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Abstract
Let ρ be a representation of a knot group (or more generally, the funda-
mental group of a tangle complement) into SL2(C) expressed in terms
of the Wirtinger generators of a diagram D. In this note we give a di-
rect algebraic formula for the geometric parameters of the octahedral
decomposition of the knot complement associated to D. Our formula
gives a new, explicit criterion for whether ρ occurs as a critical point of
the diagram’s Neumann-Zagier–Yokota potential function.
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1. Introduction

Studying representations of knot and 3-manifold groups into SL2(C) is important in low-
dimensional topology. The isometry group of hyperbolic 3-space is PSL2(C), so this problem
is closely related to the study of hyperbolic structures [Thu02]. While one can study repre-
sentations algebraically, say via the Wirtinger presentation of the knot group, it is sometimes
better to work more geometrically. For example, for geometric invariants like the hyperbolic
volume it is usually better to work with the geometric parameters of an ideal triangulation of
the knot complement than directly with ρ.

In this paper we are concerned with a particular family of ideal triangulations adapted
to knot diagrams. Given a diagram D of a knotK the octahedral decomposition decomposes
S3 \K minus two points into a union of octahedra, with one for each crossing of the diagram.
By further subdividing into tetrahedra one can obtain an ideal triangulation of a standard form.
This works just as well for links and tangles. The geometric data of the tetrahedra are naturally
described by the octahedral coordinates; these are implicit in work of Yokota [Yok00] and have
been studied systematically by Kim, Kim, and Yoon [KKY18]. Our version of these coordinates
is motivated by connections to the representation theory of quantum groups [McP22]. When
studying geometric properties of a representation the octahedral coordinates are quite useful;
for example, they enable a direct computation of the hyperbolic volume and Chern-Simons
invariant.

While the octahedral coordinates are geometrically natural they can be difficult to solve for
in practice. Instead we might find representations of the knot group by some other method
and then try to find the corresponding octahedral coordinates. Given a representation ρ :
π1(S

3 \ K) → SL2(C) described by its values on Wirtinger generators one can use the
methods of Blanchet et al. [Bla+20] to find octahedral coordinates corresponding to ρ. This
gives a somewhat complicated inductive method that does not usually produce simple formulas.
In addition, some representations do not come from octahedral coordinates (one might have to
conjugate first) and there is not a simple way to check when this occurs.

In this paper we give a new, elementary method (Theorem 1) for determining the octahedral
coordinates of a tangle diagram directly from ρ. As an application we give an explicit criterion
(Theorem 2) for whether a representation appears as a critical point of the potential function of
the knot diagram. This question is relevant to the saddle-point method used in most approaches
to the Volume Conjecture.

The Volume Conjecture proposes that the asymptotics of the Kashaev invariants of a
hyperbolic knot recover geometric information like the hyperbolic volume [Kas97]. The
Kashaev invariants are naturally associated with the octahedral decomposition, and most
proofs of special cases of the conjecture proceed via studying an associated potential function
[Yok00]. The potential function is defined on a space parametrizing the geometry of the ideal
tetrahedra: it has singularities where they are degenerate and critical points at nondegenerate
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solutions of the gluing equations of the triangulation. To apply the saddle-point method to
the asymptotics of the Kashaev invariant it is important to use a diagram whose potential
function has a smooth critical point at the complete hyperbolic structure. This question has been
previously studied using other techniques [SY18; GMT16] and it is known that every hyperbolic
knot that is alternating or has at most 12 crossings has such a diagram. We show (Theorem 3)
that for knot diagrams this condition is equivalent to being arc-faithful, meaning that the
Wirtinger generators of the over and under arcs at each crossing are always distinct. This
new characterization may prove useful for showing that all hyperbolic knots have arc-faithful
diagrams.

Quantum topology gives other motivations for our results. For example, one can define
[MR24] a geometrically twisted version of the Kashaev invariant that can also be understood
as a quantization of the hyperbolic volume. This construction uses the octahedral coordinates
in an essential way and we expect the results of this paper to be useful for computing and
studying these invariants.

This paper began as an attempt to re-derive and generalize a formula [Cho18, Theorem
3.12] of Cho for boundary-parabolic representations. Theorem 1 is similar to but distinct from
the results of Cho, and our proof is quite different. Cho’s result is more closely connected to
the quandle P of parabolic elements of PSL2(C), and in particular to a presentation of it due
to Inoue and Kabaya [IK14]. It would be interesting to better understand how our results relate
to P and if this can be generalized to the boundary non-parabolic case.

Organization

• Sections 2 and 3 contain preliminary information on fundamental groups of tangle
complements and octahedral colorings.

• Section 4 describes our formula and applies it to the existence of octahedral colorings.

• Section 5 uses our result to classify which octahedral colorings correspond to critical
points of the potential function.
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Conventions

All tangles are smooth and oriented. Our convention is that tangle diagrams go from left to
right, so composition of tangles is horizontal and disjoint union is vertical. Composition of
paths is also read left to right: fg means follow f then g. For this reason we use row vectors
instead of column vectors. Our sign conventions the and typical labeling of the parts of a
crossing are given in Figure 1.

2. The fundamental group(oid) of a tangle complement

Definition 2.1. The complement of a tangle T is its complement as a submanifold of [0, 1]3.
We write π(T ) for the fundamental group of the complement. Suppose T has n incoming and
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Figure 1: Positive (left) and negative (right) crossings with our standard labeling.

1 Usually these are called the “edges” of the
diagram, but we do not want to confuse them
with edges of ideal polyhedra in the octahe-
dral decomposition.

j

j′
i

Figure 2: In this case we say that region j′

is below region j across segment i. When
crossing from j to j′ we pick up a positive
sign.

x+
ix−

i

i

Figure 3: Generators of the fundamental
groupoid Π1(D) of a tangle diagram.
1

2 1′

2′

x−
1 x

+
2 x+

2′x
−
1′

Figure 4: Deriving the middle relation at a
crossing.

m outgoing boundary points and let D be a diagram of T . We can think of D as a decorated
4-valent graphG embedded in [0, 1]× [0, 1] with n edges intersecting [0, 1]×{0} andm edges
intersecting [0, 1]× {1}. We assign names to various parts of D:

• The segments of D are the edges1 of G.

• An arc of D is a set of adjacent over-segments.

• A component of D is a set of adjacent segments; these are in bijection with connected
components of T .

• A region of D is a connected component of the complement of G, equivalently a vertex
of the dual graph of G. Regions are adjacent across segments, and our convention is to
say that region j′ is below region j when they are arranged as in Figure 2.

Theorem 2.2. Let D be a diagram of a tangle T . The choice of D gives a presentation for π(T )
with one generator wi for each arc and one relation

w2′ = w−1
1 w2w1 (positive)(1)

w1′ = w2w1w
−1
2 (negative)(2)

at each crossing. (At a positive crossing 1 and 1′ are the same arc.) We call this theWirtinger
presentation of π(T ) and denote it by π(D). If i is a segment ofD we writewi for the associated
Wirtinger generator. ⌟

Our convention is to place the basepoint of π(D) in the top region of the diagram. The
generator wi represents the homotopy class of a path that travels from the basepoint above
any intervening strands, wraps around i, then returns above the diagram to the basepoint, as
in Figure 5.

To define the holonomy representation of an octahedral coloring and understand how it
relates to a representation ρ : π(T ) → SL2(C) we need to introduce more basepoints and
think of π(T ) as a groupoid instead of a group. Recall the characterization of a group G as
a category with a single object • and an invertible morphism g : • → • for each g ∈ G. A
groupoid is the natural generalization: there can be more than one object, but all morphisms
are still invertible. For example, instead of the fundamental group of a topological space with a
single basepoint, one can consider a fundamental groupoid with multiple basepoints whose
morphisms p → q are homotopy classes of paths from p to q. Two paths (morphisms) f and g
are composable only when the endpoint (codomain) of f is the startpoint (domain) of g. We
consider a particular version for tangle complements:
Definition 2.3. Let D be a tangle diagram. The fundamental groupoid Π(D) of D has

• one object (i.e. basepoint) for each region of D,
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[Bro06] R. Brown, Topology and groupoids

• two generators x±
i for each segment i, representing paths above and below the segment

(see Figure 3), and

• three relations for each crossing:

x+
1 x

+
2 = x+

2′x
+
1′(3)

x−
1 x

−
2 = x−

2′x
−
1′(4) {

x−
1 x

+
2 = x+

2′x
−
1′ for a positive crossing, or

x+
1 x

−
2 = x−

2′x
+
1′ for a negative crossing.

(5)

One can show that Π(D) is equivalent to the fundamental group π(T ) and thus to to π(D)
by using the groupoid version [Bro06, Chapter 9] of the van Kampen theorem. We do not need
this result so we omit the details, but we do use a functor F : π(D) → Π(D) constructed using
a natural family of paths in Π(D):
Definition 2.4. Let D be a tangle diagram with topmost region 0 and let j be a region of D.
An over path s+j is a path 0 → j that passes over all strands of the tangle and similarly for an
under path s−j . It is clear these are unique up to homotopy.

To write these paths as products of generators, choose a path of adjacent regions from 0 to
j. If that path crosses segments i1, . . . , ik , then

(6) s+j =
(
s+i1
)ϵ1 · · · (s+ik)ϵk

where ϵi = +1 if segment i is oriented left-to-right as we cross it from the top and−1 otherwise,
as in Figure 2. Independence of equation (6) from the choice of path follows from equations (3)
and (4).
Theorem 2.5. LetD be a tangle diagram. For each segment i write j for the region above i and
set

F(wi) := s+j
[
x+
i x

−
i

]
(s+j )

−1

where wi is the Wirtinger generator associated to i. Then F is a well-defined homomorphism
(i.e., functor) π(D) → Π(D). ⌟

An example is given in in Figure 5.

Proof. We need to check that F respects the relations of π(D) coming from each crossing.
Consider a positive crossing whose topmost region has over path s+ and whose segments are
labeled as in Figure 1. We have

F(w2′) = s+x+
2′

(
x−
2′

)−1 (
s+
)−1

while

F(w−1
1 w2w1)

=
[
s+x−

1

(
x+
1

)−1 (
s+
)−1
]
s+x+

1 x
+
2

(
x−
2

)−1 (
s+x+

1

)−1
[
s+x+

1

(
x−
1

)−1 (
s+
)−1
]

= s+x−
1 x

+
2

(
x−
2

)−1 (
x−
1

)−1 (
s+
)−1

and writing (5) and (4) as

x+
2′ = x−

1 x
+
2

(
x−
1′

)−1 and
(
x−
2′

)−1
= x−

1′

(
x−
2

)−1 (
x−
1

)−1
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1

2

3

w3

x+
1

x+
2

x+
3

(
x−
3

)−1

Figure 5: For this tangle the Wirtinger generator w3 ∈ π(D) of segment 3 is mapped to
F(w3) = s+x+

3 (x
−
3 )

−1(s+)−1 = x+
1 x

+
2 x

+
3

(
x−
3

)−1 (
x+
2

)−1 (
x+
1

)−1 ∈ Π(D). Here s+ is the
over path of the region between segments 2 and 3.

2 The elements yj correspond to Dehn gen-
erators of π(D) with the generator of the
topmost region set to 1.

3 That is, B is a function Y → X2 for a
subset Y ⊂ X2.

gives the relation F(w2′) = F(w−1
1 w2w1). The relation at a negative crossing follows from a

similar computation.

Corollary 2.6. Given a region j of D and a path to it as in equation (6), let

yj = wϵk
ik

· · ·wϵ1
i1

be the right-to-left product of the Wirtinger generators of the segments crossed with signs
recording the orientations.2 Then

F(yj) = s+j
(
s−j
)−1

. ⌟

Proof. When k = 1 this is clear. Suppose k = 2 and all signs are positive. Then

F(wi2wi1) = x+
i1
x+
i2

(
x−
i2

)−1 (
x+
i1

)−1
x+
i1

(
x−
i1

)−1
= x+

i1
x+
i2

(
x−
i1
x−
i2

)−1

and the general case follows by induction using the same idea.

3. Octahedral colorings

Definition 3.1. An octahedral color is a triple χ = (a, b,m) of nonzero complex numbers. We
denote the set of octahedral colors by X. When we work with an indexed set {χi}i∈I of colors
we typically write ai, bi,mi for their components.

The braiding is the partially defined3 map B : X2 → X2 given by B(χ1, χ2) = (χ2′ , χ1′),
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4 One could instead obtain a represen-
tation Π(D) → PSL2(C) by dividing
by an arbitrary square root of a. A lift
π(D) → SL2(C) can be recovered from
them-decorations discussed below. This ap-
proach is geometrically more natural but al-
gebraically inconvenient.

where χ1′ and χ2′ are the colors defined by

a1′ = a1A
−1

a2′ = a2A

A = 1− m1b1
b2

(
1− a1

m1

)(
1− 1

m2a2

)(7)

b1′ =
m2b2
m1

(
1−m2a2

(
1− b2

m1b1

))−1

b2′ = b1

(
1− m1

a1

(
1− b2

m1b1

))(8)

m1′ = m1 m2′ = m2(9)

It is elementary to check that B has a partially-defined inverse map B−1(χ1, χ2) =
(χ2′ , χ1′) defined by

a1′ = a1Ã
−1

a2′ = a2Ã

Ã = 1− b2
m1b1

(1−m1a1)

(
1− m2

a2

)
.

(10)

b1′ =
m2b2
m1

(
1− a2

m2

(
1− m1b1

b2

))
b2′ = b1

(
1− 1

m1a1

(
1− m1b1

b2

))−1(11)

m1′ = m1 m2′ = m2(12)

Definition 3.2. Let D be an oriented tangle diagram with set of segments S. An octahedral
coloring of D is a function S → X, i 7→ χi such that B(χ1, χ2) = (χ2′ , χ1′) at every positive
crossing and B−1(χ1, χ2) = (χ2′ , χ1′) at every negative crossing of D, where 1, 2, 1′, 2′ are
the segments at the crossing arranged as in Figure 1.

For an octahedral color χ = (a, b,m) we write

φ+(χ) :=

[
a 0

(a− 1/m)/b 1

]
(13)

φ−(χ) =

[
1 (a−m)b
0 a

]
(14)

and

τ(χ) := φ+(χ)φ−(χ)
−1(15)

Definition 3.3. Let D be a tangle diagram with octahedral coloring i 7→ χi. The holonomy
representation is the representation (i.e. functor) ρχ : Π(D) → GL2(C) defined by4

(16) ρχ(x+
i ) = φ+(χi) and ρχ(x−

i ) = φ−(χi)

Via the functor F of Theorem 2.5 it induces a representation ρ = ρχF defined by

ρ(wi) = ρχ
(
s+i
)
τ(χi) ρ

χ
(
s+i
)−1

.
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5 The ci are the region variables of Kim, Kim,
and Yoon [KKY18] and [McP22], but with the
convention that the variable of the top region
is always 1.

Lemma 3.4. The holonomy representation ρχ of an octahedral coloring is well-defined. The
image of the induced representation ρ lies in SL2(C). ⌟

Proof. For the first claim we can check the relations of Π(D) crossing-by-crossing. Using
(7–12) we can write the components of χ1′ and χ2′ in terms of the components of χ1 and χ2,
and then checking the relations is a series of elementary computations.

For the second claim it suffices to compute the determinants of the generators:

det ρχF(wi) = det ρχ
(
s+
)
det τ(χ) det ρχ

(
s+
)−1

= 1.

Remark 3.5. An octahedral coloring of D determines the geometric data of the octahedral
decomposition associated to D. The face maps of this ideal triangulation give a representation
π(T ) → PSL2(C) that agrees with ρχ [McP22, Theorem 3.6].
Definition 3.6. LetD be an tangle diagram with set of regionsR. Given an octahedral coloring
χ of D we call the function R → C \ {0} , j 7→ cj defined by

cj = det ρχ(s+j )

the region coloring5 of χ.
An equivalent definition in terms of a path from 0 to j is

cj = aϵ1i1 · · · a
ϵk
ik

using the notation of equation (6). That is, the region color is the product of the a-coordinates
of the segments crossed when traveling from the top region of the diagram, with signs to
account for orientation.
Lemma 3.7. Any function from the regions of D to C \ {0} satisfying the following conditions
agrees with the region coloring:

1. f(0) = 1, where 0 is the topmost region of D.

2. If region j′ is below j across a segment with color χi,

f(j′) = aif(j) ⌟

Proof. These rules clearly determine f(j) for each j. f is well-defined because the region
colors are (in turn, because ρχ is well-defined).

One motivation for equations (13) and (14) is the factorization of elements of SL2(C). Let
g ∈ SL2(C) be a matrix with nonzero 1, 1 entry. Then there are a, e, f ∈ C with

g =

[
a −e
f (1− ef)/a

]
=

[
a 0
f 1

] [
1 e
0 a

]−1

and we extend our earlier notation by defining

φ+(g) :=

[
a 0
f 1

]
(17)

φ−(g) :=

[
1 e
0 a

]
(18)
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6 We also want b to not be 0 or ∞, which
imposes some extra conditions.

[GTZ15] S. Garoufalidis, D. P. Thurston,
and C. K. Zickert, “The complex volume
of SL(n,C)-representations of 3-manifolds”.
arXiv doi

so that g = φ+(g)φ−(g)
−1. Similarly φ+(τ(χ)) = φ+(χ) and φ−(τ(χ)) = φ−(χ) for any

octahedral color χ.
If g ̸= ±1 then its eigenspaces are all 1-dimensional. We write

L(g;m) ∈ CP 1

for them-eigenspace of g, (z1 : z2) for homogeneous coordinates on CP 1, and

h(z1 : z2) =
z1
z2

for the Hopf map h : CP 1 → C ∪ {∞}. We think of (z1 : z2) as a row vector so that for any
A ∈ GL2(C),

(19) L(A−1gA;m) = L(g;m)A.

If g = τ(χ) for some octahedral color χ, i.e. if there is a b ∈ C \ {0} with

φ+(g) =

[
a 0

(a− 1/m)/b 1

]
and φ−(g) =

[
1 (a−m)b
0 a

]
so g =

[
a −(a−m)b

(a− 1/m)/b m+m−1 − a

]
then

L(g; 1/m) = (1 : −b)(20)
L(g;m) = (a− 1/m : −b(a−m))(21)

when m ̸= m−1, while in the parabolic case m = 1 the single eigenspace is

L(g; 1) = (1 : −b)

and similarly for m = −1. The point is that presenting g as τ(χ) is essentially6 equivalent to
the choice of a preferred eigenspace of g. When g is the image of a meridian this extra choice
occurs naturally in the study of representations of link (and 3-manifold) groups into SL2(C).
Definition 3.8. We can extend the usual definition of meridian for knots to tangles, in which
case the Wirtinger generator of a segment of D represents a meridian of the corresponding
tangle component. All the Wirtinger generators for a given component of T are conjugate, so
we can talk about the meridian eigenvalues of ρ for a component of T without ambiguity.

Let ρ : π(T ) → SL2(C) be a representation. We say that ρ is meridian-nontrivial if
ρ(w) ̸= ±1 for any meridian w of ρ. An m-decoration of a SL2(C)-structure is a choice of
eigenvalue for all the images of themeridians. Since themeridians of each connected component
are all conjugate an m-decoration is determined by a choice of m for each component of T .

The holonomy representation of an octahedral coloring is naturally m-decorated: by
Lemma 3.4 the meridian of a segment with color (a, b,m) has eigenvalues m and m−1, and
our convention is that the distinguished eigenvalue is m.
Remark 3.9. Usually for a link group with peripheral subgroups Wi

∼= Z× Z a decoration of ρ
is a choice of eigenspaces for the ρ(Wi), up to equivalence [GTZ15, Section 4]. For meridian-
nontrivial representations this can be recovered from an m-decoration. One can generalize
this to tangles but we do not need the details here.

https://arxiv.org/abs/1111.2828
https://doi.org/10.1215/00127094-3121185
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4. A formula for octahedral colorings

Using the definitions of the proceeding sections we can precisely phrase our problem as:

Given a tangle diagram D and an m-decorated representation ρ : π(D) → SL2(C), find an
octahedral coloring χ of D with ρχF = ρ.

It turns out that in general this is not possible: there can be singular ρ for which no octahedral
coloring exists. However, these are sparse enough that one can always avoid them by gauge
transformation (conjugation).
Definition 4.1. Two representations ρ and ρ′ are gauge-equivalent if there is a g ∈ SL2(C)
with

ρ′(x) = g−1ρ(x)g

for every x ∈ π(T ).
Definition 4.2. Fix a tangle diagramD of a tangle T . We say anm-decorated representation ρ :
π(T ) → SL2(C) is admissible if there is an octahedral coloring whose holonomy representation
ρχ agrees with ρ in the sense that

ρ = ρχF

as homomorphisms π(D) → SL2(C).
It is easy to find inadmissible representations: for example, one can choose a Wirtinger

generator for an arc touching the top region ofD to have zero 1, 1 entry. By using the formula
below it is easy to check whether a representation is admissible:
Theorem 1. Let ρ : π(T ) → SL2(C) be a meridian-nontrivial representation. Choose a diagram
D of T and an m-decoration of ρ.

Suppose i is a segment ofD below region j (as in Figure 2). Write mi for the eigenvalue of
ρ(wi) determined by the m-decoration. Recall our notation yj = s+j

(
s−j
)−1 ∈ π(D). For a

matrix A write e11(A) for its 1, 1 (upper-left) entry and define

(22) χi =

(
e11(ρ(wiyi))

e11(ρ(yi))
,

−1

h
(
L(ρ(wi);m

−1
i )φ+(ρ(yj))

) ,mi

)

Then

1. ρ is m-admissible for D if and only if the components above lie in C \ {0} for every
segment i, and in this case

2. i 7→ χi defines an octahedral coloring of D whose holonomy representation ρχ induces
ρ. ⌟

Remark 4.3. If a segment is meridian-trivial then its entire component is as well. The represen-
tations of a tangle T = T ′ ∪ T0 with T0 meridian-trivial are in bijection with representations
of T ′ so we do not lose any generality by excluding them.

Proof of Theorem 1. First suppose we have an admissible representation ρ so there is an oc-
tahedral coloring i 7→ χi whose holonomy representation induces ρ. By equation (20) the
b-coordinate of segment i satisfies

−b−1
i = h(L(τ(χi) ;m

−1
i ))
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[Yoo21] S. Yoon, “On the potential functions
for a link diagram”. arXiv doi

and by the definition of F

τ(χi) = ρχ(s+j )
−1ρ(wi)ρ

χ(s+j )

so by equation (19)
−b−1

i = h(L(ρ(wi);m
−1
i )ρχ(s+i )).

Our claim follows from the observation that ρχ(s+j ) = φ+(ρ(rj)).
For the a-coordinates, consider the function

f(j) = e11[ρ (yj)] = e11

[
ρ
(
s+j
(
s−j
)−1
)]

from regions j of D to C. If i is a segment between regions j and j′ as in Figure 2,

ρ (yj′) = ρ
(
x+
i s

+
j

(
s−j x

−
i

)−1
)
= φ+(χi) ρ

(
s+j
)
φ−(χi)

−1
ρ
(
s−j
)−1

.

Observe that for any χ1 = (a1, b1,m1) and χ2 = (a2, b2,m2)

a1a2 = e11

[
φ+(χ1)φ

+(χ2)φ
−(χ2)

−1
φ−(χ1)

−1
]

= e11

[
φ+(χ1)φ

−(χ1)
−1
]
e11

[
φ+(χ2)φ

−(χ2)
−1
]
.

Therefore

e11

[
φ+(χi) ρ

(
s+j
)
φ−(χi)

−1
ρ
(
s−j
)−1
]
= aie11

[
ρ
(
s+j
(
s−j
)−1
)]

.

By Lemma 3.7 f(j) is the region color of j for all j, so the ratio in equation (22) is the a-
coordinate of χi as claimed.

We conclude that when ρ is admissible the components of the corresponding octahedral
coloring must be given by equation (22). Conversely if the components of equation (22) are
never 0 or ∞ they define a χ-coloring with holonomy ρ, so ρ is admissible as claimed.

Corollary 4.4. Suppose χ is an octahedral coloring of a diagram D with holonomy represen-
tation ρ. Choose a component of D and define a new coloring χ̃ by replacing

(ai, bi,mi) 7→
(
ai, bi

ai −mi

ai − 1/mi
, 1/mi

)
for each segment i of this component and leaving the other colors unchanged. Then χ̃ is
a coloring of D that induces the same holonomy representation as χ but with the opposite
m-decoration on the selected component. ⌟

Proof. Equation (22) only uses the value of mi in the formula for the b-coordinate. Apply
equation (21).

With a slightly weaker definition of admissibility Blanchet et al. [Bla+20] prove that every
ρ is gauge-equivalent to an admissible representation. Here we strengthen their result and
make it more explicit; our theorem was also shown by Yoon [Yoo21, Theorem 1.2] by a different
method.
Definition 4.5. An octahedral coloring is strongly admissible if it is admissible and no color is
of the form (m, b,m) or (m, b, 1/m).

https://arxiv.org/abs/1810.09080
https://doi.org/10.1142/S0218216521500565
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7 This term is due to Kim, Kim, and Yoon
[KKY18]. At a pinched crossing the ideal
points of the tetrahedra are “pinched” to-
gether.

A coloring is strongly admissible if and only if it occurs as a solution of the region equa-
tions [McP22, Section 6.3] of D, so a corollary of the theorem below is that one can find all
representations of π(D) up to gauge equivalence by solving these equations.
Theorem 4.6. If ρ is meridian-nontrivial then for any choice of m-decoration it is gauge-
equivalent to a strongly admissible representation. ⌟

Proof. For each segment i of our diagram, consider the following subsets of SL2(C):

X0(i) =
{
g ∈ SL2(C)

∣∣ e11(g−1ρ(yj)g) = 0
}
∪
{
g ∈ SL2(C)

∣∣ e11(g−1ρ(yj′)g) = 0
}

(23)
X1(i) =

{
g ∈ SL2(C)

∣∣ L(ρ(wi; 1/m)gφ+
(
g−1ρ(yj)g

)
) = (1 : 0)

}
(24)

X2(i) =
{
g ∈ SL2(C)

∣∣ L(ρ(wi; 1/m)gφ+
(
g−1ρ(yj)g

)
) = (0 : 1)

}
(25)

X3(i) =
{
g ∈ SL2(C)

∣∣ L(ρ(wi;m)gφ+
(
g−1ρ(yj)g

)
) = (1 : 0)

}
(26)

X4(i) =
{
g ∈ SL2(C)

∣∣ L(ρ(wi;m)gφ+
(
g−1ρ(yj)g

)
) = (0 : 1)

}
(27)

where we write j and j′ for the regions above and below i. For k = 0, . . . , 4 letXk = ∪iXk(i)
be the union over all segments. If g ̸∈ X0 ∪X1 ∪X2 then ρ′ = g−1ρg is admissible. If also g ̸∈
X3∪X4 then it is strongly admissible. Thus it suffices to show thatX = X0∪X1∪X3∪X4∪X5

is not all of SL2(C).
Consider the Zariski topology on SL2(C) (the closed sets are zero sets of systems of

polynomial equations). Because SL2(C) is irreducible as an algebraic variety every open
nonempty subset is dense, and in particular the SL2(C) \Xk(i) are all open and dense. The
complement

SL2(C) \X = SL2(C) \
⋃
k,i

Xk(i) =
⋂
k,i

(SL2(C) \Xk(i))

is a finite intersection of these, so it is open and dense as well, and in particular is nonempty.

One can obtain a more constructive proof of this result by first conjugating by a g that
avoids X1 and X3 then conjugating by a suitable lower-triangular matrix.

5. Smoothness of the potential function

One way to subdivide the octahedral decomposition is to split the octahedron at each crossing
into four tetrahedra, one for each region touching the crossing. We can then geometrize them by
placing their vertices in the boundary at infinity of hyperbolic space, i.e. CP 1. Such geometric
ideal tetrahedra are determined up to congruence by the cross-ratio of their vertices, usually
called the shape parameter . In this case these parameters are given by equation (28) as in
Figure 6. (For details see [McP22]. Note that we are using a different convention on negatively
oriented tetrahedra.) When a shape parameter is 0, 1, or ∞ it represents a geometrically
degenerate tetrahedron whose vertices coincide.
Definition 5.1. An octahedral coloring of a crossing is pinched7 if any of the shape parameters

(28) zN =
b2′

b1
, zW =

b2
m1b1

, zS =
m2b2
m1b1′

, zE
m2b2′

b1′

are 1. (These quantities can never be 0 or∞ as part of the definition of octahedral coloring.)
An octahedral coloring of a diagram is pinched if any of its crossings are.
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1

1′

2′

2

1

2

2′

1′

N

S

EW τW τE

τN

τS

Figure 6: One can divide the octahedron at a crossing into four tetrahedra, one for each region
touching the crossing. The shape parameters are then given as ratios of the b andm-coordinates,
as in equation (28).

[Zag07] D. Zagier, “The dilogarithm function”.
doi
[Neu04] W. D. Neumann, “Extended Bloch
group and the Cheeger-Chern-Simons class”.
arXiv doi

It is useful to understand when this can be avoided, in particular in the context of the Volume
Conjecture. To explain the connection to we introduce a version of the Neumann-Zagier–Yokota
potential function of the diagram defined using the dilogarithm

Li2(z) :=

∫ z

0

− log(1− t)

t
dt.

Li2 has a branch point at 1, where it is continuous but not differentiable. It can be used to
compute the volumes [Zag07] and Chern-Simons invariants [Neu04] of hyperbolic 3-manifolds.
Set

(29) L(ζ) :=
Li2(e

2πiζ)

2πi
.

Let D be a link with ℓ components. Fix a choice µ = (µ1, . . . , µℓ) of complex number for each
component of ℓ and introduce a variable β1, . . . , βn for each segment of D. We think of the βi

and µj as logarithms of the b andm coordinates of some octahedral coloring. For each crossing
c (as in Figure 6) of D set

Φc = L(β2′ − β1)− L(β2 − β1 − µ1) + L(β2 − β1′ + µ2 − µ1)− L(β2′ − β1′ + µ2)

The arguments are logarithms of the shape parameters (28).
Definition 5.2. The potential function of D with respect to µ is

(30) ΦD,µ(β1, . . . , βn) =
∑

crossings c
ϵ(c)Φc

where ϵ(c) = +1 for positive crossings and −1 for negative crossings. Because Li2 has a
branch point at 1 this function is analytic when the arguments of the functions L (i.e. the
logarithms of the shape parameters) are not in 2πiZ.
Theorem 5.3. Let CD,µ be the set of generalized critical points of ΦD,µ, i.e. points β =
(β1, . . . , βn) where

∂ΦD,µ

∂βj
≡ 0 (mod 2πi) for j = 1, . . . , n.

https://doi.org/10.1007/978-3-540-30308-4_1
https://arxiv.org/abs/math/0307092
https://doi.org/10.2140/gt.2004.8.413
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Then there is a bijection between CD,µ and the set of non-pinched octahedral colorings of D
with m-decoration matching µ (i.e. where the eigenvalue of component j is e2πiµj ). ⌟

Proof. By [McP22, Theorem 6.3] non-pinched colorings are in bijection with solutions of the
segment equations of the diagram; these are a set of rational equations in the b-variables, with
one for each segment. They have solutions if and only if the gluing equations of the four-term
decomposition have nondegenerate solutions. Because

d

dζ
L(ζ) = − log(1− e2πiζ)

we can work out that
exp

∂ΦD,µ

∂βj
= 1

is the segment equation of segment j.

One can easily handle pinched crossings by working directly with octahedral colorings.
However, the smoothness of ΦD,µ is still significant for the Volume Conjecture. Most proofs
follow Yokota [Yok00] by showing that the large N asymptotics of the Kashaev invariant are
given by a contour integral of the form∫

Γ

eNΦD,µ(β1,...,βn) dβ1 · · · dβn

as N → ∞. The usual saddle-point approximations only work near smooth critical points
of ΦD,µ. More significantly the proof usually requires moving the contour Γ through the
parameter space which requires ΦD,µ to be complex-analytic. We can use the formula below
to study whether a representation corresponds to a pinched octahedral coloring:
Theorem 5.4. The shape parameters at a crossing are

zN =
h(L(w1, 1/m1)φ

+(yN ))

h(L(w2′ , 1/m2)φ+(yN ))
(31)

zW =
h(L(w1, 1/m1)φ

+(yW ))

h(L(w2, 1/m2)φ+(yW ))
(32)

zS =
h(L(w1′ , 1/m1)φ

+(yS))

h(L(w2, 1/m2)φ+(yS))
(33)

zE =
h(L(w1′ , 1/m1)φ

+(yE))

h(L(w2′ , 1/m2)φ+(yE))
(34)

where yN is the group element associated to the north region of the crossing (as in Figure 6)
and so on. ⌟

Proof. We show how to compute the formula for zW . By Theorem 1 we have

− 1

b1
= h(L(ρ(w1; 1/m1)φ

+(yN )))

− 1

b2
= h(L(ρ(w2; 1/m2)φ

+(yW )))
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8 Since w1 = w2 if and only if w1 =
w−1

1 w2w1 it does not matter which under
arc is used.

[Hem76] J. Hempel, 3-manifolds

Because φ+(yW ) = φ+(χ1)φ
+(yN ) and

(1 : −b)

[
a 0

(a− 1/m)/b 1

]
= (1/m : −b)

we see that
− 1

m1b1
= h(L(ρ(w1; 1/m1)φ

+(yW )))

as required. The other cases follow from similar computations.

As an immediate corollary we have:
Theorem 2. Let ρ : π(D) → SL2(C) be an admissible m-decorated representation and χ an
octahedral coloring with holonomy ρ. A crossing is pinched if and only if

L(ρ(w1); 1/m
−1
1 ) = L(ρ(w2); 1/m

−1
2 ). ⌟

Proof. One can use equations (8) and (11) to show that zW = 1 if and only if the cross-
ing is pinched. φ+(yW ) is invertible, so L(w1; 1/m1)φ

+(yW ) = L(w2; 1/m2)φ
+(yW ) iff

L(w1; 1/m1) = L(w2; 1/m2).

In other words, χ is pinched if and only if at some crossing the Wirtinger generators have
the same eigenspace, equivalently the same fixed point when acting on CP 1 by fractional
linear transformations. Note that this condition above depends only on ρ, and in fact only on
the image of ρ in PSL2(C).

If we restrict our attention to hyperbolic knots then we can be more specific. Recall
that the holonomy of the complete hyperbolic structure is a faithful, discrete representation
ρ : π(K) → PSL2(C). It is boundary-parabolic (the meridians have eigenvalues ±1) and
always lifts to SL2(C).
Definition 5.5. A tangle diagramD is arc-faithful if at each crossing the Wirtinger generators
of the over and under arcs are distinct elements of π(T ).8

Theorem 3. LetD be a diagram of a hyperbolic knot. The holonomy ρ of its complete hyperbolic
structure comes from a non-pinched octahedral coloring ofD if and only ifD is arc-faithful. ⌟

Proof. The only if is obvious: if two adjacent arcs have the same Wirtinger generators then
their images always share a fixed point.

Conversely, suppose ρ comes from a pinched octahedral coloring ofD, so there areWirtinger
generators w1 and w2 for which ρ(w1) and ρ(w2) have the same fixed point. As ρ(w1) and
ρ(w2) are parabolic this implies they commute, hence w1 and w2 commute as ρ is faithful. By
the classification of finitely abelian subgroups of 3-manifold groups [Hem76, Theorem 9.13]
two commuting infinite-order elements generate a subgroup isomorphic to Z or Z× Z. As w1

and w2 map to the same element of the first homology they must be the same element.

The existence of smooth critical points of ΦD,µ has previously been studied, and we can
express our results in this context:
Definition 5.6. An edge of an ideal triangulation of a knot complement is (homtopically)
peripherial if it is homotopic to a curve in the boundary of a regular neighborhood of the knot.
Corollary 5.7. Let D be a diagram of a hyperbolic knot.

(a) The edges of the four-term octahedral decomposition associated to D are homotopically
non-peripheral if and only if D is arc-faithful.
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(b) If D is reduced and alternating then it is arc-faithful. ⌟

Proof. (a) If there are any nondegenerate solutions to the gluing equations of the triangulation
then its edges must be non-peripheral [DG12, Lemma 3.5] and in this case there is always a
solution corresponding to the complete hyperbolic structure.

(b) Garoufalidis, Moffatt, and Thurston [GMT16] and Sakuma and Yokota [SY18] indepen-
dently showed that the edges of the four-term decomposition of a reduced alternating diagram
are non-peripheral. Part (a) implies such a diagram is arc-faithful.

It is easy to find diagrams that are not arc-faithful. However, by avoiding these obvious bad
configurations it also seems easy to find arc-faithful diagrams.
Example 5.8. Any diagram with a kink

is never-arc faithful. More generally any piece of a diagram that looks like

will prevent arc-faithfulness.
According to Seonhwa Kim’s database [Kim] of boundary-parabolic representations every

hyperbolic knot with at most 12 crossings has an arc-faithful diagram. It seems that this should
be true for all knots, and as discussed above this seems relevant to a general proof of the Volume
Conjecture.
Conjecture 5.9. Every hyperbolic knot has an arc-faithful diagram. ⌟
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