
ar
X

iv
:2

40
4.

19
17

7v
1 

 [
m

at
h.

D
G

] 
 3

0 
A

pr
 2

02
4

THE MODULI SPACE OF LEFT-INVARIANT METRICS ON

SIX-DIMENSIONAL CHARACTERISTICALLY SOLVABLE

NILMANIFOLDS

ISOLDA CARDOSO, ANA COSGAYA, AND SILVIO REGGIANI

Abstract. A real Lie algebra is said to be characteristically solvable if its
derivation algebra is solvable. We explicitly determine the moduli space of
left-invariant metrics, up to isometric automorphism, for 6-dimensional nil-
manifolds whose associated Lie algebra is characteristically solvable. We also
compute the corresponding full isometry groups. For each left-invariant met-
ric on these nilmanifolds we compute the index and distribution of symmetry.
In particular, we find the first known examples of Lie groups which do not
admit a left-invariant metric with positive index of symmetry. As an applica-
tion we study the index of symmetry of nilsoliton metrics on characteristically
solvable Lie algebras. We prove that nilsoliton metrics detect the existence of
left-invariant metrics with positive index of symmetry.

1. Introduction

Let H be a Lie group with Lie algebra h. A very natural problem is to study is:
how many essentially different left-invariant geometries does H admit? More pre-
cisely, one wants to determine the moduli space M(H)/∼ of left-invariant metrics
on H up to isometric isomorphism and understand its topological structure. Solv-
ing this problem is extremely hard and the answer is unknown in general, even for
Lie groups of low dimension. Some partial results are present in the literature. For
instance in [Lau03] and [KTT11], the Lie groups H with low dimensional M(H)/∼
are classified. In [HL09], M(H)/∼ is completely determined when dimH = 3. In
the nilpotent case we can mention the work [DS13] where the problem was solved for
the Iwasawa manifold, and more recently in [RV20] for some 6-dimensional nilpo-
tent Lie groups with first Betti number equal to 4 and [FN18, FF23] for a certain
nilpotent 6-dimensional Lie algebras generalizing the filiform family. In [CFS05] a
description of the moduli space of nilpotent metric Lie algebra in dimension ≤ 6
is given. This last result is closely related with the problem mentioned above, but
the approach is different since we look for a precise description of M(H)/∼ for a
fixed isomorphism class.

When a description of the moduli space of left-invariant metrics onH is available,
we can study how different (invariant) geometric objects vary along different left-
invariant geometries. Some examples of such objects are Hermitian structures (in
even dimension), the signatures of the Ricci operator or the so-called index of
symmetry. This last object is of particular interest to us. Let us briefly say that the
index of symmetry is(M) of a homogeneous Riemannian manifold M is a geometric
invariant that measures how far M is from being a symmetric space. There is a
strong structural theory regarding the index (or the co-index dimM − is(M)) of
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symmetry for compact homogeneous spaces, and there is also a classification of
compact homogeneous spaces with co-index of symmetry 3. We refer to [ORT14,
BOR17, Reg21] for more details on this topic. Despite some progress made for
left-invariant metrics on 3-dimensional solvable Lie groups and naturally reductive
nilpotent Lie groups (see [Reg19, May21, CR22]), a general theory for the index
of symmetry in the non-compact case is virtually unknown. Moreover, even the
classificatory results for low co-index in the non-compact case are sparse.

In this paper we deal with characteristically solvable Lie algebras, CSLA for
short, namely nilpotent Lie algebras with solvable derivation algebra. In dimen-
sion 6, the family of CSLAs has 20 of the 34 isomorphism classes of (real) nilpotent
Lie algebras. Our main goal is to classify the left-invariant metrics up to isometric
automorphism in every CSLA of dimension 6 as well as computing the index of
symmetry of every metric in this classification.

In order to determine the moduli space M(H)/∼ when H is 6-dimensional with
h characteristically solvable, we compute in Section 3 the full automorphism group
Aut(h). This includes an explicit description of D = Aut(h)/Aut0(h) which can
be realized as a finite subgroup of Aut(h) intersecting every connected component
exactly once. Moreover, it follows from Theorem 3.2 that D is always a 2-group
and Aut(h) is isomorphic to a subgroup of the lower triangular group T6 if and only
if D is abelian. We must notice that there is some previous work dealing with the
computation of the automorphism group of nilpotent Lie algebras, see for instance
[Mag07]. However, as far as we know, in the existing literature there is not an
explicit computation of the automorphism group for all of the CSLA. We present
here an algorithmic procedure to compute Aut(h) with a key simplification process.
From this we obtain a nice presentation of the automorphism group with respect
to a suitable basis of h, which plays an important role in determining the moduli
space of left invariant-metrics.

In Section 4 we address the problem of determining the moduli space of left-
invariant metrics on H . We start by describing the moduli space M(H)/∼0 of
left-invariant metrics on H modulo an isometric automorphism in the connected
component of Aut(h). We prove thatM(H)/∼0 is a smooth manifold diffeomorphic
to a certain embedded submanifold Σ of T+

6 (the subgroup of T6 with positive
entries on the diagonal). Then we explain how to obtain M(H)/∼ from M(H)/∼0

as a finite quotient. It turns out that in most cases, M(H)/∼ is homeomorphic to
the quotient of Σ modulo a finite group acting like reflections on T+

6 , which leaves
Σ invariant.

In Section 5 we compute the full isometry group I(H, gσ), where gσ is a left-
invariant metric representing a σ ∈ Σ. It is known from [Wol63] that I(H, gσ) ≃
H ⋊K, where K = Aut(h) ∩ O(gσ). We prove that if D is abelian, then K ⊂ D.
In particular, when D is abelian there is a finite number of subgroups of Aut(h)
that can serve as the full isotropy subgroup of gσ, for all σ ∈ Σ. This does not
hold if D is not abelian. Indeed, we provide examples of 1-parameter families of
subgroups Kr ⊂ Aut(h) and σr ∈ Σ such that Kr is the full isotropy group of
gσr

. The explicit determination of the full isotropy groups K for any left-invariant
metric is also possible and it is treated in that section.

In Section 6 we compute the index of symmetry of left-invariant metrics in the
context of CSLAs of dimension 6. We remark that for every Lie algebra isomor-
phism class, apart from for five distinguished cases, every left-invariant metric on H
has trivial index of symmetry. This provides the first known examples of Lie groups
which do not admit a left-invariant metric with positive index of symmetry. On the
other side, among the CSLAs whose associated Lie groups do admit metrics with
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non-trivial index of symmetry we can find new examples of non-compact homoge-
neous spaces with co-index of symmetry 3 and 4. Lastly, we find some examples of
left-invariant metrics on nilpotent Lie groups whose distribution of symmetry (i.e.
the left-invariant distribution induced by the Killing field parallel at the identity
element) is not contained in the center of the Lie algebra. Nilpotent Lie groups
with that property were previously unknown to exist.

As an application of our results, in Section 7 we study the index and distribution
of symmetry of nilsoliton metrics in CSLAs. Recall that a left-invariant metric on
H is called a nilsoliton metric if its Ricci operator satisfies Ric = c idh +D for some
c ∈ R and D ∈ Der(h). These metrics are particular cases of solvsoliton metrics
(same definition but for solvable Lie groups), a family that exhausts the homoge-
neous expanding Ricci soliton metrics (see [BL23]). Solvsoliton metrics are proved
to be unique (if they exist) up to scaling. Moreover, nilsoliton metrics are given by
the nilradicals of Einstein solvmanifolds (see [Lau11]). A classification of nilsoliton
metrics in dimension 6 can be found in [Wil03]. Since nilsoliton metrics are Ricci
soliton metrics, they are nice enough so that they are not improved under the Ricci
flow (that is, evolving only by scaling or pulling-back by a diffeomorphism). Thus
it is expected that nilsoliton metrics have low co-index of symmetry whenever the
underlying Lie algebra structure do not obstruct the existence of positive index of
symmetry. We prove that this is indeed the case. More precisely, if H admits met-
rics with positive index of symmetry, then the nilsoliton metric has positive index
of symmetry. It is interesting noticing that the index of symmetry of nilsoliton
metrics is not always maximal among all the left-invariant metrics. However, the
distribution of symmetry of nilsoliton metrics is well behaved, in the sense that it
is contained in the center of the Lie algebra when this is not obstructed by the
isomorphism class of h.

Finally, in Section 8 we include some tables summarizing the classificatory results
obtained in the paper. This results often rely in heavy computations that we per-
form with the computer software SageMath. The source code of such computation
is freely available and provided in the separate GitHub repository [CCR24]. We
believe that some of this code could be of use in studying other geometric problems
in nilpotent Lie groups of low dimension.

The authors would like to thank Jorge Lauret for pointing out the problem of
studying the index of symmetry of nilsoliton metrics.

2. Characteristically solvable Lie algebras

In this article we mainly deal with 6-dimensional real nilpotent Lie algebras.
This is the greatest dimension with a finite number of isomorphism classes: there
are 34 isomorphism classes of nilpotent real Lie algebras. Observe that every 6-
dimensional nilpotent Lie algebra admits a basis e1, . . . , e6 for which the structure
coefficients are −1, 0 or 1. So, it is convenient to denote a Lie algebra with a
tuple summarizing its structure. We will follow the notation used in [Sal01]. For
example, the notation h11 = (0, 0, 12, 13, 14 + 23) means that h11 is the nilpotent
Lie algebra (R6, [·, ·]) where the Lie bracket in the canonical basis is given by the
non-trivial relations

[e1, e2] = −e3 [e1, e3] = −e4 [e1, e4] = [e2, e3] = −e6.

In Table 1 we list all the 34 isomorphism classes of 6-dimensional nilpotent Lie
algebras. Note that some of the structure coefficients are indicated with an asterisk.
This means that further on the paper we shall consider a different basis to better
serve our purposes. We also mention that the third column on the table shows
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the nilpotency step and the last column indicates the dimension of the commuting
ideals for the decomposable Lie algebras.

Table 1. Nilpotent Lie algebras of dimension 6

Name Structure coefficients Step ⊕
h1 (0, 0, 0, 0, 0, 0) 1 1 + · · ·+ 1
h2 (0, 0, 0, 0, 12, 34) 2 3 + 3
h3 (0, 0, 0, 0, 0, 12+ 34) 2 1 + 5
h4 (0, 0, 0, 0, 12, 14+ 23) 2
h5 (0, 0, 0, 0, 13 + 42, 14 + 23) 2
h6 (0, 0, 0, 0, 12, 13) 2 1 + 5
h7 (0, 0, 0, 12, 13, 23) 2
h8 (0, 0, 0, 0, 0, 12) 2 1 + 1 + 1 + 3
h9 (0, 0, 0, 0, 12, 14+ 25)∗ 3 1 + 5
h10 (0, 0, 0, 12, 13, 14) 3
h11 (0, 0, 0, 12, 13, 14+ 23) 3
h12 (0, 0, 0, 12, 13, 24) 3
h13 (0, 0, 0, 12, 13+ 14, 24) 3
h14 (0, 0, 0, 12, 14, 13+ 42) 3
h15 (0, 0, 0, 12, 13+ 42, 14 + 23 3
h16 (0, 0, 0, 12, 14, 24) 3 1 + 5
h17 (0, 0, 0, 0, 12, 15) 3 1 + 1 + 4
h18 (0, 0, 0, 12, 13, 14+ 35)∗ 3

h−19 (0, 0, 0, 12, 23, 14− 35) 3

h+19 (0, 0, 0, 12, 23, 14+ 35)∗ 3

h20 (0, 0, 0, 0, 12, 15+ 34) 3
h21 (0, 0, 0, 12, 14, 15) 4 1 + 5
h22 (0, 0, 0, 12, 14, 15+ 24) 4 1 + 5
h23 (0, 0, 12, 13, 23, 14) 4
h24 (0, 0, 0, 12, 14, 15+ 23 + 24) 4
h25 (0, 0, 0, 12, 14, 15+ 23) 4

h−26 (0, 0, 12, 13, 23, 14− 25)∗ 4

h+26 (0, 0, 12, 13, 23, 14+ 25) 4

h27 (0, 0, 0, 12, 14− 23, 15 + 34) 4
h28 (0, 0, 12, 13, 14, 15) 5
h29 (0, 0, 12, 13, 14, 23+ 15) 5
h30 (0, 0, 12, 13, 14+ 23, 24 + 15) 5
h31 (0, 0, 12, 13, 14, 34+ 52) 5
h32 (0, 0, 12, 13, 14+ 23, 34 + 52) 5

Let h be a nilpotent Lie algebra. We say that h is characteristically solvable,

CSLA for short, if its derivation algebra Der(h) is a solvable Lie algebra. The next
results gives the classification of CSLAs in dimension 6.

Proposition 2.1. Let h be a real nilpotent Lie algebra of dimension 6. Then h is

a CSLA if and only if h is isomorphic to one of the following Lie algebras:

h9, h10, h11, h12, h13, h14, h18, h
+
19, h21, h22,

h23, h24, h25, h
−
26, h27, h28, h29, h30, h31, h32.

Proof. By a direct computation, we can see that the derivation Lie algebras for
h10, . . . , h14, h21, . . . , h25, h27, . . . , h32 are represented by triangular matrices in the
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standard basis. Consider the following changes of basis,

e′1 = e2, e′2 = e1, e′3 = e4, e′4 = e3, e′5 = e5, e′6 = e6

e′1 = e1, e′2 = e3, e′3 = e2, e′4 = e5, e′5 = e4, e′6 = e6

for h9 and h18, respectively,

e′1 = e1 + e3, e′2 = e2, e′3 = e1 − e3,

e′4 = e4 + e5, e′5 = e4 − e5, e′6 = 2e6

for h+19 and

e′1 = e1 + e2, e′2 = e1 − e2, e′3 = −2e3,

e′4 = 2(e4 + e5), e′5 = 2(e4 − e5), e′6 = 4e6

for h−26. These changes of basis simultaneously triangularize all the derivations.
Finally, one can see that all the remaining nilpotent Lie algebras of dimension 6
admit a skew-symmetric derivation (with respect to the inner product induced by
the standard basis). Thus, these Lie algebras cannot be characteristically solvable.
The detailed computations are long and tedious to be made by hand and were
instead performed with the software SageMath. The corresponding Jupyter note-
book can be found in [CCR24, Notebook 01], the GitHub repository supporting
this article. �

In Table 2 we list all the CSLAs. From now on we will consider as the standard
basis the one with the structure coefficients given in this table (i.e., the standard
basis is the same as in Table 1 except for h9, h18, h

+
19 and h−26 which is changed

according to the proof of Proposition 2.1).

Table 2. CSLAs of dimension 6

Name Structure coefficients Name Structure coefficients
h9 (0, 0, 0, 0, 12, 51+ 23) h23 (0, 0, 12, 13, 23, 14)
h10 (0, 0, 0, 12, 13, 14) h24 (0, 0, 0, 12, 14, 15+ 23 + 24)
h11 (0, 0, 0, 12, 13, 14+ 23) h25 (0, 0, 0, 12, 14, 15+ 23)

h12 (0, 0, 0, 12, 13, 24) h−26 (0, 0, 12, 31, 32, 15+ 24)
h13 (0, 0, 0, 12, 13+ 14, 24) h27 (0, 0, 0, 12, 14− 23, 15 + 34)
h14 (0, 0, 0, 12, 14, 13+ 42) h28 (0, 0, 12, 13, 14, 15)
h18 (0, 0, 0, 12, 13, 15+ 24) h29 (0, 0, 12, 13, 14, 23+ 15)

h+19 (0, 0, 0, 23, 21, 14+ 35) h30 (0, 0, 12, 13, 14+ 23, 24 + 15)

h21 (0, 0, 0, 12, 14, 15) h31 (0, 0, 12, 13, 14, 34+ 52)
h22 (0, 0, 0, 12, 14, 15+ 24) h32 (0, 0, 12, 13, 14+ 23, 34 + 52)

Corollary 2.2. Let h be s-step nilpotent Lie algebra of dimension 6. If h is a

CSLA, then s ≥ 3.

3. The full automorphism group of a CSLA

Let us fix a CSLA h of dimension 6. We denote by T6 ⊂ GL6(R) the Lie subgroup
of lower triangular matrices and by t6 its Lie algebra. In order to compute the full
automorphism group Aut(h) of h we proceed as follows. According to the proof
of Proposition 2.1, up to a suitable change of basis, we can identify Der(h) with a
Lie subalgebra of t6. Then eDer(h) = Aut0(h) is the connected component of the
automorphism group. Moreover, if we denote by Derd(h) the abelian subalgebra of
(simultaneously) diagonalizable derivations, then we see that Aut(h) has at least



6 ISOLDA CARDOSO, ANA COSGAYA, AND SILVIO REGGIANI

2k connected components, where k = dimDerd(h). We will prove in Theorem 3.2
that this bound is almost always met.

Remark 3.1. Let h be a CSLA of dimension 6. Since Der(h) ⊂ t6, a maximal
compact subgroup D of Aut(h) meets every connected component and so Aut(h) =
Aut0(h)⋊D. On the other hand, since Aut(h) is an algebraic group, it has finitely
many connected components hence D is a finite subgroup of automorphisms. Recall
that D must be conjugated to a subgroup of O(n), however this does not imply
that D consists of diagonal automorphisms in the standard basis.

Theorem 3.2. Let h be a CSLA of dimension 6 such that h 6≃ h13, h 6≃ h+19 and

h 6≃ h−26. Then Aut(h) is isomorphic to a subgroup of T6. Moreover,

(1) Aut(h)/Aut0(h) ≃ (Z2)
k where k = dimDerd(h).

(2) Aut(h13)/Aut0(h13) ≃ G3
16 = (Z2 ⊕ Z2)⋊ Z4.

(3) Aut(h+19)/Aut0(h
+
19) ≃ Dih4 × Z2.

(4) Aut(h−26)/Aut0(h
−
26) ≃ Dih4.

Proof. Let h be a CSLA of dimension 6. It follows from Remark 3.1 that there exists
a finite subgroupD of Aut(h) which meets every connected component exactly once.
So Aut(h)/Aut0(h) ≃ D and as we observe before, D has a subgroup isomorphic
to (Z2)

k, where k = dimDerd(h). We will prove D = (Z2)
k for all h 6= h+19, h

−
26.

Let e1, . . . , e6 be the standard basis of h (cfr. Table 2). Let s be the least natural
number such that the Lie subalgebra generated by e1, . . . , es coincides with h. One
can easily see that s = 2, 3 or 4. Let ϕ ∈ Aut(h), then ϕ is lower triangular in the
standard basis if and only if ei(ϕ(ej)) = 0 for all 1 ≤ i < j ≤ s, where e1, . . . , e6 is
the dual basis of the standard basis. We argue by cases according to the possible
values of s. Let X =

∑

αiei be an arbitrary element of h.
Case 1: s = 2. In this case, h ∈ {h23, h−26, h28, h29, h30, h31, h32}. Then, for all

h except h−26 and h32 we have that rank(ade1 ) > rank(ade2) and if α1 6= 0 then
rank(adX) ≥ rank(ade1). So, in these cases, we have e1(ϕ(e2)) = 0 and ϕ ∈ T6.
Moreover, D ≃ (Z2)

k where k = 1 for h = h29, h30 and k = 2 for h = h23, h28, h31.
In fact, it is easy to see that if k = 1, then ϕ(e2) is determined by ϕ(e1), hence D is
isomorphic to the subgroup generated by the automorphism ϕ1 : e1 7→ −e1. If k = 2
one can see that D is isomorphic to the subgroup generated by the automorphisms
ϕ1, ϕ2 given by

ϕ1(e1) = −e1 = −ϕ2(e1) and ϕ1(e2) = e2 = −ϕ2(e2). (3.1)

Let us look at the remaining cases.
Case 1.1: h = h−26. In this case rank(ade1) = rank(ade2) = 3. Moreover,

if rank(adX) = 3, then α1 6= 0 or α2 6= 0. Since (ade1)
3 = (ade2 )

3 = 0 and
(adX)3 = 0 if and only if α1α2 = 0, we have that

e1(ϕ(e1)) 6= 0 =⇒ e2(ϕ(e1)) = e1(ϕ(e2)) = 0 6= e2(ϕ(e2))

e2(ϕ(e1)) 6= 0 =⇒ e1(ϕ(e1)) = e2(ϕ(e2)) = 0 6= e1(ϕ(e2)).

So in addition to the automorphisms ϕ1, ϕ2 ∈ D defined by the same formula as in
(3.1) we can define an automorphism ϕ3 ∈ D by

ϕ3(e1) = e2 ϕ3(e2) = e1.

The above calculations show that D is generated by ϕ1, ϕ2, ϕ3. Moreover, note that
D is also generated by ϕ1 and ϕ1 ◦ ϕ3, and since ϕ2

1 = (ϕ1 ◦ ϕ3)
4 we conclude that

D ≃ Dih4.
Case 1.2: h = h32. Notice that Z(h) = Re6 and im(ade2)

3 = Z(h). This
property is invariant under automorphisms and im(adX)3 = Z(h) implies α1 = 0.
So e1(ϕ(e2)) = 0 and reasoning as in some previous cases, D ≃ Z2.
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Case 2: s = 3. In this case

h ∈ {h10, h11, h12, h13, h14, h18, h+19, h21, h22, h24, h25, h27}.
Routine computations show that rank(ade1) > rank(adei), i = 2, 3, for all h except
h12, h13 and h+19. Also, we have that rank(ade2) > rank(ade3) for all h except h10,
h11, h

+
19 and h27.

Case 2.1: rank(ade1) > rank(ade2) > rank(ade3). This case is analogous to the
generic case with s = 2, since α1 6= 0 implies rank(adX) ≥ rank(ade1 ) and α2 6= 0
implies rank(adX) ≥ rank(ade2). This shows that every ϕ is triangular with respect
to the standard basis, and D ≃ (Z2)

3 is generated by ϕ1, ϕ2, ϕ3 defined by

ϕ1(e1) = −e1 ϕ1(e2) = e2 ϕ1(e3) = e3

ϕ2(e1) = e1 ϕ2(e2) = −e2 ϕ2(e3) = e3 (3.2)

ϕ3(e1) = e1 ϕ3(e2) = e2 ϕ3(e3) = −e3

Case 2.2: rank(ade1) > rank(ade2) = rank(ade3). Here we have three subcases.
Case 2.2.1: h = h10. In this case we have rank(ade1) = 3 and rank(ade2) =

rank(ade3) = 1. Moreover, if α1 6= 0 then rank(adX) = 3, and hence e1(ϕ(e2)) =
e1(ϕ(e3)) = 0. Also notice that im(ade3) ⊂ Z(h), but α2 6= 0 implies im(adX) 6⊂
Z(h), so e2(ϕ(e3)) = 0 and ϕ is triangular. One can check that D is generated by
ϕ1, ϕ2, ϕ3 defined with the same formulas as in (3.2).

Case 2.2.2: h = h11. Here the same argument as in the above case works for
proving that ϕ ∈ T6. However, in this case D ≃ (Z2)

2 since [e2, e3] = −[e1, [e1, e2]]
implies e3(ϕ(e3)) = e1(ϕ(e1))

2.
Case 2.2.3: h = h27. In this case we can use the following variation of the

above argument. Let C2(h) be the third ideal in the lower central series of h. Then
im(ade3) ⊂ C2(h) and α2 6= 0 implies im(adX) 6⊂ C2(h). As in the previous case,
we can see that D ≃ (Z2)

2.
Case 2.3: rank(ade1) = rank(ade2) > rank(ade3). We have to consider the

following sub-cases.
Case 2.3.1: h = h12. Recall that (ade1)

2 = 0 6= (ade2)
2 and (adX)2 = 0 if

and only if α2 = 0. This shows e1(ϕ(e2)) = 0. In order to see that e1(ϕ(e3)) =
e2(ϕ(e3)) = 0 notice that α1 6= 0 or α2 6= 0 imply rank(adX) ≥ 2, but rank(ade3) =
1. In this case D = (Z2)

3 with generators ϕ1, ϕ2, ϕ3 defined as in (3.2).
Case 2.3.2: h = h13. This case is more complicated than the previous ones

since it cannot be solved using linear invariants. First notice that α1 6= 0 or α2 6= 0
implies rank(adX) ≥ 2. This shows e1(ϕ(e3)) = e2(ϕ(e3)) = 0. Also since ϕ
preserves the commutator and the center, one has ei(ϕ(e4)) = 0 for i = 1, 2, 3 and
ei(ϕ(ej)) = 0 for i = 1, 2, 3, 4 and j = 5, 6. Now we use a brute force approach to
recover the general form of the automorphism ϕ. When e1(ϕ(e2)) = 0 we obtain a
subgroup of D isomorphic to Z2⊕Z2 which generated by the automorphism ϕ1, ϕ2

given by

ϕ1(e1) = −e1, ϕ1(e2) = e2, ϕ1(e3) = −e3,

ϕ2(e1) = e1, ϕ2(e2) = −e2, ϕ2(e3) = −e3.

Finally, when e1(ϕ(e2)) 6= we obtain a a subgroup of D isomorphic to Z4 with a
generator ϕ3 given by

ϕ3(e1) = e2, ϕ3(e2) = −e1, ϕ3(e3) = −e3 + e4.

Notice that ϕ3◦ϕ1◦ϕ−1
3 = ϕ2. We refer to the corresponding SageMath notebook

for the details.
Case 2.4: rank(ade1) = rank(ade2) = rank(ade3). The only CSLA in this case is

h = h+19. One can easily see that Aut(h) has at least 8 connected components since
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ϕ1, ϕ2, ϕ3 defined as in (3.2) give a subgroup of D isomorphic to (Z2)
3. Moreover,

define ϕ4 ∈ Aut(h) by

ϕ4(e1) = e3, ϕ4(e2) = e2, ϕ4(e3) = e1.

Now ϕ1, . . . , ϕ4 generate a subgroup of order 16. Let us prove that this subgroup
is isomorphic to D. In fact, note that if im(adX) ∩ Z(h) = 0, then α1 = α3 = 0.
This implies e1(ϕ(e2)) = e3(ϕ(e2)) = 0 and so ϕ(e2) = γ2e2+γ4e4+γ5e5+γ6e6. If
ϕ(e1) = β1e1 + β2e2 + β3e3 + β4e4 + β5e5 + β6e6 then β1 6= 0 or β3 6= 0. Moreover,
since rank(ade1) = 2 then β2 = 0. Now, since 0 = [e1, e5] = [e1, [e1, e2]] we have

0 = [ϕ(e1), [ϕ(e1), ϕ(e2)]] = −2β1β3γ2e6.

So β1 6= 0 if and only if β3 = 0. The above computations show that D equals the
subgroup generated by ϕ1, . . . , ϕ4. Denote a = ϕ4, b = ϕ2 and c = ϕ1. Recall that
ϕ3 = ϕ1 ◦ (ϕ4 ◦ ϕ1)

2. Then it is not hard to see that

D ≃ 〈a, b, c | a2 = b2 = c2 = (ac)4 = e, ab = ba, bc = cb〉 ≃ Dih4 × Z2.

Case 3: s = 4. The only possibility here is h = h9. This case was already
treated in [RV20]. �

Remark 3.3. Supporting calculations for the proof of Theorem 3.2 can be found
in [CCR24, Notebook 02] from the GitHub repository accompanying this paper.
For the sake of completeness we have also included the computations for the case
h = h9.

It follows from Theorem 3.2 that the full automorphism group of h can be com-
puted essentially by taking exponential of derivations (and making appropriate
changes of sign in the diagonal after that). Since this does not give a nice ex-
pression for a generic automorphism, we need to develop a simplification algorithm
which works as follows. Let us write

Der(h) = Dern(h)⊕Derd(h) (direct sum of subspaces),

where Dern(h) consists of all the nilpotent derivations of h. Then we choose a basis
X1, . . . , Xn of Dern(h) and a basis Y1, . . . , Ym of Derd(h). In order to get better
results, one must take sparse matrices for such basis. We then

• take the exponential of a generic element X =
∑

aiXi and simplify the
expression for eX ;

• take the exponential of bjYj (separately) and simplify the expression for
ebjYj ;

• for every k = 1, . . . , j define ϕk = ϕk−1e
bkYk , where ϕ0 = eX , and simplify

the expression for ϕk.

Note that a good simplification performed in every step is crucial and has the
objective of preserving the original position of the coefficients ai and bj in the
final expression for a generic automorphism. In Tables 4, 5 and 6 we present the
full automorphism group for every CSLA of dimension 6. In the second column
of these tables we give a description of the connected component Aut0(h) and in
the third column we give the generators of the finite subgroup D of Aut(h) such
that Aut(h) = Aut0(h) ⋊D. Notice that we have renamed the free parameters to
a0, a1, a2, . . .

4. The moduli space of left-invariant metrics for CSLA

Let H be a simply connected Lie group with Lie algebra h. Every left-invariant
metric on H is uniquely determined by an inner product on h. So, after a choice of
a basis for h we can identify the space M(H) of all left-invariant metrics on H with
the symmetric space Sym+

n = GLn(R)/O(n) of all the symmetric positive definite
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n×n matrices. If we identify Aut(h) ⊂ GLn(R), then Aut(h) acts on Sym+
n on the

right by

g · ϕ = ϕT g ϕ, g ∈ Sym+
n , ϕ ∈ Aut(h).

We say that two left-invariant metrics on H are equivalent if they lie in the same
orbit under the action of Aut(h) (with the above identifications). The moduli space

of left-invariant metric up to isometric automorphism is the quotient

M(H)/∼ = Aut(h)\ Sym+
n .

We will also consider the moduli space of left-invariant metrics up to an isometric
automorphism in the connected component

M(H)/∼0 = Aut0(h)\ Sym+
n .

Assume that h is a CSLA of dimension 6. Let T+
6 be the connected component

of T6. Since T+
6 acts simply transitively on Sym+

6 , the action of Aut0(h) on Sym+
6

is equivalent to the left action of Aut0(h) on T+
6 .

Theorem 4.1. Let h be a CSLA of dimension 6 and let H be a simply connected

Lie group with Lie algebra h. Then M(H)/∼0 is a smooth manifold. More-

over, M(H)/∼0 is diffeomorphic to a submanifold Σ of T+
6 which is transversal

to Aut0(h). The explicit description of the submanifolds Σ can be found in Ta-

bles 7, 8, 9 and 10.

Proof. The same proof given in [RV20] for h9 can be adapted to the rest of the
CSLAs. Let us recall how the submanifold Σ is defined. Let ϕ ∈ Aut0(h) a generic
element given as in Tables 4, 5 and 6. First we identify the places where the free
parameters a0, a1, a2, . . . occur and set the corresponding non-diagonal entries of
Σ ∈ T+

6 to 0 and the diagonal ones to 1. We fill the remaining places with free
parameters s0, s1, s2, . . . where si ∈ R for non-diagonal entries and si > 0 for the
diagonal ones. �

The algorithm for computing the Σ’s can be found in [CCR24, Notebook 00] from
our GitHub repository. We also define for future use the set nd(Σ) of non-diagonal
free parameters of Σ.

Now we give a general description of M(H)/∼. For each g ∈ M(H), we denote
the orbits of g under Aut(h) and Aut0(h) by [g] and [g]0 respectively. Since Aut(h) =
Aut0(h)⋊D, we have

[g] =
⋃

δ∈D

[δT gδ]0.

Hence, every Aut(h)-orbit is a finite union of Aut0(h)-orbits. This does not mean
that D acts naturally on Σ.

However, for the CSLAs with Aut(h) ⊂ T6, we have D(Σ) ⊂ Σ. Moreover, D
acts on Σ as a finite subgroup of reflections of Rn+1, where s0, s1, . . . , sn is the
parametrization of Σ given in the proof of Theorem 4.1. Hence, there exists a
submanifold ΣD ⊂ Σ where D acts trivially. For h+19 and h−26, we have D ⊂ O(6)
and there exist a non-trivial submanifold ΣD ⊂ Σ as before where D acts trivially,
although D is no longer a subgroup of reflections of Σ. For h13 we have D 6⊂ O(6)
and one can easily see that ΣD = ∅. In some cases, ΣD completely determines the
structure of M(H)/∼, but in general this information is not enough. Supporting
computations for these facts and for the following examples are given in the attached
attached notebook [CCR24, Notebook 03].
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Example 4.2. Let h = h24. Recall that D ≃ Z2. Here we have that ΣD is given
by elements of the form





1 0 0 0 0 0
0 s0 0 0 0 0
0 0 s1 0 0 0
0 0 s2 s3 0 0
0 0 0 0 s6 0
0 0 0 s7 0 s9





and [g] = [g]0 if and only if g = σTσ for some σ ∈ ΣD.

Example 4.3. Let h = h11. In this case D ≃ Z2 ⊕ Z2 is generated by the au-
tomorphisms ϕ1, ϕ2 given in the proof of Theorem 3.2. If we denote by Σϕi

the
submanifold of Σ where ϕi acts trivially, then

ΣD = Σϕ1
∩Σϕ2

.

For a given left-invariant metric g, we have that [g] is the union of 1, 2, or 4 Aut0(h)-
orbits if and only if [g]0 = [σTσ]0, for σ ∈ ΣD, σ ∈ Σϕ1

△Σϕ2
or σ ∈ Σ−(Σϕ1

∪Σϕ2
),

respectively.

Example 4.4. For h = h+19 we have ΣD consists of matrices of the form




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 s3 0 0
0 0 0 0 s3 0
0 0 0 0 0 s9





and for h = h−26 we have that ΣD consists of matrices of the form




1 0 0 0 0 0
0 1 0 0 0 0
0 0 s1 0 0 0
0 0 0 s3 0 0
0 0 0 0 s3 0
0 0 0 0 0 s10



.

Example 4.5. Let h = h13. Consider the metric

g1 =





2 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 = σT
1 σ1 with σ1 =





1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 ∈ Σ.

Now let g2 = ϕT
3 g1ϕ3 where ϕ3 is given as in the proof of Theorem 3.2. Then, there

does not exist σ ∈ Σ such that g2 = σTσ. However, g2 ∈ [g3]0 where

g3 =







2 −1 0 0 0 0
−1 1 0 0 0 0
0 0 2 1 0 0
0 0 1 1 0 0
0 0 0 0 2 0
0 0 0 0 0 1

2






= σT

3 σ3 with σ3 =







1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0

√
2 0

0 0 0 0 0 1
2

√
2






∈ Σ.

5. The full isometry group of a CSLA

Let h be a CSLA of dimension 6 and let H be the associated simply connected
Lie group. We identify M(H)/∼0 with Σ ⊂ T+

6 as in Theorem 4.1. Given σ ∈ Σ,
define

gσ = σTσ ∈ Sym+
6 .

We identify as usual gσ with an inner product on h and the corresponding left-
invariant metric on H . In this section we address the problem of computing the
full isometry group I(H, gσ) of gσ. According to [Wol63] we know that

I(H, gσ) ≃ H ⋊K,

where H is identified as the subgroup of left translations of H and K is the full
isotropy group. Moreover, via the isotropy representation we have the isomorphism

K ≃ Aut(h) ∩O(gσ).

Recall from Remark 3.1 that Aut(h) = Aut0(h) ⋊ D, where D is described in
Theorem 3.2.
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Theorem 5.1. We keep the notation of this section. Assume that h is not isomor-

phic to h13, h
+
19 nor h−26. Then K ⊂ D.

Proof. Notice that in these cases, under the usual identifications, Aut(h) ⊂ T6 and
D ≃ Z

k
2 for some k ∈ {1, 2, 3}. Let ϕ ∈ K = Aut(h) ∩ O(gσ) and let ϕ = S + N

its Chevalley decomposition, i.e., N is nilpotent, S is semisimple, [N,S] = 0 and
N , S are polynomials in ϕ. Then ϕ and S have the same diagonal, and hence the
elements on the diagonal are ±1. We claim that N = 0. Indeed, first we assume
that diagϕ = (1, . . . , 1). So, ϕ = N and the set {ϕn : n ∈ N} is unbounded in
Aut(h), which contradicts the fact that ϕ ∈ O(gσ). In the general case we have
that diagϕ2 = diagS2 = (1, . . . , 1) and so the nilpotent part of ϕ2 is trivial. But
ϕ2 = (S+N)2 = S2 +2SN +N2 and thus N2 = −2SN which is impossible unless
N = 0.

Now we have that ϕ = S ∈ K is a semisimple automorphism such that ϕ2 = id
which satisfy the isometry condition

ϕT gσ = gσϕ. (5.1)

Observe that equation (5.1) is linear in the coefficients of ϕ (although it is not
necessarily linear in the free parameters a0, a1, a2, . . . describing ϕ). Also notice
that if a free parameter aℓ appears for the first time (with the lexicographic order)
in the entry ϕij , then σij = 0. From these facts it is not hard to conclude that all
the entries bellow the diagonal of ϕ are zero. Hence ϕ ∈ D. One can also prove
this by direct inspection. Such computations are easy (but long and tedious) and
are provided in the accompanying notebook [CCR24, Notebook 04]. �

Remark 5.2. From Theorem 5.1, one can easily compute the full isometry group of
any gσ for all the h such that Aut(h) ⊂ T6. Such description is rather involved and
it is not convenient to be included in the manuscript. However, we do include in
Tables 7, 8 and 9 some relevant information on the metrics with nontrivial subgroup
of isometric automorphisms. These tables must be read as follows. The first and
second columns present the name of the Lie algebra and a generic representative
of every left-invariant metric up to isometric automorphism (actually, here we keep
it simple by considering M(H)/∼0 instead of M(H)/∼). For each generic metric
gσ, one can equal to 0 a number p of non diagonal parameters. We indicate this in
the third column with #nd(Σ) = 0. That is, if nd(Σ) has n elements, then there
(

n
p

)

possible such substitutions. The last columns are for the isomorphism classes

of subgroups of D (recall that K is a subgroup of D) and we present the amount
of substitutions which have K isomorphic to one of these groups.

For example, if h = h12, then nd(Σ) = {s0, s1, s3, s5, s6} and we have
(

5
2

)

= 10
ways to choose two parameters equal to 0. For 8 of these choices we have K = {e}
and for the remaining 2 we have K ≃ Z2. The explicit substitutions and subgroups
K →֒ D can be found in [CCR24, Notebook 05].

Remark 5.3. According to Theorem 5.1, if h 6≃ h13, h
+
19, h

−
26, there exists a finite

number of subgroups of Aut(h) (and moreover, of D) that can be realized as the
full isotropy group of I(H, gσ) for any σ ∈ Σ. This is not true if h = h13, h

+
19 or h−26.

In fact, if r ∈ (0, 1] then the automorphisms

ϕr =







0 r 0 0 0 0
1
r

0 0 0 0 0
0 0 1 0 0 0
0 0 −1 −1 0 0
0 0 0 0 0 −r

0 0 0 0 − 1
r

0






, ϕ′

r =







0 0 r 0 0 0
0 1 0 0 0 0
1
r

0 0 0 0 0

0 0 0 0 1
r

0
0 0 0 r 0 0
0 0 0 0 0 1






, ϕ′′

r =







0 r 0 0 0 0
1
r

0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −r 0
0 0 0 − 1

r
0 0

0 0 0 0 0 −1






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of h13, h
+
19 and h−26 respectively are isometric with respect to gσr

, gσ′

r
and gσ′′

r
where

σr =









1 0 0 0 0 0

−
√

−r2+1

r
1 0 0 0 0

0 0 1 0 0 0
0 0 1

2
1 0 0

0 0 0 0 − 1
r

0
0 0 0 0 0 1









, σ′
r =









1 0 0 0 0 0√
−r2+1

r
1 0 0 0 0

0
√
−r2+1 1 0 0 0

0 0 0 r2 0 0
0 0 0 0 r 0
0 0 0 0 0 1









,

σ′′
r =







1 0 0 0 0 0√
−r2+1

r
1 0 0 0 0

0 0 1 0 0 0
0 0 0 1

r
0 0

0 0 0 0 1 0
0 0 0 0 0 1






.

See [CCR24, Notebook 06] for verification. However, in any of these cases the
subgroup K is conjugated to a subgroup of D, since D is a maximal compact
subgroup of Aut(h).

6. The index of symmetry for CSLA

This section concerns the computation of the index of symmetry of a left-
invariant metric on a Lie group associated with a CSLA. We refer to [ORT14]
and [BOR17] for the general definitions and the structure theory related with the
index of symmetry of general homogeneous Riemannian manifold.

Let h be a CSLA of dimension 6 and let H be the associated simply connected
Lie group. Endow H with a left-invariant Riemannian metric g and denote by
I(H) its full isometry group. Since the isotropy subgroup of I(H) is discrete, every
Killing field on H is right-invariant. Let X,Y, Z ∈ h and denote by X∗, Y ∗, Z∗

the corresponding right-invariant vector fields. By definition, the distribution of

symmetry at the identity e is given by

se = {Xe : X ∈ h and (∇X∗)e = 0}
Since s is I(H)-invariant, then it coincides with the distribution generated by

the left-invariant fields X ∈ h such that Xe ∈ se. The so-called index of symmetry

of (H, g) is the rank of s. Recall the well-known Kozsul’s formula for Killing fields:
for all right-invariant fields X∗, Y ∗, Z∗, we have

g(∇X∗Y ∗, Z∗) =
1

2
(g([X∗, Y ∗], Z∗) + g([X∗, Z∗], Y ∗) + g([Y ∗, Z∗], X∗)).

So, Y ∈ s if and only if for all X,Z ∈ h holds

0 = 2g((∇X∗Y ∗)e, (Z
∗)e)

= g([X∗, Y ∗]e, (Z
∗)e) + g([X∗, Z∗]e, (Y

∗)e) + g([Y ∗, Z∗]e, (X
∗)e)

= −g([X,Y ]e, Ze)− g([X,Z]e, Ye)− g([Y, Z]e, Xe).

since [X∗, Z∗]e = −[X,Z]∗e. So, the above equation is equivalent to

g([X,Y ], Z) + g([X,Z], Y ) + g([Y, Z], X) = 0. (6.1)

for all X,Z ∈ h. Notice that we have identified with the same symbol g the
Riemannian metric on H and the corresponding inner product on h. If e1, . . . , e6
is the standard basis of h and we write Y =

∑

yiei, then the previous equations
is linear in y1, . . . , y6. This equation is not linear if we also consider the metric
coefficients. Since every g is isometric to a metric with the form gσ = σTσ, for
some σ ∈ Σ, in order to determine the existence of metrics with non-trivial index
of symmetry it is enough to work with the metrics of this form.

Theorem 6.1. Let h be a CSLA of dimension 6 and let H its associated simply

connected Lie group. Assume that h is not isomorphic to h9, h10, h21, h22 nor h28.

Then every left-invariant metric on H as trivial index of symmetry.
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As far as we know, these are the first examples in the literature of a Lie group
all of whose left-invariant metric has trivial index of symmetry. Now we direct our
attention to the Lie groups with characteristically solvable Lie algebra which admit
left-invariant metrics with nontrivial index of symmetry. We use the notation of
Section 4 for the left-invariant metrics under study. We begin with the cases where
the distribution of symmetry is contained in the center of the Lie algebra.

Theorem 6.2. The left-invariant metric gσ = σTσ, σ ∈ Σ, on H9 has nontrivial

index of symmetry if and only if s2 = 0. In this case, the index of symmetry is 1
and the distribution of symmetry is generated by the left-invariant field Y = e4. In

particular, s is properly contained in the central distribution of H9.

Theorem 6.3. The left-invariant metric gσ = σTσ, σ ∈ Σ on H22 has nontrivial

index of symmetry if and only if s1 = s3 = 0. In this case, the index of symmetry

is 1 and the distribution of symmetry is generated by the left-invariant field Y = e3.
In particular, s is properly contained in the central distribution of H22.

Theorem 6.4. The left-invariant metric gσ = σTσ on H10 has index nontrivial

index of symmetry if and only if s3 = s1s4
s2

. In this case the index of symmetry is

1, the distribution of symmetry is generated by the left-invariant field

Y = e2 −
s1
s2

e3 +
s20s4
s22s5

e5 −
s20s

2
2 + s20s

2
4

s22s
2
5

e6

which does not belong to the center of h10.

Proof of Theorems 6.1, 6.2, 6.3 and 6.4. It follows from very long, but straightfor-
ward, computations. See the attached notebook [CCR24, Notebook 07]. �

The last two cases are more difficult to deal with, as the computations are lengthy
and also more involved. A case by case analysis is needed to describe the general
situation.

Theorem 6.5. Let us consider the left-invariant metric gσ = σTσ, σ ∈ Σ, on H21.

Then:

(1) if s2 6= 0, the metrics with nontrivial index of symmetry form an algebraic

hypersurface of M(H21)/∼0. For all these metrics, we have is(H21, gσ) = 1
and s 6⊂ Z(h21);

(2) if s2 = 0, s0 6= 0 and s6 = s3s7
s4

, then is(H21, gσ) = 1 and s 6⊂ Z(h21);

(3) if s2 = 0, s0 = 0 and s6 6= s3s7
s4

, the metrics with nontrivial index of symme-

try form an algebraic submanifold of M(H21)/∼0 of co-dimension 2. For

these metrics we have is(H21, gσ) = 2 and s 6⊂ Z(h21);

(4) if s2 = 0, s0 = 0, s6 = s3s7
s4

and s5 6= s21s7
s2
4

then is(H21, gσ) = 1 and

s ⊂ Z(h21);

(5) if s2 = 0, s0 = 0, s6 = s3s7
s4

, s5 =
s21s7
s2
4

and s3 6= 0 then is(H21, gσ) = 2 and

s 6⊂ Z(h21);

(6) if s2 = 0, s0 = 0, s6 = s3s7
s4

, s5 =
s21s7
s2
4

and s3 = 0, then is(H21, gσ) = 3 and

s 6⊂ Z(h21).
1

(7) In all the remaining cases the we have is(H21, gσ) = 0.

Proof. See the attached notebook [CCR24, Notebook 08] for the supporting com-
putations and the following remark for a precise description of distribution of sym-
metry. �

1In this case condition s6 = s3s7

s4
just means s6 = 0. We stated the theorem in this way in

order to better visualize all the possible cases for σ ∈ Σ.
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Remark 6.6. We keep the hypothesis from Theorem 6.5.

(1) If s2 6= 0, the algebraic hypersurface of Σ such that the associated left-
invariant metrics have non-trivial index of symmetry is defined by

s0s2s
2
4s5 − s20s1s4s6 − s0s2s3s4s6 − s0s

2
1s2s7 + s20s1s3s7

−s1s
2
2s3s7 + s0s2s

2
3s7 = 0.

In order to describe a left-invariant field Y generating s we consider the
case s0 6= 0, where

Y = e2 −
s20s1s4s6 −

(

s20s1 + s1s
2
2

)

s3s7

s0s22s4s7
e3 −

s0s1 + s2s3
s2s4

e4

− s0s
2
1s2 − s0s2s

2
3 −

(

s20s1 − s1s
2
2

)

s3

s0s2s24
e5 + αe6 /∈ Z(h21)

where

α =
s0s

3
1

s2s34
+

2 s21s3
s34

− s20s
2
1s3

s22s
3
4

− 2 s0s1s
2
3

s2s34
+

s1s2s
2
3

s0s34
− s33

s34

+
s0s1s4
s2s27

+
s21s6
s24s7

+
s20s

2
1s6

s22s
2
4s7

+
s0s1s3s6
s2s24s7

+
s1s2s3s6
s0s24s7

;

and the case s0 = 0, where

Y = e2 +
s24s5 − s21s7

s2s4s7
e3 −

s5
s7

e5 +
s5s6
s27

e6 /∈ Z(h21).

(2) If s2 = 0, s0 6= 0, s6 =
s3s7
s4

, then s is generated by

Y =
s24s5 − s21s7

s0s1s7
e3 + e4 −

s3
s4

e5 −
s44 + s24s5s7 − s23s

2
7

s24s
2
7

e6 /∈ Z(h21).

(3) When s2 = 0, s0 = 0 and s6 6= s3s7
s4

, the submanifold of Σ with associated to
the metrics with nontrivial index of symmetry is described by the equation

s44s
2
5 − 2 s3s

3
4s5s6 + s23s

2
4s

2
6 +

(

s41 + 2 s21s
2
3 + s43

)

s27

−2
((

s21 − s23
)

s24s5 +
(

s21s3 + s33
)

s4s6
)

s7 = 0

then s is generated by Y1 = e3 ∈ Z(h21) and

Y2 = e2 −
s24s5 + s3s4s6 −

(

s21 + s23
)

s7

2 (s24s6 − s3s4s7)
e4

− s24s5s6 − s3s4s
2
6 −

(

2 s3s4s5 −
(

s21 + s23
)

s6
)

s7

2 (s24s6s7 − s3s4s27)
e5 + αe6 /∈ Z(h21)

where

α =
1

2 s24s6s
2
7 − 2 s3s4s37

(

s44s5 − s3s
3
4s6 + s24s5s

2
6

− s3s4s
3
6 −

(

s21 + s23
)

s5s
2
7

+
(

s24s
2
5 − s3s4s5s6 −

(

s21 − s23
)

s24 +
(

s21 + s23
)

s26
)

s7
)

.

(4) If s2 = 0, s0 = 0, s6 = s3s7
s4

and s5 6= s21s7
s2
4

then s is generated by e3 ∈
Z(h21).

(5) If s2 = 0, s0 = 0, s6 = s3s7
s4

, s5 =
s21s7
s2
4

and s3 6= 0, then s is generated by

Y1 = e3 ∈ Z(h21) and

Y2 = e4 −
s3
s4

e5 −
s44 +

(

s21 − s23
)

s27
s24s

2
7

e6 /∈ Z(h21).
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Table 3. Examples of left-invariant metrics on H28 with all the
possible indexes of symmetry.

σ gσ A s





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1

2
1











1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5

4
1
2

0 0 0 0 1
2

1







(

0 −1 1
−1 0 −1
0 −1 0

)

0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





(

0 −1 0
−1 0 −1
0 −1 0

)

〈e2 − e4 + e6〉





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 2 1 2 0
0 0 0 5

4
1
2

1











1 0 0 0 0 0
0 1 0 0 0 0
0 0 5 2 4 0
0 0 2 57

16
21
8

5
4

0 0 4 21
8

17
4

1
2

0 0 0 5
4

1
2

1







(

0 0 0
0 1 0
0 0 0

)

〈e2 − 4e6, e4 − 1
2e5 − 5e6〉





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 2 0 1









1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 1 0
0 0 0 5 0 2
0 0 1 0 1 0
0 0 0 2 0 1





(

0 0 0
0 0 0
0 0 0

)

〈e2−e6, e3−2e5, e4−3e6〉

(6) If s2 = 0, s0 = 0, s6 = s3s7
s4

, s5 =
s21s7
s2
4

and s3 = 0, then s is generated by

Y1 = e2 − s21
s2
4

e5 /∈ Z(h21), Y2 = e3 ∈ Z(h21), Y3 = e4 −
(

s44 + s21s
2
7

)

s24s
2
7

e6 /∈ Z(h21).

Theorem 6.7. Let us consider the left-invariant metric gσ = σTσ on H28 and let

us define

A =





a b α
c β b
γ c a



 where

a = s25s6 + s3s5s8 − (s1s2 + s3s4)s9,
b = s25s7 + s4s5s8 −

(

s22 + s24 + s3s5
)

s9,
c = s4s5s6 + s3s5s7 −

(

s20 + s21 + s23
)

s9,
α = 2 s25s8 − 2 s4s5s9,
β = 2 s4s5s7 − 2 (s1s2 + s3s4)s9,
γ = 2 s3s5s6.

Then

is(H28, gσ) = 3− rankA.

Proof. See the attached notebook [CCR24, Notebook 09]. �

Remark 6.8. The matrix A in Theorem 6.7 is a persymmetric matrix (i.e., it is
symmetric with respect to its anti-diagonal). However this property has not a
geometric or algebraic meaning as its form depends heavily on the basis of choice
and even in the given order of the algorithm solving the equations for metrics with
non-trivial index of symmetry. We present in Table 3 examples of different metrics
gσ, σ ∈ Σ, for which A has all the possible ranks. Notice that in these particular
examples, is(H28, gσ) > 0 implies s 6⊂ Z(h28). Moreover, in the following result we
prove that non-trivial distributions of symmetry are never central.

Proposition 6.9. For any left-invariant metric on H28 we have that

Z(h28) ∩ s = {0}.
Proof. Notice that Z(h28) = Re6 and assume that e6 ∈ s where s is the distribution
of symmetry of some gσ, σ ∈ Σ. Then from (6.1) we have that

0 = gσ([e1, e6], e5) + gσ([e1, e5], e6) + gσ([e6, e5], e1) = −s29
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which is a contradiction since gσ is non-degenerate. �

7. Application to nilsoliton metrics on CSLA

Let H be a nilpotent simply connected Lie group endowed with a left-invariant
metric g. Let us denote by h the Lie algebra of H and with the same symbol g the
inner product on h induced by the metric. We say that g is a nilsoliton metric if

Ricg = c idh +D (7.1)

for some c ∈ R and D ∈ Der(h), where Ricg is the Ricci operator of g (at the
identity element of H). The classification of nilsoliton metrics is known in low
dimensions. In particular the classification in dimension 6 is obtained in [Wil03]
(see also [Wil11]). Since nilsoliton metrics are Ricci soliton metrics, they have
distinguished geometric properties, so it is expected that these metrics possess
non-trivial index of symmetry. In the next result we prove that this is indeed the
case for CSLAs of dimension 6.

Theorem 7.1. Let h be a CSLA of dimension 6 and let H be the simply connected

Lie group with Lie algebra h. Assume that H admits a left-invariant metric with

nontrivial index of symmetry. If g is a nilsoliton metric on H, then is(H, g) > 0.

Proof. From Theorem 6.1 we know that h ∈ {h9, h10, h21, h22, h28}. While the
classification of 6-dimensional nilsolitons exists, finding an explicit isometry between
a nilsoliton in this classifications and a metric from Section 4 might be difficult.
In fact, it is easier to solve equation 7.1 directly in Σ ≃ M(h)/∼0. In order to
compute the Ricci operator we will use the well-known formula

g(Ricg ẽj , ẽh) =
1

2

∑

i,k

ciki(ckjh + ckhj) +
1

2
cikhcikj − cijkckhi + cikicjhk − cijkcihk

where ẽ1, . . . , ẽ6 is an orthonormal basis and

cijk = g([ẽi, ẽj], ẽk).

Assume that g = gσ for some σ ∈ Σ and that ẽ1, . . . , ẽ6 is obtained from the
standard basis e1, . . . , e6 via the Gram-Schmidt process. Since the Ricci operator
is symmetric and any derivation has triangular form in the standard basis, the
equation Ricg = c idh +D, for D ∈ Der(h) implies that Ricg and D are diagonal in
the standard basis. So we can assume further that σ, and hence gσ are diagonal
matrices (we will verify this fact a posteriori by solving the nilsoliton equation with
σ diagonal, since the nilsoliton metric is unique up to scaling [Lau11]). In this case
one has

g(Ricg ẽj , ẽh) = g(Ricg ej, eh).

With these simplifications it is not hard to solve equation 7.1 (see the attached
notebook [CCR24, Notebook 10]) and we get that the nilsoliton metrics gi on hi
are given by

g9 = diag(1, 1, 2r, 1, r, r2)

g10 = diag(1, 1, 1, r, 12 r, r
2)

g21 = diag(1, 1, 1, 12 3
1
3 2

1
3 r

2
3 , 1

3 3
2
3 2

2
3 r

4
3 , r2)

g22 = diag(1, 1
2 3

1
4 2

3
4

√
r, 1, 12

√
3
√
2r, 1

2 3
3
4 2

1
4 r

3
2 , r2)

g28 = diag(1, 1, 13
√
3
√
2
√
r, r, 1

2

√
3
√
2r

3
2 , r2)

for r > 0. Now from Theorems 6.2, 6.3, 6.4, 6.5 and 6.7 we get that the index of
symmetry of these metrics is nontrivial. �
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Remark 7.2. Every nilsoliton metric in Theorem 7.1 has is(H, g) = 1. So it is
quite surprising that the index of symmetry of a nilsoliton metric is not always
maximal (since H22 and H28 admit metrics with index of symmetry 3). Notice
however that the distribution of symmetry is well behaved with respect to the
central distribution. Namely s ⊂ Z(h) when this property is not obstructed by
the underlying Lie algebra structure (notice that no metric on H10 of H28 has
well-behaved distribution of symmetry with respect to the central distribution).

Remark 7.3. For the sake of completeness, we will now identify the (normalized)
nilsoliton metrics of Will’s classification with their counterparts in the proof of
Theorem 7.1. Following the notation from [Wil11], the 6-dimensional nilsoliton
metrics with nontrivial index of symmetry are the one given by

n9 = (0, 0, 0, 0, 2
1
2 12,14+ 2

1
2 25)

n10 = (0, 0, 0, 2
1
212,13, 2

1
214)

n21 = (0, 0, 0, 3
1
2 12, 2 14, 3

1
2 15) (7.2)

n22 = (0, 0, 0, 3
1
212, 3

1
214, 2

1
215+ 2

1
224)

n28 = (0, 0, 2 12, 6
1
2 13, 6

1
2 14, 2 15)

We briefly recall this notation since it slightly differs from ours. Let us consider, for
example, the case of n22. The above notation means that there exist an orthonormal
basis x1, . . . , x6 of n22 with nontrivial structure coefficients given by

[x1, x2] =
√
2x4 [x1, x4] =

√
3 x5 [x1, x5] = [x2, x4] =

√
2 x6.

To continue with the example, if we want to find r > 0 such that n22 is isometric
to (h22, g22), we can define the Lie algebra isomorphism ϕ that maps

ϕ(x1) = e1 ϕ(x2) = − 1
3

√
3 e2 ϕ(x3) = e3

ϕ(x4) =
1
3 e4 ϕ(x5) = − 1

9

√
3 e5 ϕ(x6) =

1
18

√
6 e6

and notice that ϕ is an isometry if and only if r = 3
√
6. With this very same idea

we see that the nilsoliton metrics from 7.2 are isometric to

g9|r=2 = diag(1, 1, 4, 1, 2, 4)

g10|r=2 = diag(1, 1, 1, 2, 1, 4)

g21|r=6 = diag(1, 1, 1, 3, 12, 36)

g22|r=3
√
6 = diag(1, 3, 1, 9, 27, 54)

g28|r=24 = diag(1, 1, 4, 24, 144, 576)

respectively.

8. Appendix: Tables

In this section we collect the tables with our main classificatory results.
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Table 4. Automorphism group of 3-step nilpotent CSLAs

h Aut0(h) D

h9







a0 0 0 0 0 0
a1 a2 0 0 0 0

a3 a4 a2
0 0 0 0

a5 a6 a7 a8 0 0
a9 a10 a0a1 0 a0a2 0

a11 a12 a13 a14 −a0a10−a2a3+a1a4 a2
0a2






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h10






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a1 a2 0 0 0 0
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


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h11








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a1 a2 0 0 0 0

a3 a4 a2
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a5 a6 a7 a0a2 0 0

a8 a9 a10 a0a4 a3
0 0

a11 a12 a13 −a2a3+a1a4+a0a6 a2
0a1+a0a7 a2

0a2









,

a0,a2>0

〈diag(−1,1,1,−1,−1,1),
diag(1,−1,1,−1,1,−1)〉

h12







a0 0 0 0 0 0
0 a1 0 0 0 0

a2 a3 a4 0 0 0
a5 a6 0 a0a1 0 0
a7 a8 a9 a0a3 a0a4 0
a10 a11 a12 −a1a5 0 a0a

2
1






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




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2
1






, a0,a1>0

〈diag(−1,1,−1,−1,1,−1),
diag(1,−1,−1,−1,−1,1),









0 −1 0 0 0 0
1 0 0 0 0 0
0 0 −1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0









〉

h14









a0 0 0 0 0 0
a1 a2 0 0 0 0
a3 a4 a2

2 0 0 0
a5 a6 0 a0a2 0 0
a7 a8 a9 a0a6 a2

0a2 0

a10 a11 a12 a0a4+a2a5−a1a6 −a0a1a2 a0a
2
2









, a0,a2>0
〈diag(−1,1,1,−1,1,−1),
diag(1,−1,1,−1,−1,1)〉

h18











a0 0 0 0 0 0
a1 a2 0 0 0 0

a3 − a1a2
a0

a2
2

a0
0 0 0

a4 a5 0 a0a2 0 0
a6 a7 a8 −a1a2 a2

2 0

a9 a10 a11 −a2a4+a1a5+a0a7 a0a8 a0a
2
2











, a0,a2>0
〈diag(−1,1,−1,−1,1,−1),
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




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






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0 0 0 0 0 1
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
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
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Table 5. Automorphism group of 4-step nilpotent CSLAs

h Aut0(h) D

h21







a0 0 0 0 0 0
a1 a2 0 0 0 0
a3 a4 a5 0 0 0
a6 a7 0 a0a2 0 0
a8 a9 0 a0a7 a2

0a2 0

a10 a11 a12 a0a9 a2
0a7 a3

0a2






, a1,a2,a5>0

〈diag(−1,1,1,−1,1,−1),
diag(1,−1,1,−1,−1,−1),
diag(1,1,−1,1,1,1)〉

h22









a0 0 0 0 0 0
a1 a2

0 0 0 0 0
a2 a3 a4 0 0 0

a5 a6 0 a3
0 0 0

a7 a8 0 a0a6 a4
0 0

a9 a10 a11 −a2
0a5+a1a6+a0a8 a3

0a1+a2
0a6 a5

0









, a0,a4>0
〈diag(−1,1,1,−1,1,−1),
diag(1,1,−1,1,1,1)〉

h23









a0 0 0 0 0 0
a1 a2 0 0 0 0
a3 a4 a0a2 0 0 0

a5 a6 a0a4 a2
0a2 0 0

a7 a8 −a2a3+a1a4 a0a1a2 a0a
2
2 0

a9 a10 a0a6 a2
0a4 0 a3

0a2









, a0,a2>0
〈diag(−1,1,−1,1,−1,−1),
diag(1,−1,−1,−1,1,−1)〉

h24











a0 0 0 0 0 0
a1 a2

0 0 0 0 0

a2 a3 a3
0 0 0 0

a4 a5 0 a3
0 0 0

a6 a7 −a2
0a1 a0a5 a4

0 0

a8 a9 a10 α a3
0a1+a2

0a5 a5
0











,

a0>0 , α=−a2
0a2−a2

0a4+a1a3+a1a5+a0a7

〈diag(−1,1,−1,−1,1,−1)〉

h25









a0 0 0 0 0 0
a1 a2 0 0 0 0
a3 a4 a3

0 0 0 0
a5 a6 0 a0a2 0 0
a7 a8 −a2

0a1 a0a6 a2
0a2 0

a9 a10 a11 −a2a3+a1a4+a0a8 a2
0a6 a3

0a2









, a0,a2>0
〈diag(−1,1,−1,−1,1,−1),
diag(1,−1,1,−1,−1,−1)〉

h−26









a0 0 0 0 0 0
0 a1 0 0 0 0

a2 a3 a0a1 0 0 0
a4 a5 −a0a3 a2

0a1 0 0

a6 a7 a1a2 0 a0a
2
1 0

a8 a9 −a1a4+a0a7 −a0a1a2 a0a1a3 a2
0a

2
1









, a0,a1>0

〈diag(−1,1,−1,1,−1,1),










0 1 0 0 0 0
1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 −1











〉

h27









a0 0 0 0 0 0
a1 a2 0 0 0 0

0 0 a2
0 0 0 0

a3 a4 a0a1 a0a2 0 0

a5 a6 a0a3 a0a4 a2
0a2 0

a7 a8 a9 a0a6 a2
0a4 a3

0a2









, a0,a2>0
〈diag(−1,1,1,−1,1,−1),
diag(1,−1,1,−1,−1,−1)〉
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Table 6. Automorphism group of 5-step nilpotent CSLAs

h Aut0(h) D

h28









a0 0 0 0 0 0
a1 a2 0 0 0 0
a3 a4 a0a2 0 0 0

a5 a6 a0a4 a2
0a2 0 0

a7 a8 a0a6 a2
0a4 a3

0a2 0

a9 a10 a0a8 a2
0a6 a3

0a4 a4
0a2









, a0,a2>0
〈diag(−1,1,−1,1,−1,1),
diag(1,−1,−1,−1,−1,−1)〉

h29











a0 0 0 0 0 0

a1 a3
0 0 0 0 0

a2 a3 a4
0 0 0 0

a4 a5 a0a3 a5
0 0 0

a6 a7 a0a5 a2
0a3 a6

0 0

a8 a9 −a3
0a2+a1a3+a0a7 a4

0a1+a2
0a5 a3

0a3 a7
0











, a0>0 〈diag(−1,−1,1,−1,1,−1)〉

h30











a0 0 0 0 0 0
0 a2

0 0 0 0 0

a1 a2 a3
0 0 0 0

a3 a4 a0a2 a4
0 0 0

a5 a6 −a2
0a1+a0a4 a2

0a2 a5
0 0

a7 a8 −a2
0a3+a0a6 −a3

0a1+a2
0a4 a3

0a2 a6
0











, a0>0 〈diag(−1,1,−1,1,−1,1)〉

h31













a0 0 0 0 0 0
0 a1 0 0 0 0

a2 a3 a0a1 0 0 0

a4

a2
3

2 a1
a0a3 a2

0a1 0 0

a5 a6

a0a2
3

2 a1
a2
0a3 a3

0a1 0

a7 a8 α a0a2a3−a0a1a4 a2
0a1a2 a3

0a
2
1













,

a0,a1>0 , α=
a2a2

3
−2 a1a3a4+2 a2

1
a5

2 a1

〈diag(−1,1,−1,1,−1,−1),
diag(1,−1,−1,−1,−1,1)〉

h32















a0 0 0 0 0 0

0 a2
0 0 0 0 0

a1 a2 a3
0 0 0 0

a3

a2
2

2 a2
0

a0a2 a4
0 0 0

a4 a5 − 2 a3
0
a1−a2

2
2 a0

a2
0a2 a5

0 0

a6 a7 α −a3
0a3+a0a1a2 a4

0a1 a7
0















,

a0>0 , α=
2 a4

0
a4−2 a2

0
a2a3+a1a2

2

2 a2
0

〈diag(−1,1,−1,1,−1,−1)〉
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Table 7. Moduli space of left-invariant metrics and isometric au-
tomorphisms for 3-step CSLAs except h13 and h+19

h Σ #nd(Σ) = 0 {e} Z2 Z
2
2 Z

3
2

h9





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 0 1 0 0
0 0 s1 s2 s3 0
0 0 0 0 s4 s5





0 1
1 3
2 3
3 1

h10





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 s0 0 0
0 0 0 s1 s2 0
0 0 0 s3 s4 s5





0 1
1 3
2 3
3 1

h11





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 0 s1 0 0
0 0 0 s2 s3 0
0 0 0 s4 s5 s6





0 1 -
1 3 -
2 3 -
3 1 -

h12





1 0 0 0 0 0
s0 1 0 0 0 0
0 0 1 0 0 0
0 0 s1 s2 0 0
0 0 0 s3 s4 0
0 0 0 s5 s6 s7





0 1
1 5
2 8 2
3 10
4 5
5 1

h14





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 s1 s2 0 0
0 0 0 s3 s4 0
0 0 0 s5 s6 s7





0 1 -
1 4 -
2 5 1 -
3 4 -
4 1 -

h18





1 0 0 0 0 0
0 1 0 0 0 0
0 s0 s1 0 0 0
0 0 s2 s3 0 0
0 0 0 s4 s5 0
0 0 0 s6 s7 s8





0 1 -
1 5 -
2 10 -
3 8 2 -
4 5 -
5 1 -
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Table 8. Moduli space of left-invariant metrics and isometric au-
tomorphisms for 4-step CSLAs except h−26

h Σ #nd(Σ) = 0 {e} Z2 Z
2
2 Z

3
2

h21





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 s0 s1 0 0
0 0 s2 s3 s4 0
0 0 0 s5 s6 s7





0 1
1 5
2 9 1
3 5 5
4 4 1
5 1

h22





1 0 0 0 0 0
0 s0 0 0 0 0
0 0 1 0 0 0
0 0 s1 s2 0 0
0 0 s3 s4 s5 0
0 0 0 s6 s7 s8





0 1 -
1 5 -
2 9 1 -
3 5 5 -
4 4 1 -
5 1 -

h23





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 s1 s2 0 0
0 0 s3 s4 s5 0
0 0 s6 s7 s8 s9





0 1 -
1 6 -
2 15 -
3 18 2 -
4 8 7 -
5 5 1 -
6 1 -

h24





1 0 0 0 0 0
0 s0 0 0 0 0
0 0 s1 0 0 0
0 0 s2 s3 0 0
0 0 s4 s5 s6 0
0 0 0 s7 s8 s9





0 1 - -
1 5 - -
2 10 - -
3 9 1 - -
4 3 2 - -
5 1 - -

h25





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 s1 s2 0 0
0 0 s3 s4 s5 0
0 0 0 s6 s7 s8





0 1 -
1 5 -
2 9 1 -
3 5 5 -
4 4 1 -
5 1 -

h27





1 0 0 0 0 0
0 1 0 0 0 0
s0 s1 s2 0 0 0
0 0 s3 s4 0 0
0 0 s5 s6 s7 0
0 0 0 s8 s9 s10





0 1 -
1 7 -
2 21 -
3 34 1 -
4 30 5 -
5 11 10 -
6 6 1 -
7 1 -
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Table 9. Moduli space of left-invariant metrics and isometric au-
tomorphisms for 5-step CSLAs

h Σ #nd(Σ) = 0 {e} Z2 Z
2
2

h28





1 0 0 0 0 0
0 1 0 0 0 0
0 0 s0 0 0 0
0 0 s1 s2 0 0
0 0 s3 s4 s5 0
0 0 s6 s7 s8 s9





0 1
1 6
2 15
3 20
4 14 1
5 4 2
6 1

h29





1 0 0 0 0 0
0 s0 0 0 0 0
0 0 s1 0 0 0
0 0 s2 s3 0 0
0 0 s4 s5 s6 0
0 0 s7 s8 s9 s10





0 1 -
1 6 -
2 15 -
3 20 -
4 14 1 -
5 4 2 -
6 1 -

h30





1 0 0 0 0 0
s0 s1 0 0 0 0
0 0 s2 0 0 0
0 0 s3 s4 0 0
0 0 s5 s6 s7 0
0 0 s8 s9 s10 s11





0 1 -
1 7 -
2 21 -
3 35 -
4 35 -
5 20 1 -
6 5 2 -
7 1 -

h31





1 0 0 0 0 0
s0 1 0 0 0 0
0 0 s1 0 0 0
0 s2 s3 s4 0 0
0 0 s5 s6 s7 0
0 0 s8 s9 s10 s11





0 1
1 8
2 28
3 56
4 67 3
5 44 12
6 12 15 1
7 6 2
8 1

h32





1 0 0 0 0 0
s0 s1 0 0 0 0
0 0 s2 0 0 0
0 s3 s4 s5 0 0
0 0 s6 s7 s8 0
0 0 s9 s10 s11 s12





0 1 -
1 8 -
2 28 -
3 56 -
4 69 1 -
5 52 4 -
6 22 6 -
7 4 4 -
8 1 -
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Table 10. Moduli space of left-invariant metrics for h13, h
+
19 and h−26

h Σ

h13





1 0 0 0 0 0
s0 1 0 0 0 0
0 0 s1 0 0 0
0 0 s2 s3 0 0
0 0 0 s4 s5 0
0 0 0 s6 s7 s8





h+19





1 0 0 0 0 0
s0 1 0 0 0 0
s1 s2 1 0 0 0
0 0 0 s3 0 0
s4 0 0 s5 s6 0
0 0 0 s7 s8 s9





h−26





1 0 0 0 0 0
s0 1 0 0 0 0
0 0 s1 0 0 0
0 0 s2 s3 0 0
0 0 s4 s5 s6 0
0 0 s7 s8 s9 s10




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