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Character Sheaves on Reductive Lie Algebras in Positive

Characteristic

Tong Zhou

Abstract

We prove a microlocal characterisation of character sheaves on a reductive Lie algebra over

an algebraically closed field of sufficiently large positive characteristic: a perverse irreducible G-

equivariant sheaf is a character sheaf if and only if it has nilpotent singular support and is quasi-

admissible. We also present geometric proofs, in positive characteristic, of the equivalence between

being admissible and being a character sheaf, and various characterisations of cuspidal sheaves,

following the work of Mirković.

1 Introduction

In [Lus87], Lusztig defined and studied character sheaves on reductive Lie algebras over an algebraic
closure of a finite field, which are analogues of his character sheaves on reductive groups ([Lus84;
Lus85]). Later, in the context of D-modules on reductive Lie algebras over C, Mirković ([Mir04])
obtained analogues results using more geometric methods. He also obtained the following microlocal
characterisation of character sheaves:

Theorem 1.1 ([Mir04, 6.3]). Let G be a connected reductive group over C, g be its Lie algebra. Then,
an irreducible G-equivariant1 holonomic D-module M (concentrated in degree 0) on g is a character
sheaf if and only if M has nilpotent singular support and is quasi-admissible.

The notions of character sheaves and quasi-admissible sheaves will be recalled in §3.2. The lat-
ter roughly means that the restriction of M to each stratum S(L,O) of the Lusztig stratification
g =

⊔
S(L,O) (see §2) takes a form which is particularly simple “in the centre direction”. Here L is a

Levi subgroup and O is a nilpotent orbit of L in its Lie algebra l.

For character sheaves on reductive groups over an algebraically closed field k, a similar micro-
local characterisation (no quasi-admissibility is needed in the group case) is known for k = C and
D-modules by [MV88], and known in the “only if” direction for arbitrary characteristic and ℓ-adic
sheaves by [Psa23].

The main new result of this paper is the analogue of Theorem 1.1 in positive characteristic:

Theorem 1.2 (Theorem 5.1). Let G be a connected reductive group over an algebraically closed field
of characteristic p > 0, g be its Lie algebra. Assume p is sufficiently large2 with respect to the root
system of G. Then, a perverse irreducible G-equivariant Qℓ-sheaf F on g is a character sheaf if and
only if F has nilpotent singular support and is quasi-admissible.

We outline the proof of the “if” direction and point out the novelties compared to [Mir04]. Our
general strategy is as in loc. cit.: use the Lusztig stratification to obtain a cuspidal sheaf whose para-
bolic induction contains F as an irreducible constituent. The candidate cuspidal sheaf will be obtained
from the restriction of F to Zr(l) + O, where (L,O) is such that S(L,O) is the “biggest” stratum on
which F is non-zero, Zr(l) is the regular part of the centre of l. Denote by G the middle extension to l

of F|Zr(l)+O. One then needs to analyse the singular support of G. It is not clear whether Mirković’s
argument for this works in positive characteristic. Instead, we prove a proper-transversality result,

May 2024
1In this paper, G-equivariance is with respect to the adjoint action unless otherwise specified.
2See Conventions (the third paragraph) for an explicit bound.
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which implies that the singular support of the pullback equals the pullback of the singular support
([Sai17, 8.15]). The nilpotency of the singular support of F then implies that of G. The next crucial
input is the following microlocal characterisation of cuspidal sheaves: for G semisimple, a perverse
irreducible G-equivariant sheaf on g is cuspidal if and only if it is supported on the nilpotent cone and
has nilpotent singular support. It follows from this characterisation that irreducible constituents of G
are cuspidal. Finally, certain geometric properties of the Lusztig strata implies that F is an irreducible
constituent of the parabolic induction of some irreducible constituent of G, which finishes the proof.
The aforementioned microlocal characterisation of cuspidal sheaves was previously known only over C.
In this paper, we apply the compatibility of characteristic cycles and the Fourier transform for mono-
dromic ℓ-adic sheaves proved in [Zho24] to obtain the same characterisation in positive characteristic
(Theorem 4.1.4).

Apart from Theorem 1.2, we also present proofs, in positive characteristic, of all other main results
in [Mir04] concerning admissible, character, and orbital sheaves.

Theorem 1.3 (Theorems 4.1, 4.4). Let G, g, p be as above (with p sufficiently large), F be a perverse
irreducible G-equivariant sheaf on g. Then:
1) F is admissible if and only if F is a character sheaf.
2) Assume further G is semisimple. Then F is cuspidal if and only if F and its Fourier transform are
supported on the nilpotent cone, if and only if F is a character sheaf and is orbital, if and only if F is
supported on the nilpotent cone and has nilpotent singular support.

These results (except the last “if and only if”) are not new: they are the main theorems of [Lus87]
(when k is an algebraic closure of a finite field). We take this opportunity to write down details of the
more geometric proofs in [Mir04], carried out in positive characteristic. We point out two differences
between the proofs we present and those in loc. cit.: a) in proving “parabolic restriction coincides with
usual restriction” (Lemma 3.3), we use the Contraction Principle3 and proper-transversal pullback;
b) in proving character sheaves are admissible (Theorem 4.4), we use an induction argument. For
b), Mirković’s original argument depends on a claim about the irreducibility of a certain local system
[Mir04, 5.8.ii], we have not been able to verify this claim (see Remark 4.5).

§2 and §3 are devoted to review and preliminary studies. §2 concerns the Lusztig stratification,
which is a crucial tool in the sequel. §3 concerns parabolic induction and restriction, and the classes
of sheaves which are the main objects of interest. In §4 and §5, we prove Theorem 1.3 and Theorem
1.2, respectively.

Conventions

We fix an algebraically closed field k of characteristic p > 0. Fix another prime ℓ 6= p. A variety means
a finite type reduced separated scheme over k. For a variety X , D(X) denotes Db

c(X,Qℓ) ([Del80,
1.1]). For F ∈ D(X), by an irreducible constituent of F we mean an irreducible subquotient of some
pHi(F). All derived categories are in the triangulated sense. All sheaf-theoretic functors are derived.
A “sheaf” means an object of D(X). A “local system” means an object of D(X) whose cohomology
sheaves are lisse with finite type stalks.

If H is an algebraic group over k acting on X , the triangulated (resp. abelian) category of H-
equivariant sheaves (resp. perverse sheaves) are denoted by DH(X) (:= Db

c([X/H ],Qℓ), [X/H ] being
the quotient stack) (resp. PervH(X)). If H is connected, we canonically identify PervH(X) as a full
subcategory of Perv(X). Induction (resp. forgetful) functors are denoted by Γ (resp. For) (with
appropriate sup and sub scripts) (For is left adjoint to Γ). For x ∈ X a closed point, Hx or ZH(x)
denotes its stabiliser in H , H(x) denotes its H-orbit, Zh(x) denotes elements commuting with x in the
Lie algebra h of H . The set of isomorphism classes of irreducible objects in PervH(X) is denoted by
IrrPervH (X). We will abuse notations and use F ∈ IrrPervH (X) to mean F is a representative in
PervH(X) of an element of IrrPervH (X).

3This terminology is from [DG15], see §5.3 and Appendix C in loc. cit.
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G denotes a fixed connected reductive linear algebraic group, g denotes its Lie algebra. Throughout
this paper, we assume that p does not divide the following set of integers: integer 2, the coefficient of the
highest root of L, |P (L)/Q(L)|, and |(X(T )/Q(L)tor|, for L ranging through all Levi subgroups of G.
Here P (L), Q(L), X(T ) denote the weight lattice, root lattice, and character group of L, respectively.
It is known that under this assumption, the following statements are true (and remain true when G is
replaced by any Levi subgroup): 1) there exists a G-invariant non-degenerate symmetric bilinear form
on g; 2) for each semisimple x ∈ g, ZG(x)

◦ is a Levi subgroup; 3) for each x ∈ g, Lie(ZG(x)) = Zg(x);
4) for each Levi subgroup L, the regular elements Zr(l) := {x ∈ Z(l) |ZG(x)

◦ = L} ⊆ Z(l) and
lr := {x ∈ l |ZG(xs)

◦ ⊆ L} ⊆ l are open dense (see §2). We refer to [Let05, 2.5, 2.6] for detailed
discussion.

We fix a G-invariant non-degenerate symmetric bilinear form on g, and implicitly identify g and
its dual using this form. This form restricts to an L-invariant non-degenerate symmetric bilinear form
on l for any Levi L ([Let05, 2.5.14]). NG denotes the nilpotent cone in g. For any x ∈ g,4 we write
x = xs + xn for its Jordan decomposition.

We fix a non-trivial continuous character ψ : Z/p→ Q
×
ℓ . Fourier transforms are denoted by F and

are with respect to this character. As we work over an algebraically closed field, we may ignore Tate
twists.

We refer to [Bei16; Sai17; UYZ20; Bar23] for the theory of singular support and characteristic cycle
of ℓ-adic sheaves.

Acknowledgement

I am grateful to David Nadler for many valuable discussions and for his initial suggestion to study
character sheaves on Lie algebras. I would also like to thank Kostas Psaromiligkos for discussion on
his paper [Psa23], and thank Pramod Achar and Xinchun Ma very much for discussions concerning
Theorem 4.1.4 (see the footnote there).

2 The Lusztig stratification

The setup is as in the Conventions. In this section, we review the positive characteristic analogue of
the Lusztig stratification of a reductive Lie algebra introduced over C in [Lus95, §6].

Let (L,O) be a pair where L is a Levi subgroup of G and O is a nilpotent orbit of L in its Lie
algebra l. Zr(l) := {z ∈ Z(l) |ZG(z)

◦ = L} denotes the regular part of the centre of l. lr := {y ∈
l |ZG(ys)

◦ ⊆ L} denotes the regular part of l, it contains Zr(l) + NL. By our assumption on p (see
Conventions), Zr(l) ⊆ Z(l) and lr ⊆ l are open dense5.

Definition 2.1 (Lusztig strata). For a pair (L,O), S(L,O) := G(Zr(l) + O) (the G-saturation of
Zr(l) +O in g) is called the Lusztig stratum associated to (L,O).

Clearly, S(L,O) =
G(Zr(l)+O) only depends on the G-conjugacy class of (L,O). Also note that the

number of G-conjugacy classes of such pairs is finite. We emphasise that, unless otherwise specified,
by “(L,O)” we always mean the actual pair, not the conjugacy class.

Proposition 2.2. 1) For two pairs (L,O) and (L′,O′), if S(L,O) ∩ S(L′,O′) 6= ∅, then (L,O) and
(L′,O′) are G-conjugate.
2) Every x ∈ g lies in some S(L,O).
3) S(L,O) is a locally closed, smooth, and irreducible subvariety of g of dimension dim(G/L)+dim(Z(l))+

4In this paper, when talking about points in a Lie algebra, we always mean closed points.
5That Zr(l) ⊆ Z(l) is open dense follows from the proof of [Let05, 2.6.13.i]. That lr ⊆ l is open dense can be seen as

follows: consider the natural map χ : l → l // L := Spec(Sym(l∨)L). We refer to [Jan04, 7.12, 7.13] for basic facts about
this map (note, in loc. cit., “χ” denotes the composition of our χ with an embedding l //L →֒ A

n). As we assume p 6= 2,
we have l // L ∼= h // WL := Spec(Sym(h∨)WL ), where h is the Lie algebra of a fixed maximal torus of L, and WL is the
Weyl group of L. p 6= 2 also implies that hr := lr ∩ h is open dense in h (c.f. [Jan04, 13.3]). Let h̃r be the image of hr
in h // WL (it is open dense). lr ⊆ l being open dense then follows from the fact that lr equals χ−1(h̃r).
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dim(O).
4) The closure S(L,O) equals the disjoint union of S(L′,O′), where (L′,O′) ranges exactly once through
each G-conjugacy class satisfying the following property: there exists a representative (L′,O′) in this
class such that L lies in L′ and O′ is in the closure of the induced nilpotent orbit of O in l′.6

Corollary 2.3. g =
⊔
S(L,O) is a stratification, called the Lusztig stratification. Here (L,O) ranges

exactly once through each G-conjugacy class.

We need some preparations before discussing the proof of the proposition. For each Levi L, let
WL := NG(L)/L be its Weyl group. For each pair (L,O), let W(L,O) be the subgroup of WL consisting

of elements that maps O to itself. Define S̃(L,O) = {(g, x) ∈ (G/L)×g | g−1x ∈ Zr(l)+O} (note S̃(L,O)

depends on the actual pair (L,O), not just its conjugacy class). It is isomorphic to G×L (Zr(l) +O)
via S̃(L,O) → G×L (Zr(l) +O) : (g, x) 7→ (g, g−1x). As G×L (Zr(l) +O) is smooth, S̃(L,O) is smooth.
We have a commutative diagram

S̃(L,O) G×L (Zr(l) +O)

g g

pr2

∼

a

where a : (g, x) 7→ gx. Note that the images of pr2 and a both equal to S(L,O).

Let P be any parabolic in G with Levi decomposition P = L ⋉ U . The following lemma implies
that S̃(L,O) is also isomorphic to S̃′

(L,O) := {(g, x) ∈ (G/P )× g | g−1x ∈ Zr(l) +O + u}, and similarly

as above, to G×P (Zr(l) +O + u).

Lemma 2.4 ([Let05, 2.6.6]). Let P be any parabolic in G with Levi decomposition P = L⋉U . Then,
for any x ∈ lr, U → g : u 7→ ux has image x+ u, and U is mapped isomorphically to its image.

Proof of Proposition 2.2. 1) Let x0 ∈ S(L,O) ∩S(L′,O′), then x0 is G-conjugate to some x ∈ Zr(L) +O
and x′ ∈ Zr(L

′) +O′. As L = ZG(xs)
◦, L′ = ZG(x

′
s)

◦, L and L′ are conjugate. We may thus assume
L′ = L. Let g ∈ G be such that x′ = gx, then g ∈ NG(L) (becasue gL = gZG(xs)

◦ = ZG(
gxs)

◦ = L).
So xn and x′n are conjugate by an element of NG(L), which implies that the pairs (L,O), (L,O′) are
conjugate.

2) Let L = ZG(xs)
◦. Note that this is a Levi subgroup (see Conventions). Clearly x ∈ l, xs ∈

Zr(l), xs ∈ NL. So x ∈ Zr(l) +O for some nilpotent orbit O ⊆ NL.

3) This is [Let05, 5.1.28]. It is claimed in loc. cit. that the map pr2 : S̃(L,O) → S(L,O) is a Galois

covering with Galois group W(L,O). It is shown in loc. cit. that W(L,O) acts freely on S̃(L,O) (via

translation on the first factor) and induces a map ˜pr2 : S̃(L,O)/W(L,O) → S(L,O) which is proper and

bijective on closed points. To obtain the claim, we need to verify that, for any (g, x) ∈ S̃(L,O), the

tangent map D(pr2) : (T S̃(L,O))(g,x) → (Tg)x is injective. As discussed above, we may instead work

with S̃′
(L,O) := {(g, x) ∈ (G/P )×g | g−1x ∈ Zr(l)+O+u} → Zr(l)+O+u. Without loss of generality,

we may assume (g, x) = (1, x). Consider

G S̃′
(L,O)

g

pr2

h

f

where f : g 7→ gx, h : g 7→ (g, gx). One can compute D(f) : g → (Tg)x, y 7→ [y, x], and
D(h) : g → (T S̃′

(L,O))(1,x), y 7→ (y, [y, x]). Choose a basis for (T S̃′
(L,O))(1,x) consisting of dim(Z(l)) +

6Let P be any parabolic in L′ with Levi decomposition P = L ⋉ U . Then O + u ⊆ l′ is irreducible and consists of
nilpotent elements, so there is a unique nilpotent orbit O′′ of L′ in l′ such that O′′ ∩ (O + u) is dense in O + u. It is
known that O′′ does not depend on the choice of P , and is called the induced nilpotent orbit of O in l′. See [LS79] for
details.
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dim(O)+dim(u) vectors in the Zr(l)+O+u directions (in the g factor), and dim(G/P ) vectors which
are images under D(h) of a basis for u′, where U ′ is the unipotent radical of the opposite parabolic to
P . D(pr2) is clearly injective in the Zr(l) +O + u directions, the above computation shows D(pr2) is
also injective in the remaining dim(G/P ) directions.

4) This is [Lus95, 6.5], with the same proof.

The following lemma will be repeatedly used in the sequel.

Lemma 2.5. Let (L,O) be a pair. Then:
1) S(L,O) ∩ lr = WL(Zr(l) +O) =

⊔
O′(Zr(l) +O′), where O′ ∈ NL ranges through the nilpotent orbits

WL-conjugate to O.
2) S(L,O) ∩ lr =

⊔
O′(S(L,O′) ∩ lr) =

⊔
O′

WL(Zr(l) +O), where O′ ∈ NL ranges through the nilpotent
orbits in O.

Proof. 1) Let x ∈ S(L,O) ∩ lr. There exists some g ∈ G such that gx ∈ Zr(l) + O. On the
one hand, ZG(xs)

◦ ⊆ L by the definition of lr; on the other hand ZG(
gxs)

◦ = L, implying that
dim(ZG(xs)

◦) = dim(L). So ZG(xs)
◦ = L. Consequently xs ∈ Zr(l) and L = ZG(

gxs)
◦ = gZG(xs)

◦ =
gL. So g ∈ NG(L), the claim follows.

2) Let x ∈ S(L,O) ∩ lr. x lies in some S(L′,O′), where L′ = ZG(xs)
◦ and O′ is some nilpotent orbit

of L′. Then, as above, L′ ⊆ L. But Proposition 2.2.4 implies dim(L) ≤ dim(L′), so L = L′. The claim
then follows from the description of O′ in Proposition 2.2.4.

3 Definitions and preliminary results

The setup is as in the Conventions. In this section, we review parabolic induction and restriction, and
the definitions and basic properties of various classes of sheaves on g from [Lus87; Mir04].

3.1 Parabolic induction and restriction

Definition 3.1 (parabolic induction and restriction). Let L ⊆ P be a Levi and parabolic subgroup
of G with Levi decomposition P = L ⋉ U . The parabolic restriction (from G to L ⊆ P ) is the

functor ResGP := π!i
∗ForGP : DG(g) → DP (l), where i and π are as in the following diagram, and

P = L ⋉ U acts on l by the unique action where L acts by adjunction and U acts trivially. Its right
adjoint IndGP := ΓG

P i∗π
! is called the parabolic induction. Here ForGP (resp. ΓG

P ) is the forgetful (resp.
induction) functor of equivariant sheaves.

p

g l

g/u

i π

π′ i′

y

Note that L, as a subgroup of G, is part of the given data, but we omit it in the notations for
convenience. The following properties of parabolic inductions and restrictions are well-known:

Lemma 3.2. 1) ResGP and IndGP are perverse t-exact. In particular, they restrict to exact functors
between PervG(g) and PervP (l). Note that PervP (l) = PervL(l).
2) IndGP preserves semisimplicity of perverse sheaves of geometric origin.
3) Parabolic inductions and restrictions are transitive. More precisely: let L ⊆ P be a Levi and
parabolic subgroup of G with Levi decomposition P = L ⋉ U . Fix a maximal torus T ⊆ L and a
Borel B ⊆ P . Let L1 ⊆ P1 be a Levi and parabolic of L, P1 containing L1 as a Levi factor, such
that (B ∩ L) ⊆ P1. Note P1U is a parabolic of G containing L1 as a Levi factor. Then, for any
F ∈ PervL1(l1), Ind

G
P Ind

L
P1
F ∼= IndGP1U

F . Similarly for parabolic restriction.
4) ResGP and IndGP commute with Fourier transforms. More precisely: denote the Fourier transform
on g (resp. l) by Fg (resp. Fl), then ResGP ◦ Fg = Fl ◦ Res

G
P , IndGP ◦ Fl = Fg ◦ Ind

G
P .
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Sketch of proofs. 1) See, for example, [BD21, 5.6].
2) This is straightforward, using the Decomposition Theorem.
3) This is the analogue of [Lus85, 4.2] in the Lie algebra case. The same argument, mutatis mutandis,
applies.
4) Note that, under the G-invariant non-degenerate symmetric bilinear form, taking duals “reflects”
the diagram above along the g, l axis. The formula for ResGP then follows easily from the compatibility
of the Fourier transform with linear maps. The formula for IndGP follows from adjunction.

Lemma 3.3. Let (L,O) be a pair, P ⊆ G be any parabolic containing L as a Levi factor. Let
F ∈ PervG(g). Then (ResGPF)|lr ∼= F|lr [2dim(U)].

Proof. 7 By proper base change, (ResGPF)|lr = π!(F|lr+u). Fix a maximal torus T →֒ L. Choose a
Gm →֒ T corresponding to a cocharacter whose pairings with simple roots in L are 0 and pairings
with roots in U are > 0. Consider the action of Gm on Zr(l) + O + u through Gm →֒ T . F|lr+u

is equivariant with respect to this action. By the Contraction Principle (c.f. [DG15, 5.3.2] and the
references therein), π!(F|lr+u) ∼= (F|lr+u)|!lr , where (−)|!lr denotes the !-restriction to lr = lr + {0}.
As F|lr+u is U -equivariant, its singular support is contained in the union conormals of the U -orbits.
By the fact that the U -orbits are exactly x + u for x ∈ lr (see the discussion in the paragraph
above the proof of Proposition 2.2), lr →֒ lr + u is SS(F|lr+u)-transversal. So, by [Bar23, 1.6],
(F|lr+u)|!lr

∼= ((F|lr+u)|lr )⊗ ((Qℓlr+u
)|!lr ) = F|lr [2dim(U)].

3.2 Various classes of sheaves

Definition 3.4 (cuspidal sheaves). F ∈ IrrPervG(g) is called cuspidal if it is non-zero, and satisfies
the following two properties:
1) ResGPF = 0 for all L ⊆ P in G, P containing L as a Levi factor;
2) F is of the form AS ⊠ F ′ on g = Z(g) × [g, g] (AS and F ′ depend on F). Here AS (short for
Artin-Schreier) is the Fourier transform of a skyscraper sheaf Qℓx

for some closed point x of Z(g)∨,
and F ′ is some object in PervG([g, g]).

Remark 3.5. It is easy to see that AS⊠F ′ is cuspidal (with respect to G) if and only if F ′ is cuspidal
(with respect to [L,L]).

Definition 3.6 (admissible sheaves). F ∈ IrrPervG(g) is called admissible if it is non-zero, and is
the irreducible constituent of IndGPG, for some L ⊆ P in G, P containing L as a Levi factor, and some
cuspidal sheaf G of L.

Definition 3.7 (orbital and character sheaves). Let F ∈ IrrPervG(g). It is called orbital if it is
nonzero and its support is the closure of a single G-orbit. It is called a character sheaf if it is non-zero
and its Fourier transform is orbital.

The name “character sheaf” will be justified by Proposition 3.10, which makes manifest the simil-
arity to character sheaves on a reductive group (c.f. [MV88, 2.1]). Before stating the proposition, we
need some preparations.

Lemma 3.8. Fix L ⊆ P ⊆ G, P containing L as a Levi factor. Then, the irreducible constituents of
the image under IndG

P of a character (resp. orbital) sheaf are character (resp. orbital) sheaves. The
same holds for ResGP .

Proof. As parabolic inductions and restrictions commute with Fourier transforms (Lemma 3.2.4), it
suffices to prove the statement for orbital sheaves.

Let F be orbital, we show the irreducible constituents of IndGP (F) are orbital. If supp(F) = G(x)
for some x ∈ g, then the support of ResGPF = π!(F|p)[2dim(L)− 2dim(U)] (notations as in Definition

3.1, ForGP omitted) is contained in π(G(x)∩p). Note that the closure of a G-orbit is a union of finitely
many G-orbits (c.f. [Jan04, proof of 8.4]), and for each orbit G(y), π(G(y) ∩ p) consists of finitely
many L-orbits, by Lemma 3.9.1. So each irreducible constituent of ResGP (F) is orbital.

7This argument is the Lie algebra analogue of [Gin93, Proof of Theorem 4.1] in the group case.
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Conversely, let F on l be an orbital sheaf of L with supp(F) = L(x) for some x ∈ L. Then the

support of IndGPF = ΓG
P i∗π

!(F) is contained in G(π−1L(x)). As L(x) is a union of finitely many
L-orbits, by Lemma 3.9.2, there are only finitely many G-conjugacy classes of the semisimple parts of
elements in π−1L(x). It follows (by the finiteness of the number of nilpotent orbits) that there are

only finitely many G-orbits in G(π−1L(x)), hence in G(π−1L(x)). So each irreducible constituent of
IndGP (F) is orbital.

We used the following lemma in the proof of Lemma 3.8.

Lemma 3.9. Fix L ⊆ P ⊆ G, with Levi decomposition P = L⋉ U .
1) Let G(x) be a G-orbit in g. Then π(G(x)∩p) consists of finitely many L-orbits, where π : p = l⋉u→ l

is the projection.
2) For any x ∈ l and u ∈ u, the semisimple part of x+ u is U -conjugate to the semisimple part of x.

Proof. 1) [Mir04, 3.3] proved this for the case T ⊆ B ⊆ G. The general case reduces to this case as
follows: fix T ⊆ B ⊆ G. By conjugation, we may assume that our L and P are standard, and that we
have the following diagram, where b is a Borel subalgebra of l:

b p

h b l

π π

y

α

α

Then, (π(G(x) ∩ p)) ∩ b = π(G(x) ∩ b). By [Mir04, 3.3], α((π(G(x) ∩ p)) ∩ b) = α(G(x) ∩ b) is
a finite set. As π(G(x) ∩ p) is clearly L-stable, it is a union of finitely many L-orbits. This, plus
α((π(G(x) ∩ p))∩ b) being finite, imply that the number of L-conjugacy classes of semisimple parts of
elements of π(G(x) ∩ p) is finite, which in turn (by the finiteness of the number of nilpotent orbits)
implies that there are only finitely many L-conjugacy classes in π(G(x) ∩ p).

2) This is the analogue of [Lus84, 5.1] in the Lie algebra case. The same argument, mutatis
mutandis, applies.

In G, fix a maximal torus T and a Borel B with B = T ⋉ U , U being the unipotent rad-
ical of B. Denote their Lie algebras by h, b, and u respectively. The G-invariant non-degenerate

symmetric bilinear form on g canonically identifies the dual of the diagram h b g
α β

with h g/u g
β′

α′

. Consider the following subset C(T,B) of IrrPervG(g): F ∈ IrrPervG(g)

is in C(T,B) if it is non-zero and is an irreducible constituent of ΓG
BFb(G), for some G ∈ PervB(b)

supported on a set of the form α−1(S), S being some finite set of closed points in h.

Proposition 3.10. C(T,B) coincides with the set of character sheaves.

Proof. This is [Mir04, 3.5], the same proof applies.

Admissible, character, and orbital sheaves are our primary objects of interest. The rest of this
section is devoted to showing a key geometric property of character sheaves (Corollary 3.16). It is
useful to introduce the following auxiliary class of sheaves:

Definition 3.11 (quasi-admissible sheaves). F ∈ IrrPervG(g) is called quasi-admissible if it is non-
zero, and for each (L,O), each irreducible constituent of F|Zr(l)+O is of the form AS|Zr(l)⊠L

′, where
AS is as in Definition 3.4 (with G, g replaced by L, l), and L′ is a local system in PervL(O).

Lemma 3.12. Quasi-admissible sheaves are constructible with respect to the Lusztig stratification.

Proof. Let (L,O) be a pair, S(L,O) =
G(Zr(l) +O) be the associated Lusztig stratum. By definition,

for a quasi-admissible sheaf F , each irreducible constituent of F|Zr(l)+O is of the form AS|Zr(l) ⊠ L
′

(notations as in Definition 3.11). In particular, F|Zr(l)+O is a local system. Since S(L,O) is the
saturation of Zr(l) + O and F|S(L,O)

is G-equivariant, F|S(L,O)
is also a local system by Lemma

3.13.
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Lemma 3.13. Let H be an algebraic group acting on an irreducible variety X, Z be a locally closed
irreducible subvariety of X. If F ∈ DH(X) is a local system on Z, then it is a local system on X.

Proof. LetX1 be the maximal open subset ofX on which F is a local system. It is necessarilyH-stable.
Let X2 be the maximal open subset of X−X1 on which F is a local system. It is also H-stable. Iterate
this process, we get a G-stable stratification X = X1⊔X2⊔ ... with respect to which F is constructible,
and each stratum intersects Z (since X is the saturation of Z). Assume X2 is non-empty, we derive a
contradiction as follows.

Consider X ′ = X1 ⊔X2. As F is not a local system on X ′, there exist a specialisation of geometric
points x  y such that Fx ← Fy is not an isomorphism (c.f. [Stacks, 0GJ2; HS23, 4.4]). By G-
equivariance, we may assume y is a geometric point of X2. Then x must be a geometric point of X1

(as F is locally constant on X2). Consider the following specialisation diagrams:

ηX1
x FηX1

Fx

ηZ y FηZ
Fy

a

c

d

b

where ηX1
(resp. ηZ) is a geometric generic point of X1 (resp. Z). We may assume the diagrams

commute. It is clear that a, b, c are isomorphisms. So d is also an isomorphism, which is a contradiction.

Remark 3.14. The lemma is false if without the assumption that Z is irreducible. For example,
consider the additive group H = A1 acting on X = A2 = Spec(k[x1, x2]) via translation in the
x2-variable, and take Z = ({x2 = 0} − {(0, 0)}) ⊔ {(0, 1)}.

Lemma 3.15. Character sheaves are quasi-admissible.

Proof. Let F be a character sheaf, (L,O) be a pair, P be any parabolic containing L as a Levi factor.
By Lemma 3.3, F|Zr(l)+O[2dim(U)] ∼= (ResGPF)|Zr(l)+O. By Lemma 3.8.2, each irreducible constituent

of ResGPF is a character sheaf, hence of the form AS ⊠ F ′, where AS is the Fourier transform of a
skyscraper sheaf Qℓx

for some closed point x of Z(l)∨, and F ′ is some character sheaf on [l, l]. So each

irreducible constituent of (ResGPF)|Zr(l)+O is the irreducible constituent of some (AS|Zr(l)) ⊠ (F ′|O).
We claim that it must be of the form (AS|Zr(l)) ⊠ L

′ for some local system L′ on O. Indeed: F ′|O
is a local system by L-equivariance, denote its irreducible constituents by {L′i}, then, as (AS|Zr(l))
is irreducible of rank 1, each (AS|Zr(l)) ⊠ L

′
i is irreducible, and {(AS|Zr(l)) ⊠ L

′
i} are exactly the

irreducible constituents of (AS|Zr(l))⊠ (F ′|O).

Lemma 3.12 and Lemma 3.15 imply:

Corollary 3.16. Character sheaves are constructible with respect to the Lusztig stratification.

4 Characterisations of cuspidal sheaves, equivalence of being a

character sheaf and being admissible

The setup is as in the Conventions. In this section, we give several characterisations of cuspidal sheaves,
and show the equivalence of being a character sheaf and being admissible.

Theorem 4.1. Assume G is semisimple. Then, for a non-zero F ∈ IrrPervG(g), the following are
equivalent:
1) F is cuspidal;
2) F and FF are supported on NG;
3) F is a character sheaf and is orbital;
4) F is supported on NG and has nilpotent singular support (i.e. SS(F) ⊆ g×NG).
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Proof. 1) ⇒ 2). By Lemma 3.3 and the definition of cuspidal sheaves, F|Zr(l)+O = 0 for all pairs
(L,O) except if L = G. For any x ∈ g with Fx 6= 0, we have x ∈ Zr(l) + O, for L = Zg(xs)

◦ and O
some nilpotent orbit of L (see the proof of Proposition 2.2.2). So Zg(xs)

◦ = G, x ∈ Zr(g)+O. By the
semisimplicity of G, Z(g) = 0, so x ∈ NG. So supp(F) ⊆ NG.

2) ⇒ 1). Let L ⊆ P $ G, P containing L as a Levi factor, we want to show ResGPF = 0. First
note supp(ResGPF) ⊆ NL. Indeed, recall ResGPF = π!(F|p)[2dim(U)] (notations as in Definition 3.1),
if x ∈ l is such that (ResGPF)x 6= 0, then there exists u ∈ u such that F|x+u 6= 0. So x+u ∈ NG. Since
the semisimple part of x + u (which is 0) is U -conjugate to the semisimple part of x (Lemma 3.9.2),
x ∈ NL. This shows supp(ResGPF) ⊆ NL.

For the same reason, supp(ResGPFF) ⊆ NL. Since Z(l) is non-trivial (as P 6= G) and NL ⊆ [l, l],
supp(ResGPF) and supp(ResGPFF) cannot both be in NL unless both ResGPF and ResGPFF are 0.

2) ⇒ 3). F is orbital because it is irreducible and supported on finitely many G-orbits, so there
exists a single orbit whose closure is supp(F). Similarly, FF is orbital. So F is a character sheaf.

3) ⇒ 2). As the statement is symmetric with respect to FF , it suffices to show supp(F) ⊆ NG.
By Corollary 3.16, F is of the form j!∗L, for some non-zero local system L on some Lusztig stratum
S(L,O). Note Zr(l) +O ⊆ S(L,O) and all G-orbits in S(L,O) are of the same dimension, F being orbital

then implies that Z(l) must be trivial, i.e, L = G. So supp(F) = GO ⊆ NG.

2)⇔ 4).8 Claim: every F ∈ IrrPervG(g) supported on NG is monodromic9. Accepting this claim,
applying the compatibility of characteristic cycles and Fourier transforms for monodromic sheaves
([Zho24, 1.2]), we get SS(F) = SS(FF). The equivalence of 2) and 4) is then evident, using the fact
that the base of the singular support equals the support.

We now show the claim. Let F ∈ IrrPervG(g) be supported on NG, and O ⊆ NG be a nilpotent
orbit. By G-equivariance, Hi(F)|O is a local system concentrated in degree 0. We want to show
Hi(F)|O is tame when restricted to the subvariety k×x, for all closed points x ∈ O. By [Jan04, 5.3]
(and our assumption on the characteristic p), there exists a cocharacter θ : Gm → G associated to x
(terminology as in loc. cit.). In particular, ∀λ ∈ k×, we have (∗) : θ(λ)(x) = λ2x. Now, Hi(F)|O is
G-equivariant, hence Gm-equivariant with Gm acting via θ and the G-action. As k×x is an orbit of
this Gm-action, Hi(F)|k×x is Gm-equivariant, with respect to the weight-2 Gm-action (by (∗)). In
particular, Hi(F)|k×x is trivialised by a degree 2 étale cover, hence tame.

Corollary 4.2. Assume G is semisimple. Then the Fourier transform of a cuspidal sheaf is cuspidal.

In the following, we return to the general case (G reductive).

Corollary 4.3. If F ∈ IrrPervG(g) is cuspidal, then it is a character sheaf, and has nilpotent singular
support.

Proof. By definition, F is of the form AS ⊠F ′ (notations as in Definition 3.4), with F ′ cuspidal with
respect to [G,G]. Then FF ∼= F (AS) ⊠ F (F ′) ∼= Qℓx

⊠ F (F ′), for some closed point x ∈ Z(g).

Since F (F ′) is orbital (by Theorem 4.1.3), so is Qℓx
⊠ F (F ′). So F is a character sheaf. Since

SS(AS ⊠ F ′) = p◦SS(F ′), where p : Z(g) × [g, g] → [g, g] is the projection, and SS(F ′) is nilpotent,
SS(AS ⊠ F ′) is also nilpotent.

We now prove:

8In a previous version of this article, for this proof, we used [Ach21, Lemma 8.2.7.3] which says, in particular, that
every F ∈ IrrPervG(g) supported on NG is Gm-equivariant with respect to the (weight-1) scaling action. We later
realised that this is false (consider G = SL2). Achar pointed out that Lemma 8.2.7.3 becomes correct if Gm acts via
the weight-2 scaling instead (λ(x) = λ2x), and pointed us to [AH19, beginning of §2.2]. We thank Achar and Ma very
much for discussions around this.

Our proof of the Claim is inspired by loc. cit. An alternative approach, which avoids using [Jan04, 5.3], is to assume
that the characteristic p is larger than the orders of the groups of components of the stabilisers of points in nilpotent
orbits. Then F as in the Claim will be tame, monodromicity follows.

9Recall that a sheaf F on a finite dimensional vector space V is called monodromic if the restriction of all Hi(F) to
all Gm-orbits (scaling action) are tame local systems. We refer to [Ver83; Zho24] for more details.
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Theorem 4.4. F ∈ IrrPervG(g) is admissible if and only if it is a character sheaf.

Proof. Let F be an admissible sheaf, i.e., it is an irreducible constituent of IndGPG for some L ⊆ P ⊆ G,
P containing L as a Levi factor, and some cuspidal G on l. By Corollary 4.3 and Lemma 3.8, F is a
character sheaf.

Conversely, let F be a character sheaf, we want to show it is admissible. If G is a torus, this is clear.
Assume the statement is true for all Levi factors of all proper parabolic subgroups of G, we show it is
true for G. If F is cuspidal, this is clear. If not, let L ⊆ P $ G, with Levi decomposition P = L⋉U , be
such that ResGPF 6= 0. Let G be an irreducible constituent of ResGPF which can be written as a quotient
of ResGPF . G is a character sheaf by Lemma 3.8. So, by the induction hypothesis, there exist L1 ⊆ P1

of L, P1 containing L1 as a Levi factor, and H ∈ IrrPervL1 (l1) cuspidal, such that G is an irreducible
constituent of IndLP1

H. Note that G is in fact a direct summand of IndL
P1
H by Lemma 3.2.2.10 To

show F is admissible, because of its irreducibility, it suffices to show Hom(F , IndGP1
H) 6= 0. By the

transitivity of the parabolic induction (Lemma 3.2.3 11) and the adjunction, Hom(F , IndGP1U
H) =

Hom(F , IndGP Ind
L
P1
H) = Hom(ResGPF , Ind

L
P1
H). Since Hom(ResGPF ,G) 6= 0 (by construction, G is a

quotient of ResGPF) and Hom(G, IndL
P1
H) 6= 0 (because G is a direct summand of IndL

P1
H), we get

Hom(F , IndGP1U
H) 6= 0.

Remark 4.5. Mirković’s original proof of the “if” direction of Theorem 4.4 depends on a claim about
the irreducibility of a certain local system [Mir04, 5.8.ii]. Namely: for F ∈ IrrPervG(g) quasi-
admissible, by Lemma 3.12, F ∼= j!∗L for some perverse irreducible local system on some S(L,O),
he claimed L|Zr(l)+O is irreducible. We have not been able to verify this claim, and use an induction
argument instead. Note that, using the notations as in the discussion after Proposition 2.2, L|Zr(l)+O

∼=
(a∗L)|{1}×(Zr(l)+O), and a is a Galois cover. We do not know if a∗L is irreducible.

5 The microlocal characterisation of character sheaves

The setup is as in the Conventions. We emphasise that g and its dual are identified throughout, using
the G-invariant non-degenerate symmetric bilinear form.

The goal of this section is to prove the following microlocal characterisation of character sheaves.
The proof will be given after some preliminary studies.

Theorem 5.1. (With assumptions as above) F ∈ IrrPervG(g) is a character sheaf if and only if F
has nilpotent singular support and is quasi-admissible.

Definition 5.2. Denote by Λ the following subset of T ∗g: {(x, y) ∈ g×NG | y ∈ Zg(x)}.

Lemma 5.3. 1) Λ is closed, Lagrangian, and is contained in ∪all(T ∗
S(L,O)

g), where the union ranges
exactly once through each G-conjugacy class of (L,O) pairs. It follows, for dimensional reasons, that
Λ is of the form ∪some(T ∗

S(L,O)
g), for some classes of (L,O).

2) If F ∈ PervG(g) has nilpotent singular support, then SS(F) ⊆ Λ. It follows, for dimensional
reasons, that SS(F) is of the form ∪some(T ∗

S(L,O)
g), for some classes of (L,O).

Proof. 1) Λ is closed because it is defined by a closed condition. To see it is Lagrangian, first note that,
in general, for any x ∈ g, (T ∗

G(x)g)x = Zg(x).
12 As Λ coincides with = {(x, y) ∈ g×NG |x ∈ Zg(y)} ⊆

g× g. View g × g as the cotangent bundle of the second g factor, Λ is then precisely ∪O⊆NG
g. This

shows it is Lagrangian.

10Note that cuspidal sheaves are of geometric origin, because a cuspidal sheaf may be obtained as the middle extension
of some irreducible constituent of the pushforward of the constant sheaf on some Galois cover of some nilpotent orbit
(we are using the fact that, for the action of a connected algebraic group, an equivariant local system in degree 0 on an
orbit corresponds to a representation of π0 of the stabiliser).

11The assumptions there are satisfied possibly after an L-conjugation, which is harmless for our purpose.
12Proof: (T ∗

G(x)
g)x = ((TG(x))x)⊥ = [g, x]⊥ = Zg(x), where in the second equality we have used the fact that, under

our assumption on p, Lie(ZG(x)) = Zg(x) (see Conventions).
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We now show Λ ⊆ ∪all(T ∗
S(L,O)

g). For any x ∈ g, let L = ZG(xs)
◦. Then, by Lemma 5.5,

x ∈ Zr(l) + O for some nilpotent orbit O of L, and (T ∗
S(L,O)

g)x = Z[l,l](xn). As Zg(x) ∩ NG =

Zl(x) ∩NG = Zl(x) ∩NL = Z[l,l](xn) ∩NL (we used Zg(x) = Zl(x), see the proof of Lemma 5.5), the
claim follows.

2) As F is G-equivariant, SS(F) ⊆ ∪x∈g((T
∗
G(x)g)x) = ∪x∈g(Zg(x)x). As SS(F) ⊆ g × NG,

SS(F) ⊆ {(x, y) ∈ g×NG | y ∈ Zg(x)} = Λ.

Remark 5.4. We do not know if Lusztig stratification satisfies the analogue of Whitney condition A,
i.e., if ∪all(T ∗

S(L,O)
g) is closed.

Lemma 5.5. Let x ∈ g, L = ZG(xs)
◦. Then, L is a Levi subgroup and x ∈ Zr(l) + O for some

nilpotent orbit O of L. Let S(L,O) be the corresponding Lusztig stratum. Then (T ∗
Zr(l)+Ol)x = Z[l,l](xn),

(T ∗
S(L,O)

g)x = Z[l,l](xn).

Proof. The first claim has already been proved in the proof of Proposition 2.2.2. The first part of the
second claim is clear: (T ∗

Zr(l)+Ol)x = Zl(x) ∩ (Z(l)⊥in l) = Z[l,l](xn). Finally, we compute (T ∗
S(L,O)

g)x:

first notice (T ∗
G(x)g)x = Zg(x) = Zl(x), where the last equality follows from Zg(x) ⊆ Zg(xs) = l.

This, plus dimensional reasons (Proposition 2.2.3), imply (TS(L,O))x = (TG(x))x ⊕ (TZ(l))x. So

(T ∗
S(L,O)

g)x = (T ∗
G(x)g)x ∩ (Z(l)⊥in g) = Z[l,l](xn).

We now prove Theorem 5.1.

Proof of Theorem 5.1. Let F be a character sheaf. By Lemma 3.15, it is quasi-admissible. By The-
orem 4.4, it is the irreducible constituent of IndGPG = ΓG

P i∗π
!(G) (notations as in Definition 3.1), for

some L ⊆ P ⊆ G, P containing L as a Levi factor, and some cuspidal G on l. To show F has nilpotent
singular support, it suffices to show IndG

PG does. G has nilpotent singular support by Corollary 4.3.
Since π is smooth and i is a closed immersion, SS(i∗π

!(G)) = i◦π
◦SS(G). It follows that i∗π

!(G) also
has nilpotent singular support (this is the consequence of two simple facts: T ∗

p g = u and NL+u ⊆ NG).

By the general formula SS(ΓG
PH) ⊆ G.SS(H) for any H ∈ DG(g), and the fact that g×NG is stable

under the G-action, we see that IndGPG = ΓG
P i∗π

!(G) has nilpotent singular support.

We now show the converse: given F ∈ IrrPervG(g) quasi-admissible with nilpotent singular sup-
port, we will find a cuspidal sheaf for some Levi L whose parabolic induction (for any P containing L
as a Levi factor) contains F as an irreducible constituent. Apply Theorem 4.4, we get F is a character
sheaf.

By Corollary 3.16, there exists a unique stratum S(L,O) such that L := F|S(L,O)
is an irredu-

cible perverse G-equivariant local system, and F ∼= j!∗L, where j is the inclusion S(L,O) →֒ g. Let
L0 = L|Zr(l)+O[−2dim(U)] (the shift ensures L0 is perverse). Consider j′!∗L0 ∈ PervL(l), where j′ is
the inclusion Zr(l) +O →֒ l. Fix any P containing L as a Levi factor.

Claim 1: F is an irreducible constituent of IndG
P (j

′
!∗L0).

Claim 2: SS(j′!∗L0) ⊆ l×NL.

Accepting these two claims for now, we produce a cuspidal sheaf on l whose IndGP contains F as an
irreducible constituent. By Claim 1, F is an irreducible constituent of the IndGP of some irreducible
constituent of j′!∗L0, which is necessarily of the form j′!∗Li for some irreducible constituent Li of L0.
By the quasi-admissibility of F , Li is of the form AS|Zr(l)⊠L

′
i, for some AS as in Definition 3.4 (with

G, g replaced by L, l), and some local system L′i on O, which is necessarily perverse, irreducible, and
L-equivariant. We compute: j′!∗Li = j′!∗(AS|Zr(l)⊠L

′
i)
∼= (j′!∗AS|Zr(l))⊠(j′!∗L

′
i)
∼= AS⊠(j′!∗L

′
i) (we ab-

use notations and denote Zr(l) →֒ Z(l) and O →֒ [l, l] also by j′). Claim 2 implies SS(j′!∗Li) ⊆ l×NL.
Combine this with the previous computation, we get SS(j′!∗L

′
i) ⊆ [l, l]×NL. By Theorem 4.1.4, j′!∗L

′
i,

hence j′!∗Li, is cuspidal.
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It remains to prove the two claims. For Claim 1: as supp(IndGP (j
′
!∗L0)) = S(L,O), it suffices to show

(IndGP (j
′
!∗L0))|S(L,O)

is a local system containing L as an irreducible constituent (using Lemma 5.6).
Consider the induction diagram

G× g G×P g

g g

pr′′2

ν′′

a′′

IndGP (j
′
!∗L0) is the a∗ of the descent to PervG(G×P g) of pr∗2(i∗π

!(j′!∗L0)). Restrict to S(L,O), using
proper base change for a∗, we reduce to the following diagram

G× S(L,O) G×P S(L,O)

S(L,O) S(L,O)

pr′2

ν′

a′

(IndG
P (j

′
!∗L0))|S(L,O)

is then the a′∗ of the descent to PervG(G×PS(L,O)) of pr
′∗
2 ((i∗π

!(j′!∗L0))|S(L,O)
) =

pr
′∗
2 (i∗π

!L0), where the last equality follows from the fact S(L,O) ∩ (Z(l) +O + u) = Zr(l) +O + u.13

By the P -equivariance of L and the fact that P (Zr(l)+O) = Zr(l)+O+ u (which follows, again, from
Lemma 2.4), we get π!L0 ∼= L|Zr(l)+O+u. So we may further restrict to the following diagram

G× (Zr(l) +O + u) G×P (Zr(l) +O + u)

Zr(l) +O + u S(L,O)

pr2

ν

a

Notice that a′′ν′′ is the action map G × g → g, using the G-equivariance of L, we get ν∗a∗L ∼=
pr∗2(L|Zr(l)+O+u), i.e., a∗L is the descent to PervG(G ×P (Zr(l) + O + u)) of pr∗2(L|Zr(l)+O+u). So

(IndGP (j
′
!∗L0))|S(L,O)

∼= a∗a
∗L ∼= L⊗ a∗Qℓ, where in the last step we have used the projection formula.

Recall the discussion after Proposition 2.2, we know G ×P (Zr(l) + O + u) ∼= G ×L (Zr(l) + O), and
that a is a Galois cover. So a∗Qℓ is a local system, with Qℓ as a direct summand. This proves Claim 1.

To see Claim 2, we need two further claims:

Claim 2.1: i : lr →֒ g is properly SS(F)-transversal, and i◦SS(F) ⊆ lr × NL. The claim im-
plies SS(F|lr) = i◦SS(F) is contained in lr × NL.14 Proof of the claim: first recall Lemma 5.3:
SS(F) ⊆ Λ ⊆ ∪all(T ∗

S(L′,O′)
g) and SS(F) = ∪some(T ∗

S(L′,O′)
g). By Lemma 2.5.2, it suffices to consider

the pairs (L′,O′) with L = L′, O′ ⊆ O. For such a pair, consider any x ∈ S(L,O′) ∩ lr. By conjugating
(L,O′) by WL, we move x into Zr(l) +O′ (Lemma 2.5). By Lemma 5.5, (T ∗

S(L,O′)
g)x = (T ∗

Zr(l)+O′ l)x.

Consequently: 1) S(L,O′) intersects lr transversely; 2) i◦, when restricted to (T ∗
S(L,O′)

g)x, is the “iden-

tity” map. In particular, it preserves nilpotent elements. These imply that i is SS(F)-transversal, and
that (T ∗

S(L,O′)
g)×g lr has the correct dimension, so i is properly SS(F)-transversal.

Claim 2.2: Zr(l) + O is an open subset of supp(F|lr). Proof: it is clear that S(L,O) ∩ lr is open

in S(L,O) ∩ lr. By Lemma 2.5.1, S(L,O) ∩ lr = WL(Zr(l) + O) =
⊔

σ∈WL

σ(Zr(l) + O). So Zr(l) + O

is open in S(L,O) ∩ lr. From supp(F) = S(L,O), we know supp(F|lr) ⊆ S(L,O) ∩ lr. But we also know
supp(F|lr) contains Zr(l) +O, so Zr(l) +O is an open subset of supp(F|lr).

13Let y ∈ S(L,O) ∩ (Z(l) + O + u), let y = yz + yo + yu, yz ∈ Z(l), yo ∈ O, yu ∈ u. The semisimple part of y is
U -conjugate to the semisimple part of yz + yo (Lemma 3.9.2), which is just yz. As y ∈ S(L,O), yz must be in Zr(l), so

y ∈ S(L,O) ∩ (Zr(l) + O + u). By Lemma 2.4, y is U -conjugate to yz + yo, and S(L,O) ∩ (Zr(l) + O + u) is U -stable.

Consequently yz + yo ∈ S(L,O) ∩ (Zr(l) +O). As S(L,O) ∩ (Zr(l) +O) = Zr(l) +O by Lemma 2.5.2, we are done.
14We are using the compatibility of the singular support with properly transverse pullbacks, see [Sai17, 8.15; Bar23,

1.6].
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We now prove Claim 2. We saw in the paragraph after Claim 2 that quasi-admissibility implies
irreducible constituents of j′!∗L0 are of the form AS ⊠ (j′!∗L

′
i). So SS(j′!∗L0) is of the form p◦C for

some C ⊆ T ∗[l, l], where p : l = Z(l) × [l, l] → [l, l] is the projection. This, plus the fact that j′!∗L0 is
supported on Z(l) +O, implies that it suffices to prove Claim 2 after restricting to lr. By Claim 2.2,
every irreducible constituent of (j′!∗L0)|lr is an irreducible constituent of F|lr (using Lemma 5.6), so
SS((j′!∗L0)|lr ) ⊆ SS(F|lr). By Claim 2.1, SS(F|lr), hence SS((j′!∗L0)|lr ), is contained in lr ×NL.

We used the following lemma in the proof above.

Lemma 5.6. Let X be a variety (not necessarily irreducible), F ∈ D(X) with supp(F) = X. If F is a
local system when restricted to some open, smooth and irreducible j : U →֒ X, then for each irreducible
constituent L of F|U , j!∗L is an irreducible constituent of F .

Proof. Using the perverse t-exactness of j∗, we easily reduce to the case where F is perverse. Assume
F is perverse in the following. Let X1 = U , it is the irreducible component that U lies in. Shrinking
U , we may assume U does not intersect other irreducible components. F is a successive extension
of its irreducible constituents, each of which is of the form j′!∗L

′, for some perverse irreducible local
system L′ on some locally closed, smooth and irreducible j′ : U ′ →֒ X . Accordingly, F|U is a successive
extension of (j′!∗L

′)|U . We claim that U ′ ∩U , if non-empty, is open dense in U , in which case (j′!∗L
′)|U

is an irreducible constituent L of F|U , and j′!∗L
′ ∼= j!∗L. The lemma then follows easily.

To see the claim, assume U ′ ∩ U is non-empty, then U ′ must lie in X1, then U ′ ∩ U is open dense
in U ′, so (j′!∗L

′)|U is still irreducible, and thus an irreducible constituent of F|U . Since F is a local
system on U , SS(F|U ), hence SS((j′!∗L

′)|U ), is contained in the zero section. This forces U ′ ∩ U to
be open dense in U and (j′!∗L

′)|U to be a local system. It is necessarily isomorphic to an irreducible
constituent L of F|U , and we have j′!∗L

′ ∼= j!∗L.
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