectively, and a thickness of 30 nm, as detailed in the Methods section. The
diameter is smaller compared to the real sample as a consequence of the limited com-
putational power. An external field of +250 mT was applied along the z-axis. To
investigate the dynamic response a small dynamic field h = h0 sinc (2πfc (t−t0)) x̂ with
pulse amplitude µ0h0 = 3 mT, cut-off frequency fc = 15 GHz, time t and time-offset
t0 = 26.7 ns was applied to a 20 nm wide strip forming a ring-like excitation region
around the center. Six repetitions of periodic boundaries (PBCs) were applied along
the z-axis to prevent finite-size induced vortex states at the ends. Following the pro-
cedures outlined in the Methods, we obtain a spectrum as presented in Fig. 3c when
considering the spin configuration of an RH-ACM shown in Fig. 3d (left). Multiple
peaks are resolved in Fig. 3c which appear mainly in two groups. Coming from low
frequencies, one group exists up to about 12.3 GHz. The maximum signal strength
shows up at 12.56 GHz followed by a second group of peaks extending to larger fre-
quencies. We are particularly interested in the low-frequency regime and display the
spatial distribution of the magnitude of the complex dynamic amplitude at 11.14 GHz
in Fig. 3d (right). The spin-precessional motion of this low-frequency excitation occurs
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Fig. 3 Helical magnon channel around an ACM. a, Sketch of the measurement configuration.
b, Spatial map of BLS signal taken at -15 GHz (Stokes signal) while +250 mT is applied to the RH-
ACMs. The dashed red ovals indicate the most elevated regions due to the helix on the surface. c,
Simulated spectrum at +250 mT for an RH-ACM with the spin structure shown in d. d, Simulated
spin precession occurring along the helix at 11.12 GHz (helix mode).

along the helical relief on the surface. The spin-precessional amplitude is distributed
asymmetrically along the surface helix. The tube region is not excited. The simula-
tions are qualitatively consistent with the experimental observation presented above
and in Supplementary Fig. S6. The remaining discrepancy concerning eigenfrequencies
is attributed mainly to the different diameters.

4 Nonreciprocity at remanence induced by
field-reprogrammable toroidal moment vectors

The data of Fig. 2d to g showed that for a given handedness the nonreciprocity of BLS
signals depended on the field orientation. Considering Eq. 2, we expect a sign change
of the toroidal moment vector with positive and negative H. Figure 4a to c summarizes
the simulated magnetic field dependence of τ in an LH-ACM. In Fig. 4a, we show
computed toroidal moment values according to Eq. 1 when sweeping the magnetic
field from negative (dashed curves) to positive direction and back (solid curves). We
note that the value of the toroidal moment vector depends on the choice of origin. As
long as this choice is made consistently, the change in toroidal moment is independent
of the choice of origin [39]. We have taken the center of the tube as the origin. In the
supplementary material, we show that simulations performed for the RH-ACM result
in a mirror image of Fig. 4a, which reflects the opposite handedness of the ACMs.
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Fig. 4 Programmable toroidal moments and nonreciprocal transport at remanence. a,
Toroidal moment τ of a LH-ACM (blue curve) simulated as a function of axial field H and its sweep
direction indicated by yellow arrows. The magenta and orange curves decompose the toroidal moment
of the LH-ACM in the contributions from the tube and helix regions, respectively. The field was swept
from negative to positive (dashed lines) and back (solid lines). The hysteretic behavior enables a
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when varying the magnetic field from +250 mT, to +0 mT, −250 mT, and −0 mT. The cross-section
was taken at the central plane of the ACM. d, Intensity nonreciprocity INR as a function of magnetic
field and sweep direction, showing a hysteretic behavior at position z = −0.7 µm. e, Color-coded
magnon spectra +0 mT and −0 mT obtained along the central axis along the top surface of a LH-
ACM at ±0 mT after applying +50 mT and −50 mT, respectively. The white (blue) circles indicate
the same positions on the z-axis and highlight clearly asymmetric Stokes (anti-Stokes) signals which
substantiate their dependence on the magnetic history.

In Fig. 4a we decompose τfull into a contribution from the tube region τtube (purple
curves) and a contribution from the helix region τhelix (red curves). As shown in
Fig. 4a, τtube vanishes when the magnetic field increases (decreases) to +10 mT (-
10 mT), whereas τhelix remains at a finite value in the presence of a strong magnetic
field (± 250 mT). Besides, at the remanent state (± 0 mT), the LH-ACM sustains
a substantial amplitude of τfull, which is further visualized in Fig. 4b where the full
toroidal moment density T is shown for +0 mT. Note that in Fig. 4a, τtube appears to
have a larger contribution to τfull, which is attributed to the larger volume of the tube
region. Figure 4c shows cross-sections of the toroidal moment density T of the LH-
ACM for a sweep from -250 mT to −0 mT and a sweep from 250 mT to 0 mT. In both
cases, the toroidal moment is large in remanence, with an appreciable contribution
originating from the helix region.
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In Fig. 4d, we report BLS spectra taken on one and the same LH-ACM after
saturating it with a magnetic field along the +z-(−z-)direction expecting −τ(+τ) from
Fig. 4c. The BLS spectra were obtained in zero magnetic field after saturating at +50
mT (labeled +0 mT) and −50 mT (labeled −0 mT). Comparing the BLS signals near
the dashed circles in Fig. 4d, the Stokes peak of +0 mT is located at higher frequency
with stronger intensity than in the −0 mT spectra, while anti-Stokes peaks show the
opposite behavior. The spectra exhibit position-dependent nonreciprocity consistent
with the +250 mT spectra of Fig. 2d to g. The corresponding spectra on RH-ACM
are given in Fig. S3, which shows opposite position dependence with respect to Fig.
4d. In Fig. 4e we display the full hysteresis curve of the evaluated intensity asymmetry
INR. Here, we swept the magnetic field from +30 mT to −30 mT and then back to
+30 mT while acquiring BLS intensities at frequencies +10 GHz and −10 GHz at the
z coordinate highlighted by the dashed circles. INR was extracted via

INR(f0,H) =
IS(f0,H) − IAS (f0,H)

(IS (f,H) + IAS (f0,H))/2
. (5)

These independent data substantiate the non-vanishing chirality of an ACM at zero
magnetic field and the field-programmable nonreciprocity. The unique surface topog-
raphy of ACMs favors a spirally aligned spin texture which consequently preserves the
chirality with τ ̸= 0 at zero magnetic field. To explore the reproducibility of the chi-
rality memory effect in an ACM, we sequentially applied ±30 mT, and extracted INR

at ±0 mT for five times before applying the opposite magnetic field history. The data
are displayed in Fig. 1d and Fig. S4c,d. Within the noise level, INR exhibits only two
levels reflecting two different magnon reciprocities reproducibly induced at zero field.
The hysteretic curves of the LH- and RH-ACM are acquired at position z = −0.7µm,
showing opposite nonreciprocity in Fig. S4a and S4b.

5 Optimization of magnon nonreciprocity in ACMs

In the following we discuss how to engineer and optimize nonreciprocity in ACMs.
To this end, first, the dispersion relation of magnons f(kz) on the tubular segment is
obtained via dynamic micromagnetic simulations. Both right-handed and left-handed
ACMs are considered. Figure 5a shows the numerical results as color-coded graphs
obtained for four configurations provided by differently oriented spin textures and the
different handedness (shown on the right of each graph). Thereby, we realize four com-
binations of helicity of spins χ = ±1 and polarization p = ±1. p is evaluated from
m0 projected on the z-axis (for details, see Supplymentary materials. The top row of
Fig. 5a shows the dispersion obtained for an RH- and LH-ACM at zero field, where the
system was first saturated along the positive z-direction. Due to their opposite hand-
edness, the spin textures of the two tubes have identical polarity but opposite helicity
(handedness). The color intensity map shows the resulting eigenfrequencies of the tube
segments. The noisy appearance is due to the finite frequency and field resolution of
the performance-hungry simulations on ACMs. The numerical results demonstrate a
clear frequency nonreciprocity between ±kz, whose sign is opposite for RH- and LH-
ACMs. We compare the numerical results obtained on ACMs with dispersion relations
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Fig. 5 Optimization of reprogrammable nonreciprocity in ACMs. a, Numerical simulation
results of spin wave dispersion relations f(kz) on RH and LH Ni tubes at ±0 mT. The 3D illustrations
provide the remanent magnetic textures leading to f(kz) shown on their left sides. b, Contributions of
±k magnons to the spectra of a RH-ACM at +0 mT. c, Phase distribution of magnon modes at 1.49
GHz on an ACM. d, Optimization of nonreciprocity (∆f) according to Eq. 6 by varying geometrical
and materials parameters as well as the angle the helical spins take with respect to the longitudinal
axis.

calculated analytically by an expression provided for nanotubes with conical spin tex-
ture [43] (see Methods). The analytical results (solid lines) agree almost quantitatively
with the branches resolved by the full-fledged numerical simulations applied to ACMs,
when we consider an effective radius rst of 300 nm for the straight (st) nanotube.
The two minima shown in the numerical dispersion can be identified with the two
azimuthally propagating modes m = ±1, with m being the azimuthal index. The fre-
quency nonreciprocity is opposite for RH- and LH-ACMs highlighting the geometrical
programmability of magnon transport via the surface helix. Stimulated by [44] and
considering their peculiar geometry and the unidirectional magnon flow along the z-
axis we call the created ACMs magnonic Archimedean screws.
Furthermore, we show that the nonreciprocity at remanence is field tunable. After first
saturating the system with a field applied along the −z-direction and then approach-
ing 0 mT, we reverse the nonreciprocal dispersions for the RH- and LH-ACMs (Fig. 5a,
bottom row). The different contributions of +kz and −kz magnons can be clearly
shown by integrating the intensity of the dynamic magnetization (Fig. 5a) over the
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positive and negative wavevectors, respectively. The resulting spectrum of the RH-
ACM is shown in Fig. 5b and clearly demonstrates that +kz magnons dominate the
absolute frequency minimum in the dispersion. In Fig. 5c we display the phase profile
of the mode with the frequency of the main peak at 1.49 GHz. The magnons are seen
to propagate in a helical manner along the tube. Unwrapping the ACM onto a plane
reveals a phase jump induced by the surface helix (Fig. 5c).
There are two crucial parameters responsible for the nonreciprocity that are related
to the geometry of the ACM: one is the angle η of the magnetization m0 with respect
to the longitudinal tube axis, which is related to the surface helix angle, and the other
one is the radius r of the tube region. Using the theoretical formalism introduced by
Salazar-Cardona et al.[43], we studied the parameter-dependent nonreciprocity of Ni
ACMs in greater detail. For this, we assumed that the opening angle α of the conical
spin structure relates to η and the straight tube radius rst to r. In Fig. 5d, the com-
puted nonreciprocity ∆f for long tubes is shown as a function of angle α and radius
rst. The nonreciprocity increases for both smaller radius and smaller angles. We show
line cuts for three radii: r = 168, 294, and 654 nm. Here, 294 nm is the effective
radius of the tube, whereas the radius of 654 nm is comparable to the experimentally
realized ACM presented in this work. We do not display the parameter regime of very
small values in which the hierarchy of azimuthal modes m is reversed as TPL sets a
lower limit to rst. The minimum radius reached by state-of-the-art TPL amounts to
50 nm. The non-reciprocity can be further enhanced by the choice of polycrystalline
ferromagnetic material. In Fig. 5d the close-up shows a comparison of the nonre-
ciprocity for three ferromagnets: Ni, Py, Co (Methods). Both Py and Co have a larger
nonreciprocity than Ni. In particular, Py shells are also accessible via ALD [38, 45].

6 Conclusion

We reported the successful creation of artificial chiral magnets which support non-
reciprocal magnon transport at zero magnetic field. Our work unveils the interplay
between geometrical handedness and nonreciprocity. It demonstrates that chirality can
be imprinted at room temperature by surface engineering of a conventional ferromag-
net. Magnons on LH- and RH-ACMs show opposite nonreciprocities in both magnon
frequencies and intensities. The nonreciprocity can be reversed by reversing the mag-
netic field direction. The artificial magnetic chirality manifests itself in a pronounced
magnon nonreciprocity chiral parameter βNR = 5.4 × 10−2, which are three orders of
magnitude higher than the reported value in bulk chiral magnets [41].

The presented ACMs are created by combining TPL and ALD, which is com-
patible with mass production of components in microelectronics. In particular, the
ACMs have been realized based on a polycrystalline magnetic material. Such a mate-
rial is preferred in technologies over single crystals which were explored in the case
of natural chiral magnets. The chirality of ACMs originates from the geometrical
handedness and a helical Ni surface on a central cylinder. This structure gives rise
to a magnonic Archimedean screw. The significant magnon nonreciprocity of our 3D
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nanomagnetic elements in the GHz frequency regime fuels the prospects of 3D intercon-
nected magnonic circuits with uni-directional signal transmission in vertical directions.
Such elements enhance the integration density and energy efficiency of magnonics.
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7 Methods

7.1 Sample Preparation

The magnetic chiral tubes were fabricated by combining two-photon lithography
(TPL) and atomic layer deposition (ALD). We applied the additive manufacturing
methodology described in [20] to 3D polymer wires which contained helical reliefs.
They were prepared by TPL using a Photonic Professional GT+ system (Nanoscribe
Inc., Germany) in three steps. Firstly, negative photoresist IP-Dip was dropped onto
a fused-silica substrate (25 x 25 mm2 with a thickness of 0.7 mm). Secondly, an
infrared femtosecond laser (wavelength: 780 nm, power: 20 mW) was focused inside
the resist exploiting the dip-in laser lithography (DILL) configuration for the expo-
sure. Thirdly, the whole substrate was immersed in propylene glycol monomethyl ether
acetate (PGMEA) for 20 min and isopropyl alcohol (IPA) for another 5 min. After the
polymer was dried in ambient conditions, the sample was put into a hot wall Beneq
TFS200 ALD system. We conformally coated the polymer with a 30-nm-thick Ni shell
after depositing 5-nm-thick Al2O3 using the plasma-enhanced ALD process presented
in [36]. The detailed preparation process is presented in (Fig. S1).

7.2 Brillouin light scattering microscopy

The spin dynamics were investigated by µ-BLS at room temperature (Fig. S2). The
samples were mounted on a piezo stage by which the sample was moved in steps of
50 nm underneath the laser focus. Positive and negative external magnetic fields were
applied by permanent magnets mounted in different orientations along the x-axis.
The ACMs were positioned parallel to the x-axis. The green laser (wavelength: 532
nm) with a power of 3 mW was focused on the surface of the helical magnet using a
100X objective lens with a numerical aperture of 0.75. The s-polarized component of
the scattered light was passed through a Glan-Taylor polarizer and sent to a six-pass
tandem Fabry-Pérot interferometer. In the µ-BLS setup, the focussed laser light offers
a cone of incidence angles around the optical axis of the lens. The backscattered light
contains photons which interact with magnons with different in-plane wave vectors
+k and −k. The magnitudes of k vectors ranges from 0 to about 17.7 rad/µm.

7.3 Simulation

Micromagnetic simulations were conducted using the MuMax3 software [42] which
solves the Landau-Lifshitz-Gilbert (LLG) equation on a finite difference grid. We con-
sidered a Ni ACM consisting of a tube with inner radius 220 nm and thickness 30 nm
which intersects a hollow helix with ellipsoidal cross-section. The helix had a pitch
of 2000 nm, diameter of 740 nm, cross-sectional inner major and minor radii of 120
nm and 70 nm respectively, and thickness 30 nm. The saturation magnetization was
set to Ms = 490 kA/m and the exchange stiffness to Aex = 8 pJ/m. The system was
discretized into 160×160×384 cells of dimension 5 × 5 × 5.2 nm3. Six repetitions of
periodic boundary conditions along the z-direction were used.

Hysteresis diagrams of the structures were computed by sweeping an applied field
parallel to the tube axis with a 2◦ misalignment between +1 T and –1 T and back to
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+1 T. Additionally, a constant background field of 0.7 mT along the x, y-diagonal was
applied. The magnetic ground state was computed in between specified field increments
by first using the steepest conjugate gradient method [46] to minimize the energy and
then solving the LLG without precessional term. The resulting ground states provided
the initial state for the computation of the toroidal moment and the dynamic behavior.

The toroidal moment was computed per layer using Eq. 1 using the tube axis as
the origin. The plots in Fig. 4c-e show the product r×m (r) projected on the z-axis.

The dynamic simulations were conducted following the methodology in the main
text. The dynamic field was confined to a strip of width 20 nm. The simulations were
run for a total time of 53.3 ns and the magnetization was sampled on the surface
of the tube along the tube axis every 33.3 ps. The damping was set to α = 10=−3

and increased quadratically to 1 near the ends of the structure. For the numerical
results shown in Fig. 3d, care had to be taken that no asymmetries due to field mis-
alignment were present. Therefore, the ground state from the hysteresis was used as
an initial state, then the background signal was removed and the applied field was
fully aligned with the tube axis. The ground state was subsequently recalculated. The
gilbert damping was set to α = 10−3. A fast Fourier transform (FFT) was performed
over the dynamic magnetization components mx,my. Then, the intensity of the com-
plex dynamic magnetization md = mx + imy was computed. Its spatial distribution is
shown in Fig. 5 d,e and the integrated intensity is shown in Fig. 5 c. Finally, the dis-
persion shown in Fig. 5 was obtained by performing a 2D FFT over the magnetization
sampled on the tube along the z-axis.

To clearly visualize the magnon propagation in real space, simulations were per-
formed on longer tubes (4000 nm). No periodic boundaries were applied. To minimize
stray field effects at the edges, the tube radius was reduced to 125 nm and the helix
end-to-end diameter was set to 200 nm. The dispersion of this structure is shown in
Supplementary.

7.4 Analytical dispersion

The dispersion in Fig. 5 is plotted together with data obtained from the analyt-
ical model proposed by Salazar et al. [43] for nanotubes with helical equilibrium
magnetization. The dispersion is given by

ωm (k) = ωM

[
Am (k) +

√
Bm (k) Cm (k)

]
, (6)

with ωM = γµ0Ms, γ is the gyromagnetic ratio and k the wavevector. The index
m denotes the azimuthal mode. Am (k) ,Bm (k) , Cm (k) are the dynamic stiffness
fields. The frequency non-reciprocity is determined by the magnetochiral stiffness field

Am
k = −χK(m, k) sin (θ) + p

(
N (m, k) − 2mλ2

exc

b2

)
cos (θ). Here, θ is the angle of the

magnetization with respect to the tube axis, p = ±1 is the polarity of the magneti-
zation and χ = ±1 is the helicity. We note that there is a minus sign difference for
the expression of A [47]. The functions K(m, k),N (m, kz) are demagnetizing factors.
The data shown in Fig. 5 is obtained from Eq. 6 in the ultra-thin shell approximation
where t ≈ λexc ≪ R, with t the thickness, λexc the exchange length and R the mean
radius of the tube. Complete expressions are given in the supplementary information.
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1 ACM fabrication

ALD cycle Hydrogen
Plasma

Nickelocene Water 
moleculec

NiCp2 H2O

c=7
n=360

H2 plasma
Polymer
Template ACMALD 



Fig. S1 Plasma-Enhanced Atomic Layer deposition (ALD) a, Sketch of an ALD cycle for
Ni. The ALD cycle consists of c step of NiCp2/H2O (orange arrows), resulting in the formation of
nickel oxide, and followed by a hydrogen plasma (purple), reducing nickel oxide to metallic nickel.
This cycle was repeated n times as in b. 30 nm conformal Ni coating was achieve by n = 360 while
keeping c = 7 at a substrate temperature of T = 180◦C. Then an in-situ annealing process at 350◦C
under a mixture of pure hydrogen and nitrogen flow was performed.

2 BLS setup






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
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
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
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+k -k

y
z
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+H

Fig. S2 Illustration of a room temperature µ-BLS, the ACMs are suspended from the sub-
strate and mounted to a piezostage. S-polarized green laser light is selected using a Glan-Taylor prism
and then focused by a 100x objective onto the samples. The inelastically scattered light is collected
by the same objective, and its p-polarized components are subsequently sent to interferometer.
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3 Spatially resolved spectra of RH-ACM at
remanence


+0 mT, RH-ACM -0 mT, RH-ACM

Fig. S3 Spatial scanning on RH-ACM at the remanent state. Color-coded magnon spectra
a +0 mT and b -0 mT obtained along the central axis along the top surface of a RH-ACM after
applying +30 mT and −30 mT, respectively.

In Fig. S3, we report BLS spectra taken on one RH-ACM after saturating it with
a magnetic field along the +z-(−z-) direction. The BLS spectra were obtained in zero
magnetic field after saturating at +30 mT (labeled +0 mT) and −30 mT (labeled
−0 mT). Fig. S3a,b show mirrored nonreicprocity dependence, which are opposite to
the corresponding dependence on RH-ACM (Fig. 4 of the main text). We note that
spectra show position-dependent nonreciprocity.
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4 Nonrecprocity reprogramming on RH-ACM

 

I’N
R

I’N
R

Fig. S4 Nonreciprocity reprogrammed RH-ACM a Intensity nonreciprocity INR as a function
of magnetic field and sweep direction on RH-ACM at position z = −0.7 µm. b Nonreciprocity
parameter INR extracted from spectra taken at µ0H = ±0 mT after applying a magnetic field of ±30
mT in opposite axial directions of a RH-ACM. INR was measured five times (cycles) before realizing
a reversed magnetic field history at position z= -0.7 µm.

The magnon nonreciprocity at remanence originated from the nonvanishing toro-
dial moments at zero field, which are defined by structural handedness and magnetic
field history. In Fig. S4a, we display the hysteresis curve of the evaluated intensity
asymmetry INR of RH-ACM. Here, we swept the magnetic field from +30 mT to −30
mT and then back to +30 mT while acquiring BLS counts at frequencies +10 GHz
and −10 GHz. As shown in Fig.S4b, INR of RH-ACM can be switched from a positive
to a negative value (negative to a positive value) by saturating with a −30 mT (+30
mT) external magnetic field. We note that the INR provides qualitative information
for monitoring the changing of the magnetic state, meaning that the sign reversal of
INR corresponds to the reversal of toroidal moment but the amplitude variation does
not directly reflect the modification of magnetic textures.
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5 Intensity nonreciprocity

Δ’
I

Δ’
I





I’N
R

Fig. S5 Intensity nonreciprocity a, Quantitative analysis of the nonreciprocity in terms of the
magnitude difference of ∆′I for the RH-ACM (top) and the LH-ACM (bottom). The left panel b
shows the magnitude of I′NR(H) for the RH-ACM (pink) and LH-ACM (green) as a function of
position z.

We evaluate the magnitude of intensity nonreciprocity according to

I ′NR(H) =
∆I ′(+H)

IS(+H) + IAS(+H)
− ∆I ′(−H)

IS(−H) + IAS(−H)
(1)

where IS refers to |IStokes| and IAS refers to |Ianti-Stokes |. We note that I ′NR repre-
sents the difference in peak amplitude while INR used in the main textxt corresponds
to the difference at a fixed frequency.
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6 Magnon tube mode



 

-17 GHz

17GHz

-13 GHz

13 GHz

Fig. S6 Magnon tube mode and helix mode. Spatially resolved magnon signal on RH-ACMs
with 100 nm steps while keeping a field of -250 mT along z-direction and a fixed BLS detection
frequency of a -17 GHz, b -13 GHz,c 17 GHz,d 13 GHz. The white dashed line indicates the location
of RH-ACMs.

To further explore the magnon channeling effect as shown in Fig.3 in the main text,
we extend the 2D-spatial scanning with BLS detection frequency of -17 GHz, -13 GHz,
17 GHz, and 13 GHz. The frequencies were selected based on the spectra obtained by
scanning along the ACM as shown in Fig. 2 of the main text. Fig. S6a,c show high
intensity at the tube area but low intensity at the helix area, demonstrating its tube
mode nature. On the contrary, in Fig. S6b, d, the tube area has significantly lower
intensity than the helix region, which demonstrates the magnon channeling effect of
the helix.
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7 Field dependence of the toroidal moment for a
RH-ACM
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Fig. S7 Field dependence of the toroidal moment of a right handed ACM. Toroidal
moment τ of a RH-ACM (blue curve) simulated as a function of axial field H and its sweep direction
indicated by arrows. The magenta and orange curves decompose the toroidal moment of the RH-ACM
in the contributions from the tube and helix regions, respectively. The field was swept from negative
to positive (dashed lines) and back (solid lines). The hysteretic behavior enables a reprogrammable
τ at H = 0. b, Simulated cross-section of τ distribution on a RH-ACM when varying the magnetic
field from +250 mT, to +0 mT, −250 mT and −0 mT. The cross-section was taken at the central
plane of the ACM.
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8 ∆f and ∆I for RH- and LH-ACMs at ±250 mT

ba

Δf
(G

H
z)

Δf
(G

H
z)

Δ
I

ΔI

Fig. S8 Frequency difference ∆f and intensity difference ∆I. Quantitative analysis of the
nonreciprocity in terms of the frequency difference ∆f a and intensity difference ∆I b for the LH-
ACM (top) and the RH-ACM (bottom) as a function of position z.

9 Simulations on a 4000 nm long ACM

Simulations were performed on a left-handed 4000 nm long ACM with pitch 2000
nm, tube outer diameter 125 nm, helix outer diameter 200 nm, and thickness 30
nm, according to the same methods as described in the Methods. The damping was
quadratically increased to 1 over 800 nm at both ends. The resulting equilibrium
magnetization after saturating the structure along the positive z-direction is shown
in Fig. S9a (d) for the case without (with) periodic boundaries. In Fig. S9a, the stray
field induced curling of the magnetization due to its finite size is clearly seen at the end
of the tubes whereas the magnetization in the center of the structure follows the helix.
The resulting dispersion at ±0 mT states is shown in Fig.S9b,c. Here, to compute the
dispersion only the data from the middle of the tube was used (Fig.S9a lower panel).
The dispersion of the same structure with periodic boundaries and hence with the
magnetization in the helical state throughout the tube (Fig. S9d,e,f) is qualitatively
very similar to that shown in Fig. S9b,c, verifying the validity of the results with
periodic boundaries shown in Fig. 5. Based on this dispersion, the structure was excited
at +0 mT field with a continuous wave excitation with sinusoidal profile of frequency
3 GHz confined to a 20 nm wide strip in the center. The resulting magnon intensity
is strongly nonreciprocal as evidenced in Fig.1e of the main text.
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Fig. S9 Dispersion computed for a 4000 nm long ACM a, Remanent state after saturating
along the positive z-direction using periodic boundaries. b,c, Dispersion for the 4000 nm long ACM
with periodic boundaries for remanent states +0 mT and -0 mT, respectively. d, Remanent state after
saturating along the positive z-direction without periodic boundaries. e,f Dispersion for the 4000 nm
long ACM without periodic boundaries for remanent states +0 mT and -0 mT, respectively.

10 Analytical dispersion

Here we provide the full equations and parameters used for the semi-analytical results
of Figure 5. The equations are based on the model provided by Salazar et al. for the
magnon dynamics in nanotubes with helical spin textures [1], up to a minus sign for
the magnetochiral stiffness field A [2].

Consider an infinitely long ferromagnetic nanotube aligned along the z-axis with
saturation magnetization Ms, exchange stiffness A, gryomagnetic ratio γ and inner
and outer radii ri and ro respectively, mean radius, thickness and cross-sectional area

R = (ri + ro)/2, T = ro − ri and S = 2πRT . The exchange length is λexc =
√

Aexc
1
2µ0M2

s
.

The self-demagnetization fields for thin-shells T ≈ λexc are [1]:

J (m, kz) =
π

S

∫ ∞

0

dq
q3

2(q2 + k2z)
(Γm[q])

2
(2)

9



K(m, kz) =
π

S

∫ ∞

0

dq
q2kz

q2 + k2z
Γm[q]Λm[q] (3)

L(m, kz) =
π

S

∫ ∞

0

dq
2qk2z

q2 + k2z
(Λm[q])

2
(4)

M(m, kz) = m
π

S

∫ ∞

0

dq
2qkz

q2 + k2z
Λm[q]Im[q] (5)

N (m, kz) = m
π

S

∫ ∞

0

dq
q2

q2 + k2z
Γm[q]Im[q] (6)

O(m, kz) = m2 π

S

∫ ∞

0

dq
2q

q2 + k2z
(Im[q])

2
(7)

where Im(q) =
∫ r0
ri

dρJm(qρ), Λm(q) =
∫ ro
ri

dρ ρJm(qρ) and Γm(q) = Λm−1(q) −
Λm+1(q) and Jm(x) is the Bessel function of first kind and order m. Here, kz is the
wavevector along the tube axis and m denotes the azimuthal mode number.

In the ultra-thin limit where T ≈ λexc ≪ R, the factors can be written in terms of
the modified Bessel functions Im and Km [2]:

J (m, kz) ≈ 1 + RT
∂Im(|kz|R)

∂R

∂Km(|kz|R)

∂R
(8)

K(m, kz) ≈ kzRT

2

∂

∂R
Im(|kz|R)Km(|kz|R) (9)

L(m, kz) ≈ RTk2zIm(|kz|R)Km(|kz|R) (10)

M(m, kz) ≈ mkzTIm(|k|R)Km(|kz|R) (11)

N (m, kz) ≈ mT

2

∂

∂R
Im(|kz|R)Km(|kz|R) (12)

O(m, kz) ≈ m2 T

R
Im(|kz|R)Km(|kz|R). (13)

In the helical state, the orientation of the dimensionless equilibrium magnetization
m can be specified by the angle θ between the magnetization and the z-axis. If θ is
limited to the interval [0, π/2] with θ = 0 corresponding to the axial state and θ = π/2
corresponding to the vortex state, the magnetization can be decomposed as:

m = χ sin (θ)êφ + p cos (θ)êz, (14)

with χ, p ∈ {−1,+1} the helicity and polarization respectively and êφ and êz the
azimuthal and axial unit vectors.

The fields A,B, C that show up in the dispersion for spin waves in the helical state
(eq. 6 of the main text):

ωm (kz) = ωM

[
Am (kz) +

√
Bm (kz) Cm (kz)

]
(15)

can be expressed, assuming the absence of uniaxial anisotropy and applied field, as
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Fig. S10 Numerically computed distribution of the angle θ at +0 mT of an ACM. The
vertical dashed line indicates an angle of 20◦ which was used as input for the analytical dispersion
shown in Fig. 5a of the main text.

Am
kz

= −χK(m, kz) sin (θ) + p

(
N (m, kz) − 2mλ2

exc

b2

)
cos (θ) (16)

Bm
kz

= λ2
exc

(
k2z +

m2

b2

)
+

λ2
exc

b2
cos2 (θ) + J (m, kz) (17)

Cm
kz

= λ2
exc

(
k2z +

m2

b2

)
+

λ2
exc

b2
cos (2θ) + O(m, kz) cos2 (θ) (18)

−χpM(m, kz) sin (2θ) + L(m, kz) sin2 (m, kz)

where we have introduced 1
b2 = 1

RT ln
(

R+T/2
RT /2

)
.

Equation 14 was solved numerically using identical magnetic parameters as were
used for the micromagnetic simulations discussed in Fig. 5 of the main text. For
comparison with the numerically computed dispersion, the distribution of the mag-
netization angle θ of the respective tubes of remanent state was computed in the
simulation. In Fig. S10, we show the distribution for the RH-ACM at +0 mT of Fig.
5a of the main text. Two main peaks can be identified: a peak near 40◦ due to the
magnetization of the helix, and a peak at lower angles due to the magnetization in
the tubular segment. For the comparison with the numerical simulations, the angle of
the tubular segment is most important. Based on the distribution of angles and the
quantitative agreement between theory and simulations, we used θ = 20◦.

11



Reference

[1] M. M. Salazar-Cardona, L. Körber, H. Schultheiss, K. Lenz, A. Thomas, K. Nielsch,
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