Cycles of Well-Linked Sets and an Elementary Bound for the Directed Grid Theorem*

Meike Hatzel †
National Institute of Informatics, Tokyo, Japan
research@meikehatzel.com
Stephan Kreutzer
Technische Universität Berlin
stephan.kreutzer@tu-berlin.de
Marcelo Garlet Milani
National Institute of Informatics, Tokyo, Japan
research@mgarletmilani.com
Irene Muzi
Universität Hamburg
irene.muzi@gmail.com

In 2015, Kawarabayashi and Kreutzer proved the directed grid theorem - the generalisation of the well-known excluded grid theorem to directed graphs - confirming a conjecture by Reed, Johnson, Robertson, Seymour, and Thomas from the mid-nineties. The theorem states the existence of a function f such that every digraph of directed tree-width $f(k)$ contains a cylindrical grid of order k as a butterfly minor, but the given function grows non-elementarily with the size of the grid minor. More precisely, it contains a tower whose height depends on the size of the grid.
In this paper we present an alternative proof of the directed grid theorem which is conceptually much simpler, more modular in its composition and also improves the upper bound for the function f to a power tower of height 22 .

Our proof is inspired by the breakthrough result of Chekuri and Chuzhoy, who proved a polynomial bound for the excluded grid theorem for undirected graphs. We translate a key concept of their proof to directed graphs by introducing cycles of well-linked sets (CWS), and show that any digraph of high directed tree-width contains a large CWS, which in turn contains a large cylindrical grid, improving the result due to Kawarabayashi and Kreutzer from an non-elementary to an elementary function.

[^0]An immediate application of our result is that we can improve the bound for Younger's conjecture - the directed Erdős-Pósa property-proved by Reed, Robertson, Seymour and Thomas [RRST96] from a non-elementary to an elementary function. The same improvement applies to other types of Erdős-Pósa style problems on directed graphs. To the best of our knowledge this is the first significant improvement on the bound for Younger's conjecture since it was proved in 1996.

Since its publication in STOC 2015, the Directed Grid Theorem has found numerous applications (see for example [CLMS19, GKKK20b, JWZ23, GKW24, HRW19]), all of which directly benefit from our main result.
Finally, we believe that the theoretical tools developed in this work may find applications beyond the directed grid theorem, in a similar way as the path-of-setssystem framework due to Chekuri and Chuzhoy [CC16] did for undirected graphs (see for example [HKPS22, CC15, CN19]).

Contents

1 Introduction 4
2 An overview of the proof 5
2.1 Cycles and paths of sets 7
2.2 Obtaining a path of well-linked sets 9
2.2.1 Constructing a cycle of well-linked sets 11
3 Preliminaries 14
4 Directed Treewidth and Grids 17
5 Constructing splits and segmentations 20
6 Temporal digraphs and routings 28
6.1 H-routings 30
6.2 Finding \mathbf{P}_{k}-routings in temporal digraphs 33
6.3 Finding \mathbf{C}_{k} and $\stackrel{\mathbf{P}}{k}^{k}$-routings in temporal digraphs 35
7 Paths of order-linked sets and acyclic grids 43
8 Paths of well-linked sets and fences 48
9 Cycles of well-linked sets and cylindrical grids 53
10 Constructing a path of well-linked sets 54
11 Constructing a cycle of well-linked sets 60
11.1 Back-linkage intersecting cluster by cluster 61
11.2 Obtaining a 2 -horizontal web 64
11.3 Finding a cycle of well-linked sets inside a 2 -horizontal web 71
12 Younger's Conjecture and the Erdős-Pósa property for directed graphs 81

1 Introduction

The excluded grid theorem by Robertson and Seymour is a central result in the study of graph minors and is the first major building block of their Graph Minors project [RS]. Additionally, the theorem has found a huge number of applications beyond its original scope, for instance in the theory of graph algorithms (see for example [CFK $\left.{ }^{+} 15\right]$). Based on a conjecture by Reed, Johnson, Robertson, Seymour and Thomas from the mid-nineties [JRST01b], Kawarabayashi and Kreutzer proved in 2015 [KK15] an excluded grid theorem for directed graphs, i.e. the existence of a function f such that every digraph of directed tree-width $f(k)$ contains a cylindrical grid of order k as a butterfly minor. In addition they proved that there is an XP algorithm that either produces a directed tree decomposition of width at most $f(k)$ or finds a cylindrical grid of order k as a butterfly minor. Campos et al. [CLMS19] improved their result from XP to FPT. The directed grid theorem has been used to prove advanced results in digraph structure theory [GKKK20b, GKKK20a, GKKK22], Erdős-Pósa/cycle packing [MMP ${ }^{+} 22$, AKKW16, $\mathrm{ACH}^{+} 19$, KKKX23], and matching theory [HRW19, GKW24] as well as for algorithmic results [BJCH16, EMW17].
For a certain class of problems on digraphs, the presence of a cylindrical grid minor immediately results in a positive instance. The strength of the directed grid theorem is then fully realised in providing a win-win scenario. On one hand we have low directed treewidth, which in many cases allows us to compute the problem on a subset of the vertex set of size $f(k)$. On the other we have a cylindrical grid minor. The function f is the major determinant of the efficiency of algorithms obtained through this method. Unfortunately, the original function by Kawarabayashi and Kreutzer is non-elementary, specifically it contains a tower whose height is dependent on the size of the grid. Our main contribution is an improvement on the proof of the directed grid theorem in two ways. First, by improving the bound on the function f to an elementary one, and second, by developing novel techniques which allow us to make the proof more modular and easier to understand.
More precisely, we require the directed tree-width of a digraph to be at least a power tower of height 5 for finding a split or segmentation (Theorem 5.15), a power tower of height 7 for finding a path of well-linked sets of width w and length ℓ (Theorem 10.9), and a power tower of height 22 if we want to obtain a cylindrical grid of order k (Theorem 1.2).
Further, our result gives better bounds for several Erdôs-Pósa-like theorems for digraphs. More precisely we say that a graph H has the Erdôs-Pósa property if there is a function l_{H} such that in any digraph D we can either find n disjoint H-butterfly minors or $l_{H}(n)$ vertices covering all H-butterfly minors. Amiri, Kawarabayashi, Kreutzer and Wollan [AKKW16] prove that the Erdôs-Pósa property holds for strongly connected directed graphs precisely when they are minors of the cylindrical grid. Their methods relies heavily on the use of a directed grid and the functions l_{H} they obtained depends on the function determined in Kawarabayashi and Kreutzer's Directed Grid Theorem. Thus, our result provides new elementary functions for this result. When H is a directed cycle on two vertices C_{2}, this result is equivalent to Younger's conjecture, which was proven to be true in 1996 by Reed, Robertson, Seymour and Thomas. Their proof resulted in a non-elementary function $l_{C_{2}}$ and has since not been improved. Our new bound for f, together with the result in [AKKW16], gives the first (to the best of our knowledge) elementary bound for the function $l_{C_{2}}$.
Inspired by path-of-sets system framework due to Chekuri and Chuzhoy [CC16], which played an important role in their proof of a polynomial bound for the undirected grid theorem, we also build our proof around finding sequences of sets which are highly connected in one direction. In order to handle all the cases that appear in the directed setting, we need to consider two
types of highly connected sets, namely well-linked and order-linked sets, which in turn lead us to our definitions of paths of well-linked sets, paths of order-linked sets and cycles of well-linked sets. The latter three concepts naturally capture the connectivity properties provided by fences, acyclic grids and cylindrical grids, respectively.
In order to obtain the connectivity properties required above, we develop a framework based on the known concept of temporal digraphs (see, e.g. [CHMZ20, Mol20]), which also naturally models our setting where disjoint paths intersect a sequence of disjoint subgraphs in the same order. We then introduce the concept of H-routings for digraphs and temporal digraphs, which, on digraphs, is a weaker property than having H as an immersion or as a butterfly minor. In particular, obtaining the desired connectivity corresponds to finding temporal walks in certain temporal digraphs and constructing H-routings from these walks.
Our modular approach facilitates the transfer of the intermediate results in our proof to other settings. Well-linked sets play an important role in several results in the theory of digraphs (for example, in [RRST96, JRST01b, EMW17, KK15]) and our framework provides additional tools for obtaining such sets.
Further, by reusing the existing concept of temporal digraphs, we also make the proof of the directed grid theorem more accessible to a larger community. Indeed, one of the important steps in obtaining an acyclic grid in our proof is Lemma 6.10, whose bound is currently not polynomial. Reducing this bound is an important step towards improving the function of the directed grid theorem, and both the statement and its proof can be expressed using the language of temporal digraphs.
From an algorithmic perspective, our intermediate concepts facilitate the design of efficient algorithms for finding a directed grid, as questions regarding finding long walks in temporal digraphs, constructing H-routings, obtaining well-linked sets and constructing a cylindrical grid from a cycle of well-linked sets can all be considered independently from each other, simplifying the process of identifying bottlenecks and computational obstacles in each step of the proof.
The paper is organized as follows. In Section 2 we provide an overview of the proof. Sections 3 and 4 contain preliminary definitions which are used throughout the paper. We construct a web in a digraph of high directed treewidth in Section 5, improving the corresponding step of the proof of [KK15] from a non-elementary to an elementary bound. We introduce our framework on temporal digraphs in Section 6, where we also obtain the H-routings from which we construct our order-linked and well-linked sets. In sections 7 to 9 we introduce the concepts of paths of order-linked sets, paths of well-linked sets and cycles of well-linked sets, respectively, and show how to obtain the corresponding type of grid from each of them. Finally, in sections 10 and 11 we apply the framework developed in the sections above in order to construct a path of well-linked sets and a cycle of well-linked sets, obtaining one of our main results.

Theorem 1.1. Let w, ℓ be integers. Every digraph D with $\operatorname{dtw}(D) \geq \operatorname{dtw}_{1.1}(w, \ell)$ contains a cycle of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width w and length ℓ.
Since we prove in Theorem 9.3 that every cycle of well-linked sets contains a cylindrical grid, the theorem above yields another of our main results.
Theorem 1.2. Every digraph D with $\operatorname{dtw}(D) \geq \mathrm{dtw}_{1.2}(k)$ contains a cylindrical grid of order k as a butterfly minor.

2 An overview of the proof

We provide an overview of our contribution with sketches of proofs for essential statements. We leave the numbers of all environments the same as in the full version, which follows after.

We use standard definitions for (directed) graphs without loops or multiedges (unless specifically stated otherwise), see Section 3 for the formal statements. When working with a set or another structure X containing digraphs, we write $\mathrm{D}(X)$ to mean the digraph obtained by taking the union of all digraphs in X. A set A is ordered when it comes equipped with an ordering \leq_{A} of its vertices. We denote the digraph of a path on k vertices by \mathbf{P}_{k}. For the bidirected path on k vertices, we write $\widehat{\mathbf{P}}_{k}:=\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{\left(u_{i}, u_{j}\right) \mid 1 \leq i, j \leq k\right.\right.$ and $\left.\left.|i-j|=1\right\}\right)$. The cycle on k vertices is given by $\mathbf{C}_{k}:=\left(\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\},\left\{\left(u_{i}, u_{i+1} \bmod k\right) \mid 0 \leq i<k\right\}\right)$. Finally, we write $\widehat{\mathbf{K}}_{k}:=\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{\left(u_{i}, u_{j}\right) \mid 1 \leq i, j \leq k\right.\right.$ and $\left.\left.i \neq j\right\}\right)$ for the complete digraph on k vertices.
We consider different connectivity measures for digraphs. A digraph D is said to be strongly connected if for every $u, v \in V$ there is a u-v-path and a v - u-path in D. We say D is unilateral [HNC65] if for every $u, v \in V$ there is a u - v-path or a v - u-path in D. Finally, D is weakly-connected if the underlying undirected graph of D is connected.
Let $A, B \subseteq V(D)$ be vertex sets in a digraph D. An A - B-linkage \mathcal{L} of order k is a set of k disjoint paths $\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}=\mathcal{L}$ such that $\operatorname{start}\left(L_{i}\right) \subseteq A$ and $\operatorname{end}\left(L_{i}\right) \subseteq B$ for all $1 \leq i \leq k$. We write $\operatorname{start}(\mathcal{L})$ for the set $\left\{\operatorname{start}\left(L_{i}\right) \mid L_{i} \in \mathcal{L}\right\}$ and, similarly, we write end (\mathcal{L}) for the set $\left\{\right.$ end $\left.\left(L_{i}\right) \mid L_{i} \in \mathcal{L}\right\}$. We extend the notation for path concatenation to linkages. Given two linkages $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$ and $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$ such that end $(\mathcal{P})=\operatorname{start}(\mathcal{Q})$, we write $\mathcal{P} \cdot \mathcal{Q}$ for the linkage $\left\{P_{a} \cdot Q_{b} \mid P_{a} \in \mathcal{P}, Q_{b} \in \mathcal{Q}\right.$ and end $\left.\left(P_{a}\right)=\operatorname{start}\left(Q_{b}\right)\right\}$. Additionally, we sometimes use a linkage \mathcal{L} as a function $\mathcal{L}: \operatorname{start}(\mathcal{L}) \rightarrow \operatorname{end}(\mathcal{L})$. The expression $\mathcal{L}(a)=b$ then means that \mathcal{L} contains a path starting in a and ending in b.
Let A, B be sets of vertices in a digraph D. We say that A is well-linked to B in D if for every $A^{\prime} \subseteq A$ and every $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ there is an $A^{\prime}-B^{\prime}$ linkage of order $\left|A^{\prime}\right|$ in D.
Let D be a digraph, let $H \subseteq D$ be a subgraph, and let \mathcal{L} be a linkage of order k. We say that \mathcal{L} is minimal with respect to H, or H-minimal, if for all edges $e \in \bigcup_{P \in \mathcal{L}} E(P) \backslash E(H)$ there is no $\operatorname{start}(\mathcal{L})$-end (\mathcal{L})-linkage of order k in the graph $(\mathcal{L} \cup H)-e$. Given a linkage \mathcal{L} in a digraph D and a subgraph $H \subseteq D$, it is always possible to obtain a linkage \mathcal{L}^{\prime} with same order and same endpoints as \mathcal{L} which is H-minimal by iteratively removing edges $e \in E(\mathcal{L}) \backslash E(H)$ for which a $\operatorname{start}(\mathcal{L})-\operatorname{end}(\mathcal{L})$ linkage of order $|\mathcal{L}|$ exists avoiding e. The following is a particularly useful property of minimal linkages, and was also extensively used in the proof of [KK15].

Definition 3.5 (weak minimality). A linkage \mathcal{L} in a digraph D is weakly k-minimal with respect to a subgraph H of D if for every $P_{1} \cdot e \cdot P_{2} \in \mathcal{L}$ where $e \in E(\mathcal{L}) \backslash E(H)$ there is a $V\left(P_{1}\right)-V\left(P_{2}\right)$ separator of size at most $k-1$ in $(\mathcal{L} \cup H)-e$.

Observation 3.6. Let H be a subgraph of a digraph D and let \mathcal{L} be a linkage which is H minimal. Then \mathcal{L} is weakly $|\mathcal{L}|$-minimal with respect to H.

Given a digraph D and an $\operatorname{arc}(u, v) \in E(D)$, we say that (u, v) is butterfly contractible if $\left|N_{D}^{\text {in }}(v)\right|=1$ or $\left|N_{D}^{\text {out }}(u)\right|=1$. A digraph H is a butterfly minor of D if it can be obtained from a subgraph of D by contracting butterfly contractible edges.
A cylindrical grid of order k is a digraph consisting of k pairwise disjoint directed cycles $C_{1}, C_{2}, \ldots, C_{k}$ of length $2 k$, together with a set of $2 k$ pairwise vertex disjoint paths $P_{1}, P_{2}, \ldots, P_{2 k}$ of length $k-1$ such that

- each path P_{i} has exactly one vertex in common with each cycle C_{j} and both endpoints of P_{i} are in $V\left(C_{1}\right) \cup V\left(C_{k}\right)$,
- the paths $P_{1}, P_{2}, \ldots, P_{2 k}$ appear on each C_{i} in this order, and
- for each $1 \leq i \leq 2 k$, if i is odd, then the cycles $C_{1}, C_{2}, \ldots, C_{k}$ occur on P_{i} in this order and, if i is even, then the cycles occur in the reverse order $C_{k}, C_{k-1}, \ldots, C_{1}$.

Removing all edges ending in P_{1} results in a structure called a (k, k)-fence.
Two linkages \mathcal{H} and \mathcal{V} in a digraph D build an (h, v)-web $(\mathcal{H}, \mathcal{V})$ if every path in \mathcal{V} intersects every path in \mathcal{H}. The set $\operatorname{start}(\mathcal{V})$ is called the top of the web, while the set end (\mathcal{V}) is called the bottom of the web. Finally, $(\mathcal{H}, \mathcal{V})$ is well-linked if end (\mathcal{V}) is well-linked to $\operatorname{start}(\mathcal{V})$ in D.

2.1 Cycles and paths of sets

We construct a cylindrical grid by first constructing an acyclic grid and then finding a fence inside it. To achieve this, we first construct objects which contain similar connectivity properties as these three types of grid, while not necessarily being planar.
We introduce the concepts of r-order-linkedness and shifts in order to capture the connectivity provided by acyclic grids.

Shifts and order-linkedness Let $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{m}\right)$ be ordered sets. Let $r \in \mathbb{N}$, let A^{\prime} be an ordered subset of A and let B^{\prime} be an ordered subset of B such that $\left|A^{\prime}\right|=\left|B^{\prime}\right|$. We say that B^{\prime} is an r-shift of A^{\prime} if there is a bijection $\pi: A^{\prime} \rightarrow B^{\prime}$ such that

- for all $a_{i} \in A^{\prime}$ we have that $\pi\left(a_{i}\right)=b_{j}$ implies $i \leq j$;
- there are at most r vertices $a_{i} \in A^{\prime}$ with $\pi\left(a_{i}\right) \neq b_{i}$; and
- for all $a_{i}, a_{j} \in A^{\prime}$, if $a_{i} \leq_{A} a_{j}$, then $\pi\left(a_{i}\right) \leq_{B} \pi\left(a_{j}\right)$.

Let H be a digraph, $A=\left(a_{1}, \ldots, a_{n}\right), B=\left(b_{1}, \ldots, b_{m}\right) \subseteq V(H)$ be ordered sets and let $r \in \mathbb{N}$. We say that A is r-order-linked to B in H if for every $A^{\prime} \subseteq A$ and every $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ where B^{\prime} is an r-shift of A^{\prime} witnessed by the bijection π there is an A^{\prime} - B^{\prime}-linkage \mathcal{L} in H satisfying $\pi(a)=\mathcal{L}(a)$ for all $a \in A^{\prime}$.
We can now define the concepts of paths of well-linked sets, which behave like fences, and of paths of r-order-linked sets, which behave like acyclic grids.

Definition 7.3 and 8.1 (path of r-order-linked/well-linked sets). A path of r-order-linked/welllinked sets of width w and length ℓ is a tuple $(\mathcal{S}, \mathcal{P})$ such that

1. \mathcal{S} is a sequence of $\ell+1$ pairwise disjoint subgraphs $\left(S_{0}, \ldots, S_{\ell}\right)$, which are called clusters,
2. for every $0 \leq i \leq \ell$ there are disjoint ordered sets $A\left(S_{i}\right), B\left(S_{i}\right) \subseteq V\left(S_{i}\right)$ of size w such that $A\left(S_{i}\right)$ is r-order-linked/well-linked to $B\left(S_{i}\right)$ in S_{i},
3. \mathcal{P} is a sequence of ℓ pairwise disjoint linkages $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)$ such that, for every $0 \leq$ $i<\ell, \mathcal{P}_{i}$ is a $B\left(S_{i}\right)-A\left(S_{i+1}\right)$-linkage of order w which is internally disjoint from S_{i} and S_{i+1} and disjoint from every $S \in \mathcal{S} \backslash\left\{S_{i}, S_{i+1}\right\}$.
Further, a path of r-order-linked sets $(\mathcal{S}, \mathcal{P})$ is called uniform if for all $0 \leq i<\ell$ and for all $b_{1}, b_{2} \in B\left(S_{i}\right)$ we have that $b_{1} \leq_{B\left(S_{i}\right)} b_{2}$ implies $\mathcal{P}_{i}\left(b_{1}\right) \leq_{A\left(S_{i+1}\right)} \mathcal{P}_{i}\left(b_{2}\right)$. A path of well-linked sets is called strict if every vertex in S_{i} lies on an $A\left(S_{i}\right)-B\left(S_{i}\right)$-path.

A cycle of well-linked sets of width w and length ℓ is a pair $\left(\mathcal{S}, \mathcal{P} \cup\left\{\mathcal{P}_{\ell}\right\}\right)$ where $(\mathcal{S}, \mathcal{P})$ is a path of well-linked sets of width w and length $\ell-1$, and \mathcal{P}_{ℓ} is a linkage from the B-set of the last cluster to the A-set of the first cluster that is internally disjoint from $(\mathcal{S}, \mathcal{P})$.
We obtain the following connection between paths of order-linked sets and paths of well-linked sets, allowing us to focus on obtaining paths of order-linked sets when proving our main result. The construction is quite similar to the one used to obtain a fence from an acyclic grid, and the bounds we obtain are essentially the same.

Lemma 8.3. Let $w_{8.3}(w, \ell):=w(\ell+1)$. Every path of w-order-linked sets $(\mathcal{S}, \mathcal{P})$ of width at least $\mathrm{w}_{8.3}(w, \ell)$ and length at least ℓ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of width w and length ℓ.

Since we can construct acyclic grids, fences and cylindrical grids from the objects defined above, it suffices for our results to show that digraphs of high directed tree-width contain a large cycle of well-linked sets.

Theorem 9.3. Every cycle of well-linked sets of width $w \geq w_{9.3}(k)$ and length $\ell \geq \ell_{9.3}(k)$ contains a cylindrical grid of order k.

This allows us to divide our proof into roughly three main "parts".
The first part consists of finding a well-linked web $(\mathcal{P}, \mathcal{Q})$ from a bramble of high order where \mathcal{P} is minimal with respect to \mathcal{Q}. We emphasise that the requirement of minimality is what makes obtaining such a web very challenging.
After obtaining the well-linked web, we can obtain a similar structure where one linkage is "ordered" according to the other, constructing objects which are called splits and segmentations in [KK15].
Theorem 5.15. Let D be a digraph. If $\operatorname{dtw}(D) \geq \mathrm{t}_{5.15}(x, y, q, k)$, then D contains one of the following
(D1) a cylindrical grid of order k as a butterfly minor,
(D2) a (y, q)-split $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ in D, where end $\left(\mathcal{Q}^{\prime}\right)$ is well-linked to start $\left(\mathcal{Q}^{\prime}\right)$, or
(D3) an (x, q)-segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ in D, where end $\left(\mathcal{P}^{\prime}\right)$ is well-linked to start $\left(\mathcal{P}^{\prime}\right)$.

In the second part, we construct a path of well-linked sets from the splits and segmentations obtained previously, together with a back-linkage, which is a linkage from the B-set of the last cluster to the A-set of the first in the path of well-linked sets.

Theorem 10.9. Every digraph D with $\operatorname{dtw}(D) \geq \mathrm{t}_{10.9}(w, \ell)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ such that $B\left(S_{\ell}\right)$ is well-linked to $A\left(S_{0}\right)$ in D.
In the third and final part, we obtain a cycle of well-linked sets from a path of well-linked sets with a back-linkage.
Theorem 11.22. Let w, ℓ be integers, let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right), \mathcal{P}\right)$ be a strict path of welllinked sets of width w^{\prime} and length ℓ^{\prime} and let \mathcal{R} be a $B\left(S_{\ell^{\prime}}\right)-A\left(S_{0}\right)$ linkage of order r. If $w^{\prime} \geq$ $\mathrm{w}_{11.22}(w, \ell, r), r \geq \mathrm{r}_{11.22}(w, \ell)$ and $\ell^{\prime} \geq \ell_{11.22}(w, \ell, r)$, then $\mathrm{D}((\mathcal{S}, \mathcal{P}) \cup \mathcal{R})$ contains a cycle of well-linked sets of width w and length ℓ.
We then combine the statements above to produce the first of our main results.
Theorem 1.1. Let w, ℓ be integers. Every digraph D with $\operatorname{dtw}(D) \geq \operatorname{dtw}_{1.1}(w, \ell)$ contains a cycle of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width w and length ℓ.
Proof. Let $r_{1}=r_{11.22}(w, \ell), w_{1}=w_{11.22}(w, \ell, r)+r$ and $\ell_{1}=\ell_{11.22}(w, \ell, r)$. By Theorem 10.9, D contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{1}}\right), \mathcal{P}\right)$ of width $\mathrm{w}_{11.22}(w, \ell)$ and length $\ell_{1}:=\ell_{11.22}(w, \ell)$ where $B\left(S_{\ell_{1}}\right)$ is well-linked to $A\left(S_{0}\right)$ in D. Hence, there is a $B\left(S_{\ell_{1}}\right)-A\left(S_{0}\right)$ linkage \mathcal{R} of order r_{1} in D. By Theorem 11.22, $\mathrm{D}(\mathcal{S} \cup \mathcal{P} \cup \mathcal{R})$ contains a cycle of well-linked sets ($\mathcal{S}^{\prime}, \mathcal{P}^{\prime}$) of width w and length ℓ.

We note that [KK22] also split their proof into three parts, which served as a base for the outline of our proof. However, the bounds they obtain for all three of their corresponding statements grow larger than any elementary function, and so we essentially need to improve upon nearly all of their proofs.
Combining Theorems 1.1 and 9.3 then yields our improvement of the Directed Grid Theorem.

Theorem 1.2. Every digraph D with $\operatorname{dtw}(D) \geq \operatorname{dtw}_{1.2}(k)$ contains a cylindrical grid of order k as a butterfly minor.

2.2 Obtaining a path of well-linked sets

Several steps of our proofs revolve around linkages which intersect certain subgraphs in an ordered fashion. To simplify our arguments and reasoning and to avoid repetition, we model this configuration in an abstract manner with the help of the concept of temporal digraphs.
A temporal digraph is a pair $T=(V, \mathcal{A})$ consisting of a vertex set V and sequence of arc sets $\mathcal{A}=$ $\left(A_{1}, A_{2}, \ldots A_{\ell}\right)$ such that $D_{t}(T):=\left(V, A_{t}\right)$ is a digraph for all $1 \leq t \leq \ell$. We also refer to $D_{t}(T)$ as layer t of T and call t a time step. The lifetime of D is given by $\ell(D):=\ell$. A temporal walk of length n from v_{0} to v_{n} in a temporal digraph T is a sequence $W:=\left(v_{0}, t_{0}\right),\left(v_{1}, t_{1}\right), \ldots,\left(v_{n}, t_{n}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in A_{t_{i}}$ and $t_{i}<t_{i+1} \leq \ell(T)$ for all $0 \leq i \leq n-1$. If such a walk exists, we say that v_{0} temporally reaches v_{n}. A temporal walk is said to be a temporal path if no vertex appears twice in the sequence. Finally, we say that W departs at t_{0} and arrives at t_{n}, and that $t_{n}-t_{0}$ is the duration of W.
Usage of temporal digraphs arise naturally in a directed setting. Consider the example given in Figure 1. If we want to construct a new linkage starting and ending in a subset of the starting and endpoints of $\mathcal{P}:=\left\{P_{a}, P_{b}, P_{c}\right\}$, then as soon as a path in our new linkage visits a vertex in Q_{2}, it can no longer use vertices from Q_{1}, as we only have connectivity from "left" to "right". Further, as we want some way of ensuring that our paths are disjoint and form a linkage, we are interested in the connectivity provided by each Q_{i} "between" the paths in \mathcal{P} without intersecting other paths in \mathcal{P}. This intuition leads us to the following definition.

Figure 1: The layers $D_{j}(T)$ of the temporal graph $T:=\left(V=\{a, b, c\}, \mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}\right)$ constructed from the graphs Q_{j} displayed above as defined in Definition 6.3.

Definition 6.3. Let \mathcal{P} be a linkage and let $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$ be a set of pairwise disjoint digraphs such that each path $P_{i} \in \mathcal{P}$ can be partitioned as $P_{i}^{1} \cdot P_{i}^{2} \cdot \ldots \cdot P_{i}^{q}=P_{i}$ such that $V\left(P_{i}^{j}\right) \cap V(\mathcal{Q}) \subseteq V\left(Q_{j}\right)$ for all $1 \leq j \leq q$. The routing temporal digraph (V, \mathcal{A}) of \mathcal{P} through
\mathcal{Q}, which we also refer to as $\mathcal{T}(\mathcal{P}, \mathcal{Q})$, is constructed as follows. We set $V=\mathcal{P}$ and for each $1 \leq j \leq q$ we define $A_{j}=\left\{\left(P_{a}, P_{b}\right) \mid P_{a}, P_{b} \in \mathcal{P}\right.$ and there is a path from $V\left(P_{a}\right)$ to $V\left(P_{b}\right)$ inside Q_{j} which is internally disjoint from $\left.\mathcal{P}\right\}$.

Routings In order to better describe the kind of connectivity that a routing temporal digraph provides between the paths of the original linkage, we define the concept of H-routings, where H is some digraph. We would like to point out to the reader that connectivity in temporal digraphs is not transitive, and hence it is not sufficient to restrict the following definition to edges.

Definition 6.4. Let H be a digraph, D be a (temporal) digraph and $S \subseteq V(D)$. An H-routing (over S) is a bijection $\varphi: V(H) \rightarrow S$ such that for each v - u path P in H we can find a $\varphi(v)-\varphi(u)$ (temporal) path in D which is disjoint from $S \backslash \varphi(V(P))$.

In order to apply the framework defined above, we simplify the notion of splits and segmentations to slightly more general structures we call ordered and folded webs.

Definition 10.1. Let $(\mathcal{H}, \mathcal{V})$ be an (h, v)-web. We say that $(\mathcal{H}, \mathcal{V})$ is an ordered web if there is an ordering of $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{v}\right)$ for which each path $H \in \mathcal{H}$ can be decomposed into $H=H_{1} \cdot H_{2} \cdots H_{v}$ such that H_{i} intersects V_{j} if and only if $i=j$.

Definition 10.5. An (h, v)-web $(\mathcal{H}, \mathcal{V})$ is a folded web if every $V_{i} \in \mathcal{V}$ can be split as $V_{i}^{a} \cdot V_{i}^{b}:=V_{i}$ such that both V_{i}^{a} and V_{i}^{b} intersect all paths of \mathcal{H}.

It is not difficult to show that a (p, q)-segmentation $(\mathcal{P}, \mathcal{Q})$ from $[\mathrm{KK} 22]$ is also an ordered web $(\mathcal{P}, \mathcal{Q})$, and that a (p, q)-split $(\mathcal{P}, \mathcal{Q})$ is a folded ordered $(\mathcal{Q}, \mathcal{P})$ web.
Our main results related to routing temporal digraphs are about finding $\mathbf{P}_{k}, \mathbf{C}_{k}$ and $\overleftrightarrow{\mathbf{P}}_{k}$-routings in different contexts. First, we show that unilateral temporal digraphs contain a walk with many vertices. The reason why we consider temporal digraphs where the layers are unilateral is that, given an ordered web $(\mathcal{H}, \mathcal{V})$, each layer of $\mathcal{T}(\mathcal{H}, \mathcal{V})$ is unilateral.

Lemma 6.10. Let $\ell_{6.10}(n, k):=2 k n \sum_{i=1}^{2 k n} n^{i}$. Let T be a temporal digraph with n vertices where each layer is unilateral and let $S \subseteq V(T)$ be a set of size k. If $\ell(T) \geq \ell_{6.10}(n, k)$, then T contains a temporal walk W with $S \subseteq V(W)$.

We can then use the walk obtained in Lemma 6.10 in order to construct a \mathbf{P}_{k}-routing.
Theorem 6.12. Let $\ell_{6.12}(n, k):=\ell_{6.10}\left(n, k^{2}-1\right)$. Let T be a temporal digraph where each layer is unilateral. If $\ell(T) \geq \ell_{6.12}(n, k)$ and $n:=|V(T)| \geq k^{2}-1$, then there is some set $S \subseteq V(T)$ such that T contains a \mathbf{P}_{k}-routing over S.

Intuitively, a \mathbf{P}_{k}-routing in a routing temporal digraph $\mathcal{T}(\mathcal{P}, \mathcal{Q})$ gives connectivity between the paths in \mathcal{P} which is similar to a column in an acyclic grid, which in turn is related to the concept of order-linkedness defined before. This intuition is formalised below.

Lemma 7.6. Let h, k be integers. Let T be the routing temporal digraph of some linkage \mathcal{L} through a sequence $\left(H_{1}, H_{2}, \ldots, H_{h}\right)$ of disjoint digraphs. Let $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ be a linkage of order at most k. If T contains a \mathbf{P}_{k}-routing on the paths $L_{1}, L_{2}, \ldots, L_{k} \in \mathcal{L}^{\prime}$, ordered according to their occurrence on the \mathbf{P}_{k}-routing, then A is 1-order-linked to B in $\mathrm{D}\left(\mathcal{L} \cup \bigcup_{i=1}^{h} H_{i}\right)$, where $A=\left\{a_{i} \mid a_{i}\right.$ is the first vertex of L_{i} on $\left.H_{1}\right\}$ and $B=\left\{b_{i} \mid b_{i}\right.$ is the last vertex of L_{i} on $\left.H_{h}\right\}$.

It is not difficult to see that, given a folded ordered web $(\mathcal{H}, \mathcal{V})$, each layer of $\mathcal{T}(\mathcal{H}, \mathcal{V})$ is strongly-connected. Having strongly-connected layers allows us to obtain \mathbf{C}_{k} or $\widehat{\mathbf{P}}_{k}$-routings
instead. Intuitively, because these two types of routings provide connectivity in both directions between the paths of our linkage \mathcal{P}, we are able to use them to obtain well-linked instead of order-linked sets.

Theorem 6.16. Let T be a temporal digraph such that $D_{i}(T)$ is strongly-connected for all $1 \leq i \leq \ell(T)$. If $\ell(T) \geq \ell_{6.16}(k)$, then for every set $S \subseteq V(T)$ with $|S| \geq \mathrm{s}_{6.16}(k)$ there is a subset $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|=k$ such that D contains an H-routing over S^{\prime} for some $H \in\left\{\mathbf{C}_{k}, \overleftrightarrow{\mathbf{P}}_{k}\right\}$.

Corollary 10.8. Let $(\mathcal{H}, \mathcal{V})$ be a folded ordered (h, v)-web. If $h \geq h_{10.7}(w)$ and $v \geq \mathrm{v}_{10.7}(w, \ell)$, then $(\mathcal{H}, \mathcal{V})$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ. Additionally, $A\left(S_{0}\right) \subseteq \operatorname{start}(\mathcal{H})$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}(\mathcal{H})$.

We can now use the results above to prove Theorem 10.9.
Proof sketch of Theorem 10.9. By Theorem 5.15, we have one of three cases. If D contains a cylindrical grid of order $w \ell$, then it contains a cycle of well-linked sets of width w and length ℓ. If D contains a (y, q)-split $(\mathcal{V}, \mathcal{H})$, then this split is essentially a folded ordered web $(\mathcal{H}, \mathcal{V})$. By Corollary 10.8, we can construct a path of well-linked paths from this split. Moreover, the beginning and the end of this path of well-linked sets coincides with $\operatorname{start}(\mathcal{V})$ and end (\mathcal{V}), respectively. As end (\mathcal{V}) is well-linked to $\operatorname{start}(\mathcal{V})$, the path of well-linked sets obtained satisfies the restrictions in the statement.
In the last case, D an (x, q)-segmentation $(\mathcal{H}, \mathcal{V})$, which also means that $(\mathcal{H}, \mathcal{V})$ is an ordered web. Applying Lemma 10.4 to $(\mathcal{H}, \mathcal{V})$ yields a path of well-linked sets. Moreover, the beginning and the end of this path of well-linked sets coincides with $\operatorname{start}(\mathcal{H})$ and end (\mathcal{H}), respectively. As end (\mathcal{H}) is well-linked to $\operatorname{start}(\mathcal{H})$, the path of well-linked sets obtained satisfies the restrictions in the statement.

2.2.1 Constructing a cycle of well-linked sets

As we can find paths of well-linked sets with their final B-set being well-linked to the initial A-set, our goal is to find a linkage between these two sets that is internally disjoint from the path of well-linked sets in order to obtain a cycle of well-linked sets in the end.

Back-linkage intersecting cluster by cluster First we further analyse the ways a back-linkage can intersect a given path of well-linked sets.
Let $(\mathcal{S}, \mathcal{P})$ be a path of well-linked sets of length ℓ. A jump of length k over $(\mathcal{S}, \mathcal{P})$ is a path R with $\operatorname{start}(R) \in V\left(S_{i}\right) \cup V\left(\mathcal{P}_{i}\right)$ and end $(R) \subseteq V\left(S_{j}\right) \cup V\left(\mathcal{P}_{j}\right)$ (if $j=\ell$, we require end $(R) \subseteq V\left(S_{j}\right)$ instead) such that $|j-i|=k$. If $i<j$, then R is a forward jump. If $i \geq j$ and R is internally disjoint from $(\mathcal{S}, \mathcal{P})$, then R is a backward jump.
Let \mathcal{R} be a partial back-linkage for $(\mathcal{S}, \mathcal{P})$. We say that \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster if \mathcal{R} does not contain any forward or backward jump of length greater than one over $(\mathcal{S}, \mathcal{P})$. We can show that in case we do not immediately obtain the desired cycle of well-linked sets we can find a back-linkage that intersects cluster by cluster, thus in a slightly more ordered fashion.

Lemma 11.6. Let $\ell_{1}, w_{1}, \ell_{2}, w_{2}$ be integers, let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots S_{\ell^{\prime}}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right)\right)$ be a strict path of well-linked sets of length $\ell^{\prime} \geq \ell^{\prime}{ }_{11.6}\left(w_{1}, \ell_{1}, \ell_{2}, m\right)$ and width $w^{\prime} \geq \mathrm{w}^{\prime}{ }_{11.6}\left(w_{1}, w_{2}\right)$ with a partial back-linkage \mathcal{R} of order at least w_{2} in a digraph D such that \mathcal{R} is weakly m minimal with respect to $(\mathcal{S}, \mathcal{P})$. Then D contains at least one of the following:
(C1) a cycle of well-linked sets of length ℓ_{1} and width w_{1}, or
(C2) a path of well-linked sets of length ℓ_{2} and width w_{2} together with a partial back-linkage $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ of order w_{2} intersecting it cluster-by-cluster.

Proof sketch. First we establish that if there are no long back-jumps, then we can obtain (C2). We then choose a maximal family \mathcal{J} of nested longer and longer back-jumps and consider the subpath of well-linked sets all elements of \mathcal{J} jump over.
If $|\mathcal{J}|<w_{1}$, then use the partial back-linkage over the whole path of well-linked sets to construct a partial back-linkage over the subpath by using linkages in the unused parts, the back-linkage and Menger's Theorem. As \mathcal{J} is chosen maximally there are no more long back-jumps over this subpath of well-linked sets, which again allows us to obtain (C2).
So assume \mathcal{J} contains w_{1} jumps. We use the jumps in \mathcal{J} to construct a partial back-linkage for the subpath of well-linked sets that is completely disjoint. We do so by finding a linkage \mathcal{X}_{1} from the last cluster to the start-vertices of the jumps, and a linkage \mathcal{X}_{2} from the end-vertices to the first cluster. In a path of well-linked sets is always possible to find a path of well-linked sets of reduced width choosing subsets of the first A-set and the last B-set. Thus, we can find a path of well-linked sets of reduced width with the end-vertices of \mathcal{X}_{2} being the first A-set and the start-vertices \mathcal{X}_{1} being the last B-set, yielding the cycle of well-linked sets of length ℓ_{1} and width w_{1}, satisfying (C1).

Getting a 2-horizontal web Given a path of well-linked sets and a back-linkage intersecting it cluster by cluster, we construct a new type of web, which we call q-horizontal web, that "preserves" the cluster by cluster property of the back-linkage.

Definition $11.7(q$-horizontal web). Let $(\mathcal{H}, \mathcal{V})$ be a web. We say that $(\mathcal{H}, \mathcal{V})$ is a q-horizontal web if every path $H_{i} \in \mathcal{H}$ can be decomposed into paths $H_{i}^{1} \cdot H_{i}^{2} \cdot \ldots \cdot H_{i}^{q}=H_{i}$ and every path $V_{j} \in \mathcal{V}$ can be decomposed into paths $V_{j}^{1} \cdot V_{j}^{2} \cdot \ldots \cdot V_{j}^{q}=V_{j}$ such that $V_{j}^{x} \cap H_{i} \subseteq H_{i}^{q-x+1} \cup H_{i}^{q-x+2}$ and $V_{j}^{x} \cap H_{i}^{q-x+1} \neq \emptyset$ for all $1 \leq x \leq q$, where for simplicity we define H_{i}^{q+1} to be empty.

We can construct an ordered web $(\mathcal{R}, \mathcal{V})$ from a back-linkage \mathcal{R} and a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ (Lemma 11.8). From there we find a new "horizontal" linkage \mathcal{H} which is weakly $|\mathcal{H}|-$ minimal with respect to \mathcal{V} such that $(\mathcal{H}, \mathcal{V})$ is a 2 -horizontal web. Further, \mathcal{H} goes forwards through the path of well-linked sets $(\mathcal{S}, \mathcal{P})$, visiting the clusters of \mathcal{S} in the order given by \mathcal{S}. Clearly, $(\mathcal{S}, \mathcal{P})$ contains some forward linkage, and the construction of \mathcal{V} makes us able to construct \mathcal{H} such that it forms a web together with \mathcal{V}.
We obtain \mathcal{H} by first making it minimal with respect to \mathcal{V}. If \mathcal{H} does not intersect \mathcal{V} as required for them to form a 2 -horizontal web, we can find a cycle of well-linked sets. Towards this end, we prove (in Lemma 11.10) that a path of well-linked sets that contains a forward linkage disjoint from the back-linkage also contains a cycle of well-linked sets.
Now, given a path of well-linked sets and a large forward linkage \mathcal{L}, we can construct a new path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ (Lemma 11.9) and a subset $\mathcal{L}^{*} \subseteq \mathcal{L}$ disjoint from $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ and also disjoint from the back-linkage \mathcal{R}. Applying results from Section 10 (Corollary 10.3), we obtain another path of well-linked sets $\left(\mathcal{S}^{\prime \prime}, \mathcal{P}^{\prime \prime}\right)$ going in the same direction as \mathcal{R}. With respect to $\left(\mathcal{S}^{\prime \prime}, \mathcal{P}^{\prime \prime}\right)$, the forward linkage \mathcal{L}^{*} now acts like a back-linkage which is disjoint from $\left(\mathcal{S}^{\prime \prime}, \mathcal{P}^{\prime \prime}\right)$, which yields a cycle of well-linked sets (Lemma 11.10).
Going back to constructing \mathcal{H}, we can argue that it must intersect \mathcal{V} enough, even when taking \mathcal{H} minimal with respect to \mathcal{V}, forming an object we call a semi-web.
From a semi-web $(\mathcal{H}, \mathcal{V})$ we can construct (Observation 11.12) a horizontal web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ such that \mathcal{H}^{\prime} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V} or find large $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ and $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ which are
internally disjoint and satisfy some additional conditions. This we need for the final construction of the 2-horizontal web we are looking for unless we already find a cycle of well-linked sets during the construction (Lemma 11.14).

Lemma 11.14. Let w, ℓ, h, v be integers, let $(\mathcal{S}, \mathcal{P})$ be a strict path of well-linked sets of length $\ell^{\prime} \geq \ell_{11.14}(w, m)$ and width $w^{\prime}=\mathrm{w}_{11.14}(h, w, m)$ with a back-linkage \mathcal{R} of order $r \geq$ $\mathrm{r}_{11.14}(h, w, v, m)$ intersecting $(\mathcal{S}, \mathcal{P})$ cluster by cluster such that \mathcal{R} is weakly m-minimal with respect to $(\mathcal{S}, \mathcal{P})$. Then, $\mathrm{D}(\mathcal{S} \cup \mathcal{P} \cup \mathcal{R})$ contains one of the following:
(H1) a cycle of well-linked sets of width w and length ℓ, or
(H2) a weakly $\mathrm{m}_{11.14}(h, w)$-minimal 2-horizontal web $(\mathcal{H}, \mathcal{V})$ where $\mathcal{V} \subseteq \mathcal{R},|\mathcal{H}| \geq h$ and $|\mathcal{V}| \geq v$.

Using the 2-horizontal web We split the 2-horizontal web (\mathcal{H}, \mathcal{V}) obtained above into two parts $\mathcal{H}=\mathcal{H}^{1} \cdot \mathcal{H}^{2}$ in order to construct a new path of well-linked sets with \mathcal{H}^{1} and then use \mathcal{H}^{2} to complete the cycles.
To construct a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ in \mathcal{H}_{1}, we adapt the construction in the proof of [KK15, Lemma 5.15], obtaining a split or a more suitable kind of segmentation (Lemma 11.18). This allows us to continue from the last cluster of $(\mathcal{S}, \mathcal{P})$ to \mathcal{H}^{2} without intersecting $(\mathcal{S}, \mathcal{P})$ again, which in turn allows us to construct a folded ordered web or an ordered web (Lemma 11.19), allowing us to apply the results of Section 10.
The tools established so far already allow us to construct a cycle of well-linked sets from a folded ordered web. So we have an ordered web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ which ends on $\operatorname{end}\left(\mathcal{H}^{1}\right)$. We use the subpaths of the paths in \mathcal{H}^{\prime} after their last intersection with \mathcal{V}^{\prime} to construct a linkage to \mathcal{H}^{2} that is disjoint from a path of order-linked sets built from the ordered web (Lemma 11.20). We use the paths in \mathcal{V}^{1} to construct a back-linkage. Using the weak minimality of \mathcal{H} with respect to \mathcal{V}, we avoid intersections between \mathcal{V}^{1} and the path of order-linked sets we constructed.

Lemma 11.21. Let $(\mathcal{H}, \mathcal{V})$ be a 2 -horizontal web where \mathcal{H} is weakly c-minimal with respect to \mathcal{V}. If $|\mathcal{H}| \geq \mathrm{h}_{11.21}(w, \ell)$ and $|\mathcal{V}| \geq \mathrm{v}_{11.21}(w, \ell, c)$, then $\mathrm{D}((\mathcal{H}, \mathcal{V}))$ contains a cycle of well-linked sets of length ℓ and width w.

From a path of well-linked sets to a cycle of well-linked sets Having gained enough insight on how to disentangle the back-linkage from the path of well-linked sets, we can now show how to obtain a cycle of well-linked sets.
Proof sketch of Theorem 11.22. Assume, without loss of generality, that \mathcal{R} is weakly r-minimal with respect to $(\mathcal{S}, \mathcal{P})$. Applying Lemma 11.6 to $(\mathcal{S}, \mathcal{P})$ and \mathcal{R} yields two cases. If (C 1$)$ holds, then we obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (C2) holds, and $\mathrm{D}((\mathcal{S}, \mathcal{P}) \cup \mathcal{R})$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of width w_{1} and length ℓ_{1} with a back-linkage \mathcal{R}^{\prime} of order w_{1} intersecting $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ cluster by cluster such that $\mathcal{R}^{\prime} \subseteq \mathcal{R}$. Note that \mathcal{R}^{\prime} is also weakly r-minimal with respect to ($\left.\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$.
Applying Lemma 11.14 to $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ and \mathcal{R}^{\prime} yields two further cases. If (H1) holds, then we obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (H2) holds, and we obtain a 2 -horizontal (h, v)-web $(\mathcal{H}, \mathcal{V})$ such that \mathcal{H} is weakly m-minimal with respect to \mathcal{V} which, by Lemma 11.21, contains a cycle of well-linked sets of width w and length ℓ.

3 Preliminaries

In this section we fix our notation and recall standard concepts and results from the literature used throughout the paper.

Sequences, sets, and functions. Given sequences $S_{1}:=\left(x_{1}, x_{2}, \ldots, x_{j}\right)$ and $S_{2}:=\left(y_{1}, y_{2}, \ldots\right.$, $\left.y_{k}\right)$, we write $S_{1} \cdot S_{2}$ for the sequence $S_{3}:=\left(x_{1}, x_{2}, \ldots, x_{j}, y_{1}, y_{2}, \ldots, y_{k}\right)$. We say that $S_{1} \cdot S_{2}$ is a decomposition of S_{3}. The following is a well-known theorem about sequences of numbers due to Erdős and Szekeres.

Theorem 3.1 ([ES35]). Let $r, s \in \mathbb{N}$. Every sequence of distinct numbers of length at least $(r-1)(s-1)+1$ contains a monotonically increasing subsequence of length r or a monotonically decreasing subsequence of length s.

We usually consider functions $f: A \rightarrow B$ to be partial, that is, the domain $\operatorname{Dom}(f)$ is not necessarily A.
An ordered set is a sequence $A=\left(a_{1}, \ldots, a_{k}\right)$ such that all elements of A are distinct. The order $\leq_{A}: A \times A$ induced by A is defined by $a_{i} \leq_{A} a_{j}$ for all $1 \leq i \leq j \leq k$. An ordered subset $A^{\prime} \subseteq A$ then is just a subsequence of A, that is, the order of the elements is preserved. If we obtain an ordered set A^{\prime} from a set A by fixing an order, we call A^{\prime} an ordering of A.

Power towers and polynomials Let d be an integer and $V=\left\{x_{1}, \ldots, x_{k}\right\}$ a set of variables. A polynomial of degree d over V is a function $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the form $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)=$ $\sum_{i=1}^{n}\left(c_{i} \Pi_{j=1}^{k} x_{j}^{e_{j, i}}\right)$, where for each $1 \leq i \leq n$ and each $1 \leq j \leq k$ we have that $c_{i} \in \mathbb{R}, e_{j, i} \in \mathbb{N}$ and $\sum_{j=1}^{k} e_{j, i} \leq d$. We write $\operatorname{poly}^{d}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ for the set of all functions f for which there is a polynomial p of degree d over the variable set $x_{1}, x_{2}, \ldots, x_{k}$. such that $f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in$ $O\left(p\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$.
We define power towers as follows. Given an integer h and a set of functions F over a set of variables V, we define a set of functions $2^{h \uparrow \uparrow F}$ recursively as follows. We set $2^{0 \uparrow \uparrow F}=F$ and define $2^{h \uparrow \uparrow F}$ as $\left\{f: \mathbb{R}^{|V|} \rightarrow \mathbb{R} \mid f \in O\left(2^{g(V)}\right), g \in 2^{h-1 \uparrow \uparrow F}\right\}$ for $h>1$. If $F=\operatorname{poly}^{d}(V)$, we say that an $f \in 2^{h \uparrow \uparrow F}$ is a power tower of height h.

Graphs and digraphs. We denote by $E(G)$ the edge set of a graph G, directed or not, and by $V(G)$ its vertex set. We often use G for undirected and D for directed graphs.
Let D be a digraph. Given a set $X \subseteq V(D)$, we write $D-X$ for the digraph $(Y:=V(D) \backslash X$, $E(D) \subseteq Y \times Y)$. Similarly, given a set $F \subseteq E(D)$, we write $D-F$ for the digraph $(V(D), V(A) \backslash$ $F)$.
If $u \neq v \in V(D)$, we write $D+(v, u)$ for the digraph $(V(D), E(D) \cup\{(v, u)\})$. We also extend this operation to vertices and digraphs in the obvious way.
If D is a digraph and $v \in V(D)$, then $N_{D}^{\text {in }}(v):=\{u \in V \mid(u, v) \in E\}$ si the set of in-neighbours and $N_{D}^{\text {out }}(v):=\{u \in V \mid(v, u) \in E\}$ the set of out-neighbours of v. By $\operatorname{deg}_{D}^{\text {in }}(v):=\left|N^{\text {in }}(v)\right|$ we denote the in-degree of v and by $\operatorname{deg}_{D}^{\text {out }}(v):=\left|N^{\text {out }}(v)\right|$ its out-degree. When working with a set or another structure X containing digraphs, we write $\mathrm{D}(X)$ to mean the digraph obtained by taking the union of all digraphs in X.

Paths and walks. A walk of length ℓ in a digraph D is a sequence of vertices $W:=\left(v_{0}, v_{1}, \ldots, v_{\ell}\right)$ such that $\left(v_{i}, v_{i+1}\right) \subseteq E(D)$, for all $0 \leq i<\ell$. We write $\operatorname{start}(W)$ for v_{0} and end (W) for v_{ℓ} and say that W is a $v_{0}-v_{\ell}$-walk.

A walk $W:=\left(v_{0}, v_{1}, \ldots, v_{\ell}\right)$ is called a path if no vertex appears twice in it and it is called a cycle if $v_{0}=v_{\ell}$ and $v_{i} \neq v_{j}$ for all $0 \leq i<j<\ell$.
We often identify a walk W in D with the corresponding subgraph and write $V(W)$ and $E(W)$ for the set of vertices and edges appearing on it.
Given two walks $W_{1}:=\left(x_{1}, x_{2}, \ldots, x_{j}\right)$ and $W_{2}:=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ with end $\left(W_{1}\right)=\operatorname{start}\left(W_{2}\right)$, we make use of the concatenation notation for sequences and write $W_{1} \cdot W_{2}$ for the walk W_{3} := $\left(x_{1}, x_{2}, \ldots, x_{j}, y_{2}, y_{3}, \ldots, y_{k}\right)$. We say that $W_{1} \cdot W_{2}$ is a decomposition of W_{3}. If W_{1} or W_{2} is an empty sequence, then the result of $W_{1} \cdot W_{2}$ is the other walk (or the empty sequence if both walks are empty).
Let P be a path in a digraph D and let X be a set of vertices with $V(P) \cap X \neq \emptyset$. We consider the vertices p_{1}, \ldots, p_{m} of P ordered by their occurrence on P. Let i be the highest index such that $p_{i} \in X$ and let j be the smallest index such that $p_{j} \in X$. We call p_{i} the last vertex of P in X or, depending on the perspective, the last element of X on P, and p_{j} the first vertex of P in X or the first vertex of X on P.
If $v \in V(D)$ we denote by out* (v) the set of vertices reachable from v in D and by $\operatorname{in}^{*}(v)$ the set of vertices from which v can be reached in D.

Special digraphs. We denote the digraph of a path on k vertices by \mathbf{P}_{k}. For the bidirected path on k vertices, we write $\stackrel{\rightharpoonup}{\mathbf{P}}_{k}:=\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{\left(u_{i}, u_{j}\right) \mid 1 \leq i, j \leq k\right.\right.$ and $\left.\left.|i-j|=1\right\}\right)$. The cycle on k vertices is given by $\mathbf{C}_{k}:=\left(\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\},\left\{\left(u_{i}, u_{i+1} \bmod k\right) \mid 0 \leq i<k\right\}\right)$. Finally, we write $\overleftrightarrow{\mathbf{K}}_{k}:=\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{\left(u_{i}, u_{j}\right) \mid 1 \leq i, j \leq k\right.\right.$ and $\left.\left.i \neq j\right\}\right)$ for the complete digraph on k vertices.

Connectivity. A digraph D is said to be strongly connected if for every $u, v \in V$ there is a u-v-path and a v - u-path in D. We say D is unilateral if for every $u, v \in V$ there is a u - v-path or a v-u-path in D. Finally, D is weakly-connected if the underlying undirected graph of D is connected.
A feedback vertex set of D is a set $X \subseteq V(D)$ such that $D-X$ is acyclic. Similarly, a feedback arc set of D is a set $F \subseteq E(D)$ such that $D-F$ is acyclic.

Linkages and separators. Let $A, B \subseteq V(D)$. An $A-B$-walk is a walk W that starts in A and ends in B. A set $X \subseteq V(D)$ is an A - B separator if there are no A - B-paths in $D-X$.
A linkage in D is a set \mathcal{L} of pairwise vertex disjoint paths. The order $|\mathcal{L}|$ of \mathcal{L} is the number of paths it contains.
An A - B-linkage of order k is a linkage $\mathcal{L}:=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ such that $\operatorname{start}\left(L_{i}\right) \in A$ and $\operatorname{end}\left(L_{i}\right) \in B$ for all $1 \leq i \leq k$. We write $\operatorname{start}(\mathcal{L})$ for the set $\left\{\operatorname{start}\left(L_{i}\right) \mid L_{i} \in \mathcal{L}\right\}$ and end (\mathcal{L}) for the set $\left\{\operatorname{end}\left(L_{i}\right) \mid L_{i} \in \mathcal{L}\right\}$. We also extend the notation for path concatenation to linkages. Given linkages $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ and $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{k}\right\}$ such that end $(\mathcal{P})=\operatorname{start}(\mathcal{Q})$, we write $\mathcal{P} \cdot \mathcal{Q}$ for the linkage $\left\{P_{a} \cdot Q_{b} \mid P_{a} \in \mathcal{P}, Q_{b} \in \mathcal{Q}\right.$ and end $\left.\left(P_{a}\right)=\operatorname{start}\left(Q_{b}\right)\right\}$.
It often is convenient to use a linkage \mathcal{L} as a function $\mathcal{L}: \operatorname{start}(\mathcal{L}) \rightarrow \operatorname{end}(\mathcal{L})$. The expression $\mathcal{L}(a)=b$ then means that \mathcal{L} contains a path starting in a and ending in b.
We frequently use the following classical result by Menger.
Theorem 3.2 (Menger's Theorem). Let D be a digraph, $A, B \subseteq V(D)$ with $|A|=|B|$. There is an A - B-linkage of size k in D if and only if every $A-B$ separator has size at least k.

Let D be a digraph, $A, B \subseteq V(D)$, and $c \in \mathbb{N}$. An A - B-linkage with congestion cin D is a set \mathcal{L} of A - B-paths such that no vertex of $V(D)$ occurs in more than c distinct paths in \mathcal{L}. A linkage of congestion 1 is called integral and a linkage of congestion 2 is called half-integral.

A simple application of Theorem 3.2 yields the following lemma (see e.g. [KK15]).
Lemma 3.3. Let D be a digraph, $A, B \subseteq V(D)$. If there is an A - B-linkage of order $c \dot{k}$ and congestion c in D, then there is an integral A - B-linkage of order k in D.

Throughout the paper we frequently work with a special kind of linkages that we define next.
Definition 3.4 (minimal linkages). Let D be a digraph, let $H \subseteq D$ be a subgraph, and let \mathcal{L} be a linkage of order $k . \mathcal{L}$ is minimal with respect to H, or H-minimal, if for all edges $e \in \bigcup_{P \in \mathcal{L}} E(P) \backslash E(H)$ there is no $\operatorname{start}(\mathcal{L})$-end (\mathcal{L})-linkage of order k in the graph $(\mathcal{L} \cup H)-e$.

Given a linkage \mathcal{L} in a digraph D and a subgraph $H \subseteq D$, we can always obtain a linkage \mathcal{L}^{\prime} with same order and same endpoints as \mathcal{L} which is H-minimal by iteratively removing edges $e \in E(\mathcal{L}) \backslash E(H)$ for which a $\operatorname{start}(\mathcal{L})$-end (\mathcal{L})-linkage of order $|\mathcal{L}|$ exists avoiding e.
Minimal linkages were used extensively in [KK15]. The idea is that when constructing paths of an H-minimal linkage \mathcal{L}, we always prefer to use edges of H over edges not in $E(H)$. This implies the following property which we exploit frequently in our proofs.

Definition 3.5 (weak minimality). A linkage \mathcal{L} in a digraph D is weakly k-minimal with respect to a subgraph H of D if for every $P_{1} \cdot e \cdot P_{2} \in \mathcal{L}$ with $e \in E(\mathcal{L}) \backslash E(H)$ there is a $V\left(P_{1}\right)-V\left(P_{2}\right)$ separator of size at most $k-1$ in $(\mathcal{L} \cup H)-e$.

Observation 3.6. Let H be a subgraph of a digraph D and let \mathcal{L} be a linkage which is H minimal. Then \mathcal{L} is weakly $|\mathcal{L}|$-minimal with respect to H.

Proof. Assume towards a contradiction that there is some $L \in \mathcal{L}$ and some $e \in E(L) \backslash E(H)$ such that L can be decomposed into $L_{1} \cdot e \cdot L_{2}$ and there is no $V\left(L_{1}\right)-V\left(L_{2}\right)$ separator of size less than $|\mathcal{L}|$ in $\mathrm{D}(\mathcal{L} \cup H)-e$. By Theorem 3.2, there is a $V\left(L_{1}\right)$ - $V\left(L_{2}\right)$-linkage \mathcal{Q} of order $|\mathcal{L}|$ in $\mathrm{D}(\mathcal{L} \cup H)-e$.
Let S be a minimum $\operatorname{start}(\mathcal{L})$-end (\mathcal{L}) separator in $\mathrm{D}(\mathcal{L} \cup H)-e$. Because \mathcal{L} is H-minimal, we have that $|S|<|\mathcal{L}|$. Hence, S must hit every path in $\mathcal{L} \backslash\{L\}$ and it must be disjoint from L.
Since $|\mathcal{Q}|=|\mathcal{L}|$, there is some $Q \in \mathcal{Q}$ which is not hit by S. Hence, there is a $\operatorname{start}(L)$-end (L) path in $\mathrm{D}(\mathcal{L} \cup H)-e-S$, a contradiction to the assumption that S is a separator. Thus, \mathcal{L} is weakly $|\mathcal{L}|$-minimal with respect to H.

We close this part by recalling the definition of well-linkedness, an important property of a central concept in our proof, the cycle-of-well-linked-sets.

Definition 3.7. Let A, B be sets of vertices in a digraph D. We say that A is well-linked to B in D if for every $A^{\prime} \subseteq A$ and every $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ there is an A^{\prime} - B^{\prime}-linkage of order $\left|A^{\prime}\right|$ in D.

Minors. Given a digraph D and an $\operatorname{arc}(v, u) \in E(D)$, we say that (v, u) is butterfly contractible if $\operatorname{deg}^{\text {out }}(v)=1$ or $\operatorname{deg}^{\text {in }}(u)=1$. The butterfly contraction of (v, u) is the operation which consists of removing v and u from D, then adding a new vertex $v u$, together with the arcs $\left\{(w, v u) \mid w \in \operatorname{deg}_{D}^{\text {in }}(v)\right\}$ and $\left\{(v u, w) \mid w \in \operatorname{deg}_{D}^{\text {out }}(u)\right\}$. Note that, by definition of digraphs, we remove duplicated arcs and loops, that is, arcs of the form (w, w). If there is a subgraph D^{\prime} of D such that we can construct another digraph H from D^{\prime} by means of butterfly contractions, then we say that H is a butterfly minor of D, or that D contains H as a butterfly minor.

4 Directed Treewidth and Grids

In this section we recall directed treewidth and the dual concepts of brambles and cylindrical grids. We also define various other forms of "grids" in directed graphs that we use in the sequel. Directed treewidth was originally introduced by Reed [Ree99] and Johnson, Robertson, Seymour, and Thomas [JRST01b], see also [JRST01a]. Adler [Adl07] showed that the original definition in [JRST01b] of directed treewidth is not closed under butterfly minors. We therefore use the variant of directed treewidth defined in [KK22], which is closed under taking butterfly minors.
An arborescence T is an acyclic directed graph obtained from an undirected rooted tree by orienting all edges away from the root. That is, T has a vertex r_{0}, called the root of T, with the property that for every $r \in V(T)$ there is a unique directed path from r_{0} to r in T. For each $r \in V(T)$ we denote the subarborescence of T induced by the set of vertices in T reachable from r by T_{r}. In particular, r is the root of T_{r}.

Definition 4.1 ([KK22, Definition 3.1]). A directed tree decomposition of a digraph D is a triple (T, β, γ), where $\beta: V(T) \rightarrow 2^{V(D)}$ and $\gamma: E(T) \rightarrow 2^{V(D)}$ are functions and T is an arborescence such that
(W1) $\{\beta(t): t \in V(T)\}$ is a partition of $V(D)$ into (possibly empty) sets and
(W2) for every $e=(s, t) \in E(T)$, there is no closed directed walk in $D-\gamma(e)$ containing a vertex in A and a vertex in B, where $A=\bigcup \beta(t): t \in V\left(T_{t}\right)$ and $B=V(D) \backslash A$.

For $t \in V(T)$ we define $\Gamma(t):=\beta(t) \cup \bigcup \gamma(e): e \sim t$, where $e \sim t$ if e is incident to t, and we define $\beta\left(T_{t}\right):=\bigcup\left\{\beta(t): t \in V\left(T_{t}\right)\right\}$. The width of (T, β, γ) is the least integer w such that $|\Gamma(t)| \leq w+1$ for all $t \in V(T)$. The directed treewidth of D is the least integer w such that D has a directed tree decomposition of width w. The sets $\beta(t)$ are called the bags and the sets $\gamma(e)$ are called the guards of the directed tree decomposition.

The natural dual to directed tree decompositions are objects called brambles. The concept of brambles was also introduced by [JRST01b]. For the same reason as before we use the variant of brambles defined in [KK15].

Definition 4.2. A bramble in a digraph D is a set \mathcal{B} of strongly connected subgraphs $B \subseteq D$ such that $B \cap B^{\prime} \neq \emptyset$ for all $B, B^{\prime} \in \mathcal{B}$.
A cover of \mathcal{B} is a set $X \subseteq V(D)$ of vertices such that $V(B) \cap X \neq \emptyset$ for all $B \in \mathcal{B}$. Finally, the order of a bramble \mathcal{B} is the minimum size of a cover for \mathcal{B}. The bramble number $b n(D)$ of D is the maximum order of a bramble in D.

We also need the following relation between brambles and directed treewidth. The following can be obtained from results due to [JRST01b] by converting brambles to havens and back, and the statement was proven formally by [KO14].

Lemma 4.3 ([KO14, Corollary 6.4.24]). There are constants c, c^{\prime} such that for all digraphs D, $\operatorname{bn}(D) \leq c \operatorname{dtw}(D) \leq c^{\prime} \operatorname{bn}(D)$.

By combining the statement (1.1) of [JRST01b] and Lemma 6.4.20 of [KO14], we obtain the following.

Corollary 4.4 ([JRST01b] $+[$ KO14]). Let D be a digraph. If $\operatorname{dtw}(D) \geq 2 k$, then D contains a bramble of order k.

Figure 2: Cylindrical grid G_{8} of order 8 drawn in two ways. The drawing on the right illustrates how a cylindrical grid is obtained from a fence. The dotted orange paths symbolise the edges e_{i} that close the cycles drawn solid on the left.

We now define another obstruction to directed treewidth called cylindrical grids. See Figure 2 for an illustration.

Definition 4.5. A cylindrical grid of order k is a digraph G_{k} consisting of k pairwise disjoint directed cycles $C_{1}, C_{2}, \ldots, C_{k}$ of length $2 k$, together with a set of $2 k$ pairwise vertex disjoint paths $P_{1}, P_{2}, \ldots, P_{2 k}$ of length $k-1$ such that

- each path P_{i} has exactly one vertex in common with each cycle C_{j} and both endpoints of P_{i} are in $V\left(C_{1}\right) \cup V\left(C_{k}\right)$,
- the paths $P_{1}, P_{2}, \ldots, P_{2 k}$ appear on each C_{i} in this order, and
- for each $1 \leq i \leq 2 k$, if i is odd, then the cycles $C_{1}, C_{2}, \ldots, C_{k}$ occur on P_{i} in this order and, if i is even, then the cycles occur in the reverse order $C_{k}, C_{k-1}, \ldots, C_{1}$.
Besides cylindrical grids several different ways of defining "directed grids" have been considered in the literature (for example [RRST96], [JRST01b], [KK15]). Two of these, called acyclic grids and fences, see Figure 3, are used at various points of our proof. Since we are interested in grids in the context of minors, we define grids by linkages instead of giving explicit vertex and edge sets.
To motivate the following definitions let us dissect a cylindrical grid $\left(\left(C_{1}, \ldots, C_{k}\right),\left(P_{1}, \ldots, P_{2 k}\right)\right)$ as follows. An important difference between cylindrical grids and grids in undirected graphs is that cylindrical grids are locally acyclic in the following sense. Suppose we delete in each cycle C_{i} the edge e_{i} whose head is on the path P_{1}. These edges are marked by the dotted red lines in Figure 2. The resulting digraph is acyclic and consists of two linkages: the linkage $\left\{P_{1}, \ldots, P_{2 k}\right\}$ and the linkage $\left\{C_{1}-e_{1}, \ldots, C_{k}-e_{k}\right\}$ which contains for each cycle C_{i} the path that remains once the edge e_{i} is deleted. Digraphs of this form are called fences. See Figure 2 for a drawing of cylindrical grids illustrating how they are constructed from a fence with additional edges closing the cycles.

Definition 4.6. A (p, q)-fence is a tuple $(\mathcal{P}, \mathcal{Q})$ such that

- $\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{2 p}\right)$ and $\mathcal{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{q}\right)$ are linkages,
- for each $1 \leq i \leq 2 p$ and each $1 \leq j \leq q$, the digraph $P_{i} \cap Q_{j}$ is a path (and therefore non-empty),
- for each $1 \leq j \leq q$, the paths $P_{1} \cap Q_{j}, P_{2} \cap Q_{j}, \ldots, P_{2 p} \cap Q_{j}$ appear in this order along Q_{j}, and
- for each $1 \leq i \leq 2 p$, if i is odd then the paths $P_{i} \cap Q_{1}, P_{i} \cap Q_{2}, \ldots, P_{i} \cap Q_{q}$ appear in this order along P_{i}, and if i is even instead, then the paths $P_{i} \cap Q_{q}, P_{i} \cap Q_{q-1}, \ldots, P_{i} \cap Q_{1}$ appear in this order along P_{i}.

See Figure 3b for an illustration. The "horizontal" paths, or rows, constitute the linkage \mathcal{Q} and the columns form the linkage \mathcal{P}.
A useful property of a (p, q)-fence $(\mathcal{P}, \mathcal{Q})$ is that if $A \subseteq \operatorname{start}(\mathcal{Q})$ and $B \subseteq \operatorname{end}(\mathcal{Q})$ are sets with $|A|=|B| \leq p$ then there is an $A-B$-linkage \mathcal{L} of order $|A|$ in the graph $\bigcup \mathcal{P} \cup \bigcup \mathcal{Q}$.
Now let us further decompose the fence constructed from the cylindrical web to obtain an even simpler form of directed grid. In a fence we can only route from "left to right" but we can route "upwards" as well as "downwards". An even simpler form of directed grid is obtained if in a fence we remove the "upwards" paths, i.e. every second column. The resulting digraph is called an acyclic grids, see Figure 3a.

Definition 4.7. An acyclic (p, q)-grid is a pair $(\mathcal{P}, \mathcal{Q})$ such that

- $\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{p}\right)$ and $\mathcal{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{q}\right)$ are linkages,
- for each $1 \leq i \leq p$ and each $1 \leq j \leq q$, the digraph $P_{i} \cap Q_{j}$ is a path (and therefore non-empty),
- for each $1 \leq j \leq q$, the paths $P_{1} \cap Q_{j}, P_{2} \cap Q_{j}, \ldots, P_{p} \cap Q_{j}$ appear in this order along Q_{j}, and
- for each $1 \leq i \leq p$, the paths $P_{i} \cap Q_{1}, P_{i} \cap Q_{2}, \ldots, P_{i} \cap Q_{q}$ appear in this order along P_{i}.

Figure 3: An acyclic grid and a fence.
Acyclic grids only allow to route from top to bottom and left to right.
The last type of grid-like structures we define is called a web, originally introduced by Reed et al. in [RRST96]. Webs form an important step in the proof of the directed grid theorem in [KK15].

5 Constructing splits and segmentations

The starting point for constructing our paths of well-linked sets and paths of order-linked sets are splits and segmentations, which add more structure to webs by ensuring that one linkage of the web intersects the other in an ordered fashion. We repeat below the definition of splits and segmentations from Kawarabayashi and Kreutzer [KK22].

Definition 5.1 ([KK22, Definitions 5.6 and 5.7]). Let \mathcal{P} and \mathcal{Q}^{\star} be linkages and let $\mathcal{Q} \subseteq \mathcal{Q}^{\star}$ be a sublinkage of order q. Let $r \geq 0$.
(S1) An $\left(r, q^{\prime}\right)$-split of $(\mathcal{P}, \mathcal{Q})$ (with respect to $\left.\mathcal{Q}^{\star}\right)$ is a pair $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of linkages of order $r=\left|\mathcal{P}^{\prime}\right|$ and $q^{\prime}=\left|\mathcal{Q}^{\prime}\right|$ with $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ such that there is a path $P \in \mathcal{P}$ and edges $e_{1}, \ldots, e_{r-1} \in$ $E(P) \backslash E\left(\mathcal{Q}^{\star}\right)$ such that $P=P_{1} e_{1} P_{2} \ldots e_{r-1} P_{r}$ and $\mathcal{P}^{\prime}:=\left(P_{1}, \ldots, P_{r}\right)$ and every $Q \in \mathcal{Q}^{\prime}$ can be divided into subpaths Q_{1}, \ldots, Q_{r} such that $Q=Q_{1} e_{1}^{\prime} \ldots e_{r-1}^{\prime} Q_{r}$, for suitable edges $e_{1}^{\prime}, \ldots, e_{r-1}^{\prime} \in E(Q)$, and $\emptyset \neq V(Q) \cap V\left(P_{i}\right) \subseteq V\left(Q_{r+1-i}\right)$, for all $1 \leq i \leq r$.
(S2) A subset $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ of order q^{\prime} is a q^{\prime}-segmentation of $P \in \mathcal{P}$ (with respect to \mathcal{Q}^{\star}) if there are edges $e_{1}, \ldots, e_{q^{\prime}-1} \in E(P)-E\left(\mathcal{Q}^{\star}\right)$ with $P=P_{1} e_{1} \ldots P_{q^{\prime}-1} e_{q^{\prime}-1} P_{q^{\prime}}$, for suitable subpaths $P_{1}, \ldots, P_{q^{\prime}}$, such that \mathcal{Q}^{\prime} can be ordered as $\left(Q_{1}, \ldots, Q_{q^{\prime}}\right)$ and $V\left(Q_{i}\right) \cap V(P) \subseteq V\left(P_{i}\right)$.
(S3) An $\left(r, q^{\prime}\right)$-segmentation (with respect to $\left.\mathcal{Q}^{*}\right)$ is a pair $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ where \mathcal{P}^{\prime} is a linkage of order r and \mathcal{Q}^{\prime} is a linkage of order q^{\prime} such that \mathcal{Q}^{\prime} is a q^{\prime}-segmentation (with respect to \mathcal{Q}^{*}) of every path P_{i} into segments $P_{1}^{i} e_{1} P_{2}^{i} \ldots e_{q^{\prime}-1} P_{q^{\prime}}^{i}$.
(S4) A segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ is ordered if for all $P_{i} \in \mathcal{P}^{\prime}$ the order $\left(Q_{1}, \ldots, Q_{q^{\prime}}\right)$ given by the q^{\prime}-segmentation of P_{i} is the same. We say that $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ is an (ordered) $\left(r, q^{\prime}\right)$-segmentation of $(\mathcal{P}, \mathcal{Q})$ if $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ and every path in \mathcal{P}^{\prime} is a subpath of a path in \mathcal{P}.

An (r, q)-split $(\mathcal{P}, \mathcal{Q})$ or an (r, q)-segmentation $(\mathcal{P}, \mathcal{Q})$ is well-linked if end (\mathcal{Q}) is well-linked to $\operatorname{start}(\mathcal{Q})$.

One can obtain splits and segmentations from webs by using the following result. We observe that $\mathrm{q}_{5.2}(p, q, x, y, c) \in 2^{2 \uparrow \uparrow \text { poly }^{4}(p, q, x, y, c)}$.

Lemma 5.2 ([KK15, Lemma 5.13]). Let $p, q, q^{\prime}, r, s, c, x, y \geq 0$ be integers such that $p \geq x$ and $q^{\prime} \geq \mathrm{q}_{5.2}(p, q, x, y, c):=(p q(q+c))^{2^{(x-1) y+1}}$. If D contains a $\left(p, q^{\prime}\right)$-web $\mathcal{W}:=(\mathcal{P}, \mathcal{Q})$ where \mathcal{P} is weakly c-minimal with respect to \mathcal{Q}, then D contains one of the following:
(S1) a (y, q)-split $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $(\mathcal{P}, \mathcal{Q})$, or
(S2) an (x, q)-segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $(\mathcal{P}, \mathcal{Q})$.
Furthermore, if \mathcal{W} is well-linked in D, then so is $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$.
With a simple pigeon-hole principle argument, it is possible to construct an ordered segmentation from a segmentation. The proof provided below is based on some steps of the proof of Lemma 5.19 from [KK15].

Observation 5.3. Let $(\mathcal{P}, \mathcal{Q})$ be a (p, q)-segmentation. If $p \geq \mathrm{p}_{5.3}(k, q):=(k-1) q!+1$, then $\mathrm{p}_{5.3}$ there is $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ such that $\left(\mathcal{P}^{\prime}, \mathcal{Q}\right)$ is an ordered (k, q)-segmentation.

Proof. For each $P_{i} \in \mathcal{P}$ there is an ordering \mathcal{Q}_{i} of \mathcal{Q} witnessing that \mathcal{Q} is a q-segmentation of P_{i}. In total, there are at most q ! distinct orderings \mathcal{Q}_{i}. Hence, by the pigeon-hole principle, there is some $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ of size k such that $\mathcal{Q}_{i}=\mathcal{Q}_{j}$ for all $P_{i}, P_{j} \in \mathcal{P}^{\prime}$.

Since the bounds for Lemma 5.2 are already elementary, in the remainder of this section we obtain a web while making sure that all the functions that arise are elementary.
Thereby we improve upon results of [KK22], which shows that digraphs of high directed treewidth contain a large well-linked web or a large cylindrical grid obtaining non-elementary bounds in this step. In particular, their proof uses an iterated Ramsey argument and so the bounds obtained are a power tower whose height depends on h, v and k (where h, v and k are defined as in Theorem 5.4).

Theorem 5.4 ([KK22, Theorem $4.2+$ Lemma $3.6+$ Lemma 4.10]). Let $h, v, k \in \mathbb{N}$. There exists a function $\mathrm{t}_{5.4}: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that every digraph D with $\operatorname{dtw}^{(D)} \geq \mathrm{t}_{5.4}(h, v, k)$ contains a cylindrical grid of order k as a butterfly minor or a (h, v)-web $(\mathcal{H}, \mathcal{V})$ where end $(\mathcal{V}) \cup \operatorname{start}(\mathcal{V})$ is a well-linked set in D and \mathcal{H} is \mathcal{V}-minimal.

To achieve an elementary bound, we utilise a result known as Lovász Local Lemma, obtaining even a polynomial bound for the step which was previously non-elementary. In total, however, the gap between directed treewidth and the size of the ordered web we can guarantee is upper bounded by a super-polynomial function.

Lemma 5.5 (Lovász Local Lemma [EL74, Spe77]). Consider a set \mathcal{E} of events such that for each $A \in \mathcal{E}$

1. $\operatorname{Pr}[A] \leq p<1$, and
2. A is mutually independent of a set of all but at most d other events.

If $e p(d+1)<1$, then with positive probability none of the events in \mathcal{E} occur.
While Lemma 5.5 above is not constructive, [MT10] provided a randomized algorithm and [CGH13] provided a determinstic algorithm for finding an assignment of the random variables which avoids all events \mathcal{E}.
The proof of [KK22] for obtaining a web works by starting with a bramble of high order and then showing that the existence of such a bramble implies the existence of an object called a path-system ${ }^{1}$. We repeat the definition of path-system below (see Figure 4 for an illustration).

Definition 5.6 (path system [KK22]). Let G be a digraph and let $\ell, p \geq 1$. An ℓ-linked path system of order p is a sequence $\mathcal{S}:=(\mathcal{P}, \mathcal{L}, \mathcal{A})$, where

- $\mathcal{A}:=\left(A_{i}^{\text {in }}, A_{i}^{\text {out }}\right)_{1 \leq i \leq p}$ such that $A:=\bigcup_{1 \leq i \leq p} A_{i}^{\text {in }} \cup A_{i}^{\text {out }} \subseteq V(G)$ is a well-linked set of order $2 \ell p$ and $\left|A_{i}^{i n}\right|=\left|A_{i}^{\text {out }}\right|=\ell$, for all $1 \leq i \leq p$,
- $\mathcal{P}:=\left(P_{1}, \ldots, P_{p}\right)$ is a sequence of pairwise vertex disjoint paths and for all $1 \leq i \leq p$, $A_{i}^{\text {in }}, A_{i}^{\text {out }} \subseteq V\left(P_{i}\right)$ and all $v \in A_{i}^{\text {in }}$ occur on P_{i} before any $v^{\prime} \in A_{i}^{\text {out }}$ and the first vertex of P_{i} is in $A_{i}^{i n}$ and the last vertex of P_{i} is in $A_{i}^{\text {out }}$ and
- $\mathcal{L}:=\left(L_{i, j}\right)_{1 \leq i \neq j \leq p}$ is a sequence of linkages such that for all $1 \leq i \neq j \leq p, L_{i, j}$ is a linkage of order ℓ from $A_{i}^{\text {out }}$ to $A_{j}^{i n}$.

The system \mathcal{S} is clean if for all $1 \leq i \neq j \leq p$ and all $Q \in L_{i, j}, Q \cap P_{s}=\emptyset$ for all $1 \leq s \leq p$ with $s \notin\{i, j\}$.

Figure 4: A clean 2-linked path-system of order 3.
We can obtain path-systems from brambles using the following lemma. We define $\mathrm{k}_{5.7}(\ell, p)=$ $(4 \ell p)(2 \ell p+1)$ and observe that $\mathrm{k}_{5.7}(\ell, p) \in O\left(\ell^{2} p^{2}\right)$.

Lemma 5.7 ([KK22, Lemma 4.6]). Let D be a digraph and let $\ell, p \geq 1$. If D contains a bramble of order $\mathrm{k}_{5.7}(\ell, p)$, then D contains an ℓ-linked path systems \mathcal{S} of order p.

In our proof, we use a intermediate object which we call a semi-web. Unlike a web, we do not require from a semi-web $(\mathcal{P}, \mathcal{Q})$ that the paths in \mathcal{P} and \mathcal{Q} pairwise intersect each other. Instead, a semi-web has a degree which controls how much the linkages much intersect each other.
A (p, q)-web $(\mathcal{P}, \mathcal{Q})$ of avoidance d from [KK15] corresponds to a (p, q)-semi-web $(\mathcal{P}, \mathcal{Q})$ of degree $|\mathcal{P}| \cdot \frac{d-1}{d}$ where \mathcal{P} is minimal with respect to \mathcal{Q} in our notation. The main reason for this modification is to avoid fractional calculations when determining the bounds of our functions.

Definition 5.8. Let D be a digraph. Two linkages \mathcal{H} and \mathcal{V} in D build a $(|\mathcal{H}|,|\mathcal{V}|)$-semi-web $(\mathcal{H}, \mathcal{V})$ of degree d if every path in \mathcal{V} intersects at least d paths in \mathcal{H}.
Finally, $(\mathcal{H}, \mathcal{V})$ is well-linked if end (\mathcal{V}) is well-linked linked to $\operatorname{start}(\mathcal{V})$ in D.
We can obtain a web from a semi-web using Lemma 5.11 below. Towards this end, we we use observations 5.9 and 5.10 , which summarize some basic properties of a linkage \mathcal{L} which is minimal with respect to another linkage \mathcal{P}.

Observation 5.9 ([KK22, Lemma 2.14]). Let D be a digraph. Let \mathcal{P}, \mathcal{L} be linkages such that \mathcal{L} is minimal with respect to \mathcal{P}. Then \mathcal{L} is minimal with respect to \mathcal{P}^{\prime} for every $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.

Observation 5.10. Let \mathcal{P}, \mathcal{Q} be two linkages such that \mathcal{P} is minimal with respect to \mathcal{Q}. Let $P \in \mathcal{P}$. If P does not intersect any path in \mathcal{Q}, then $\mathcal{P} \backslash\{P\}$ is minimal with respect to \mathcal{Q}.

We adapt the following statement from [KK22] to our notation, fixing some small mistakes in their proof in the process. We first define

$$
\begin{equation*}
\mathrm{q}_{5.11}\left(p^{\prime}, q, k\right)=q k\left(p^{\prime}\right)^{k} . \tag{5.11}
\end{equation*}
$$

[^1]Lemma 5.11 ([KK22, Lemma 4.10]). Let ($\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}$) be a $\left(p^{\prime}, q^{\prime}\right)$-semi-web of degree k in a digraph D such that \mathcal{P}^{\prime} is minimal with respect to \mathcal{Q}^{\prime}. If $q^{\prime} \geq \mathrm{q}_{5.11}\left(p^{\prime}, q, k\right)$, then D contains a well-linked $\left(p_{1}, q\right)$-web $(\mathcal{P}, \mathcal{Q})$ where \mathcal{P} is minimal with respect to $\mathcal{Q}, \mathcal{P} \subseteq \mathcal{P}^{\prime}, \mathcal{Q} \subseteq \mathcal{Q}^{\prime}$ and $p_{1} \geq k$.

Proof. Define a function f as $f(Q)=\left\{P \in \mathcal{P}^{\prime} \mid V(P) \cap V(Q)=\emptyset\right\}$ for each $Q \in \mathcal{Q}^{\prime}$. By assumption, $|f(Q)| \leq p^{\prime}-k$ for each $Q \in \mathcal{Q}^{\prime}$.
As there are $\binom{p^{\prime}}{\mid f(Q)}$ choices for each $f(Q)$, and as $\sum_{i=0}^{k}\binom{p^{\prime}}{p^{\prime}-k}=\sum_{i=0}^{k}\binom{p^{\prime}}{k} \leq k\left(p^{\prime}\right)^{k}$, by the pigeon-hole principle there is some $\mathcal{Q} \subseteq \mathcal{Q}^{\prime}$ of order q such that $X:=f\left(Q_{a}\right)=f\left(Q_{b}\right)$ holds for all $Q_{a}, Q_{b} \in \mathcal{Q}$.
Let $\mathcal{P}=\mathcal{P}^{\prime} \backslash X$ and let $p_{1}=|\mathcal{P}|$. Note that $p_{1} \geq k$. By observations 5.9 and $5.10, \mathcal{P}$ is minimal with respect to \mathcal{Q}. Hence, $(\mathcal{P}, \mathcal{Q})$ is a $\left(p_{1}, q\right)$-web where \mathcal{P} is minimal with respect to \mathcal{Q}, as desired.

Lemma 5.12 essentially corresponds to Lemma 4.7 from [KK22], and our proof is based on theirs. The idea is to attempt to construct a semi-web from some linkage $L_{a, b} \in \mathcal{L}$ and some $P \in \mathcal{P}$. If we do not find any semi-web, then it means that the linkages in \mathcal{L} are mostly disjoint from \mathcal{P}. We then use this observation to argue that, for each pair $P_{i}, P_{j} \in \mathcal{P}$, there are only few other paths $P_{r} \in \mathcal{P}$ which are "bad" for the choice P_{i}, P_{j}, that is, we cannot easily construct a clean path-system if we take P_{i}, P_{j} and P_{r}. This allows us to construct our "bad" events in order to apply Lovász Local Lemma.
We define

$$
\begin{aligned}
d^{\prime}\left(p_{2}\right) & =3\left(p_{2}\right)^{2} / 2-15 p_{2} / 2+10 \\
\ell_{5.12}\left(p_{2}, \ell_{2}, d_{1}\right) & =\ell_{2}+\left(p_{2}-2\right) d_{1}, \\
p_{5.12}\left(q_{1}, p_{2}\right) & =\left(2 e\left(d^{\prime}\left(p_{2}\right)+1\right) q_{1}+1\right) p_{2}
\end{aligned}
$$

Note that $\ell_{5.12}\left(p_{2}, \ell_{2}, d_{1}\right) \in O\left(\ell_{2}+d_{1} p_{2}\right)$ and $p_{5.12}\left(q_{1}, p_{2}\right) \in O\left(q_{1}\left(p_{2}\right)^{3}\right)$.
Lemma 5.12. Let $d_{1}, p_{2}, \ell_{2}, q_{2}$ be integers. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{A})$ be an ℓ-linked path-system of order p. If $\ell \geq \ell_{5.12}\left(p_{2}, \ell_{2}, d_{1}\right)$ and $p \geq p_{5.12}\left(q_{1}, p_{2}\right)$, then $\mathrm{D}(\mathcal{S})$ contains one of the following
(C1) a well-linked (ℓ, q_{1})-semi-web $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ of degree d_{1} where $\mathcal{P}_{1} \in \mathcal{L}, \mathcal{Q}_{1} \subseteq \mathcal{P}$ and \mathcal{P}_{1} is minimal with respect to \mathcal{Q}_{1}, or
(C2) a clean ℓ_{2}-linked path system $\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathcal{A}_{2}\right)$ of order p_{2}.
Proof. Let $d=3\left(p_{2}\right)^{2} / 2-15 p_{2} / 2+10$ and $p_{2}^{\prime}=\left\lceil 2 e q_{1}(d+1)\right\rceil+1$.
First, if there is some $\mathcal{L}_{s, t} \in \mathcal{L}$ such that $\mathcal{L}_{s, t}$ is not minimal with respect to \mathcal{P}, then replace such a linkage with another $\operatorname{start}\left(\mathcal{L}_{s, t}\right)$-end $\left(\mathcal{L}_{s, t}\right)$ linkage of the same order which is minimal with respect to \mathcal{P}. This does not alter the fact that \mathcal{S} is an ℓ-linked path-system of order p. Further, if $p_{2}=1$, we can trivially obtain a clean ℓ_{2}-linked path-system satisfying (C2) by taking any path in \mathcal{P} and setting $\mathcal{L}=\emptyset$. Hence, we can assume that $p_{2} \geq 2$.
Define a function γ as follows. For each distinct $P_{s}, P_{t} \in \mathcal{P}$ we set (see Section 5 for an illustration)

$$
\begin{aligned}
\gamma\left(P_{s}, P_{t}\right)=\left\{P \in \mathcal{P} \backslash\left\{P_{s}, P_{t}\right\} \mid\right. & P \text { intersects at least } d_{1} \text { paths of } \mathcal{L}_{s, t} \text { or } \\
& \left.P \text { intersects at least } d_{1} \text { paths of } \mathcal{L}_{t, s}\right\} .
\end{aligned}
$$

If there is a pair of distinct $P_{s}, P_{t} \in \mathcal{P}$ such that $\left|\gamma\left(P_{s}, P_{t}\right)\right| \geq 2 q_{1}$, then we construct our pair $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ as follows. By the pigeon-hole principle there is a choice of $\mathcal{P}_{1} \in\left\{\mathcal{L}_{s, t}, \mathcal{L}_{t, s}\right\}$ and a set $\mathcal{Q}_{1} \subseteq \gamma\left(P_{s}, P_{t}\right)$ of size q_{1} such that every $Q \in \mathcal{Q}_{1}$ intersects at least d_{1} paths of \mathcal{P}_{1}. By assumption, \mathcal{P}_{1} is minimal with respect to \mathcal{Q}_{1}. Furthermore, end $\left(\mathcal{Q}_{1}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{Q}_{1}\right)$. Hence, $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ satisfies (C1).

Figure 5: Illustration of the set $\gamma\left(P_{s}, P_{t}\right)$ used in the proof of Lemma 5.12, given in blue. This set consists of the paths of \mathcal{P} which intersect many paths in at least one of the linkages between P_{s} and P_{t}.

We now assume that $\left|\gamma\left(P_{s}, P_{t}\right)\right|<2 q_{1}$ holds for all distinct $P_{s}, P_{t} \in \mathcal{P}$. We construct a set \mathcal{P}_{2} as follows.
First, distribute the elements of \mathcal{P} arbitrarily into p_{2} disjoint sets $\mathcal{X}_{1}, \ldots, \mathcal{X}_{p_{2}}$, each of size p_{2}^{\prime}. For each \mathcal{X}_{i}, define a random variable x_{i} which corresponds to sampling one element of \mathcal{X}_{i} from an uniform distribution.
For each three distinct $a, b, c \in\left\{1,2, \ldots, p_{2}\right\}$, let $A_{a, b, c}$ be the event that $x_{a} \in \gamma\left(x_{b}, x_{c}\right)$.
Since the event $A_{a, b, c}$ depends only on the values of x_{a}, x_{b} and x_{c}, we know that $A_{a, b, c}$ is independent from $A_{a^{\prime}, b^{\prime}, c^{\prime}}$ if $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$. Hence, $A_{a, b, c}$ is independent from all but at most $\binom{p_{2}}{3}-\binom{p_{2}-3}{3}=d$ other events.
We now bound the value of $\operatorname{Pr}\left[A_{a, b, c}\right]$. As there are $\left(p_{2}^{\prime}\right)^{3}$ distinct choices for the tuple $\left(x_{a}, x_{b}, x_{c}\right)$ and for each choice of x_{b}, x_{c} there are at most $2 q_{1}$ choices of x_{a} such that $x_{a} \in \gamma\left(x_{b}, x_{c}\right)$, we have that $\operatorname{Pr}\left[A_{a, b, c}\right] \leq\left(2 q_{1}\left(p_{2}^{\prime}\right)^{2}\right) /\left(p_{2}^{\prime}\right)^{3}=2 q_{1} / p_{2}^{\prime}$.
Because $p_{2}^{\prime} \geq e \cdot(d+1) \cdot 2 q_{1}+1$, from Lemma 5.5 we know that the probability that none of the events $A_{a, b, c}$ occur is positive. That is, there is some choice of $x_{1}, x_{2}, \ldots, x_{p_{2}}$ such that $x_{a} \notin \gamma\left(x_{b}, x_{c}\right)$ for all three distinct $a, b, c \in\left\{1,2, \ldots, p_{2}\right\}$. We set $\mathcal{P}_{2}=\left\{x_{1}, x_{2}, \ldots, x_{p_{2}}\right\}$.
For each distinct $P_{s}, P_{t} \in \mathcal{P}_{2}$ define $\mathcal{L}_{s, t}^{\prime}=\left\{L \in \mathcal{L}_{s, t} \mid\right.$ for all $P \in \mathcal{P}_{2} \backslash\left\{P_{s}, P_{t}\right\}$ we have $V(P) \cap$ $L=\emptyset\}$.
By choice of \mathcal{P}_{2}, we have that $P_{r} \notin \gamma\left(P_{s}, P_{t}\right)$ holds for all pairwise distinct $P_{s}, P_{t}, P_{r} \in \mathcal{P}_{2}$. Hence, $\left|\mathcal{L}_{s, t}^{\prime}\right| \geq\left|\mathcal{L}_{s, t}\right|-\left(p_{2}-2\right) d_{1} \geq \ell_{2}$.
Finally, choose \mathcal{A}_{2} as the elements $A_{i}^{i n}, A_{i}^{\text {out }}$ of \mathcal{A} satisfying $P_{i} \in \mathcal{P}_{2}$. Clearly, $\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathcal{A}_{2}\right)$ is a clean ℓ_{2}-linked path system of order p_{2}, satisfying (C2).

We obtain a bidirected clique from a clean path-system by first iteratively trying to obtain disjoint paths inside \mathcal{L} pairwise connecting the paths of \mathcal{P}. If we cannot do so, then we obtain a well-linked semi-web.
As seen before in Lemma 5.11, in order to obtain a web from a semi-web $(\mathcal{P}, \mathcal{Q})$ of degree d, we require that \mathcal{Q} is much larger than \mathcal{P}. Unfortunately, it is not possible to directly use the results of [KK22] to obtain the required web, as the sizes of the linkages \mathcal{P} and \mathcal{Q} provided by their statements do not match. Instead, we need to modify the proof of [KK22, Lemma 4.8], ensuring that in each step of the iteration described above we obtain a sufficiently large gap between \mathcal{Q} and \mathcal{P} so that we can apply Lemma 5.11. Similarly, we again require a large gap between \mathcal{Q}
and \mathcal{P} when obtaining a split or segmentation from a web using Lemma 5.2. Hence, we need to "pay" the function from both Lemma 5.2 and Lemma 5.11 during each step of the iteration in our proof.
In order to avoid repetition, we only present here the part of the proof from [KK22] which we modify, which is Lemma 5.14 below. The remainder of the proof of [KK22, Lemma 4.8] is given by Lemma 5.13.

Lemma 5.13 ([KK22, proof of Lemma 4.8]). Let k be an integer and let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{A})$ be a clean 1-linked path-system of order p in a digraph D such that all paths in \mathcal{L} are pairwise vertex-disjoint. If $p \geq \mathrm{p}_{5.13}(k):=3 k$, then D contains a bidirected clique of order k as a butterfly minor.

The proof of Lemma 5.14 works by iteratively constructing pairwise disjoint paths R_{r}. If in some step we cannot construct the desired path R_{r}, then we argue that some linkage $\mathcal{L}_{i, j}$ in the clean-path system must intersect many paths of some other linkage $\mathcal{L}_{s, t}$. Our modifications of the proof of [KK22, Lemma 4.8] are essentially focused on ensuring that both linkages forming the semi-web described above are large enough for us to apply lemmata 5.2 and 5.11.
We define

$$
\begin{aligned}
k^{\prime}(k) & =2\binom{3 k}{2}, \\
\mathrm{p}_{5.14}(k) & =3 k \\
\ell_{5.14}(x, y, q, k) & =\left(2 x q k^{\prime}(k)\right)^{2^{k^{\prime}(k)(y(x-1)+1)}(3 x)^{k^{\prime}(k)}} .
\end{aligned}
$$

Observe that $\ell_{5.14}(x, y, q, k) \in 2^{2 \uparrow \uparrow \text { poly }^{5}(x, y, q, k)}$.
Lemma 5.14. Let x, y, q and k be integers. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{A})$ be a clean ℓ^{\prime}-linked path system of order p^{\prime} in a digraph D. If $\ell^{\prime} \geq \ell_{5.14}(x, y, q, k)$ and $p^{\prime} \geq \mathrm{p}_{5.14}(k)$, then there are $\mathcal{P}_{1} \subseteq \mathcal{L}_{P} \in \mathcal{L}$ and $\mathcal{Q}_{1} \subseteq \mathcal{L}_{Q} \in \mathcal{L}$, where $\mathcal{L}_{P} \neq \mathcal{L}_{Q}$, such that D contains one of the following:
(W1) a bidirected clique of order k as a butterfly minor,
(W2) a (y, q)-split $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ where end $\left(\mathcal{Q}^{\prime}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{Q}^{\prime}\right)$, or
(W3) an (x, q)-segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ where $\operatorname{end}\left(\mathcal{P}^{\prime}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{P}^{\prime}\right)$.
Proof. Let $k_{1}=2\binom{3 k}{2}$. We define functions $q^{\prime}, f, p^{\prime}$ and $q^{\prime \prime}$ recursively as follows. We start by setting

$$
\left.\begin{array}{rlrl}
q^{\prime}\left(k_{1}\right) & =\mathrm{q}_{5.11}(x, q, x), & f\left(k_{1}+1\right) & =0, f\left(k_{1}\right)=q^{\prime}\left(k_{1}\right)+1 . \\
p^{\prime}\left(k_{1}\right) & =x, & \text { and } & q^{\prime \prime}\left(k_{1}\right)
\end{array}\right)=\mathrm{q}_{5.2}\left(p^{\prime}\left(k_{1}\right), q, x, y, p^{\prime}\left(k_{1}\right)\right) .
$$

For $1 \leq r<k_{1}$, we set

$$
\begin{aligned}
p^{\prime}(r) & =f(r+1)+x-1, & q^{\prime \prime}(r) & =\mathrm{q}_{5.2}\left(p^{\prime}(r), q, x, y, p^{\prime}(r)\right. \\
q^{\prime}(r) & =\mathrm{q}_{5.11}\left(p^{\prime}(r), q^{\prime \prime}(r), x\right) & \text { and } & f(r)
\end{aligned}=\left(k_{1}-r+1\right) q^{\prime}(r)+1 .
$$

By repeatedly applying the functions above, we obtain the following recursive equality, which will be used later

$$
\begin{aligned}
f(r)= & 1+x\left(k_{1}-r+1\right)(x+f(r+1)-1)^{x} \\
& \cdot(q(x+f(r+1)-1)(x+q+f(r+1)-1))^{2^{y(x-1)+1}}
\end{aligned}
$$

Before proceeding with the proof, we give upper bounds for the functions defined above.
Claim 1. For all $0 \leq r \leq k_{1}-1$, we have

$$
f\left(k_{1}-r\right) \leq\left(2 k_{1} x q\right)^{2^{(r+1)(y(x-1)+1)}(3 x)^{r+1}}
$$

Proof. We prove the statement iteratively by starting at $r=0$.

$$
f\left(k_{1}\right)=x^{x+1} q+1 \leq\left(2 k_{1} x q\right)^{3 x} \leq\left(2 k_{1} x q\right)^{3 x 2^{y(x-1)+1}}
$$

Hence, the bounds given above hold for $r=0$. Now assume the bounds hold for some $r-1 \in$ $\left\{0,1, \ldots, k_{1}-2\right\}$. We show that they also hold for r. To aid readability, we replace $y(x-1)+1$ with w.

$$
\begin{aligned}
& f\left(k_{1}-r\right)=x(r+1)\left(x+f\left(k_{1}-r+1\right)-1\right)^{x} \\
& \text { - }\left(q\left(x+f\left(k_{1}-r+1\right)-1\right)\right. \\
& \left.\cdot\left(x+q+f\left(k_{1}-r+1\right)-1\right)\right)^{2^{y(x-1)+1}}+1 \\
& \leq x(r+1)\left(x+\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)^{x} \\
& \cdot\left(q\left(x+\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)\left(x+q+\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)\right)^{2^{w}} \quad \text { (induction) } \\
& \leq x(r+1)\left(2\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)^{x}\left(4 q\left(2 k_{1} x q\right)^{2^{r w+1}(3 x)^{r}}\right)^{2^{w}} \quad\left(x+q \leq 2 k_{1} x q\right) \\
& \leq\left(2\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)^{x}\left(4 k_{1} x q\left(2 k_{1} x q\right)^{2^{r w+1}(3 x)^{r}}\right)^{2^{w}} \quad\left(x k_{1} \leq\left(x k_{1}\right)^{2^{w}}\right) \\
& =\left(2\left(2 k_{1} x q\right)^{2^{r w}(3 x)^{r}}\right)^{x}\left(2\left(2 k_{1} x q\right)^{2^{r w+1}(3 x)^{r}+1}\right)^{2^{w}} \\
& =2^{2^{w}+x}\left(2 k_{1} x q\right)^{2^{w}\left(2^{r w+1}(3 x)^{r}+1\right)+2^{r w} x(3 x)^{r}} \\
& \leq\left(2 k_{1} x q\right)^{\left.2^{w}\left(2^{r w+1}(3 x)^{r}+1\right)+2^{w}+x+2^{r w} x(3 x)^{r} \quad\left(2 \leq 2 k_{1} x q\right)\right) ~} \\
& =\left(2 k_{1} x q\right)^{2^{w(r+1)+1}(3 x)^{r}+2^{w+1}+x+2^{r w} x(3 x)^{r}} \\
& \leq\left(2 k_{1} x q\right)^{3 \cdot 2^{w(r+1)} 3^{r} x^{r+1}} \\
& =\left(2 k_{1} x q\right)^{2^{(r+1)(y(x-1)+1)}(3 x)^{r+1}} \\
& \begin{array}{l}
\left(2^{w(r+1)+1}(3 x)^{r},\right. \\
2^{r w} x(3 x)^{r}, \\
\left.2^{w+1}+x \leq 2^{(r+1) w} 3^{r} x^{r+1}\right) \\
(\text { def. of } w)
\end{array}
\end{aligned}
$$

Hence, the statement of the claim follows by induction.
From Claim 1 we have that $f(1) \leq \ell_{5.14}(x, y, q, k)$. Let $\left(\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{3 k}\right), \mathcal{L}=\left(\mathcal{L}_{i, j}\right), \mathcal{A}=\right.$ $\left.\left(A_{i}^{\text {in }}, A_{i}^{\text {out }}\right)\right):=\mathcal{S}$. Choose an arbitrary bijection $\sigma:\left[k_{1}\right] \rightarrow\{(i, j) \mid 1 \leq i, j \leq 3 k, i \neq j\}$, where $\left[k_{1}\right]=\left\{1,2, \ldots, k_{1}\right\}$.
We iteratively construct linkages $\mathcal{L}_{i, j}^{r}$ and paths R^{r}, where $1 \leq r \leq k_{1}$, satisfying the following:
(L1) R^{r} is a path from $A_{i}^{\text {out }}$ to $A_{j}^{\text {in }}$, where $(i, j):=\sigma(r)$, and R^{r} does not share any internal vertex with any path in \mathcal{P} or in any $\mathcal{L}_{\sigma(q)}^{r}$ where $q>r$.
(L2) $\left|\mathcal{L}_{\sigma(r)}^{r}\right|=f(r)$,
(L3) for all $r<q \leq k_{1}$ we have $|\mathcal{L}|_{\sigma(q)}^{r}=p^{\prime}(r)$, and $\mathcal{L}_{\sigma(q)}^{r}$ is $\mathcal{L}_{\sigma(r)}^{r}$-minimal, and
(L4) for all $1 \leq i, j \leq 3 k$ where $i \neq j$ and for all $P \in \mathcal{L}_{\sigma^{-1}(i, j)}^{r}$ the path P has no vertex in common with any P_{t} for $i \neq t \neq j$.

We show that, if (L2) to (L4) hold on step $1 \leq r \leq k_{1}$, then (L1) holds on step r and if (L2) to (L4) hold on step $1 \leq r<k_{1}$, then (L2) to (L4) also hold on step $r+1$.
For $r=1$, we pick $\mathcal{L}_{\sigma(1)}^{1} \subseteq \mathcal{L}_{s, t}$ arbitrarily, where $(s, t)=\sigma(1)$, so that $\left|\mathcal{L}_{\sigma(1)}^{1}\right|=f(1)$, satisfying (L2) for $r=1$. Further, for each $1<q \leq k_{1}$, we choose $\mathcal{L}_{\sigma(q)}^{1}$ as a $\mathcal{L}_{\sigma(1)}^{1}$-minimal $\operatorname{start}\left(\mathcal{L}_{\sigma(q)}\right)$ -
end $\left(\mathcal{L}_{\sigma(q)}\right)$ linkage in $\mathrm{D}\left(\mathcal{L}_{\sigma(1)}^{1} \cup \mathcal{L}_{\sigma(q)}\right)$ of order $p^{\prime}(1)$. This satisfies $(\mathrm{L} 3)$ for $r=1$. Observe that (L 4$)$ is satisfied for $r=1$ because \mathcal{S} is a clean path-system.
Now assume that (L2) to (L4) hold for step $r \geq 1$. We construct the path R^{r} as follows.
First, let $(i, j)=\sigma(r)$. We consider two cases.
Case 1: There is a path $P \in \mathcal{L}_{i, j}^{r}$ which, for each $r<q \leq k_{1}$, is internally disjoint from at least $f(r+1)$ paths in $\mathcal{L}_{\sigma(q)}^{r}$.
We set $R^{r}:=P$, satisfying (L1) for r. If $r=k_{1}$, we are done with the iteration. Otherwise, let $(s, t):=\sigma(r+1)$ and let $\mathcal{L}_{s, t}^{r+1} \subseteq \mathcal{L}_{s, t}^{r}$ be an $A_{s}^{\text {out }}-A_{t}^{\text {in }}$-linkage of order $f(r+1) \leq p^{\prime}(r)$ (satisfying (L2)) such that no path in $\mathcal{L}_{s, t}^{r+1}$ has an internal vertex in $V(P) \cup \bigcup_{r^{\prime}=1}^{r} V\left(R^{r^{\prime}}\right)$ (towards satisfying (L1) for $r+1$). Because (L1) holds for r, we know that $\mathcal{L}_{s, t}^{r}$ is internally disjoint from all $R^{r^{\prime}}$ with $1 \leq r^{\prime}<r$. Hence, such a linkage $\mathcal{L}_{s, t}^{r+1}$ exists. Furthermore, as (L1) holds for r, we have that every path in $\mathcal{L}_{s, t}^{r+1}$ is disjoint from all $P \in \mathcal{P} \backslash\left\{P_{s}, P_{t}\right\}$ (towards satisfying (L4)).
For each $r+1<q \leq k_{1}$, let $\left(s^{\prime}, t^{\prime}\right)=\sigma(q)$ and choose an $A_{s^{\prime}}^{\text {out }}-A_{t^{\prime}}^{\text {in }}$-linkage $\mathcal{L}_{\sigma(q)}^{r+1}$ of order $p^{\prime}(r+1)$ inside $\mathrm{D}\left(\mathcal{L}_{\sigma(q)}^{r} \cup \mathcal{L}_{s, t}^{r+1}\right)$ which satisfies $(\mathbf{L} 4)$ such that every path in $\mathcal{L}_{\sigma(q)}^{r+1}$ has no inner vertex in $V(P) \cup \bigcup_{r^{\prime}=1}^{r} V\left(\mathcal{L}_{\sigma\left(r^{\prime}\right)}^{r}\right)$ and which is $\mathcal{L}_{s, t}^{r+1}$-minimal (satisfying (L3)). Thus, (L1) to (L4) hold for the step $r+1$.
Case 2: For every $P_{z} \in \mathcal{L}_{i, j}^{r}$ there is some $r<q_{z} \leq k_{1}$ for which P_{z} intersects least $p^{\prime}(r)-$ $f(r+1)+1=x$ paths in $\mathcal{L}_{\sigma\left(q_{z}\right)}^{r}$.
Let $\left(i^{\prime}, j^{\prime}\right)=\sigma\left(q_{z}\right)$. As $\left|\mathcal{L}_{i, j}^{r}\right|=f(r)=\left(k_{1}-r-1\right) q^{\prime}(r)+1$, by the pigeon-hole principle there is a $r<w \leq k_{1}$ and a $\mathcal{Q} \subseteq \mathcal{L}_{i, j}^{r}$ of order $q^{\prime}(r)$ such that all paths in \mathcal{Q} intersect at least x paths in $\mathcal{L}_{\sigma(w)}^{r}$. Hence, $\left(\mathcal{L}_{\sigma(w)}^{r}, \mathcal{Q}\right)$ is a $\left(p^{\prime}(r), q^{\prime}(r)\right)$-semi-web of degree x. Finally, as the starting points and endpoints of both \mathcal{Q} and $\mathcal{L}_{\sigma(w)}^{r}$ lie in the well-linked set $A_{i}^{\text {out }} \cup A_{j}^{\text {in }} \subseteq A$, we have that $\left(\mathcal{L}_{\sigma(w)}^{r}, \mathcal{Q}\right)$ is also a well-linked semi-web.
Applying Lemma 5.11 to $\left(\mathcal{L}_{\sigma(w)}^{r}, \mathcal{Q}\right)$ yields a well-linked $\left(p_{2}, q^{\prime \prime}(r)\right)$-web $\left(\mathcal{P}_{2}, \mathcal{Q}_{2}\right)$ where \mathcal{P}_{2} is minimal with respect to \mathcal{Q}_{2}, where $p^{\prime}(r) \geq p_{2} \geq x$. As $q^{\prime \prime}(r) \geq q_{5.2}\left(p^{\prime}(r), q, x, y, p^{\prime}(r)\right)$ and \mathcal{P}_{2} is also p_{2}-minimal with respect to \mathcal{Q}_{2}, we can apply Lemma 5.2 to ($\mathcal{P}_{2}, \mathcal{Q}_{2}$), obtaining two cases. If Lemma 5.2 (S2) holds, then we satisfy (W3). Otherwise, Lemma $5.2(\mathrm{~S} 1)$ holds, satisfying (W2).
If Case 2 above never occurs, then we obtain a sequence of pairwise disjoint paths $\mathcal{R}:=$ $\left(R_{1}, R_{2}, \ldots, R_{k_{1}}\right)$ such that for all $1 \leq r \leq k_{1}$, the path R_{r} is an $A_{i}^{\text {out }}-A_{j}^{\text {in }}$ path which is disjoint from \mathcal{P}, where $(i, j)=\sigma(r)$. By Lemma 5.13, we obtain a bidirected clique of size k as a butterfly minor, satisfying (W1).

We conclude this section by combining the main statements proven above, yielding the following theorem which is used later on.
We define

$$
\begin{gathered}
\ell^{\prime}(x, y, q, k)=\ell_{5.12}\left(\mathrm{p}_{5.14}(2 k), \ell_{5.14}(x, y, q, 2 k), x\right), \\
\mathrm{t}_{5.15}(x, y, q, k)=2\left(\mathrm { k } _ { 5 . 7 } \left(\ell^{\prime}(x, y, q, k)\right.\right. \\
\mathrm{p}_{5.12}\left(\mathrm { q } _ { 5 . 1 1 } \left(\ell^{\prime}(x, y, q, k),\right.\right. \\
\mathrm{q}_{5.2}\left(\ell^{\prime}(x, y, q, k), q, x, y,\right. \\
\left.\left.\left.\left.\left.\left.\ell^{\prime}(x, y, q, k)\right), x\right), \mathrm{p}_{5.14}(2 k)\right)\right)\right)\right) .
\end{gathered}
$$

Note that $\mathrm{t}_{5.15}(x, y, q, k) \in 2^{5 \uparrow \uparrow p o l y}{ }^{5}(x, y, q, k)$.
Theorem 5.15. Let D be a digraph. If $\operatorname{dtw}(D) \geq \mathrm{t}_{5.15}(x, y, q, k)$, then D contains one of the following
(D1) a cylindrical grid of order k as a butterfly minor,
(D2) a (y, q)-split $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of some pair $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ in D, where end $\left(\mathcal{Q}^{\prime}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{Q}^{\prime}\right)$, or
(D3) an (x, q)-segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of some pair $\left(\mathcal{P}_{1}, \mathcal{Q}_{1}\right)$ in D, where end $\left(\mathcal{P}^{\prime}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{P}^{\prime}\right)$.

Proof. Let $k_{6}=2 k, \ell_{5}=\ell_{5.14}\left(x, y, q, k_{6}\right), p_{5}=\mathrm{p}_{5.14}\left(k_{6}\right), d_{3}=x, \ell_{2}=\ell_{5.12}\left(p_{5}, \ell_{5}, d_{3}\right), q_{4}=$ $\mathrm{q}_{5.2}\left(\ell_{2}, q, x, y, \ell_{2}\right) q_{3}=\mathrm{q}_{5.11}\left(\ell_{2}, q_{4}, d_{3}\right), p_{2}=\mathrm{p}_{5.12}\left(q_{3}, p_{5}\right), k_{1}=\mathrm{k}_{5.7}\left(\ell_{2}, p_{2}\right)$.
Observe that $\ell_{2}=\ell^{\prime}(x, y, q, k) \geq x$ and that $\mathrm{t}_{5.15}(x, y, q, k) \geq 2 k_{1}$.
By Corollary 4.4, D contains a bramble \mathcal{B}_{1} of order at least k_{1}. By Lemma 5.7, D contains an ℓ_{2}-linked path-system \mathcal{S}_{2} of order p_{2}. By applying Lemma 5.12 to \mathcal{S}_{2}, we obtain two cases.
Case 1: Lemma 5.12(C1) holds.
Then D contains a well-linked $\left(\ell_{2}, q_{3}\right)$-semi-web $\left(\mathcal{P}_{3}, \mathcal{Q}_{3}\right)$ of degree d_{3} where \mathcal{P}_{3} is minimal with respect to \mathcal{Q}_{3} and $\mathcal{P}_{3} \in \mathcal{L}$. In particular, end $\left(\mathcal{P}_{3}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{P}_{3}\right)$ as $\operatorname{start}(\mathcal{L}) \cup \operatorname{end}(\mathcal{L})$ are vertices of a well-linked set, and $\operatorname{end}\left(\mathcal{Q}_{3}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{Q}_{3}\right)$ as the starting and endpoints of the paths in \mathcal{P} are vertices of a well-linked set.
By Lemma 5.11, there is some p_{4} such that $\ell_{2} \geq p_{4} \geq d_{3}$ and D contains a well-linked $\left(p_{4}, q_{4}\right)$ web $\left(\mathcal{P}_{4}, \mathcal{Q}_{4}\right)$ where \mathcal{P}_{4} is minimal with respect to \mathcal{Q}_{4} and $\mathcal{P}_{4} \subseteq \mathcal{P}_{3}, \mathcal{Q}_{4} \subseteq \mathcal{Q}_{3}$. In particular, \mathcal{P}_{4} is also weakly p_{4}-minimal with respect to \mathcal{Q}_{4}, end $\left(\mathcal{P}_{4}\right)$ is also well-linked to $\operatorname{start}\left(\mathcal{P}_{4}\right)$ and end $\left(\mathcal{Q}_{4}\right)$ is also well-linked to start $\left(\mathcal{Q}_{4}\right)$ Applying Lemma 5.2 to $\left(\mathcal{P}_{4}, \mathcal{Q}_{4}\right)$ yields two cases. If Lemma $5.2(\mathbf{S 1})$ holds, then (D2) is satisfied. Otherwise, Lemma $5.2(\mathbf{S 2}$) holds, satisfying (D3).
Case 2: Lemma 5.12(C2) holds.
That is, D contains a clean ℓ_{5}-linked path-system \mathcal{S}_{5} of order p_{5}. Applying Lemma 5.14 to \mathcal{S}_{5} yields three cases.
If Lemma $5.14(\mathbf{W} 1)$ holds, then D contains a bidirected clique of order k_{6} as a butterfly minor.
As a cylindrical grid of order k contains k_{6} vertices, D also contains a cylindrical grid of order k as butterfly minor, satisfying (D1).
If Lemma $5.14(\mathbf{W} 2)$ holds, then we obtain a (y, q)-split, satisfying (D2).
If Lemma $5.14(\mathbf{W} 3)$ holds, then we obtain an (x, q)-segmentation, satisfying (D3).

6 Temporal digraphs and routings

In our proof we are frequently faced with problems of the following form. We have already constructed two linkages, \mathcal{P} and \mathcal{Q}, say, but whereas the paths within the same linkage are disjoint by definition, a pair of paths from different linkages may intersect arbitrarily, or not at all. So the intersection pattern between the two linkages can be arbitrarily complex. The problem then is to find some kind of order within the chaos, i.e. to find a subgraph of a specific form in $\bigcup \mathcal{P} \cup \bigcup \mathcal{Q}$.
Problems of this form occur frequently in this research area and also in the proof of the directed grid theorem [KK15], where the authors had to solve the same kind of problems over and over again.

In this section we develop a framework based on temporal digraphs which allows us to rephrase these problems in a more abstract setting. This abstraction allows us to simplify many arguments and to unify proofs by isolating the core ideas common to several of these proofs. Moreover, our framework allows us to obtain much better bounds and to prove elementary bounds for results that require non-elementary bounds in [KK15].
There are several different definitions of temporal graphs and temporal walks, each useful in a different context. Here, we make use of the notation from [CHMZ20, Mol20] and adapt it to the directed setting. We first define our notion of temporal digraphs and walks within such digraphs and then discuss how they arise in our context.
Definition 6.1. A temporal digraph is a pair $T=(V, \mathcal{A})$ consisting of a vertex set V and sequence of arc sets $\mathcal{A}=\left(A_{1}, A_{2}, \ldots A_{\ell}\right)$ such that $D_{t}(T):=\left(V, A_{t}\right)$ is a digraph for all $1 \leq t \leq \ell$. We also refer to $D_{t}(T)$ as layer t of T and call t a time step. The lifetime of D is given by $\ell(D):=\ell$.

We next define paths and walks in the temporal setting. A temporal walk in a temporal digraph T is required to obey the "timeline" of T, i.e. the order in which edges occur on the walk must respect the time steps of T. In our setting we even need a more restrictive definition and allow a temporal walk to only use a single edge of each layer.

Definition 6.2. A temporal walk of length n from v_{0} to v_{n} in a temporal digraph T is a sequence $W:=\left(v_{0}, t_{0}\right),\left(v_{1}, t_{1}\right), \ldots,\left(v_{n}, t_{n}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in A_{t_{i}}$ and $t_{i}<t_{i+1} \leq \ell(T)$ for all $0 \leq i \leq n-1$. If such a walk exists, we say that v_{0} temporally reaches v_{n}. A temporal walk is said to be a temporal path if no vertex appears twice in the sequence. Finally, we say that W departs at t_{0} and arrives at t_{n}, and that $t_{n}-t_{0}$ is the duration of W.
In our setting, temporal digraphs usually arise from a linkage \mathcal{P} intersecting pairwise disjoint digraphs Q_{1}, \ldots, Q_{q} as formalised in the next definition. For this to work the individual paths of the linkage must intersect the digraphs all in the same order.

Figure 6: The layers $D_{j}(T)$ of the temporal graph $T:=\left(V=\{a, b, c\}, \mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}\right)$ constructed from the graphs Q_{j} displayed above as defined in Definition 6.3.

Definition 6.3. Let \mathcal{P} be a linkage and let $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$ be a set of pairwise disjoint digraphs such that each path $P_{i} \in \mathcal{P}$ can be partitioned as $P_{i}^{1} \cdot P_{i}^{2} \cdot \ldots \cdot P_{i}^{q}=P_{i}$ such that $V\left(P_{i}^{j}\right) \cap V(\mathcal{Q}) \subseteq V\left(Q_{j}\right)$ for all $1 \leq j \leq q$.
The routing temporal digraph (V, \mathcal{A}) of \mathcal{P} through \mathcal{Q} is constructed as follows. We set $V=\mathcal{P}$ and for each $1 \leq j \leq q$ we define $A_{j}=\left\{\left(P_{a}, P_{b}\right) \mid P_{a}, P_{b} \in \mathcal{P}\right.$ and there is a path from $V\left(P_{a}\right)$ to $V\left(P_{b}\right)$ inside Q_{j} which is internally disjoint from $\left.\mathcal{P}\right\}$.

See Figure 6 for an example of a temporal digraph obtained from a linkage $\mathcal{P}:=\left\{P_{a}, P_{b}, P_{c}\right\}$ and digraphs $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$.
In our application of routing temporal digraphs we want to translate paths or more general structures we construct in a routing temporal digraph T of a linkage \mathcal{P} through $\mathcal{Q}:=\left\{Q_{1}, \ldots, Q_{q}\right\}$ into corresponding subgraphs of $\bigcup \mathcal{P} \cup \bigcup \mathcal{Q}$. This is made possible by our requirement that a temporal walk in T is only allowed to use at most one edge in each layer. For, if W is a temporal walk W in T and $e=\left(P_{i}, P_{j}\right) \in E(W)$ is an edge in layer A_{l}, say, then we can replace e by a path $L(e) \subseteq Q_{l}$ connecting P_{i} to P_{j}. As W contains at most one edge per layer the paths $L(e)$ and $L\left(e^{\prime}\right)$ for distinct edges $e \neq e^{\prime}$ are pairwise disjoint. Therefore, the walk W naturally translates into a walk in $\cup \mathcal{P} \cup \bigcup \mathcal{Q}$.
As the example in Figure 6 demonstrates, this would no longer work if temporal walks were allowed to use more than one edge per layer. For instance, the digraph Q_{2} induces the edges $\left(P_{c}, P_{b}\right)$ and $\left(P_{b}, P_{a}\right)$ in the routing temporal digraph T_{2} of \mathcal{P} through $\left\{Q_{2}\right\}$, but the walk $\left(P_{c}, P_{b}, P_{a}\right)$ in T_{2} does not correspond to any $P_{c}-P_{a}$-walk in $\cup \mathcal{P} \cup Q_{2}$.

6.1 H-routings

We now introduce the main tools to facilitate temporal digraphs for our purposes. Our goal is to describe connections between specific sets of vertices that involve several layers, possibly with the additional requirement that the connections avoid a given set of forbidden vertices. The concept of H-routings formalised in the next definition allows us to specify the required connections by a digraph H. We now define H-routings in digraphs and temporal digraphs.

Definition 6.4. Let H be a digraph, D be a digraph or temporal digraph, and $S \subseteq V(D)$. An H-routing (over S) is a bijection $\varphi: V(H) \rightarrow S$ such that for each v-u path P in H we can find a $\varphi(v)-\varphi(u)$-path (or temporal path, resp.) in D which is disjoint from $S \backslash \varphi(V(P)$).

Note that reachability in temporal digraphs is not transitive, as the example in Figure 6 demonstrates: in the temporal digraph $T_{1,3}:=\left(\left\{P_{1}, P_{2}, P_{3}\right\},\left\{A_{1}, A_{3}\right\}\right)$ containing only the layers A_{1} and A_{3}, P_{a} is reachable from P_{c} and P_{b} is reachable from P_{a} but P_{b} is not reachable from P_{c}. To get a meaningful concept of H-routings we therefore have to require that not only for every edge in H but also for every path in H there is a temporal path in T with the same start and endpoint.
To motivate our next results let us briefly consider the following statement proved by Leaf and Seymour for undirected graphs.

Lemma 6.5 ([LS15, statement 2.3]). Let $r \geq 1$ and $h \geq 3$ be integers, let G be a connected graph with $|V(G)| \geq(r+2)(2 h-5)+2$. Then, G contains one of the following

- a path with r vertices whose internal vertices have degree two in G, or
- a spanning tree T with at least h leaves.

In the undirected setting, both cases of the previous lemma can be useful in terms of connectivity they provide: a tree contains for every pair of leaves a path connecting them without intersecting any other leaves whereas a long path yields many disjoint subpaths.
In the directed setting, however, neither out-trees nor in-trees provide any connectivity whatsoever between their leaves. To get a statement that we can use in the sequel we therefore have to replace the trees used in Lemma 6.5 by something else. We first need the following well-known result about acyclic digraphs, often stated in terms of chains and anti-chains in partial orderings.

Observation 6.6. Every acyclic digraph D with more than $\ell \cdot p$ vertices but no \mathbf{P}_{p} as a subgraph contains a set $X \subseteq V(D)$ of size ℓ such that no vertex in X can reach any other vertex in X.

Proof. For each $i \geq 0$ let $L_{i}:=\{v \in V(D)$: the longest path from a source to v in T has length $i\}$. As, by assumption, D does not contain a path of length $p, L_{i}=\emptyset$ for all $i \geq p$. Furthermore, by construction, no vertex $v \in L_{i}$ can reach any other vertex $u \in L_{i}$, as otherwise the longest path from a source to u would be longer than i.
Every vertex of D lies in some L_{i}; by the pigeon-hole principle, at least one L_{i} must contain at least ℓ vertices, which proves the claim.

In the next lemma we establish a simple base case where we are guaranteed to either find a long path or a $\overrightarrow{\mathbf{K}}_{k}$-routing.

Lemma 6.7. Let D be a strongly connected digraph. Let $s \in V(D)$ be a vertex such that $D-\{s\}$ contains at least $k p$ strongly connected components. Then, D contains one of the following:
(B1) a \mathbf{P}_{p} as a subgraph, or
(B2) a $\overrightarrow{\mathbf{K}}_{k}$-routing over some $S \subseteq V(D)$.
Proof. We show that (B2) holds if (B1) does not hold.
Let T be the acyclic digraph of strongly connected components of $D-\{s\}$. As D has no path of length p, T also has no such path. Thus, by Observation 6.6, T contains a set $X^{\prime} \subseteq V(T)$ of size k such that no vertex in X^{\prime} can reach any other vertex in X^{\prime} in T.
Let $X \subseteq V(D)$ be a set of size $|X|=\left|X^{\prime}\right|$ which contains a vertex $v_{i} \in V\left(C_{i}\right)$ for each strong component $C_{i} \in X^{\prime}$ of $D-\{s\}$. Let $\varphi: V\left(\widetilde{\mathbf{K}}_{k}\right) \rightarrow\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a bijection. We show that φ is a $\overrightarrow{\mathbf{K}}_{k}$-routing in D.
Let $v_{i}, v_{j} \in X$ be two distinct vertices. Let $C_{t} \in V(T)$ be a sink in T which is reachable from C_{i} and let $C_{r} \in V(T)$ be a source in T which can reach C_{j}.
Since D is strongly connected and $D-\{s\}$ is not, there is some $u_{t} \in V\left(C_{t}\right)$ and some $u_{r} \in V\left(C_{r}\right)$ such that $\left(u_{t}, s\right)$ and $\left(s, u_{r}\right)$ are arcs in D.
Because C_{i} can reach C_{t} and C_{r} can reach C_{j} in T, there is a $v_{i}-u_{t}$ path $P_{i, t}$ and a $u_{r}-v_{j}$ path $P_{r, j}$ in D such that $P_{i, t}$ and $P_{r, j}$ do not intersect any vertex in $X \backslash\left\{v_{i}, v_{j}\right\}$. Hence, $P_{i, t} \cdot\left(u_{t}, s\right) \cdot\left(s, u_{s}\right) \cdot P_{r, j}$ is a $v_{i}-v_{j}$ path in D which is disjoint from $X \backslash\left\{v_{i}, v_{j}\right\}$.
We conclude that φ is a $\overrightarrow{\mathbf{K}}_{k}$-routing in D, and so (B2) holds, as desired.
We now prove a statement as an analogue to Lemma 6.5 in the case of directed graphs.
Theorem 6.8. Let $\mathrm{n}_{6.8}(k, p):=2 k^{2} p^{3}$. Every strongly connected digraph D with $|V(D)| \geq \mathrm{n}_{6.8}$ $\mathrm{n}_{6.8}(k, p)$ contains one of the following:
(S1) a \mathbf{P}_{p} as a subgraph, or
(S2) a $\overleftrightarrow{\mathbf{K}}_{k}$-routing over some $S \subseteq V(D)$.
Proof. We show that (S2) holds if (S1) does not hold.
We iterate from 1 to $2 k p$, potentially stopping earlier. On step i, we construct a vertex sequence X_{i} and a digraph D_{i} satisfying all of the following.
(A1) $\left(v_{1}, v_{2}, \ldots, v_{i}\right)=X_{i}$ and so $\left|X_{i}\right| \geq i$,
(A2) D_{i} is strongly connected component of $D_{i-1}-\left\{v_{i}\right\}$ (and so v_{i} is not on D_{i}),
(A3) for every $1 \leq j \leq i, v_{j}$ lies on D_{j-1},
(A4) $V\left(D_{i}\right) \geq(2 k p-i) k p^{2}$.
Start by setting $D_{0}=D$ and X_{0} as the empty sequence. Clearly, (A1) to (A4) hold for 0 (to simplify notation, we set $D_{-1}:=D$ and replace $\left\{v_{0}\right\}$ with the empty set so that (A2) is well-defined for $i=0$). On step $i \leq 2 k p$, we consider the following cases.
Case 1. There is a $v \in V\left(D_{i-1}\right)$ such that $D_{i-1}-v$ contains at least $k p$ strongly connected components.
As we assume that (S1) does not hold, we know from Lemma 6.7 that (S2) holds and we are done with the construction and the proof.
Case 2. There is a $v \in V\left(D_{i-1}\right)$ such that $D_{i-1}-v$ is strongly connected.
Then set $X_{i}:=X_{i-1} \cdot(v)$ and set $D_{i}:=D_{i-1}-v$. It is immediate from the choice of v and from our assumption over $D_{i-1}-v$ that (A1) to (A4) hold for i as they also hold for $i-1$.
Case 3. There is a $v \in V\left(D_{i}\right)$ such that the largest strongly connected component C of $D_{i-1}-v$ has at least $\left|V\left(D_{i-1}\right)\right|-k p^{2}$ many vertices.
Then set $X_{i}:=X_{i-1} \cdot(v)$ and $D_{i}:=C$. Note that $\left|V\left(D_{i-1}\right)\right|-k p^{2} \geq(2 k p-i) k p^{2}$ as (A4) holds for $i-1$. Hence, it is again immediate from the choice of v and from our assumption over C that (A1) to (A4) hold for i as they also hold for $i-1$.
This completes the case distinction above. Now assume towards a contradiction that none of the three cases above apply and $i \leq 2 k p$.
For every $v \in V\left(D_{i-1}\right)$, we know that $D_{i-1}-v$ has fewer than $k p$ strong components because Case 1 does not apply. Further, $D_{i-1}-v$ is not strongly connected, as Case 2 does not apply. Finally, we know that each strong component of $D_{i-1}-v$ has fewer than $\left|V\left(D_{i-1}\right)-k p^{2}\right|$ vertices because Case 3 does not apply.
For each $v \in V\left(D_{i-1}\right)$, let \mathcal{C}_{v} be the set of strong components of $D_{v}^{\prime}:=D_{i-1}-v$. Let $A_{v}=$ $\left\{(u, w): u, w \in V\left(D_{v}^{\prime}\right)\right.$ and there is no path from u to w in $\left.D_{v}^{\prime}\right\}$. Let $n_{v}=\left|V\left(D_{v}^{\prime}\right)\right|$.
Now let $v \in V\left(D_{i-1}\right)$ be arbitrary. For any two distinct components $C_{1}, C_{2} \in \mathcal{C}_{v}$, there is no path in D_{v}^{\prime} from any $u \in V\left(C_{1}\right)$ to any $w \in V\left(C_{2}\right)$ or vice versa. Thus, A_{v} contains all possible arcs from vertices in C_{1} to vertices in C_{2} or all possible arcs from vertices in C_{2} to vertices in C_{1}. Fixing some arbitrary ordering $\left(C_{1}, C_{2}, \ldots, C_{c}\right)$ of the elements of \mathcal{C}_{v}, we deduce that

$$
\left|A_{v}\right| \geq \sum_{\substack{C_{a}, C_{b} \in \mathcal{C}_{v}, a<b}}\left|V\left(C_{a}\right)\right| \cdot\left|V\left(C_{b}\right)\right|
$$

Let $C \in \mathcal{C}_{v}$ be a strong component of D_{v}^{\prime} with the maximal number of vertices among all components in \mathcal{C}_{v}. The previous inequality implies that $\left|A_{v}\right| \geq|V(C)| \cdot \sum_{C_{a} \in \mathcal{C}_{v} \backslash\{C\}}\left|V\left(C_{a}\right)\right|$. By assumption $|V(C)| \leq n_{v}-k p^{2}-1$, and since the strong components of D_{v}^{\prime} form a partition of D_{v}^{\prime}, we obtain that $\sum_{C_{a} \in \mathcal{C} \backslash\{C\}}\left|V\left(C_{a}\right)\right| \geq k p^{2}$. Note that $n_{v}-k p^{2}-1 \geq k p^{2}$ since (A4) holds for $i<2 k p$. Since D_{v}^{\prime} contains fewer than $k p$ strong components, we also obtain $|V(C)| \geq$
$\left(n_{v}-1\right) / k p$. From the inequality above, we obtain

$$
\begin{aligned}
\left|A_{v}\right| & \geq|V(C)| \cdot \sum_{C_{a} \in \mathcal{C} \backslash\{C\}}\left|V\left(C_{a}\right)\right| \\
& \geq \frac{n_{v}-1}{k p} \cdot \sum_{C_{a} \in \mathcal{C} \backslash\{C\}}\left|V\left(C_{a}\right)\right| \\
& \geq \frac{n_{v}-1}{k p} \cdot k p^{2}=\left(n_{v}-1\right) \cdot p
\end{aligned}
$$

Hence, $\sum_{v \in V\left(D_{i-1}\right)}\left|A_{v}\right| \geq n_{v} \cdot\left(n_{v}-1\right) \cdot p$. Since A_{v} does not contain any reflexive tuples and there are $n_{v}\left(n_{v}-1\right)$ non-reflexive tuples in the set $V\left(D_{i-1}\right) \times V\left(D_{i-1}\right)$, by the pigeon-hole principle we deduce that there are $u, v \in V\left(D_{i-1}\right)$ and there are $v_{1}, \ldots, v_{p} \in V\left(D_{i-1}\right)$ such that $(u, v) \in A_{v_{j}}$ for all $1 \leq j \leq p$. Thus, every path from u to w in D_{i-1} must contain each of the vertices $v_{1}, \ldots v_{p}$ and thus be of length at least $p+1$ (by definition, $(u, w) \notin A_{u} \cup A_{w}$), a contradiction to the assumption that (S1) does not hold, that is, that D does not contain a path of length p. Hence, one of the three cases must apply and we can complete the construction above.
If at any point during the construction we end up at Case 1, then, as argued above, (S2) is true and we are done. Otherwise, we know that (A1) to (A4) hold for $2 k p$. We now show that (S2) holds.
Let $\left(v_{1}, v_{2}, \ldots, v_{2 k p}\right):=X_{2 k p}$. We inductively construct disjoint sets $A_{i}, B_{i} \subseteq\left\{v_{1}, \ldots\right.$, $\left.v_{2 p k}\right\}$ and we construct for each $v_{j} \in B_{i}$ a path $P_{j}^{+} \subseteq D_{j}$ from v_{j} to $V\left(D_{2 k p}\right)$ and a path $P_{j}^{-} \subseteq D_{j}$ from $V\left(D_{2 k p}\right)$ to v_{j} such that $\left(V\left(P_{j}^{+}\right) \cup V\left(P_{j}^{-}\right)\right) \cap A_{i}=\emptyset$ for all $v_{j} \in B_{i}$. Finally, $\left|B_{i}\right|=i,\left|A_{i}\right| \geq 2 k p-2 p i$ and the elements of B_{i} are contained in X_{i}.
We start by setting $A_{0}:=\left\{v_{1}, \ldots, v_{2 k p}\right\}$ and $B_{0}:=\emptyset$, which obviously meet the requirements. On step $i<k$, let j be minimal such that $v_{j} \in A_{i-1}$.
Let P_{j}^{+}be a shortest path in D_{j-1} from v_{j} to a vertex in $D_{2 k p}$ and let P_{j}^{-}be a shortest path from a vertex in $D_{2 k p}$ to v_{j}, again in D_{j-1}. As D_{j-1} is strongly connected and $D_{2 k p} \subseteq D_{j-1}$ due to (A2), such paths exist. Furthermore, P_{j}^{+}and P_{j}^{-}are both of length at most p and all internal vertices of P_{j}^{+}and P_{j}^{-}are disjoint from X_{j-1} (and so from B_{i-1}) due to (A2).
We define $B_{i}=B_{i-1} \cup\left\{v_{j}\right\}$ and $A_{i}=A_{i-1} \backslash\left(V\left(P_{j}^{+} \cup P_{j}^{-}\right)\right)$. As $\left|V\left(P_{j}^{+}\right)\right|,\left|V\left(P_{j}^{-}\right)\right|<p$ and $\left|A_{i-1}\right| \geq 2 k p-2 p(i+1)$, we immediately get that $\left|A_{i}\right| \geq 2 k p-2 p i$, as required. Clearly, the other conditions are satisfied as well.
The construction stops after k steps with a set B_{k} such that for each $v_{j} \in B_{k}$ there are paths P_{j}^{+}, P_{j}^{-}such that P_{j}^{+}is a $v_{j}-V\left(D_{2 k p}\right)$ path and P_{j}^{-}is a $V\left(D_{2 k p}\right)-v$ path and both paths are internally disjoint from B_{k}.
Let $\varphi: V\left(\overleftrightarrow{\mathbf{K}}_{k}\right) \rightarrow B_{k}$ be a bijection. We show that φ is a $\overleftarrow{\mathbf{K}}_{k}$-routing in D. To see this, let $v_{i}, v_{j} \in B_{k}$ and let $P_{i, j}$ be a path in $D_{2 k p}$ from the end vertex of P_{i}^{+}to the start of P_{j}^{-}. Then $P_{i}^{+} \cup P_{i, j} \cup P_{j}^{-}$contains a $v_{i}-v_{j}$-path disjoint from B_{k}. Hence, ($\mathbf{S 2}$) holds and this concludes the proof of the theorem.

6.2 Finding \mathbf{P}_{k}-routings in temporal digraphs

Of particular interest to us are H-routings in temporal digraphs where H is just a simple path \mathbf{P}_{k}. This is not surprising as, for example, an acyclic grid is nothing else than a "horizontal" linkage $\mathcal{Q}:=\left(Q_{1}, \ldots, Q_{q}\right)$ that intersects a sequence $\mathcal{P}:=\left\{P_{1}, \ldots, P_{p}\right\}$ of pairwise disjoint digraphs P_{i} in the order P_{1}, \ldots, P_{p} where each P_{i} happens to be a simple path intersecting the paths in \mathcal{Q} in the order Q_{1}, \ldots, Q_{q}.

Our next goal, therefore, is to identify properties of the individual layers of a temporal digraph T that guarantee the existence of a \mathbf{P}_{k}-routing in T.
Recall from Section 3 that a digraph D is unilateral if for every pair $u, v \in V(D)$ of vertices v can reach u or u can reach v. As proved in [HNC65, Theorem 3.10], a digraph D is unilateral if and only if there is a walk visiting all vertices of D.
We need a stronger characterisation of unilateral digraphs for our results.
Lemma 6.9. A digraph D is unilateral if and only if for every $S \subseteq V(D)$ there is a walk W of length at most $2 k n$ in D with $S \subseteq V(W)$, where $k=|S|$ and $n=|V(D)|$.

Proof. If there is a walk W in D with $V(W)=V(D)$, then D is clearly unilateral.
Now assume D is unilateral and let $S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\} \subseteq V(D)$. We construct for each $1 \leq i \leq k$ a walk W_{i} of length at most $2 i \cdot|V(D)|$ such that $\left\{v_{1}, v_{2}, \ldots v_{i}\right\} \subseteq V\left(W_{i}\right)$. Start by setting W_{1} as the walk containing only v_{1}.
We extend the walk W_{i} as follows. Let u_{1}, u_{2} be the starting point and endpoint of W_{i}, respectively. If there is a path P from v_{i+1} to u_{1}, we construct W_{i+1} by adding P to the beginning of W_{i}. Similarly, if there is path P from u_{2} to v_{i+1} we construct W_{i+1} by adding P to the end of W_{i}. Since in both cases P has length at most $|V(D)|-1$, the length of W_{i+1} is at most $2 i|V(D)|+|V(D)| \leq 2(i+1)|V(D)|$.
If none of the previous two cases apply, we know there is an arc $\left(w_{1}, w_{2}\right)$ in W_{i} such that there is a path P_{1} from w_{1} to v_{i+1} and a path P_{2} from v_{i+1} to w_{2}. We construct W_{i+1} by replacing the arc $\left(w_{1}, w_{2}\right)$ in W_{i} by the walk $P_{1} \cdot P_{2}$. The walk W_{i+1} has length at most $2 i|V(D)|+2|V(D)|=2(i+1)|V(D)|$, as desired.
Thus, the walk W_{k} satisfies the statement of the lemma.
Finding long walks in unilateral digraphs is easy. The task becomes more complicated in temporal digraphs as the connectivity provided by individual layers may be very different. As we show next, one direction of the previous lemma can be retained in the temporal setting. Observe that $\ell_{6.10}(n, k) \in O\left(k^{2} n^{2 k n+2}\right)$.
Lemma 6.10. Let $\ell_{6.10}(n, k):=2 k n \sum_{i=1}^{2 k n} n^{i}$. Let T be a temporal digraph with n vertices where each layer is unilateral and let $S \subseteq V(T)$ be a set of size k. If $\ell(T) \geq \ell_{6.10}(n, k)$, then T contains a temporal walk W with $S \subseteq V(W)$.

Proof. By Lemma 6.9, for each $1 \leq i \leq \ell(T)$ there is a walk W_{i} of length at most $2 k n$ in $D_{i}(T)$ such that $S \subseteq V\left(W_{i}\right)$. Note that there are $\sum_{i=1}^{2 k n} n^{i}$ distinct walks of length at most $2 k n$ over the vertex set of T.
As $\ell(T) \geq 2 k n \sum_{i=1}^{2 k n} n^{i}$, by the pigeon-hole principle there is some walk W^{\prime} which appears on at least $2 k n$ different layers. Let $t_{1}, t_{2}, \ldots, t_{2 k n}$ be time steps such that each $D_{t_{i}}(T)$ contains the walk W^{\prime}. Now set $W:=\left(\left(v_{i}, t_{i}\right) \mid 1 \leq i \leq 2 k n\right.$ and v_{i} is the i th vertex on $\left.W^{\prime}\right)$.
Since $V(W)=V\left(W^{\prime}\right)$, we also have $S \subseteq V(W)$, as desired.
The next lemma establishes a special case where a temporal digraph is guaranteed to contain a \mathbf{P}_{k}-routing. Together with Lemma 6.10 this implies Theorem 6.12.

Lemma 6.11. Let D be a temporal digraph and let W be a temporal walk in D. If $|V(W)| \geq$ $k^{2}-1$, then W contains a \mathbf{P}_{k}-routing.

Proof. If W contains a \mathbf{P}_{k} as a temporal subpath, then this subgraph also contains a \mathbf{P}_{k}-routing. So assume W does not contain any \mathbf{P}_{k} as a temporal subpath.

Let W^{\prime} be a minimal temporal subwalk of W such that $V\left(W^{\prime}\right)=V(W)$. We say that a temporal subwalk R of W is a return around u if u appears twice on R, R starts and ends on u and all other vertices on R appear exactly once on R. As we do not have any \mathbf{P}_{k} as a temporal subpath of W^{\prime}, we know each return contains at most $k-1$ vertices. Furthermore, by minimality of W^{\prime}, each return R around a vertex u must contain a vertex u^{\prime} which only occurs on R.
Let $v_{1}, v_{2}, \ldots v_{a}$ be vertices on W^{\prime} which are not contained in any return and let X be the shortest subwalk of W^{\prime} containing these vertices. Clearly, X is a temporal path, as otherwise we would have some return containing some v_{i}. Hence, $a \leq k-1$ as there is no \mathbf{P}_{k} in W.
Observe that $\left|V\left(W^{\prime}\right)\right| \geq k^{2}-1$, that each return contains at most $k-1$ vertices and that there are at most $k-1$ vertices which are not contained in any return. This implies that the walk W^{\prime} must contain at least $\frac{\left(k^{2}-1\right)-(k-1)}{k-1}=k$ distinct returns.
Each return R_{i} on W^{\prime} contains some vertex u_{i} which appears exactly once on W^{\prime}. Let X be a shortest temporal subwalk of W^{\prime} which contains $S:=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$. This walk contains a \mathbf{P}_{k}-routing as desired, as each temporal subpath of X connecting u_{i} to u_{j} is internally disjoint from $S \backslash\left\{u_{i}, \ldots, u_{j}\right\}$ for every $1 \leq i<j \leq k$.

The previous two lemmas immediately imply the following result. Observe that $\ell_{6.12}(n, k) \in$ $2^{1 \uparrow \uparrow \text { poly }{ }^{6}(k, n)}$.

Theorem 6.12. Let $\ell_{6.12}(n, k):=\ell_{6.10}\left(n, k^{2}-1\right)$. Let T be a temporal digraph where each layer is unilateral. If $\ell(T) \geq \ell_{6.12}(n, k)$ and $n:=|V(T)| \geq k^{2}-1$, then there is some set $S \subseteq V(T)$ such that T contains a \mathbf{P}_{k}-routing over S.
Proof. Let $S^{\prime} \subseteq V(D)$ with $\left|S^{\prime}\right|=k^{2}-1$. By Lemma $6.10, T$ contains a temporal walk W such that $S^{\prime} \subseteq V(W)$. In particular, $|V(W)| \geq k^{2}-1$. By Lemma 6.11, there is some $S \subseteq V(W)$ such that W and, hence, T contain a \mathbf{P}_{k} routing over S.

6.3 Finding \mathbf{C}_{k} and $\stackrel{\rightharpoonup}{\mathbf{P}}_{k}$-routings in temporal digraphs

As discussed at the beginning of the previous section, \mathbf{P}_{k}-routings relate to the connectivity in an acyclic grid, which only allows to route from top to bottom and from left to right. If instead of an acyclic grid we consider a fence, then the fence allows us to route upwards as well as downwards as the columns alternate in direction. Two consecutive columns taken together allow to go from any row to any other row and in this way resemble a strongly connected digraph like a cycle \mathbf{C}_{k} or a bioriented $\widehat{\mathbf{P}}_{k}$ much more than a \mathbf{P}_{k}. In this section we aim at finding H-routings that provide this higher level of connectivity.
We first define

$$
\begin{equation*}
\mathrm{s}_{6.13}\left(k_{1}, k_{2}\right):=6 k_{1}\left(k_{2}\right)^{2}-8 k_{1} k_{2}+2 k_{1}-2\left(k_{2}\right)^{2}+3 k_{2} \tag{6.13}
\end{equation*}
$$

and prove the following technical lemma. Note that $\mathrm{s}_{6.13}\left(k_{1}, k_{2}\right) \in O\left(k_{1}\left(k_{2}\right)^{2}\right)$.
Lemma 6.13. Let T be a temporal digraph, let W be a temporal walk in T, let k_{1}, k_{2} be integers, and let $S \subseteq V(W)$ be a set of size at least $\mathrm{s}_{6.13}\left(k_{1}, k_{2}\right)$. Then there is some $S^{\prime} \subseteq S$ such that one of the following is true:
(R1) W contains a $\overrightarrow{\mathbf{P}}_{k_{1}}$-routing over S^{\prime}, or
(R2) there are (possibly arcless) walks $W_{1}, W_{a}, W_{b}, W_{c}$ in D such that W_{1} is a subwalk of W leaving and arriving at the same time steps as $W, W_{a} \cdot W_{b} \cdot W_{c}=W_{1}, W_{a}$ and W_{c} are internally disjoint from S^{\prime}, and W_{b} contains a $\mathbf{P}_{k_{2}}$-routing over S^{\prime} where the first vertex of the $\mathbf{P}_{k_{2}}$ is mapped to $\operatorname{start}\left(W_{b}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ is mapped to end $\left(W_{b}\right)$.

Proof. To simplify arithmetic steps, we define $k_{3}=\left(k_{1}-1\right)\left(k_{2}-1\right)$ and $s_{1}=2\left(k_{3}+k_{2}\right)+k_{2}-1$. Note that $\left(k_{2}-1\right)\left(s_{1}-1\right)+k_{2}\left(4 k_{3}+k_{2}\right)=6 k_{1}\left(k_{2}\right)^{2}-8 k_{1} k_{2}+2 k_{1}-2\left(k_{2}\right)^{2}+3 k_{2}=\mathrm{s}_{6.13}\left(k_{1}, k_{2}\right) \leq|S|$. We identify in the following claim a base case for the proof, which is used several times later on.

Claim 1. Let $\widehat{W}=\widehat{W}_{a} \cdot \widehat{W}_{b} \cdot \widehat{W}_{c}$ be a temporal walk inside W such that $\operatorname{start}(\widehat{W})=\operatorname{start}(W)$ and end $(\widehat{W})=\operatorname{end}(W)$ and let $\widehat{S} \subseteq V\left(\widehat{W}_{a}\right) \cap V\left(\widehat{W}_{c}\right) \cap S$ be a set such that each vertex of \widehat{S} appears exactly once on \widehat{W}_{a} and exactly once on \widehat{W}_{c}. If $|\widehat{S}| \geq k_{3}+1$, then there is some $S^{\prime} \subseteq \widehat{S}$ such that (R1) or (R2) holds.

Proof. Since each vertex of \widehat{S} appears exactly once on \widehat{W}_{a} and exactly once on \widehat{W}_{c}, each of these walks induces an ordering over the vertices of \widehat{S}. By Theorem 3.1, we obtain two cases.
Case 1: There is some $S^{\prime} \subseteq \widehat{S}$ of size k_{1} such that the vertices of S^{\prime} appear on \widehat{W}_{c} in the reverse order compared to their order on $\widehat{W_{a}}$.
Let W_{a} be a shortest temporal subpath of \widehat{W}_{a} containing every vertex of S^{\prime} and let W_{c} be a shortest temporal subpath of \widehat{W}_{c} containing every vertex of S^{\prime}. Note that end $\left(W_{a}\right)=\operatorname{start}\left(W_{c}\right)$. We show that $W_{a} \cdot W_{c}$ contains a $\overleftrightarrow{\mathbf{P}}_{k_{1}}$-routing over S^{\prime}. Let $\left\{u_{1}, u_{2}, \ldots, u_{k_{1}}\right\}$ be the vertices of the $\overleftrightarrow{\mathbf{P}}_{k_{1}}$ sorting according to their occurrence on the path.
Let $u_{i}, u_{j} \in\left\{u_{1}, u_{2}, \ldots, u_{k_{1}}\right\}$. If $i<j$, then W_{a} contains a u_{i} - u_{j} path avoiding $S^{\prime} \backslash\left\{u_{i}, \ldots, u_{j}\right\}$. If $j>i$, then W_{c} contains a $u_{i}-u_{j}$ path avoiding $S^{\prime} \backslash\left\{u_{j}, \ldots, u_{i}\right\}$. Since both W_{a} and W_{c} are temporal paths, we have that $W_{a} \cdot W_{c}$ contains a $\widetilde{\mathbf{P}}_{k_{1}}$-routing over S^{\prime}, satisfying (R1).
Case 2: There is some $S^{\prime} \subseteq \widehat{S}$ of size k_{2} such that the vertices of S^{\prime} appear in \widehat{W}_{c} in the same order as in \widehat{W}_{a}.
Let W_{b} be the shortest temporal subpath of \widehat{W}_{a} containing every vertex of S^{\prime}. Let W_{a} be a temporal start $(\widehat{W})-\operatorname{start}\left(W_{b}\right)$ path in \widehat{W}_{a} and let \widehat{W}_{c} be a temporal end $\left(W_{b}\right)$-end (\widehat{W}) path in \widehat{W}_{c}.
Since every vertex of S^{\prime} appears exactly once, W_{b} contains a $\mathbf{P}_{k_{2}}$-routing over S^{\prime} where the first vertex of the $\mathbf{P}_{k_{2}}$ is mapped to start $\left(W_{b}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ is mapped to end $\left(W_{b}\right)$. Further, W_{a} and W_{c} are internally disjoint from S^{\prime}. Thus, the temporal walk $W_{1}:=W_{a} \cdot W_{b} \cdot W_{c}$ satisfies (R2).

Let W^{\prime} be a minimal temporal subwalk of W such that $S \subseteq V\left(W^{\prime}\right)$. We say that a temporal subwalk R of W is a return around a vertex $u \in S$ if u appears exactly twice on R, R starts and ends on u and all vertices of $(V(R) \cap S) \backslash\{u\}$ appear exactly once on R. Note that, by minimality of W^{\prime}, each return R around a vertex u must contain a vertex $u^{\prime} \in S$ whose only occurrence on W^{\prime} is on R.
Let R be a return in W^{\prime} such that the cardinality of $S_{1}:=V(R) \cap S$ is maximum. We consider two cases.
Case 1: $\left|S_{1}\right| \leq s_{1}-1$.
We decompose W^{\prime} into $Q_{1} \cdot R_{1} \cdot Q_{2} \cdot R_{2} \cdot \ldots \cdot Q_{x} \cdot R_{x} \cdot Q_{x+1}=W^{\prime}$, where each Q_{i} is a temporal walk where no vertex of S appears twice and each R_{i} is a return in W^{\prime}. By definition of return, such a decomposition is unique. We distinguish between two cases.
Case 1.1: $x \geq k_{2}$.
For each $1 \leq i \leq k_{2}$ let $u_{i} \in V\left(R_{i}\right) \cap S$ be a vertex which occurs exactly once on W^{\prime}. Let W_{a} be a temporal $\operatorname{start}\left(W^{\prime}\right)-u_{1}$ path in W^{\prime}, let W_{c} be a temporal $u_{k_{2}}$-end $\left(W^{\prime}\right)$ path in W^{\prime} and let W_{b} be a temporal $u_{1}-u_{k_{2}}$ walk in W^{\prime} which contains every vertex of $S^{\prime}:=\left\{u_{1}, u_{2}, \ldots, u_{k_{2}}\right\}$ exactly once.

Because each vertex of S^{\prime} appears exactly once, W_{b} contains a $\mathbf{P}_{k_{2}}$-routing over S^{\prime} where $u_{1}=\operatorname{start}\left(W_{b}\right)$ is the first vertex of the $\mathbf{P}_{k_{2}}$ and $u_{k_{2}}=\operatorname{end}\left(W_{b}\right)$ is the last vertex of the $\mathbf{P}_{k_{2}}$. Further, W_{a} and W_{c} are temporal walks which are internally disjoint from $S^{\prime \prime}$. Hence, $W_{1}:=W_{a} \cdot W_{b} \cdot W_{c}$ satisfies (R2).
Case 1.2: $x<k_{2}$.
Since $|S| \geq\left(k_{2}-1\right)\left(s_{1}-1\right)+k_{2}\left(4 k_{3}+k_{2}\right)$ and $\left|V\left(R_{i}\right) \cap S\right| \leq\left|S_{1}\right| \leq s_{1}-1$ for every $1 \leq i \leq x$, there is some $1 \leq b \leq x$ such that $\left|V\left(Q_{b}\right) \cap S\right| \geq\left(|S|-\left(k_{2}-1\right)\left(s_{1}-1\right)\right) / k_{2} \geq 4 k_{3}+k_{2}$.
Let t_{1} be the time step in which Q_{b} departs and let t_{2} be the time step in which Q_{b} arrives. Let Q_{a}^{\prime} be a temporal start $\left(W^{\prime}\right)-\operatorname{start}\left(Q_{b}\right)$ path in W^{\prime} arriving at t_{1} and let Q_{c}^{\prime} be a temporal end $\left(Q_{b}\right)$ end $\left(W^{\prime}\right)$ path in W^{\prime} departing at t_{2}. Let $S_{a}=V\left(Q_{a}^{\prime}\right) \cap S, S_{b}=V\left(Q_{b}\right) \cap S$ and $S_{c}=V\left(Q_{c}^{\prime}\right) \cap S$. We consider three cases.
Case 1.2.1: $\left|S_{b} \backslash\left(S_{a} \cup S_{c}\right)\right| \geq k_{2}$.
Let $S^{\prime} \subseteq S_{b} \backslash\left(S_{a} \cup S_{c}\right)$ be a set of size k_{2}. Let W_{b} be a shortest walk inside Q_{b} containing every vertex of S^{\prime} exactly once. By construction of Q_{b}, this is possible. Let W_{a} be a temporal $\operatorname{start}\left(W^{\prime}\right)$-start $\left(W_{b}\right)$ walk in $Q_{a}^{\prime} \cdot Q_{b}$ and let W_{c} be a temporal end $\left(W_{b}\right)$-end $\left(W^{\prime}\right)$ walk in $Q_{b} \cdot Q_{c}^{\prime}$. By construction, we have that W_{a} and W_{c} are internally disjoint from S^{\prime}. Further, since each vertex of S^{\prime} appears exactly once, W_{b} contains a $\mathbf{P}_{k_{2}}$-routing over S^{\prime} where the first vertex of the $\mathbf{P}_{k_{2}}$ is mapped to $\operatorname{start}\left(W_{b}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ is mapped to end $\left(W_{b}\right)$. Hence, $W_{1}:=W_{a} \cdot W_{b} \cdot W_{c}$ satisfies (R2).
Case 1.2.2: $\left|\left(S_{b} \cap S_{a}\right) \backslash S_{c}\right| \geq k_{3}+1$ or $\left|\left(S_{b} \cap S_{c}\right) \backslash S_{a}\right| \geq k_{3}+1$.
We assume, without loss of generality, that $\left|\left(S_{b} \cap S_{a}\right) \backslash S_{c}\right| \geq k_{3}+1$. The other case follows analogously.
Let $S_{2}=\left(S_{b} \cap S_{a}\right) \backslash S_{c}$. Let $\widehat{W}_{c}=Q_{b} \cdot Q_{c}^{\prime}$. Each vertex of \widehat{S} appears exactly once on Q_{a} and exactly once on \widehat{W}_{c}. Hence, by Claim 1, there is some $S^{\prime} \subseteq S_{2}$ such that (R1) or (R2) holds.
Case 1.2.3: The conditions of Case 1.2.1 and Case 1.2.2 do not apply.
We first show that $\left|S_{a} \cap S_{c}\right| \geq k_{3}+1$. Since $\left|S_{b} \backslash\left(S_{a} \cup S_{c}\right)\right| \leq k_{2}-1$ and $\left|S_{b}\right| \geq 4 k_{3}+k_{2}$, we have that $\left|S_{b} \cap\left(S_{a} \cup S_{c}\right)\right| \geq 4 k_{3}+1$. Hence, $\left|S_{b} \cap S_{a}\right| \geq 2 k_{3}+1$ or $\left|S_{b} \cap S_{c}\right| \geq 2 k_{3}+1$.
Assume, without loss of generality, that $\left|S_{b} \cap S_{a}\right| \geq 2 k_{3}+1$ holds. Because $\left|\left(S_{b} \cap S_{a}\right) \backslash S_{c}\right| \leq k_{3}$, we have that $\left|S_{a} \cap S_{c}\right| \geq k_{3}+1$, as desired.
Let $S_{2} \subseteq S_{a} \cap S_{c}$ be a set of size $k_{3}+1$. Each vertex of S_{2} appears exactly once on Q_{a} and exactly once on Q_{c} since Q_{a}^{\prime} and Q_{c} are temporal paths. Hence, by Claim 1, there is some $S^{\prime} \subseteq S_{2}$ such that (R1) or (R2) holds.
Case 2: $\left|S_{1}\right| \geq s_{1}$.
Let Q_{a}, Q_{b} be two temporal paths inside W^{\prime} such that $Q_{a} \cdot R \cdot Q_{b}$ is a walk starting at start $\left(W^{\prime}\right)$ and ending at $\operatorname{end}\left(W^{\prime}\right)$. Note that, as $\operatorname{start}(R)=\operatorname{end}(R), Q_{a} \cdot Q_{b}$ is also a temporal walk. Let $S_{2} \subseteq S_{1}$ be the vertices of S_{1} which occur exactly once on $Q_{a} \cdot R \cdot Q_{b}$.
Case 2.1: $\left|S_{2}\right| \geq k_{2}$.
Let $S^{\prime} \subseteq S_{2}$ be a set of size k_{2}. Let W_{b} be the temporal subpath of R which contains every vertex in S^{\prime}. As every internal vertex of R appears exactly once on R, such a path W_{b} exists. Now let W_{a} be a start $\left(W^{\prime}\right)$-start $\left(W_{b}\right)$ temporal path inside W^{\prime} and let W_{c} be an end $\left(W_{b}\right)$-end $\left(W^{\prime}\right)$ temporal path inside W^{\prime}. The temporal paths W_{a} and W_{c} are internally disjoint from S^{\prime} since the only occurrence of the vertices of S^{\prime} along W^{\prime} is on R. Since W_{b} is a path containing every vertex of S^{\prime}, it also contains a $\mathbf{P}_{k_{2}}$-routing φ over S^{\prime}. By choice of W_{b}, we also have that φ maps the first vertex of the $\mathbf{P}_{k_{2}}$ to start $\left(W_{b}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ to end $\left(W_{b}\right)$. By setting $W_{1}:=W_{a} \cdot W_{b} \cdot W_{c}$, we satisfy (R2).
Case 2.2: $\left|S_{2}\right|<k_{2}$.
Because $\left|S_{1}\right| \geq s_{1}=2\left(k_{3}+k_{2}\right)+k_{2}-1$, we have that $\left|S_{1} \cap\left(V\left(Q_{a}\right) \cup V\left(Q_{b}\right)\right)\right|=\left|S_{1} \backslash S_{2}\right| \geq$ $2\left(k_{3}+k_{2}\right)$. Hence, $\left|V\left(Q_{a}\right) \cap S_{1}\right| \geq k_{3}+k_{2}$ or $\left|V\left(Q_{b}\right) \cap S_{1}\right| \geq k_{3}+k_{2}$.

Without loss of generality, we assume that $\left|V\left(Q_{a}\right) \cap S_{1}\right| \geq k_{3}+k_{2}$, as the other case follows analogously. Since every vertex of $V\left(Q_{a}\right) \cap S_{1}$ is either in $V\left(Q_{b}\right)$ or not, we obtain two cases.
Case 2.2.1: $\left|\left(V\left(Q_{a}\right) \cap S_{1}\right) \backslash V\left(Q_{b}\right)\right| \geq k_{2}$.
Let $S^{\prime} \subseteq\left(V\left(Q_{a}\right) \cap S_{1}\right) \backslash V\left(Q_{b}\right)$ be a set of size k_{2} and let W_{b} be a minimal temporal subpath of Q_{a} containing every vertex of S^{\prime}. Let W_{a} be a $\operatorname{start}\left(W^{\prime}\right)-\operatorname{start}\left(W_{b}\right)$ temporal walk in $Q_{a} \cdot Q_{b}$ and let W_{c} be an end $\left(W_{b}\right)$-end $\left(W^{\prime}\right)$ temporal walk in $Q_{a} \cdot Q_{b}$.
Every vertex of S^{\prime} appears exactly once in the temporal walk $Q_{a} \cdot Q_{b}$. Since every occurrence of S^{\prime} is on W_{b} and W_{b} is a temporal path, we have that W_{b} contains a $\mathbf{P}_{k_{2}}$-routing over S^{\prime}. Since W_{b} was chosen minimal, the first vertex of the $\mathbf{P}_{k_{2}}$ is mapped to $\operatorname{start}\left(W_{b}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ is mapped to end $\left(W_{b}\right)$. Further, $W_{1}=W_{a} \cdot W_{b} \cdot W_{c}$ and W_{a} and W_{b} are internally disjoint from S^{\prime}, satisfying (R2).
Case 2.2.2: $\left|V\left(Q_{a}\right) \cap V\left(Q_{b}\right) \cap S_{1}\right| \geq k_{3}+1$.
Let $S_{3} \subseteq V\left(Q_{a}\right) \cap V\left(Q_{b}\right) \cap S_{1}$ be a set of size $k_{3}+1$. As Q_{a} and Q_{b} are temporal paths, we have that each vertex of S_{3} appears exactly once in each of those temporal paths. Hence, by Claim 1, there is some $S^{\prime} \subseteq S_{3}$ such that (R1) or (R2) holds.

The next lemma allows us to transfer strong connectivity of each individual layer of a temporal digraph to the temporal digraph as a whole.

Lemma 6.14. Let T be a temporal digraph in which each layer is strongly connected. If $\ell(T) \geq|V(T)|-1$, then every $u \in V(T)$ temporally reaches every $v \in V(T)$.

Proof. Let $u \in V(T)$ and let $n=|V(T)|-1$.
For each $0 \leq i \leq n$ let R_{i} be the set of vertices of T which u temporally reaches in at most i time steps. Clearly $u \in R_{0}$ and so $\left|R_{0}\right|=1$. Further, $\left|R_{i}\right| \leq\left|R_{j}\right|$ if $i \leq j$.
We show that, for every $0 \leq i<n$, if $\left|R_{i}\right|<V(T)$, then $\left|R_{i+1}\right|>\left|R_{i}\right|$. Let R_{i} be such a set and let $X=V(T) \backslash V\left(R_{i}\right)$. Since $D_{i+1}(T)$ is strongly connected, there is some $w \in R_{i}$ and some $v \in X$ such that $(w, v) \in E\left(D_{i+1}(T)\right)$. By assumption, there is a temporal walk W from u to w within the first i layers in D. By extending W with the $\operatorname{arc}(w, v)$, we obtain a walk from u to v within the first $i+1$ layers. Hence, $\left|R_{i+1}\right|>\left|R_{i}\right|$.
Since $n \geq|V(T)-1|$ and $\left|R_{0}\right|=1$, we have that $\left|R_{n}\right|=n+1$. Thus, u temporally reaches every $v \in V(T)$.

We are almost ready to prove the main result of this part which allows us to construct $\mathbf{C}_{k^{-}}$or $\widehat{\mathbf{P}}_{k}$-routings in temporal digraphs with strongly connected layers. But first we need the following lemma.

Lemma 6.15. Let D be a temporal digraph in which each layer is strongly connected, let $S \subseteq V(D)$, let $v \in V(D)$ and let $s \in S$. If $\ell(D) \geq|S| \cdot(|V(D)|-1)$, then D contains a temporal v-s walk W with $S \subseteq V(W)$.

Proof. Let $\left\{s_{1}, \ldots, s_{k}\right\}:=S$ be an arbitrary ordering of S such that $s=s_{k}$, and let $n:=|V(D)|$. We iteratively construct temporal walks $W_{1}, W_{2}, \ldots, W_{k}$ such that W_{i} is a walk from v to s_{i} within the first $i \cdot(n-1)$ layers and W_{i} contains s_{1}, \ldots, s_{i}.
Start by taking some temporal $v-s_{1}$ walk W_{1} within the first $n-1$ layers. By Lemma 6.14 , such a walk exists.
On step $i \geq 2$, let W^{\prime} be the temporal $s_{i-1}-s_{i}$ walk from layer $i \cdot(n-1)+1$ to layer $(i+1) \cdot(n-1)$ in D. By Lemma 6.14, such a walk exists. Now set $W_{i+1}=W_{i} \cdot W^{\prime}$. Since W_{i} arrives on end $\left(W_{i}\right)=\operatorname{start}\left(W^{\prime}\right)$ on time step $i(n-1)$ and W^{\prime} leaves $\operatorname{start}\left(W^{\prime}\right)$ on time step $i(n-1)+1$, we have that W_{i+1} is a temporal $v-s_{i+1}$ walk as desired.

Thus, the walk W_{k} is a temporal $v-s$ walk within the first $|S| \cdot(n-1)$ layers which contains all vertices of S.

We define the following functions:

$$
\begin{aligned}
\mathrm{s}_{6.16}(k) & :=\mathrm{s}_{6.13}\left(k, \mathrm{~s}_{6.13}\left(k,(k-1)^{2}+1\right)\right) \\
\ell_{6.16}(n, k) & :=\mathrm{s}_{6.16}(k)+\mathrm{s}_{6.13}\left(k,(k-1)^{2}+1\right) \cdot(n-1)
\end{aligned}
$$

Observe that $\mathrm{s}_{6.16}(k) \in O\left(k^{11}\right)$ and $\ell_{6.16}(n, k) \in O\left(k^{11}+k^{5} n\right)$.
We are now ready to prove the next result which guarantees an H-routing for some $H \in$ $\left\{\widehat{\mathbf{P}}_{k}, \mathbf{C}_{k}\right\}$ in any temporal digraph of sufficiently large lifetime as long as each layer is strongly connected. Moreover, we even have some control over the vertex set of the H-routing. Note, however, that we cannot choose which of the two possible routings we obtain.

Theorem 6.16. Let T be a temporal digraph such that $D_{i}(T)$ is strongly connected for all $1 \leq i \leq \ell(T)$. If $\ell(T) \geq \ell_{6.16}(|V(T)|, k)$, then for every set $S \subseteq V(T)$ with $|S| \geq \mathrm{s}_{6.16}(k)$ there is a subset $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|=k$ such that D contains an H-routing over S^{\prime} for some $H \in\left\{\mathbf{C}_{k}, \widehat{\mathbf{P}}_{k}\right\}$.

Proof. Let $k_{2}=(k-1)^{2}+1$ and let $k_{1}=\mathrm{s}_{6.13}\left(k, k_{2}\right)$. Let $S_{0} \subseteq S$ be a set of $\operatorname{size} \mathrm{s}_{6.13}\left(k, k_{1}\right)$. Note that $\ell(T) \geq\left(\left|S_{0}\right|+k_{1}\right) \cdot(|V(T)|-1)$.
Let W_{1} be a temporal walk of minimal length which contains all vertices of S_{0} within the first $\left|S_{0}\right| \cdot(|V(T)|-1)$ layers of D. By Lemma 6.15 , such a walk W_{1} exists.
If Lemma 6.13(R1) holds, then W_{1} contains a $\overrightarrow{\mathbf{P}}_{k}$-routing over some $S^{\prime} \subseteq S_{0}$ and we are done. Otherwise, Lemma 6.13(R2) holds. That is, there is some $S_{1} \subseteq S_{0}$ and there are (possibly arcless) walks $W_{2}, W_{a}, W_{b}, W_{c}$ in W_{1} such that W_{2} is a subwalk of W_{1} departing and arriving at the same time steps as $W_{1}, W_{a} \cdot W_{b} \cdot W_{c}=W_{2}, W_{a}$ and W_{c} are internally disjoint from S_{1}, and W_{b} contains a $P_{k_{1}}$-routing over S_{1} where the first vertex of the $P_{k_{1}}$ is mapped to $\operatorname{start}\left(W_{b}\right)$ and the last vertex of the $P_{k_{1}}$ is mapped to end $\left(W_{b}\right)$. Let φ_{1} be the bijection of this $P_{k_{1}}$-routing.
Let $t_{1} \leq\left(\left|S_{0}\right| \cdot(V(T)-1)\right)$ be the time step in which W_{1} arrives and let W_{3} be a temporal walk departing on t_{1} and of duration at most $\left|S_{1}\right| \cdot(|V(T)|-1)$ which visits all vertices of S_{1}. By Lemma 6.15, such a walk W_{3} exists.
If Lemma 6.13(R1) holds, then W_{2} contains a $\stackrel{\mathbf{P}}{k}^{k}$-routing over some $S^{\prime} \subseteq S_{1}$ and we are done. Otherwise, Lemma 6.13(R2) holds. That is, there is some $S_{2} \subseteq S_{1}$ and there are (possibly arcless) walks $W_{4}, W_{d}, W_{e}, W_{f}$ in W_{3} such that W_{4} is a subwalk of W_{3} departing and arriving at the same time steps as $W_{3}, W_{d} \cdot W_{e} \cdot W_{f}=W_{4}, W_{d}$ and W_{f} are internally disjoint from S_{2}, and W_{f} contains a $\mathbf{P}_{k_{2}}$-routing over S_{2} where the first vertex of the $\mathbf{P}_{k_{2}}$ is mapped to $\operatorname{start}\left(W_{f}\right)$ and the last vertex of the $\mathbf{P}_{k_{2}}$ is mapped to end $\left(W_{f}\right)$. Let φ_{2} be the bijection of this $\mathbf{P}_{k_{2}}$-routing.
By Theorem 3.1, there is some $S_{3} \subseteq S_{2}$ of size k which satisfies one of the following two cases. Let $\varphi_{1}^{\prime}=\varphi_{1 \mid S_{3}}$ and $\varphi_{2}^{\prime}=\varphi_{2 \mid S_{3}}$.
Case 1: φ_{1}^{\prime} and φ_{2}^{\prime} induce two \mathbf{P}_{k}-routings over S_{3} where the order of the vertices along the \mathbf{P}_{k} are the same. We show that φ_{1}^{\prime} also induces a \mathbf{C}_{k}-routing in D. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of \mathbf{P}_{k} sorted according to their order along \mathbf{P}_{k}. Let $u_{i}, u_{j} \in V\left(\mathbf{P}_{k}\right)$.
If $i<j$, then W_{b} contains a $\varphi_{1}^{\prime}\left(u_{i}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ temporal path which is disjoint from $S_{3} \backslash\left\{\varphi_{1}^{\prime}\left(u_{i}\right), \ldots, \varphi_{1}^{\prime}\left(u_{j}\right)\right\}$.
If $i>j$, we construct the desired temporal path P^{\prime} as follows. Let Q_{1} be a temporal $\varphi_{1}^{\prime}\left(u_{i}\right)$ $\varphi_{1}^{\prime}\left(u_{k}\right)$ walk in W_{b} which is disjoint from $S_{3} \backslash\left\{\varphi_{1}^{\prime}\left(u_{i}\right), \ldots, \varphi_{1}^{\prime}\left(u_{k}\right)\right\}$ and end $\left(Q_{1}\right)=\operatorname{end}\left(W_{b}\right)=$ $\operatorname{start}\left(W_{c}\right)$. Since W_{b} contains a \mathbf{P}_{k}-routing and $\varphi_{1}^{\prime}\left(u_{k}\right)=\operatorname{end}\left(W_{b}\right)$, such a walk Q_{1} exists.
Let Q_{2} be a temporal $\varphi_{1}^{\prime}\left(u_{1}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ walk in W_{e} which is disjoint from $S_{3} \backslash\left\{\varphi_{1}^{\prime}\left(u_{1}\right), \ldots\right.$, $\left.\varphi_{1}^{\prime}\left(u_{j}\right)\right\}$ and $\operatorname{start}\left(Q_{2}\right)=\operatorname{start}\left(W_{e}\right)=\operatorname{end}\left(W_{d}\right)$. Since W_{e} contains a \mathbf{P}_{k}-routing and $\varphi_{1}^{\prime}\left(u_{1}\right)=$ end $\left(W_{e}\right)$, such a walk Q_{2} exists.

We now have that $Q_{1} \cdot W_{c} \cdot W_{d} \cdot Q_{2}$ is a temporal $\varphi_{1}^{\prime}\left(u_{i}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ walk which is disjoint from $S_{3} \backslash\left(\left\{\varphi_{1}^{\prime}\left(u_{i}\right), \ldots, \varphi_{1}^{\prime}\left(u_{k}\right)\right\} \cup\left\{\varphi_{1}^{\prime}\left(u_{1}\right), \ldots, \varphi_{1}^{\prime}\left(u_{j}\right)\right\}\right)$ in D. Thus, $Q_{1} \cdot W_{c} \cdot W_{d} \cdot Q_{2}$ contains the desired temporal $\varphi_{1}^{\prime}\left(u_{i}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ path P^{\prime}. Hence, φ_{1}^{\prime} induces a \mathbf{C}_{k}-routing over $S_{3} \subseteq S$ in D.
Case 2: φ_{1}^{\prime} and φ_{2}^{\prime} induce two \mathbf{P}_{k}-routings over S_{3} where the vertices along the \mathbf{P}_{k} of φ_{2}^{\prime} are ordered in reverse compared to those of the \mathbf{P}_{k} of φ_{1}^{\prime}. We show that φ_{1}^{\prime} induces a $\widehat{\mathbf{P}}_{k}$-routing over $S_{3} \subseteq S$ in D. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of \mathbf{P}_{k} sorted according to their order along the \mathbf{P}_{k} for φ_{1}^{\prime}. Let $u_{i}, u_{j} \in V\left(\mathbf{P}_{k}\right)$.
If $i<j$, then W_{b} contains a $\varphi_{1}^{\prime}\left(u_{i}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ temporal path which is disjoint from $S_{3} \backslash\left\{\varphi_{1}^{\prime}\left(u_{i}\right), \ldots, \varphi_{1}^{\prime}\left(u_{j}\right)\right\}$.
If $i>j$, we take a temporal $\varphi_{1}^{\prime}\left(u_{i}\right)-\varphi_{1}^{\prime}\left(u_{j}\right)$ path P^{\prime} which is disjoint from $S_{3} \backslash\left\{\varphi_{1}^{\prime}\left(u_{j}\right), \ldots\right.$, $\left.\varphi_{1}^{\prime}\left(u_{i}\right)\right\}$ in W_{e}. Since φ_{2}^{\prime} induces a \mathbf{P}_{k}-routing in W_{e} where the vertices of the \mathbf{P}_{k} are ordered in reverse when compared to the \mathbf{P}_{k} of φ_{1}^{\prime}, such a path P^{\prime} exists. Hence, φ_{1}^{\prime} induces a $\overrightarrow{\mathbf{P}}_{k}$-routing over $S_{3} \subseteq S$ in D.

Our next goal is to relate H-routings, for $H \in\left\{\mathbf{C}_{k}, \widehat{\mathbf{P}}_{k}\right\}$, to well-linkedness. Towards this aim, we first observe the following.

Observation 6.17. Let A and B be disjoint sets of equal cardinality and let S be a sequence containing each element of $A \uplus B$ exactly once. Then there are sequences S_{1}, S_{2} such that $S_{1} \cdot S_{2}=S$ and the following holds
(P1) S_{1} starts in A and ends in B or starts in B and ends in A, and
(P2) each of S_{1} and S_{2} contains as many elements of A as elements of B.
Proof. We assume, without loss of generality, that S starts at an element of A. The other case follows analogously by swapping A and B.
Let S_{1} be the shortest prefix of S containing the same number of elements in A and B. Since the first element of S_{1} lies on A, its last element must lie on B. If this were not the case, then S_{1} would contain a prefix with more elements of B than elements of A, which implies that S_{1} also contains a shorter prefix with as many elements of A as elements of B, a contradiction to the choice of S_{1}. Hence, (P1) holds.
Let S_{2} be such that $S_{1} \cdot S_{2}=S$. Since both S_{1} and S contain as many elements of A as elements of B, we have that S_{2} also contains as many elements of A as elements of B. Thus, (P2) holds.

Note that in Observation 6.17 if S does not starts and ends in the same, then we can always take S_{1} to be S and S_{2} to be empty.
The next observation is used when obtaining well-linkedness in case of a \mathbf{C}_{k}-routing.
Observation 6.18. Let C be a directed cycle and let $f: V(C) \rightarrow \mathbb{Z}$ be a function such that $\sum_{v \in V(C)} f(v)=0$. Then there is some $v \in V(C)$ such that for every subpath P of C starting at v we have $\sum_{v \in V(P)} f(v) \geq 0$.

Proof. If $f(v)=0$ for all $v \in V(C)$, then the statement is true. So assume otherwise and take a subpath P of C minimising $\sum_{v \in V(P)} f(v)$. Note that the weight of this path is negative and that P is a proper subpath of C. Let u be the vertex on C after end (P). We claim that u has the desired property. Suppose not and let P^{\prime} be a negative subpath of C starting in u. If end $\left(P^{\prime}\right) \notin V(P)$, then $P \cdot P^{\prime}$ is a proper subpath of C with lower weight than P, a contradiction. Thus end $\left(P^{\prime}\right) \in V(P)$. As P was chosen to minimise $\sum_{v \in V(P)} f(v)$, the subpath $P \cap P^{\prime}$ cannot be of positive weight and thus we obtain a contradiction to C being of total weight 0 .

We are now ready to state and prove our last result on routings in temporal digraphs which shows how well-linkedness can be obtained from routing temporal digraphs T. The main idea is to use Theorem 6.16 to construct a sufficiently large number of \mathbf{C}_{k} - or $\widehat{\mathbf{P}}_{k}$-routings in T. By the pigeon-hole principle we either get enough $\overrightarrow{\mathbf{P}}_{k}$-routings or enough \mathbf{C}_{k}-routings. The previous two observations allow us to prove that certain sets are well-linked in either of the two cases.

Lemma 6.19. Let h be some integer, let D be a digraph, let \mathcal{L} be a linkage of order k in D and let T be the routing temporal digraph of \mathcal{L} through $\mathcal{H}:=\left(H_{1}, H_{2}, \ldots, H_{h}\right)$, where each H_{i} is a subgraph of D. If there is some $R \in\left\{\widehat{\mathbf{P}}_{k}, \mathbf{C}_{k}\right\}$ and there are some temporally disjoint subgraphs $T_{1}, T_{2}, \ldots, T_{k}$ of T such that for each $1 \leq i \leq k$ there is an R-routing φ_{i} over \mathcal{L} in T_{i} where $\varphi_{i}=\varphi_{j}$ for all $1 \leq i, j \leq k$, then $\operatorname{start}(\mathcal{L})$ is well-linked to $\operatorname{end}(\mathcal{L})$ in $\mathrm{D}(\mathcal{L} \cup \mathcal{H})$.

Proof. Let $A \subseteq \operatorname{start}(\mathcal{L})$ and $B \subseteq \operatorname{end}(\mathcal{L})$ be sets with $n:=|A|=|B|$. Let φ be the R-routing over \mathcal{L} in each T_{i}. We construct an $A-B$ linkage \mathcal{Q} as follows.
Let $\mathcal{L}^{A}=\{L \in \mathcal{L} \mid \operatorname{start}(L) \subseteq A\}$ and let $\mathcal{L}^{B}=\{L \in \mathcal{L} \mid \operatorname{end}(L) \subseteq B\}$. Let $\varphi_{A, B}=\varphi_{\mid \mathcal{L}^{A} \cup \mathcal{L}^{B}}$. Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}:=A$ and let $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}:=B$.
We start by constructing temporal walks $\mathcal{W}:=\left\{W_{1}, W_{2}, \ldots, W_{n}\right\}$ in T and by constructing sets $X_{0}, \ldots, X_{n} \subseteq \mathcal{L}^{A}$ and $Y_{0}, \ldots, Y_{n} \subseteq \mathcal{L}^{B}$ such that, for each $0 \leq i \leq n$, we have
(W1) $\left|X_{i}\right|=i=\left|Y_{i}\right|$,
(W2) W_{i} is a temporal walk in T_{i} which is disjoint from $\left(\mathcal{L}^{A} \backslash X_{i}\right) \cup Y_{i-1}$, and
(W3) $\operatorname{start}(\mathcal{W})=\mathcal{L}^{A}$ and end $(\mathcal{W})=\mathcal{L}^{B}$.
We consider two cases.
Case 1: $R=\mathbf{C}_{k}$.
Let $R^{\prime}=\mathbf{C}_{n}$ and note that $\varphi_{A, B}$ is a \mathbf{C}_{n}-routing in each T_{i}. Partition $V\left(R^{\prime}\right)$ into a sequence of subpaths $\mathcal{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{x}\right)$ of R^{\prime} where each Q_{i} can be decomposed into $Q_{i}^{a} \cdot Q_{i}^{b}$ such that $\left|V\left(Q_{i}^{a}\right)\right| \geq 1,\left|V\left(Q_{i}^{b}\right)\right| \geq 1, \varphi_{A, B}\left(V\left(Q_{i}^{a}\right)\right) \subseteq \mathcal{L}^{A}$ and $\varphi_{A, B}\left(V\left(Q_{i}^{b}\right)\right) \subseteq \mathcal{L}^{B}$. Since $\varphi\left(V\left(R^{\prime}\right)\right)=$ $\mathcal{L}^{A} \cup \mathcal{L}^{B}$, such a decomposition exists. Now define the function $f: \mathcal{Q} \rightarrow \mathbb{Z}$ with $f\left(Q_{i}=Q_{i}^{a} \cdot Q_{i}^{b}\right)=$ $\left|\varphi\left(Q_{i}^{a}\right) \cap \mathcal{L}^{A}\right|-\left|\varphi\left(Q_{i}^{b}\right) \cap \mathcal{L}^{B}\right|$.
From Observation 6.18 we know there is some $v \in V\left(R^{\prime}\right)$ for which every subpath P of R^{\prime} starting at v satisfies $\left|\varphi_{A, B}(V(P)) \cap \mathcal{L}^{A}\right| \geq\left|\varphi_{A, B}(V(P)) \cap \mathcal{L}^{B}\right|$. Let Q be the subpath of R^{\prime} starting at v and containing every vertex of R^{\prime}, and let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}:=V(Q)$ be an ordering of the vertices of Q according to their occurrence along Q.
We iteratively construct the desired walks W_{i} and sets X_{i}, Y_{i} such that, for each $0 \leq i \leq n-1$, Q can be decomposed as $Q_{1}^{i} \cdot Q_{2}^{i} \cdot Q_{3}^{i}=Q$ satisfying the following properties
(C1) $\varphi_{A, B}\left(\operatorname{end}\left(Q_{1}^{i}\right)\right) \in \mathcal{L}^{A} \backslash X_{i}$,
(C2) $\varphi_{A, B}\left(V\left(Q_{2}^{i}\right) \backslash\left\{\operatorname{start}\left(Q_{2}^{i}\right)\right\}\right) \subseteq\left(\mathcal{L}^{B} \cup X_{i}\right) \backslash Y_{i},\left|V\left(Q_{2}^{i}\right) \cap\left(\mathcal{L}^{B} \backslash Y_{i}\right)\right| \geq 1$, and
(C3) $Y_{i} \subseteq \varphi_{A, B}\left(V\left(Q_{3}^{i}\right)\right)$ and $\varphi_{A, B}\left(V\left(Q_{3}^{i}\right)\right) \subseteq Y_{i} \cup X_{i}$.
Start by setting $X_{0}:=\emptyset$ and $Y_{0}:=\emptyset$. By choice of Q,(C1),(C2), (C3) and (W1) hold for $i=0$.
On step $1 \leq i \leq n$, let $Q_{1}^{i-1} \cdot Q_{2}^{i-1} \cdot Q_{3}^{i-1}=Q$ be a decomposition of Q satisfying (C1), (C2) and (C3) for $i-1$. Let $u_{a}=\operatorname{end}\left(Q_{1}^{i-1}\right)$ and let $u_{b} \in V\left(Q_{2}^{i-1}\right) \cap\left(\mathcal{L}^{B} \backslash Y_{i-1}\right)$ be the last such vertex on Q_{2}^{i-1}. As (C1) and (C2) hold for $i-1, u_{a} \in \mathcal{L}^{A} \backslash X_{i-1}$ holds and such a vertex u_{b} exists.

Let W_{i} be a temporal $\varphi_{A, B}\left(u_{a}\right)-\varphi_{A, B}\left(u_{b}\right)$ walk in T_{i} avoiding $\left(\mathcal{L}^{A} \cup \mathcal{L}^{B}\right) \backslash \varphi_{A, B}\left(\left\{u_{a}, \ldots\right.\right.$, $\left.u_{b}\right\}$). Since $\varphi_{A, B}$ is an R^{\prime}-routing in T_{i}, such a walk exists. Set $X_{i}=X_{i-1} \cup\left\{\varphi_{A, B}\left(u_{a}\right)\right\}$ and $Y_{i}=Y_{i-1} \cup\left\{\varphi_{A, B}\left(u_{b}\right)\right\}$. The walk W_{i} satisfies (W2) because $Y_{i-1} \subseteq Q_{3}^{i-1}$ and (C3) holds for $i-1$.
We now show that X_{i}, Y_{i} and W_{i} satisfy the required properties. Clearly (W1) holds for i. If $i<n$, then $\left|\mathcal{L}^{A} \backslash X_{i}\right| \geq 1$. As (C2) and (C3) hold for $i-1$, we have $\mathcal{L}^{A} \backslash X_{i-1} \subseteq \varphi\left(V\left(Q_{1}^{i-1}\right)\right)$.
Let Q_{1}^{i} be the shortest subpath of Q_{1}^{i-1} containing every vertex of $\varphi^{-1}\left(\mathcal{L}^{A} \backslash X_{i}\right)$ and let Q_{3}^{i} be the u_{b}-end (Q) subpath of Q. By construction, (C1) holds for i. Further, by choice of $u_{b},(\mathbf{C} 3)$ holds for i.
Let Q_{2}^{i} be the end $\left(Q_{1}^{i}\right)$-start $\left(Q_{3}^{i}\right)$ subpath of Q. Since Q_{1}^{i} is a subpath of H^{\prime} starting at v and ending in a vertex u_{a}^{\prime} with $\varphi\left(u_{a}^{\prime}\right) \in \mathcal{L}^{A} \backslash X_{i}$, we have that $Q_{2}^{i} \cdot Q_{3}^{i}$ must contain some vertex of $\varphi^{-1}\left(\mathcal{L}^{B}\right)$. Further, as $\varphi\left(V\left(Q_{3}^{i}\right)\right) \subseteq Y_{i} \cup X_{i}$ due to (C3), we have that Q_{2}^{i} contains some vertex of $\mathcal{L}^{B} \backslash Y_{i}$. Finally, $\mathcal{L}^{A} \backslash X_{i} \subseteq V\left(Q_{1}^{i}\right)$ and so $\varphi_{A, B}\left(V\left(Q_{2}^{i}\right) \backslash\left\{\operatorname{start}\left(Q_{2}^{i}\right)\right\}\right) \subseteq \mathcal{L}^{B} \cup\left(X_{i} \backslash Y_{i}\right)$. Hence, (C2) holds for i.
After n steps, it is immediate that (W3) holds by choice of $W_{1}, W_{2}, \ldots, W_{n}$.
Case 2: φ is a $\widehat{\mathbf{P}}_{k}$-routing.
Let $R^{\prime}=\widehat{\mathbf{P}}_{n}$ and note that $\varphi_{A, B}$ is a $\widehat{\mathbf{P}}_{n}$-routing in T_{i} for each i.
We iteratively construct the desired walks W_{i} and sets $X_{i}, Y_{i} \subseteq \mathcal{L}^{\prime}$ such that, for each $0 \leq i \leq$ $n-1$, the following statement holds
(P1) for each strongly connected component Z_{i} of $R^{\prime}-\varphi_{A, B}^{-1}\left(Y_{i}\right)$ we have that the set $\varphi_{A, B}\left(V\left(Z_{i}\right)\right)$ contains as many elements of $\mathcal{L}^{A} \backslash X_{i}$ as elements of $\mathcal{L}^{B} \backslash Y_{i}$.

Start by setting $X_{0}:=\emptyset$ and $Y_{0}:=\emptyset$. Clearly, (W1) and (P1) hold for $i=0$.
On step $1 \leq i \leq n$, let Z be a component (and hence a subpath) of $R^{\prime}-\varphi_{A, B}^{-1}\left(X_{i-1}\right)$ such that $\varphi_{A, B}(V(Z))$ contains at least one element of $\mathcal{L}^{A} \backslash X_{i-1}$ and one element of $\mathcal{L}^{B} \backslash Y_{i-1}$. Since (W1) and (P1) hold for $i-1$, such a component exists.
Because Z is a bidirected path, it induces a sequence over the elements of $\mathcal{L}^{A} \backslash X_{i-1}$ and of $\mathcal{L}^{B} \backslash Y_{i-1}$. Let Z^{\prime} be the shortest subpath of Z satisfying $\varphi_{A, B}\left(V\left(Z^{\prime}\right)\right) \cap\left(\left(\mathcal{L}^{A} \backslash X_{i-1}\right) \cup\left(\mathcal{L}^{B} \backslash\right.\right.$ $\left.\left.Y_{i-1}\right)\right)=\varphi(V(Z)) \cap\left(\left(\mathcal{L}^{A} \backslash X_{i-1}\right) \cup\left(\mathcal{L}^{B} \backslash Y_{i-1}\right)\right)$. By Observation 6.17 , there is a subpath $Z^{\prime \prime}$ of Z^{\prime} starting at one of the endpoints of Z^{\prime} such that one endpoint of $Z^{\prime \prime}$ is in $\mathcal{L}^{A} \backslash X_{i-1}$ and the other is in $\mathcal{L}^{B} \backslash Y_{i-1}$, and both $Z^{\prime \prime}$ and the rest of Z^{\prime} contain as many elements of $\mathcal{L}^{A} \backslash X_{i-1}$ as they contain elements of $\mathcal{L}^{B} \backslash Y_{i-1}$. Let $Z^{\prime \prime}$ be the shortest such subpath of Z^{\prime}.
Let $\left\{z_{1}, z_{2}, \ldots, z_{j}\right\}$ be the vertices of $Z^{\prime \prime}$ sorted according to their occurrence along $Z^{\prime \prime}$. Without loss of generality, we have $\varphi_{A, B}\left(z_{1}\right) \in \mathcal{L}^{B} \backslash X_{i-1}$ and $\varphi_{A, B}\left(z_{j}\right) \in \mathcal{L}^{A} \backslash Y_{i-1}$.
Let j_{a} be the smallest index such that $\varphi_{A, B}\left(z_{j_{a}}\right) \in \mathcal{L}^{A} \backslash X_{i-1}$. We set W_{i} as a temporal $\varphi_{A, B}\left(z_{j_{a}}\right)-\varphi_{A, B}\left(z_{1}\right)$ walk in T_{i} which is disjoint from $\left(\mathcal{L}^{A} \backslash X_{i-1}\right) \cup Y_{i-1}$. By choice of j_{a} and because $\varphi_{A, B}$ is an R^{\prime}-routing over $\mathcal{L}^{A} \cup \mathcal{L}^{B}$ in T_{i} and Z is a component of $R^{\prime}-\varphi_{A, B}\left(X_{i-1}\right)$, such a walk W_{i} exists.
We set $X_{i}=X_{i-1} \cup\left\{\varphi_{A, B}\left(z_{j_{a}}\right)\right\}$ and $Y_{i}=Y_{i-1} \cup\left\{\varphi_{A, B}\left(z_{1}\right)\right\}$. The vertex z_{1} is an endpoint of $Z^{\prime \prime}$, (P1) holds for $i-1$ and $\varphi_{A, B}\left(V\left(Z^{\prime \prime}\right) \backslash\left\{z_{1}\right\}\right)$ contains one less vertex of $\mathcal{L}^{B} \backslash Y_{i-1}$ and one less vertex of $\mathcal{L}^{A} \backslash X_{i-1}$ when compared to Z. Hence, (P1) holds for i. Further, $\left|X_{i}\right|=\left|X_{i-1}\right|+1=\left|Y_{i-1}\right|+1=\left|Y_{i}\right|$, and so (W1) holds.
This completes the case distinction above and the construction of $W_{1}, W_{2}, \ldots, W_{n}$. We construct an A - B linkage \mathcal{L}^{\prime} as follows. For each $1 \leq i \leq n$, let $L_{i}^{a}=\operatorname{start}\left(W_{i}\right), L_{i}^{b}=$ $\operatorname{end}\left(W_{i}\right), a_{i}=\operatorname{start}\left(L_{i}^{a}\right)$ and $b_{i}=\operatorname{end}\left(L_{i}^{b}\right)$. We construct a path $Q_{i}=Q_{i}^{a} \cdot Q_{i}^{t} \cdot Q_{i}^{b}$ such that $\mathrm{D}\left(Q_{i}^{a}\right) \subseteq L_{i}^{a}-\mathrm{D}\left(\left\{W_{j} \mid s_{i+1} \leq j \leq \ell(T)\right\}\right), \mathrm{D}\left(Q_{i}^{t}\right) \subseteq \mathrm{D}\left(\left\{H_{j} \mid s_{i} \leq j \leq s_{i+1}\right\}\right)$ and $\mathrm{D}\left(Q_{i}^{b}\right) \subseteq$ $L_{i}^{b}-\mathrm{D}\left(\left\{W_{j} \mid s_{1} \leq j \leq s_{i}\right\}\right)$.

Since (W2) holds, each arc of W_{i} corresponds to some path in D which is disjoint from $\left\{L_{j}^{a} \mid i<j \leq n\right\} \cup\left\{L_{j}^{b} \mid 1 \leq j<i\right\}$. Furthermore, W_{i} corresponds to some path Q_{i}^{t} in $\mathrm{D}\left(\left\{W_{j} \mid t_{i} \leq j \leq t_{i+1}\right\}\right)$.
We set Q_{i}^{a} as the subpath of L_{i}^{a} ending at $\operatorname{start}\left(Q_{i}^{t}\right)$ and we set Q_{i}^{b} as the subpath of L_{i}^{b} starting at end $\left(Q_{i}^{t}\right)$. By construction, $Q_{i}:=Q_{i}^{a} \cdot Q_{i}^{t} \cdot Q_{i}^{b}$ is an $a_{i}-b_{i}$ path in $\mathrm{D}(\mathcal{L}) \cup \mathrm{D}(\mathcal{W})$ which is disjoint from all Q_{j} for $1 \leq j<i$. Hence, $\mathcal{Q}:=\left\{Q_{i} \mid 1 \leq i \leq n\right\}$ is an $A-B$ linkage as desired.
Because we can construct such an $A-B$ linkage for any choice of A, B, we have that $\operatorname{start}\left(\mathcal{L}^{\prime}\right)$ is well-linked to $\operatorname{end}\left(\mathcal{L}^{\prime}\right)$ in $\mathrm{D}(\mathcal{L} \cup \mathcal{W})$, as desired.

We can now show how to obtain well-linkedness from the routing temporal digraph of some linkage \mathcal{L}. The idea is to use Theorem 6.16 to obtain many \mathbf{C}_{k} and $\stackrel{\rightharpoonup}{\mathbf{P}}_{k}$-routings. With the pigeon-hole principle, we get many routings which are equal. We then use observations 6.17 and 6.18 in each case to argue that certain sets are well-linked. We start by defining

$$
\begin{aligned}
\ell_{6.20}(k) & :=s_{6.16}(k), \\
\mathrm{h}_{6.20}(k) & :=\ell_{6.16}\left(\ell_{6.20}(k), k\right) \cdot 2 k\binom{\mathrm{~s}_{6.16}(k)}{k} k!.
\end{aligned}
$$

Note that $\ell_{6.20}(k) \in O\left(k^{11}\right)$ and $\mathrm{h}_{6.20}(k) \in 2^{1 \uparrow \uparrow p o l y}{ }^{2}(k)$. Using the pigeon-hole principle, we can combine Theorem 6.16 and Lemma 6.19 in order to obtain the desired statement.

Proposition 6.20. Let k be an integer, let $h \geq h_{6.20}(k)$, let D be a digraph, let \mathcal{L} be a linkage of order $\ell_{6.20}(k)$ in D and let T be the routing temporal digraph of \mathcal{L} through $\mathcal{H}:=\left\{H_{1}, \ldots, H_{h}\right\}$, where each H_{i} is a subgraph of D. If each layer $D_{i}(T)$ is strongly connected, then there exists some $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ of order k such that $\operatorname{start}\left(\mathcal{L}^{\prime}\right)$ is well-linked to end $\left(\mathcal{L}^{\prime}\right)$ in $\mathrm{D}(\mathcal{L} \cup \mathcal{H})$.
Proof. Let $k_{1}=2 k\left({ }_{k}^{5_{6}, 16}(k)\right) k!$. Define $s_{1}=1$ and for each $1 \leq i \leq k_{1}$ define $s_{i}=(i-1)$. $\ell_{6.16}\left(\ell_{6.20}(k), k\right)+1$. For each $1 \leq i \leq k_{1}$ let T_{i} be the temporal subgraph of T from time step s_{i} to $s_{i+1}-1$. Note that $\ell\left(T_{i}\right)=s_{i+1}-s_{i}=\ell_{6.16}\left(\ell_{6.20}(k), k\right)$ and that $|\mathcal{L}|=\left|V\left(T_{i}\right)\right|=\mathrm{s}_{6.16}(k)=$ $\ell_{6.20}(k)$.
By Theorem 6.16 each T_{i} contains a \mathbf{C}_{k}-routing φ_{i} or a $\widehat{\mathbf{P}}_{k}$-routing φ_{i} over some set $\mathcal{L}_{i} \subseteq \mathcal{L}$ of size k. As there are $k_{1}=2 k\left({ }^{(56.16}{ }_{k}^{(k)}\right) k$! temporal digraphs T_{i}, there is some $I \subseteq\left\{1, \ldots, k_{1}\right\}$ of size k and some $H \in\left\{\mathbf{C}_{k}, \widehat{\mathbf{P}}_{k}\right\}$ such that, for every $i, j \in I$, both T_{i} and T_{j} have an H routing $\varphi:=\varphi_{i}=\varphi_{j}$ over $\mathcal{L}^{\prime}:=\mathcal{L}_{i}=\mathcal{L}_{j}$. By Lemma 6.19 , $\operatorname{start}\left(\mathcal{L}^{\prime}\right)$ is well-linked to end $\left(\mathcal{L}^{\prime}\right)$ in $\mathrm{D}\left(\mathcal{L}^{\prime}\right) \cup \mathcal{H}$.

7 Paths of order-linked sets and acyclic grids

In the previous section we already discussed the similarities between \mathbf{P}_{k}-routings in routing temporal digraphs and acyclic grids. We now develop a more abstract framework in which we can model these intuitive observations. This enables us to lift certain properties of acyclic grids to a more abstract setting. The techniques and results we develop in this section play an important rôle in our proof of the directed grid theorem.
To motivate the following definitions, consider the acyclic grid illustrated in Figure 7. Suppose we want to connect some vertex a_{i} on the left of the grid to a vertex b_{j} on the right. As in an acyclic grid we can never route upwards, this is possible if and only if $i \leq j$.
Let A be the ordered set containing the left-most vertices of the grid, i.e. $\left\{a_{1}, \ldots, a_{4}\right\}$ in the example in Figure 7, ordered from top to bottom and let B be the ordered set containing the vertices at the right, i.e. $\left\{b_{1}, \ldots, b_{4}\right\}$ in the example, again ordered from top to bottom.

Figure 7: We illustrate r-shifts in acyclic grids. The 2 -shift $\left(b_{2}, b_{3}, b_{4}\right)$ of $\left(a_{1}, a_{2}, a_{4}\right)$ is routable in the grid as illustrated here. However the 3 -shift $\left(b_{2}, b_{3}, b_{4}\right)$ of $\left(a_{1}, a_{2}, a_{3}\right)$ is not routable in the grid.

Now suppose we are given a subset $A^{\prime} \subseteq A$ and an equal sized subset $B^{\prime} \subseteq B$. Under what conditions can we connect A^{\prime} to B^{\prime} by a linkage \mathcal{L} in the grid? For the same reason as before we can only connect $a_{i} \in A^{\prime}$ to $b_{j} \in B^{\prime}$ if $i \leq j$. Furthermore, as the grid is planar, if $\left\{a_{i_{1}}, \ldots, a_{i_{l}}\right\}$ are the vertices of A^{\prime} ordered by their order in A and likewise $\left\{b_{j_{1}}, \ldots, b_{j_{l}}\right\}$ are the ordered vertices of B^{\prime}, then we have to connect $a_{i_{s}}$ to $b_{j_{s}}$, for all $1 \leq s \leq l$. This implies that $i_{s} \leq j_{s}$ for all $1 \leq s \leq l$. But even if this condition is satisfied by A^{\prime} and B^{\prime}, it may still not be possible to connect A^{\prime} to B^{\prime}. As the example in Figure 7 demonstrates, there simply may not be enough columns in the grid to route all paths downwards that connect pairs $a_{i_{s}}, b_{j_{s}}$ with $i_{s}<j_{s}$. So we may have to restrict the number of pairs $\left(a_{i_{s}}, b_{j_{s}}\right)$ for which we allow $i_{s}<j_{s}$.
This idea is formalised in the next definition by the concept of r-shifts.
Definition 7.1. Let $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{m}\right)$ be ordered sets. Let $r \in \mathbb{N}$, let A^{\prime} be an ordered subset of A and let B^{\prime} be an ordered subset of B such that $\left|A^{\prime}\right|=\left|B^{\prime}\right|$. We say that B^{\prime} is an r-shift of A^{\prime} if there is a bijection $\pi: A^{\prime} \rightarrow B^{\prime}$ such that

1. for all $a_{i} \in A^{\prime}$ we have that $\pi\left(a_{i}\right)=b_{j}$ implies $i \leq j$;
2. there are at most r vertices $a_{i} \in A^{\prime}$ with $\pi\left(a_{i}\right) \neq b_{i}$; and
3. π is order preserving, that is, for all $a_{i}, a_{j} \in A^{\prime}$, if $a_{i} \leq_{A} a_{j}$, then $\pi\left(a_{i}\right) \leq_{B} \pi\left(a_{j}\right)$.

In the example of Figure $7,\left(b_{2}, b_{3}, b_{4}\right)$ is a 2 -shift of $\left(a_{1}, a_{2}, a_{4}\right)$ but it is a 3 -shift of $\left(a_{1}, a_{2}, a_{3}\right)$. We interested in pairs of equal sized ordered sets A and B which allow given a subset $A^{\prime} \subseteq A$ to route A^{\prime} to all possible r-shifts $B^{\prime} \subseteq B$ of A^{\prime}. This is formalised in the next definition. Recall from Section 3 that we may consider a linkage \mathcal{L} as a function $\mathcal{L}: \operatorname{start}(\mathcal{L}) \rightarrow \operatorname{end}(\mathcal{L})$ where $\mathcal{L}(a)$ is the endpoint of the path in \mathcal{L} starting at a.

Definition 7.2. Let H be a digraph, let $A=\left(a_{1}, \ldots, a_{n}\right), B=\left(b_{1}, \ldots, b_{m}\right) \subseteq V(H)$ be ordered sets, and let $r \in \mathbb{N}$. We say that A is r-order-linked to B in H if for every $A^{\prime} \subseteq A$ and every $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ where B^{\prime} is an r-shift of A^{\prime} witnessed by the bijection π there is an A^{\prime} - B^{\prime}-linkage \mathcal{L} in H satisfying $\pi(a)=\mathcal{L}(a)$ for all $a \in A^{\prime}$.
For (unordered) sets $A, B \subseteq V(H)$, we say that A is r-order-linked to B in H if there exist orderings A_{1} and B_{1} of A and B, respectively, such that A_{1} is r-order-linked to B_{1} in H.

To give an example, it is easily seen that in any acyclic (r, r) - $\operatorname{grid}(\mathcal{P}, \mathcal{Q})$ the set $\operatorname{start}(\mathcal{Q})$ is r-order-linked to end (\mathcal{Q}).
We now define a new type of structure which can be seen as an abstraction of acyclic grids.
Definition 7.3 (path of r-order-linked sets). A path of r-order-linked sets of width w and length ℓ is a tuple $(\mathcal{S}, \mathcal{P})$ such that

1. \mathcal{S} is a sequence of $\ell+1$ pairwise disjoint subgraphs $\left(S_{0}, \ldots, S_{\ell}\right)$, which are called clusters,
2. for every $0 \leq i \leq \ell$ there are disjoint sets $A\left(S_{i}\right), B\left(S_{i}\right) \subseteq V\left(S_{i}\right)$ of size w such that $A\left(S_{i}\right)$ is r-order-linked to $B\left(S_{i}\right)$ in S_{i},
3. \mathcal{P} is a sequence of ℓ pairwise disjoint linkages $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)$ such that, for every $0 \leq$ $i<\ell, \mathcal{P}_{i}$ is a $B\left(S_{i}\right)-A\left(S_{i+1}\right)$-linkage of order w which is internally disjoint from S_{i} and S_{i+1} and disjoint from every $S \in \mathcal{S} \backslash\left\{S_{i}, S_{i+1}\right\}$.

By definition, for each $1 \leq i \leq \ell$ there are orderings $\leq_{A\left(S_{i}\right)}$ of $A\left(S_{i}\right)$ and $\leq_{B\left(S_{i}\right)}$ of $B\left(S_{i}\right)$ witnessing the r-order-linkedness of $A\left(S_{i}\right)$ and $B\left(S_{i}\right)$ in S_{i}.
We say that $(\mathcal{S}, \mathcal{P})$ is uniform if for all $1 \leq i \leq \ell$ we can choose orderings $\leq_{A\left(S_{i}\right)}$ and $\leq_{B\left(S_{i}\right)}$ witnessing that $A\left(S_{i}\right)$ is r-order-linked to $B\left(S_{i}\right)$ so that for all $0 \leq i<\ell$ and all $b_{1}, b_{2} \in B\left(S_{i}\right)$: if $b_{1} \leq_{B\left(S_{i}\right)} b_{2}$, then $\mathcal{P}_{i}\left(b_{1}\right) \leq_{A\left(S_{i+1}\right)} \mathcal{P}_{i}\left(b_{2}\right)$.
The following notation is used frequently below. Given a path of r-order-linked sets $(\mathcal{S}:=$ $\left.\left(S_{0}, \ldots, S_{\ell}\right), \mathcal{P}:=\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ and indices $0 \leq i \leq j \leq \ell$ we define $(\mathcal{S}, \mathcal{P})[i, j]$ as the path of r-order-linked sets from cluster i to cluster j. That is, $(\mathcal{S}, \mathcal{P})[i, j]:=\left(\left(S_{i}, \ldots, S_{j}\right),\left(\mathcal{P}_{i}, \ldots, \mathcal{P}_{j-1}\right)\right)$.
To give an example, let $(\mathcal{P}, \mathcal{Q})$ be an acyclic $\left(r^{2}, r\right)$-grid, where $\mathcal{P}:=\left(P_{1}^{1}, \ldots, P_{1}^{r}, P_{2}^{1}, \ldots\right.$, $P_{2}^{r}, \ldots, P_{r}^{r}$). Then $(\mathcal{P}, \mathcal{Q})$ contains a path of r-order-linked sets as follows. The cluster S_{i} is obtained as the union of the columns P_{i}^{j}, for $1 \leq j \leq r$, and, for each $Q \in \mathcal{Q}$, the subpath Q^{i} of Q starting at the first vertex of Q on P_{i}^{1} and ending at the last vertex of Q on P_{i}^{r}. We define $A\left(S_{i}\right):=\left\{\operatorname{start}\left(Q^{i}\right): Q \in \mathcal{Q}\right\}$ and $B\left(S_{i}\right):=\left\{\operatorname{end}\left(Q^{i}\right): Q \in \mathcal{Q}\right\}$. Finally, the linkages \mathcal{P}_{i}, for $0 \leq i<r$, are obtained by taking the subpaths of the rows connecting S_{i} to S_{i+1} in the obvious way. Then $\left(\left(S_{0}, \ldots, S_{r}\right),\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{r-1}\right)\right)$ is a path of r-order-linked sets.
As the example shows, we can easily obtain a path of r-order linked sets from a sufficiently large acyclic grid. Our next goal is to show that the converse is also true, albeit with bigger bounds.
We first observe the following.
Observation 7.4. Let $D=\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ be a path of 0-order-linked sets of width w. For every $0 \leq i<j \leq \ell$, every $A^{\prime} \in\left\{A\left(S_{i}\right), B\left(S_{i}\right)\right\}$, and every $B^{\prime} \in\left\{A\left(S_{j}\right), B\left(S_{j}\right)\right\}$ there is an A^{\prime} - B^{\prime}-linkage \mathcal{L} of order w in D. Furthermore, for all $i<k<j$ every path in \mathcal{L} must intersect $A\left(S_{k}\right)$ and $B\left(S_{k}\right)$.

Proof. We show the case where $A^{\prime}=A\left(S_{i}\right)$ and $B^{\prime}=B\left(S_{j}\right)$. The other cases follow analogously. For each $i \leq t \leq j-1$ construct sets A_{t}, B_{t} and a linkage \mathcal{L}_{t} as follows. Start by setting $A_{i-1}=A^{\prime}$ and \mathcal{L}_{i-1} as the linkage containing only the vertices of A^{\prime}.
On step t, let B_{t} be a 0 -shift of A_{t-1} and let \mathcal{R}_{t} be an $A_{t-1}-B_{t}$-linkage of order w in S_{t}. Since $A\left(S_{t}\right)$ is 0-order-linked to $B\left(S_{t}\right)$, such a linkage \mathcal{R}_{t} exists. Let $\mathcal{R}_{t}^{\prime} \subseteq \mathcal{P}_{t}$ be the set of paths with $\operatorname{start}\left(\mathcal{R}_{t}^{\prime}\right)=\operatorname{end}\left(\mathcal{R}_{t}\right)$. Now set $A_{t}=\operatorname{end}\left(\mathcal{R}_{t}^{\prime}\right)$ and set $\mathcal{L}_{t}=\mathcal{L}_{t-1} \cdot \mathcal{R}_{t} \cdot \mathcal{R}_{t}^{\prime}$.
It is immediate from the construction that \mathcal{L}_{j} is an A^{\prime} - B^{\prime}-linkage of order w, as desired.
We are now ready to show that every path of 1 -order-linked sets contains an acyclic grid. Here we make use of our framework of H-routings in temporal digraphs. The idea is to use the \mathbf{P}_{l}-routings constructed in Theorem 6.12 to obtain the columns of the grid. We start by defining

$$
\begin{aligned}
\mathrm{w}_{7.5}(k) & :=k^{2}-1 \\
\ell_{7.5}(k) & :=\left(\left(k^{2}-k-1\right) \cdot\binom{\mathrm{w}_{7.5}(k)}{k} \cdot k!+1\right) \cdot \ell_{6.10}\left(\mathrm{w}_{7.5}(k), \mathrm{w}_{7.5}(k)\right)
\end{aligned}
$$

Observe that $\mathrm{w}_{7.5}(k) \in O\left(k^{2}\right)$ and $\ell_{7.5}(k) \in 2^{1 \uparrow \uparrow \text { poly }^{7}(k)}$.

Theorem 7.5. Every path of 1-order-linked sets of width at least $w=w_{7.5}(k)$ and length at least $\ell_{7.5}(k)$ contains an acyclic (k, k)-grid.

Proof. Let $\left(\mathcal{S}:=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}:=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ be a path of 1-order-linked sets of width at least $w:=\mathrm{w}_{7.5}(k)$ and length $\ell \geq \ell_{7.5}(k)$. Let $D=\mathrm{D}((\mathcal{S}, \mathcal{P}))$. By Observation 7.4, there is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$-linkage \mathcal{L} of order w in D. Note that every path in \mathcal{L} must intersect every $A\left(S_{i}\right)$ and every $B\left(S_{i}\right)$.
Let T be the routing temporal digraph of \mathcal{L} through \mathcal{S}. Since $A\left(S_{i}\right)$ is 1-order-linked to $B\left(S_{i}\right)$ for every $S_{i} \in \mathcal{S}$, we have that each layer of T is unilateral.
Let $k_{1}=k(k-1)$, let $k_{2}=\left(k_{1}-1\right) \cdot\binom{w}{k} \cdot k!+1$. For each $1 \leq i \leq k_{2}$, let $t_{i}=(i-1) \cdot \ell_{6.10}(w, w)$ and let T_{i} be the temporal subgraph of T from time step t_{i} to $t_{i+1}-1$. Note that $\ell\left(T_{i}\right)=\ell_{6.10}(w, w)$ and $\left|V\left(T_{i}\right)\right|=w$.
By Theorem 6.12, each T_{i} contains a \mathbf{P}_{k}-routing φ_{i}. Since $\ell(T) \geq \ell_{7.5}(k)=k_{2} \cdot \ell_{6.10}(w, w)$, there are at least k_{2} subgraphs T_{i}. By the pigeon-hole principle, there is some set \mathcal{T} of size k_{1} of temporal subgraphs T_{i} of T such that $\varphi:=\varphi_{i}=\varphi_{j}$ for all $T_{i}, T_{j} \in \mathcal{T}$.
Let $\left(T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{k_{1}}^{\prime}\right):=\mathcal{T}$ be sorted according to the corresponding time steps, let \mathcal{Q} be the image of φ.
Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of the \mathbf{P}_{k} ordered according to their occurrence on the \mathbf{P}_{k}. We construct a sequence \mathcal{P} of k paths where, for each $1 \leq i \leq k$, the path P_{i} is constructed as follows.
For each $1 \leq j<k$, let $t_{i, j}=(i-1) \cdot(k-1)+j$ and let $R_{i, j}$ be a $\varphi\left(u_{j}\right)-\varphi\left(u_{j+1}\right)$ temporal path in $T_{t_{i, j}}^{\prime}$ which does not contain any path in $\mathcal{Q} \backslash\left\{\varphi\left(u_{j}\right), \varphi\left(u_{j+1}\right)\right\}$. Note that $t_{i, k-1}=t_{i+1,1}-1$. Since φ is a \mathbf{P}_{k}-routing in $T_{t_{i, j}}^{\prime}$, such a path $R_{i, j}$ exists. Finally, $R_{i, j}$ corresponds to a $V\left(\varphi\left(u_{j}\right)\right)$ $V\left(\varphi\left(u_{j+1}\right)\right)$ path $P_{i, j, 2}$ in D. Let $P_{i, j, 1}$ be the end $\left(P_{i, j-1,2}\right)$-start $\left(P_{i, j, 2}\right)$-path in $\mathrm{D}\left(\varphi\left(u_{j}\right)\right)$ (to simplify notation, we choose end $\left(P_{i, 0,2}\right)$ as $\left.\operatorname{start}\left(P_{i, 1,2}\right)\right)$.
We now set $P_{i}=P_{i, 1,1} \cdot P_{i, 1,2} \cdot P_{i, 2,1} \cdot P_{i, 2,2} \cdot \ldots \cdot P_{i, k-1,2}$. After constructing all P_{i}, set $\mathcal{P}=$ $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$. Note that the paths in \mathcal{P} are pairwise disjoint. It is now immediate from the construction that $(\mathcal{P}, \mathcal{Q})$ is an acyclic (k, k)-grid.

The previous results show that we can convert an acyclic grid into a path of r-order linked sets and vice versa. We now turn to the problem of actually constructing a path of r-order-linked sets in a digraph. We show first how to construct a path of 1-order-linked sets from routing temporal digraphs containing \mathbf{P}_{k}-routings. Similar to a column in an acyclic grid such a $\mathbf{P}_{k^{-}}$ routing allows us to shift one path to its destination without intersecting the other paths in the linkage we construct.

Lemma 7.6. Let h, k be integers. Let T be the routing temporal digraph of some linkage \mathcal{L} through a sequence $\left(H_{1}, H_{2}, \ldots, H_{h}\right)$ of disjoint digraphs. Let $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ be a linkage of order at most k. If T contains a \mathbf{P}_{k}-routing on the paths $L_{1}, L_{2}, \ldots, L_{k} \in \mathcal{L}^{\prime}$, ordered according to their occurrence on the \mathbf{P}_{k}-routing, then A is 1-order-linked to B in $\mathrm{D}\left(\mathcal{L} \cup \bigcup_{i=1}^{h} H_{i}\right)$, where $A=\left\{a_{i} \mid a_{i}\right.$ is the first vertex of L_{i} on $\left.H_{1}\right\}$ and $B=\left\{b_{i} \mid b_{i}\right.$ is the last vertex of L_{i} on $\left.H_{h}\right\}$.

Proof. Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ such that B^{\prime} is a 1-shift of A^{\prime}. Let $\pi: A^{\prime} \rightarrow B^{\prime}$ be the bijection witnessing that B is a 1 -shift of A^{\prime}. If $\pi\left(a_{x}\right)=b_{x}$ for all $a_{x} \in A^{\prime}$, then \mathcal{L}^{\prime} contains an $A^{\prime}-B^{\prime}$-linkage \mathcal{R} such that for all $a_{x} \in A^{\prime}$ there is an $a_{x}-b_{x}$ path in \mathcal{R}, and so we are done.
Otherwise, let $x \in\{1, \ldots, k\}$ be such that $a_{x} \in A^{\prime}$ is the unique vertex such that $\pi\left(a_{x}\right) \neq b_{x}$ and let $b_{y}=\pi\left(a_{x}\right)$. As B^{\prime} is a 1-shift of A^{\prime}, we know that $x<y$ and $a_{i} \notin A^{\prime}$ for all $i \in$ $\{x+1, \ldots, y-1\}$.
We construct an A^{\prime} - B^{\prime}-linkage \mathcal{R} satisfying $\pi\left(a_{x}\right)=\mathcal{R}\left(a_{x}\right)$ for all $a_{x} \in A^{\prime}$ as follows. For each $a_{j} \in A^{\prime}$, let W_{j} be the temporal walk in the \mathbf{P}_{k}-routing starting in L_{j} and ending in L_{j+1} and
let W be the concatenation of $W_{x} \cdot W_{x+1} \cdot \ldots \cdot W_{y-1}$. The temporal walk W connects L_{x} to L_{y} in T and we can assume it starts on time step 1 and ends on time step h. If $\pi\left(a_{j}\right)=b_{j}$, we add the path L_{j} to \mathcal{R}. Construct L_{x}^{\prime} as follows.
Let $\left(v_{i}, t_{i}\right)$ and $\left(v_{j}, t_{j}\right)$ be two consecutive elements in the sequence of W. We follow L_{i} from $H_{t_{i}}$ to $H_{t_{j}}$, then take a path P in $H_{t_{j}}$ connecting L_{i} to L_{j}. By construction of T and because $a_{n} \notin A^{\prime}$ for all $n \in\{x+1, \ldots, y-1\}$, the path P in $H_{t_{j}}$ does not intersect any other path of \mathcal{L}. Further, by definition of \mathbf{P}_{k}-routing, L_{i} and L_{j} only intersect A^{\prime} at a_{x} or a_{y}. Hence, L_{x}^{\prime} is disjoint from all L_{i} we chose earlier. Thus, we obtain an A^{\prime} - B^{\prime}-linkage \mathcal{R} such that $\mathcal{R}\left(a_{x}\right)=\pi\left(a_{x}\right)$ for all $a_{x} \in A^{\prime}$ as desired.

The previous lemma allows us to construct a path of 1-order-linked sets. We show next that we can increase the order-linkedness of the clusters at the expense of the length of the path of order-linked sets we obtain. The idea is to "merge" a set of consecutive clusters of a path of r-order-linked sets into a single cluster increasing the order-linkedness.
This idea is much easier to implement in uniform paths of r-order-linked sets than in the general case and also yields much better bounds. As the uniform case is sufficient for our application we only consider the uniform case here.
The next lemma essentially explains how to construct in a path of r-order-linked sets a single cluster of higher order-linkedness by merging the existing clusters into one.

Lemma 7.7. Let r, c, w be integers. Let $D=\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ be a uniform path of r-order-linked sets of width w and length at least $c-1$. Then $A\left(S_{0}\right)$ is $c r$-order-linked to $B\left(S_{\ell}\right)$ in D.

Proof. Let $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right):=\mathcal{P}$. For each $0 \leq i \leq \ell$ let $\varphi_{i}: A\left(S_{i}\right) \rightarrow B\left(S_{i}\right)$ be the bijection witnessing that $A\left(S_{i}\right)$ is r-order-linked to $B\left(S_{i}\right)$.
We define for each $0 \leq i \leq \ell$ two bijections $\alpha_{i}: A\left(S_{i}\right) \rightarrow\{1,2, \ldots, w\}$ and $\beta_{i}: B\left(S_{i}\right) \rightarrow$ $\{1,2, \ldots, w\}$ according to $\leq_{A\left(S_{i}\right)}$ and $\leq_{B\left(S_{i}\right)}$, that is, $\alpha_{i}\left(a_{j}\right) \leq \alpha_{i}\left(a_{k}\right)$ holds if and only if $a_{j} \leq{ }_{A\left(S_{i}\right)} a_{k}$ holds (and analogously for β_{i}). In particular, we have $\varphi_{i}=\beta_{i}^{-1} \circ \alpha_{i}$. Since $(\mathcal{S}, \mathcal{P})$ is uniform, we also have that $\beta_{i}(b)=\alpha_{i+1}\left(\mathcal{P}_{i}(b)\right)$ for all $0 \leq i \leq \ell-1$ and all $b \in B\left(S_{i}\right)$.
Let $A^{\prime} \subseteq A\left(S_{0}\right)$ and let $B^{\prime} \subseteq B\left(S_{\ell}\right)$ be sets of size k such that B^{\prime} is a $c r$-shift of A^{\prime} as witnessed by the bijection $\varphi: A^{\prime} \rightarrow B^{\prime}$. We also define $\pi:=\beta_{\ell} \circ \varphi \circ \alpha_{0}^{-1}$.
For each $0 \leq i \leq c-1$ we construct an $A^{\prime}-B\left(S_{i}\right)$-linkage \mathcal{R}_{i} of order $\left|A^{\prime}\right|$ satisfying the following,
(L1) $\left|\left\{a \in A^{\prime} \mid \beta_{i}\left(\mathcal{R}_{i}(a)\right)=\beta_{\ell}(\varphi(a))\right\}\right| \geq(i+1) r$.
To simplify notation we set end $\left(\mathcal{R}_{-1}\right)$ as A^{\prime}.
On step i, let $\mathcal{L}_{i}^{1} \subseteq \mathcal{P}_{i-1}$ be such that $\operatorname{start}\left(\mathcal{L}_{i}^{1}\right)=\operatorname{end}\left(\mathcal{R}_{i-1}\right)$ and let $\widehat{\mathcal{R}}_{i-1}=\mathcal{R}_{i-1} \cdot \mathcal{L}_{i}^{1}$.
Choose the largest possible $A^{\prime \prime} \subseteq A^{\prime}$ of size at most r by starting at the largest elements of A^{\prime} with respect to $\leq_{A\left(S_{0}\right)}$ and proceeding in descending order such that $\alpha_{i}\left(\widehat{\mathcal{R}}_{i-1}(a)\right) \neq \pi(a)$ for all $a \in A^{\prime \prime}$. Let $\widehat{A}=\widehat{\mathcal{R}}_{i-1}\left(A^{\prime \prime}\right)$.
Let $B^{\prime \prime}=\beta_{i}^{-1}\left(\pi\left(\alpha_{i}(\widehat{A})\right) \cup \beta_{i}^{-1}\left(\alpha_{i}\left(\operatorname{end}\left(\widehat{\mathcal{R}}_{i-1}\right) \backslash \widehat{A}\right)\right)\right.$. Let $\varphi_{i}^{\prime}:$ end $\left(\widehat{\mathcal{R}}_{i-1}\right) \rightarrow B^{\prime \prime}$ be the bijection defined as follows

$$
\varphi_{i}^{\prime}(a):= \begin{cases}\beta_{i}^{-1}\left(\pi\left(\alpha_{i}(a)\right)\right), & a \in \widehat{A} \\ \beta_{i}^{-1}\left(\alpha_{i}(a)\right), & a \in \operatorname{end}\left(\widehat{\mathcal{R}}_{i-1}\right) \backslash \widehat{A}\end{cases}
$$

Because $A^{\prime \prime}$ was constructed by taking the largest elements of A^{\prime} with respect to $\leq_{A\left(S_{0}\right)}$, we have that $\alpha_{i}(a) \notin \pi\left(\alpha_{i}(\widehat{A})\right)$ for all $a \in \operatorname{end}\left(\widehat{\mathcal{R}}_{i-1}\right) \backslash \widehat{A}$. Hence, the set $B^{\prime \prime}$ is an r-shift of end $\left(\widehat{\mathcal{R}}_{i-1}\right)$, witnessed by φ_{i}^{\prime}.

Since $A\left(S_{i}\right)$ is r-order-linked to $B\left(S_{i}\right)$ in S_{i}, there is a linkage \mathcal{L}_{i}^{2} in S_{i} such that $\varphi_{i}^{\prime}\left(\operatorname{end}\left(\widehat{\mathcal{R}}_{i-1}\right)\right)=\mathcal{L}_{i}^{2}\left(\operatorname{end}\left(\widehat{\mathcal{R}}_{i-1}\right)\right)$. We now set $\mathcal{R}_{i}=\widehat{\mathcal{R}}_{i-1} \cdot \mathcal{L}_{i}^{2}$.
For every $a \in A^{\prime \prime}$ we now have $\alpha_{i+1}\left(\mathcal{R}_{i}(a)\right)=\varphi(a)$. Since (L1) holds for $i-1$, we also have that (L1) holds for i.
After iterating c steps, we have that $\mathcal{R}_{c-1}\left(A^{\prime}\right)=\varphi\left(A^{\prime}\right)$ since (L1) holds for $i=c$ and B^{\prime} is an $c r$-shift of A^{\prime}. Thus, \mathcal{R}_{c-1} is an $A^{\prime}-B^{\prime}$-linkage. Hence, $A\left(S_{0}\right)$ is $c r$-order-linked to $B\left(S_{\ell}\right)$.

By applying the previous lemma repeatedly we obtain the following theorem.
Theorem 7.8. Every uniform path of r-order-linked sets $D=\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}=\right.$ ($\left.\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)$) of length at least $c \ell$ and width w contains a uniform path of $c r$-order-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ of length ℓ and width w. Additionally, for every $0 \leq i \leq \ell$ we have $S_{i}^{\prime} \subseteq D[c i, c(i+1)-1], A\left(S_{i}^{\prime}\right) \subseteq A\left(S_{c i}\right)$ and $B\left(S_{i}^{\prime}\right) \subseteq B\left(S_{c(i+1)-1}\right)$, and for $0 \leq i<\ell$ we have $\mathcal{P}_{i}^{\prime} \subseteq \mathcal{P}_{(c-1)(i+1)}$.

Proof. For each $0 \leq i \leq \ell$ let $S_{i}^{\prime}=D[c i, c(i+1)-1]$ and set $A\left(S_{i}^{\prime}\right):=A\left(S_{c i}\right)$ and $B\left(S_{i}^{\prime}\right):=$ $B\left(S_{c(i+1)-1}\right)$. Note that each S_{i}^{\prime} is a path of r-order-linked sets of width w and length $c-1$. From Lemma 7.7, we have that $A\left(S_{i}^{\prime}\right)$ is $c r$-order-linked to $B\left(S_{i}^{\prime}\right)$ in S_{i}^{\prime}.
Let $\mathcal{P}^{\prime}:=\left(\mathcal{P}_{c-1}, \mathcal{P}_{2(c-1)}, \ldots, \mathcal{P}_{(c-1) \ell}\right)$. It is immediate that $\left(\mathcal{S}^{\prime}:=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}\right)$ is a uniform path of $c r$-order-linked sets of width w and length ℓ satisfying the requirements in the statement.

8 Paths of well-linked sets and fences

In the previous section we introduced path of r-order-linked sets as a suitable abstraction of acyclic grids. We now want to extend this idea to find a similar abstraction of fences as well.
The main difference between a fence and an acyclic grid $(\mathcal{P}, \mathcal{Q})$ is that if we are interested in routing from left to right, that is, from $\operatorname{start}(Q)$ to end (Q), then if $(\mathcal{P}, \mathcal{Q})$ is an acyclic grid the two sides are only order-linked whereas in a fence they are well-linked. Consequently we relax the requirement of the path of r-order-linked sets to obtain a suitable abstraction of fences.

Definition 8.1 (path of well-linked sets). A path of well-linked sets of width w and length ℓ is a tuple $(\mathcal{S}, \mathcal{P})$ such that

1. \mathcal{S} is a sequence of $\ell+1$ pairwise disjoint subgraphs $\left(S_{0}, \ldots, S_{\ell}\right)$, called clusters,
2. for every $0 \leq i \leq \ell$ there are disjoint sets $A\left(S_{i}\right), B\left(S_{i}\right) \subseteq V\left(S_{i}\right)$ of size w such that $A\left(S_{i}\right)$ is well-linked to $B\left(S_{i}\right)$ in S_{i}, and
3. \mathcal{P} is a sequence of ℓ pairwise disjoint linkages $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)$ such that, for every $0 \leq$ $i<\ell, \mathcal{P}_{i}$ is a $B\left(S_{i}\right)-A\left(S_{i+1}\right)$-linkage of order w which is internally disjoint from S_{i} and S_{i+1} and is disjoint from every $S \in \mathcal{S} \backslash\left\{S_{i}, S_{i+1}\right\}$.

We call $(\mathcal{S}, \mathcal{P})$ strict if within each cluster S_{i} every vertex $v \in V\left(S_{i}\right)$ occurs on a path from $A\left(S_{i}\right)$ to $B\left(S_{i}\right)$ in S_{i}.
As before we define $(\mathcal{S}, \mathcal{P})[i, j]:=\left(\left(S_{i}, \ldots, S_{j}\right),\left(\mathcal{P}_{i}, \ldots, \mathcal{P}_{j-1}\right)\right)$, where $0 \leq i \leq j \leq \ell$.
While acyclic grids and fences may look quite different, Reed et al. proved in [RRST96] that it is possible to construct a fence from any given acyclic grid.

Figure 8: A path of well-linked sets of width w and length ℓ. The linkage \mathcal{L}_{1} connects all of $A\left(S_{1}\right)$ to all of $B\left(S_{1}\right)$ while there are also linkages from every subset of $A\left(S_{i}\right)$ to every subset of $B\left(S_{i}\right)$ as \mathcal{Q}_{2} in S_{2} illustrates for example.

Lemma 8.2 ([RRST96, statement (4.7)]). Every acyclic $(p q+1, p q+1)$-grid contains a (p, q) fence.

We show next that a similar relation as proved in the previous lemma is also true for paths of order-linked sets and paths of well-linked sets.

Lemma 8.3. Let $w_{8.3}(w, \ell):=w(\ell+1)$. Every path of w-order-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right)\right.$, $\left.\mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ of width at least $\mathrm{w}_{8.3}(w, \ell)$ and length at least ℓ contains a path of welllinked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ of width w and length ℓ. Further, for every $0 \leq i \leq \ell$ we have $A\left(S_{i}^{\prime}\right) \subseteq A\left(S_{i}\right), B\left(S_{i}^{\prime}\right) \subseteq B\left(S_{i}\right), S_{i}^{\prime} \subseteq S_{i}$ and for every $0 \leq i<\ell$ we have $\mathcal{P}_{i}^{\prime} \subseteq \mathcal{P}_{i}$.

Proof.

Recall that $\leq_{A\left(S_{i}\right)}$ is the order of the vertices of $A\left(S_{i}\right)$ witnessing that $A\left(S_{i}\right)$ is w-order-linked to $B\left(S_{i}\right)$ in S_{i}. Further, let π_{i} be the bijection witnessing this property.
In the following we construct the sets A_{i}^{\prime} and B_{i-1}^{\prime} for each $1 \leq i \leq \ell$ such that A_{i}^{\prime} is a subset of the smallest $(i+1) w$ elements of $\leq_{A\left(S_{i}\right)}$ and \mathcal{P}_{i} contains a $B_{i-1}^{\prime}-A_{i}^{\prime}$-linkage of order $\left|A_{i}^{\prime}\right|$, see Figure 9 for an illustration.
First let \widehat{A}_{0} be the w smallest elements of $\leq_{A\left(S_{0}\right)}$. For $0<i \leq \ell$, let \widehat{A}_{i} be the $(i+1) w$ smallest elements of $\leq_{A\left(S_{i}\right)}$. Since $\left|A\left(S_{i}\right)\right| \geq w(\ell+1)$ and $i \leq \ell$, such a set exists.
Now, let $\widehat{\mathcal{P}}_{i-1}$ be the paths of \mathcal{P}_{i-1} such that end $\left(\widehat{\mathcal{P}}_{i-1}\right)=\widehat{A}_{i}$. Since \widehat{A}_{i-1} contains the smallest $i w$ elements of $\leq_{A\left(S_{i-1}\right)}$, there is some $B_{i-1}^{\prime} \subseteq \operatorname{start}\left(\widehat{\mathcal{P}}_{i-1}\right)$ of size w such that $\pi_{i-1}(a) \leq_{B\left(S_{i-1}\right)} b$ for all $a \in \widehat{A}_{i-1}$ and all $b \in B_{i-1}^{\prime}$.
Finally, choose $A_{i}^{\prime}:=\operatorname{end}\left(\widehat{\mathcal{P}}_{i-1}\right)$ for all $0<i \leq \ell$ and $A_{0}^{\prime}:=\widehat{A}_{0}$.
As $A_{i}^{\prime} \subseteq \widehat{A}_{i}$ for all $0 \leq i \leq \ell$, we have $\pi_{i-1}(a) \leq_{B\left(S_{i-1}\right)} b$ for all $a \in A_{i-1}^{\prime}$ and all $b \in B_{i-1}^{\prime}$. Hence, for every $A^{\prime} \subseteq A_{i-1}^{\prime}$ and every $B^{\prime} \subseteq B_{i-1}^{\prime}$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$ we have that B^{\prime} is an r-shift of A^{\prime}. Thus, A_{i-1}^{\prime} is well-linked to B_{i-1}^{\prime} in S_{i-1}. Let S_{i-1}^{\prime} be a minimal subgraph of S_{i-1} in which A_{i-1}^{\prime} is well-linked to B_{i-1}^{\prime}. We set $A\left(S_{i-1}^{\prime}\right):=A_{i-1}^{\prime}$ and $B\left(S_{i-1}^{\prime}\right):=B_{i-1}^{\prime}$. Choose $\mathcal{P}_{i-1}^{\prime} \subseteq \mathcal{P}_{i-1}$ such that $\operatorname{start}\left(\mathcal{P}_{i-1}^{\prime}\right)=B_{i-1}^{\prime}$ and set $A_{i}^{\prime}:=\operatorname{end}\left(\mathcal{P}_{i-1}^{\prime}\right)$.

Figure 9: A path of well-linked sets of width w and length ℓ. The linkage \mathcal{L}_{1} connects all of $A\left(S_{1}\right)$ to all of $B\left(S_{1}\right)$ while there are also linkages from every subset of $A\left(S_{i}\right)$ to every subset of $B\left(S_{i}\right)$ as \mathcal{Q}_{2} in S_{2} illustrates for example.

After constructing all sets above, we choose B_{ℓ}^{\prime} as the w largest elements of $\leq_{B\left(S_{\ell}\right)}$. As argued above, the set A_{ℓ}^{\prime} is well-linked to B_{ℓ}^{\prime} in some $S_{i}^{\prime} \subseteq S_{i}$, where we choose S_{i}^{\prime} minimal.
We set $\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right)$ and $\mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)$. It is immediate from the construction above that $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ is a path of well-linked sets of width w and length ℓ satisfying the conditions in the statement.

We show next that every path of well-linked sets contains a fence. Towards this aim we first show that the well-linkedness of $A\left(S_{i}\right)$ to $B\left(S_{i}\right)$ within an individual cluster S_{i} can be preserved when going from one cluster to the next, i.e. the set $A\left(S_{i}\right)$ is also well-linked to every $A\left(S_{j}\right)$ and $B\left(S_{j}\right)$ for clusters S_{j} with $j>i$ appearing later on the path of well-linked sets.

Lemma 8.4. Let $\left(\mathcal{S}:=\left(S_{0}, \ldots, S_{\ell}\right), \mathcal{P}:=\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ be a path of well-linked sets of width w and length ℓ and let $0 \leq i<j \leq \ell$. Then for every $0 \leq i<j \leq \ell$, for each $A^{\prime} \in\left\{A\left(S_{i}\right), B\left(S_{i}\right)\right\}$ and for each $B^{\prime} \in\left\{B\left(S_{j}\right), A\left(S_{j}\right)\right\}$ we have that A^{\prime} is well-linked to B^{\prime} in $(\mathcal{S}, \mathcal{P})[i, j]$.

Proof. We show the case where $A^{\prime}=A\left(S_{i}\right)$ and $B^{\prime}=B\left(S_{j}\right)$. The other cases follow analogously.
Let $X \subseteq A^{\prime}$ and $Y \subseteq B^{\prime}$ be sets size k. We prove by induction on $j-i$ that there is an $X-Y$-linkage of order k in $(\mathcal{S}, \mathcal{P})$.
If $j-i=1$, then let $B_{i} \subseteq B\left(S_{i}\right)$ be a set of size k and let $A_{j} \subseteq A\left(S_{j}\right)$ the set of size k such that $\mathcal{P}_{i}\left(B_{i}\right)=A_{j}$. Since $A\left(S_{i}\right)$ is well-linked to $B\left(S_{i}\right)$ in S_{i}, there is an A^{\prime} - B_{1}-linkage \mathcal{R}_{i} of order k in S_{i}. Similarly, there is an $A_{j}-B^{\prime}$-linkage \mathcal{R}_{j} in S_{j}. Let $\mathcal{R}_{i}^{\prime} \subseteq \mathcal{P}_{i}$ be the paths of \mathcal{P}_{i} such that $\operatorname{start}\left(\mathcal{R}_{i}^{\prime}\right)=\operatorname{end}\left(\mathcal{R}_{i}\right)$. Clearly, $\mathcal{R}_{i} \cdot \mathcal{R}_{i}^{\prime} \cdot \mathcal{R}_{j}$ is an A^{\prime} - B^{\prime}-linkage of order k.
Now consider the case where $j-i>1$. Choose any subset $B_{i} \subseteq B\left(S_{i}\right)$ of order $\left|A^{\prime}\right|=k$. As before there is an $A^{\prime}-B_{i}$-linkage \mathcal{R}_{1} of order k in S_{i}. Let $\mathcal{R}_{2} \subseteq \mathcal{P}_{i}$ be the linkage with $\operatorname{start}\left(\mathcal{R}_{2}\right)=\operatorname{end}\left(\mathcal{R}_{1}\right)$. Note that end $\left(\mathcal{R}_{2}\right) \subseteq A\left(S_{i+1}\right)$. By induction, there is an end $\left(\mathcal{R}_{2}\right)$ - $B^{\prime}-$ linkage \mathcal{R}_{3} of order k, and so $\mathcal{R}_{1} \cdot \mathcal{R}_{2} \cdot \mathcal{R}_{3}$ is an A^{\prime} - B^{\prime}-linkage of order k, as desired.

We now apply our framework of \mathbf{P}_{k}-routings in temporal digraphs to construct a fence from a path of well-linked sets. The idea is to first construct an acyclic grid using \mathbf{P}_{k}-routings and then apply Lemma 8.3 to obtain a fence. Observe that $\mathrm{w}_{8.5}(p, q) \in O\left(p^{5} q^{5}\right)$ and $\ell_{8.5}(p, q) \in$ $2^{1 \uparrow \text { poly }^{5}(p, q)}$.

Figure 10: For each cluster S_{i} we obtain a digraph $D_{i}(T)$ from the temporal digraph T. Every D_{i} contains a path of length k_{1} or a $K_{k_{1}}$-routing, which means it contains a $P_{k_{1}}$-routing in any case. As there are enough clusters we can find $k_{4}-1$ agreeing on the vertices and their order, shown in orange.

Theorem 8.5. Every path of a well-linked set $(\mathcal{S}, \mathcal{P})$ of width at least $\mathrm{w}_{8.5}(p, q):=2(p q+1)^{5}$ and length $\ell \geq \ell_{8.5}(p, q):=((p q+1)(p q)-1)\binom{2(p q+1)^{5}}{p q+1}(p q+1)!+1$ contains a (p, q)-fence.

Proof. Let $k_{1}=p q+1$ and $k_{2}=2\left(k_{1}\right)^{5}$. Let $D=\mathrm{D}((\mathcal{S}, \mathcal{P}))$. Let $\left(S_{0}, S_{1}, \ldots, S_{\ell}\right)=\mathcal{S}$ and let \mathcal{L} be an $A\left(S_{0}\right)$-B(S_{ℓ}-linkage of order k_{2} in $(\mathcal{S}, \mathcal{P})$. By Lemma 8.4, such a linkage exists.
Let T be the routing temporal digraph of \mathcal{L} through \mathcal{S}. Note that $\ell(T)=\ell+1$, see Figure 10 for an illustration. Since $A\left(S_{i}\right)$ is well-linked to $B\left(S_{i}\right)$ and every path in \mathcal{L} must intersect both $A\left(S_{i}\right)$ and $B\left(S_{i}\right)$ for every $S_{i} \in \mathcal{S}$, we have that every $D_{i}(T)$ is strongly connected.
By Theorem 6.8, every $D_{i}(T)$ contains a path of length k_{1} or a $\overrightarrow{\mathbf{K}}_{k_{1}}$-routing. In both cases, $D_{i}(T)$ contains a $\mathbf{P}_{k_{1}}$-routing φ_{i}. Note that there are at most $k_{3}:=\binom{k_{2}}{k_{1}} \cdot\left(k_{1}\right)$! distinct φ_{i}.
Let $k_{4}=k_{1}\left(k_{1}-1\right)$. Because $\ell(T) \geq\left(k_{4}-1\right) k_{3}+1$, there is a subsequence \mathcal{S}^{\prime} of \mathcal{S} of length k_{4} such that $\varphi:=\varphi_{i}=\varphi_{j}$ for every $S_{i}, S_{j} \in \mathcal{S}^{\prime}$. Let $\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{k_{4}-1}^{\prime}\right):=\mathcal{S}^{\prime}$, let \mathcal{Q} be the image of φ and let T^{\prime} be the routing temporal digraph of \mathcal{Q} through \mathcal{S}^{\prime}. Note that T^{\prime} is a temporal subgraph of T and that φ is a $P_{k_{1}}$-routing in every $D_{i}\left(T^{\prime}\right)$. Further, $\ell\left(T^{\prime}\right)=k_{4}$ and $|\mathcal{Q}|=k_{1}$.
Let $u_{1}, u_{2}, \ldots, u_{k_{1}}$ be the vertices of the $\mathbf{P}_{k_{1}}$ ordered according to their occurrence on the $P_{k_{1}}$. We construct a sequence \mathcal{P} of k_{1} paths where, for each $1 \leq i \leq k_{1}$, the path P_{i} is constructed as follows.
For each $1 \leq j<k_{1}$, let $t_{i, j}=(i-1) \cdot\left(k_{1}-1\right)+j$ and let $R_{i, j}$ be a $\varphi\left(u_{j}\right)-\varphi\left(u_{j+1}\right)$ path in $D_{t_{i, j}}\left(T^{\prime}\right)$ which is disjoint from every path in $\mathcal{Q} \backslash\left\{\varphi\left(u_{j}\right), \varphi\left(u_{j+1}\right)\right\}$. Note that $t_{i, k_{1}-1}=t_{i+1,1}-1$. Since φ is a $\mathbf{P}_{k_{1}}$-routing in $D_{t_{i, j}}(T)$, such a path $R_{i, j}$ exists. Finally, $R_{i, j}$ corresponds to a $V\left(\varphi\left(u_{j}\right)\right)$ $V\left(\varphi\left(u_{j+1}\right)\right)$ path $P_{i, j, 2}$ in D. Let $P_{i, j, 1}$ be the end $\left(P_{i, j-1,2}\right)$-start $\left(P_{i, j, 2}\right)$-path in $\mathrm{D}\left(\varphi\left(u_{j}\right)\right)$ (to simplify notation, we choose end $\left(P_{i, 0,2}\right)$ as $\left.\operatorname{start}\left(P_{i, 1,2}\right)\right)$.
We now set $P_{i}=P_{i, 1,1} \cdot P_{i, 1,2} \cdot P_{i, 2,1} \cdot P_{i, 2,2} \cdot \ldots \cdot P_{i, k_{1}-1,2}$. After constructing all P_{i}, set $\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{k_{1}}\right)$. Note that the paths in \mathcal{P} are pairwise disjoint.
It is immediate from the construction that $(\mathcal{P}, \mathcal{Q})$ is an acyclic $\left(k_{1}, k_{1}\right)$-grid. By Lemma 8.2, $\mathrm{D}(\mathcal{P} \cup \mathcal{Q})$ contains a (p, q)-fence, as desired.

We close the section by exhibiting various routing properties of paths of well-linked sets that
are useful below.
We first observe the following simple property.
Observation 8.6. Let D be a digraph and let $A, B \subseteq V(D)$ be sets in D such that A is well-linked to B. Let $v \in V(D)$ be a vertex contained in some $A-B$ path. Then there is an $(A \cup\{v\})$ - B-linkage \mathcal{L} of order $|A|$ such that $v \in \operatorname{start}(\mathcal{L})$.

Proof. Let \mathcal{R} be some $A-B$-linkage of order $|A|$. Let P be some $A-B$ path containing v and let P^{\prime} be the $v-B$ subpath of P. Let $P^{\prime \prime}$ be the largest subpath of P^{\prime} with $\operatorname{start}\left(P^{\prime \prime}\right)=\operatorname{start}\left(P^{\prime}\right)$ which is internally disjoint from \mathcal{R} and let $R \in \mathcal{R}$ be the path of \mathcal{R} intersecting $P^{\prime \prime}$. Finally, let R^{\prime} be the end $\left(P^{\prime \prime}\right)-\operatorname{end}(R)$ subpath of R. It is now immediate that $\mathcal{R}^{\prime}:=(\mathcal{R} \backslash\{R\}) \cup\left\{P^{\prime \prime} \cdot R^{\prime}\right\}$ is a linkage of order $|R|$ with $v \in \operatorname{start}\left(\mathcal{R}^{\prime}\right)$.

When working with paths of well-linked sets below we are often in a situation where we are given two equal-sized sets X and Y of vertices in a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ and we want to find a linkage connecting X to Y in $(\mathcal{S}, \mathcal{P})$. In the next lemma we identify several cases in which these linkages are guaranteed to exist. This lemma is frequently applied in the next steps of the proof.

Lemma 8.7. Let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ be a path of well-linked sets of width w and length ℓ. Let $X, Y \subseteq V((\mathcal{S}, \mathcal{P}))$ such that $|X|=|Y|=k$. Let $f: X \cup Y \rightarrow \mathbb{N}$ be a function such that $v \in S_{f(v)} \cup \mathcal{P}_{f(v)}$ for all $v \in X \cup Y$. There is an X - Y-linkage \mathcal{L} in $(\mathcal{S}, \mathcal{P})$ if $f(x) \leq f(y)-2$ for all $x \in X$ and all $y \in Y$ and at least one of the following is true:
(L1) there are $0 \leq i<j \leq \ell$ such that $X \subseteq B\left(S_{i}\right)$ and $Y \subseteq A\left(S_{j}\right)$,
(L2) $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \geq 2$ for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ and there is some $0 \leq i \leq \ell$ such that $Y \subseteq A\left(S_{i}\right)$,
(L3) $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right| \geq 2$ for all $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$ and there is some $0 \leq i \leq \ell$ such that $X \subseteq B\left(S_{i}\right)$, or
(L4) $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \geq 2$ for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ and $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right| \geq 2$ for all $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$.

Furthermore, choose i minimal with S_{i} containing a vertex from X and j maximal with S_{j} containing a vertex from Y. Then, \mathcal{L} is contained inside $(\mathcal{S}, \mathcal{P})[i, j]$.
Proof. The case where (L1) holds follows directly from Lemma 8.4.
If (L2) holds, we construct an $X-A\left(S_{i-1}\right)$-linkage of order k as follows. We first rename the vertices of X such that $x_{r} \in V\left(S_{r}\right)$ for all $x_{r} \in X$. For each $x_{r} \in X$, let k_{r} be the number of vertices in X which appear before x_{r} along $(\mathcal{S}, \mathcal{P})$.
By Observation 8.6, there is an $\left(A\left(S_{r}\right) \cup\left\{x_{r}\right\}\right)$ - $B\left(S_{r}\right)$-linkage \mathcal{R}_{r} of order $k_{r}+1$ in S_{r} such that $x_{r} \in \operatorname{start}\left(\mathcal{R}_{r}\right)$. If $k_{r}>0$, then by Lemma 8.4 there is an $\operatorname{end}\left(\mathcal{R}_{r-1}\right)$-start $\left(\mathcal{R}_{r}\right)$-linkage \mathcal{L}_{r-1} of order $k_{r}=\left|\mathcal{R}_{r}\right|-1$.
Clearly, the concatenation of all \mathcal{R}_{r} and all \mathcal{L}_{r} above (in the only order possible) yields an $X-B\left(S_{r^{\prime}}\right)$-linkage of order $|X|$, where r^{\prime} is the smallest index such that all vertices of X appear before $S_{r^{\prime}}$ along $(\mathcal{S}, \mathcal{P})$. Now by Lemma 8.4 we have an $\operatorname{end}\left(\mathcal{R}_{r^{\prime}-1}\right)-Y$-linkage of order k, as desired. The proof for the case where (L3) holds is analogous to the one of where (L2) holds and so we omit it.
If (L4) holds, let r_{y} be the smallest index such that $S_{r_{y}}$ contains a vertex of Y and let r_{x} be the largest index such that $S_{r_{x}}$ contains a vertex of X.

Construct linkages \mathcal{R}_{r} and \mathcal{L}_{r} as in the proof of the case when (L2) holds. Let \mathcal{X} be the linkage obtained by concatenating all \mathcal{R}_{r} and all \mathcal{L}_{r} (in the only possible order) belonging to vertices of X. Similarly, let \mathcal{Y} be the linkage obtained by concatenating all \mathcal{R}_{r} and all \mathcal{L}_{r} (in the only possible order) belonging to vertices of Y.
Note that end $(\mathcal{X}) \subseteq B\left(S_{r_{x}}\right)$ and that $\operatorname{start}(\mathcal{Y}) \subseteq A\left(S_{r_{y}}\right)$. Hence, by Lemma 8.4 there is an end (\mathcal{X})-start (\mathcal{Y})-linkage of order k, as desired.

The last statement we prove in this section helps us to deal with a situation where already have a path of well-linked sets $\left(\mathcal{S}:=\left(S_{0}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ but we would like to restrict the system so that it "starts" at a specific set $A \subseteq A\left(S_{0}\right)$ and ends at some fixed set $B \subseteq B\left(S_{\ell}\right)$.

Observation 8.8. Let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ be a path of well-linked sets of width at least w and length ℓ. Let $A_{0} \subseteq A\left(S_{0}\right)$ and $B_{\ell} \subseteq B\left(S_{\ell}\right)$ with $\left|A\left(S_{0}\right)\right|=\left|B_{\ell}\right|=w$. Then, $(\mathcal{S}, \mathcal{P})$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ of width w and length ℓ such that $B\left(S_{\ell}^{\prime}\right)=B_{\ell}, A\left(S_{0}^{\prime}\right)=A_{0}, S_{i}^{\prime} \subseteq S_{i}$ for all $0 \leq i \leq \ell$ and $\mathcal{P}_{i}^{\prime} \subseteq \mathcal{P}_{i}$ for all $0 \leq i<\ell$.

Proof. For each $0 \leq i<\ell$ choose some $B_{i} \subseteq B\left(S_{i}\right)$ of size w and let $\mathcal{P}_{i}^{\prime} \subseteq \mathcal{P}_{i}$ be such that $\operatorname{start}\left(\mathcal{P}_{i}^{\prime}\right)=B_{i}$. For each $1 \leq i \leq \ell$ let $A_{i}=\mathcal{P}_{i-1}^{\prime}\left(B_{i-1}\right)$.
For each $0 \leq i \leq \ell$ let $S_{i}^{\prime} \subseteq S_{i}$ be a maximal subgraph of S_{i} such that A_{i} is well-linked to B_{i} in S_{i}^{\prime} and for each $v \in V\left(S_{i}^{\prime}\right)$ there is some $A_{i}-B_{i}$ path P in S_{i}^{\prime} containing v. Clearly, if no such path P exists for some vertex v, then we can remove v from S_{i}^{\prime} while preserving the property that A_{i} is well-linked to B_{i}. Hence, such a subgraph S_{i}^{\prime} exists. We then set $A\left(S_{i}^{\prime}\right):=A_{i}$ and $B\left(S_{i}^{\prime}\right):=B_{i}$.
By construction, $\left(\left(S_{0}^{\prime}, \ldots, S_{\ell}^{\prime}\right),\left(\mathcal{P}_{0}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ is a path of well-linked sets of width w and length ℓ, as desired.

9 Cycles of well-linked sets and cylindrical grids

We have already seen how paths of r-order-linked sets can be seen as an abstraction of acyclic grids and paths of well-linked sets are an abstraction of fences. In this section we introduce the analogous abstraction of cylindrical grids. It is easily seen that a cylindrical grid is essentially the same as a fence together with a linkage which contains for each horizontal path Q_{i} of the fence a path connecting end $\left(Q_{i}\right)$ to start $\left(Q_{i}\right)$ but is otherwise disjoint from the fence.
Unsurprisingly, therefore, our abstractions of cylindrical grids, called cycle of well-linked sets, arise from a path of well-linked sets by adding a linkage from the last to the first cluster.

Definition 9.1 (cycle of well-linked sets). A cycle of well-linked sets of width w and length ℓ is a tuple $(\mathcal{S}, \mathcal{P})$ such that

1. \mathcal{S} is a sequence of ℓ pairwise disjoint subgraphs $\left(S_{0}, \ldots, S_{\ell-1}\right)$, which are called clusters,
2. for every $0 \leq i<\ell$ there are disjoint sets $A\left(S_{i}\right), B\left(S_{i}\right) \subseteq V\left(S_{i}\right)$ of size w such that $A\left(S_{i}\right)$ is well-linked to $B\left(S_{i}\right)$ in S_{i},
3. \mathcal{P} is a sequence of ℓ pairwise disjoint linkages $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)$ such that, for every $0 \leq$ $i<\ell, \mathcal{P}_{i}$ is a $B\left(S_{i}\right)-A\left(S_{(i+1 \bmod \ell)}\right)$-linkage of order w which is internally disjoint from S_{i} and S_{i+1} and is disjoint from every $S \in \mathcal{S} \backslash\left\{S_{i}, S_{i+1}\right\}$.

As before we call $(\mathcal{S}, \mathcal{P})$ strict if in every cluster S_{i} every vertex $v \in V\left(S_{i}\right)$ is contained in an $A\left(S_{i}\right)-B\left(S_{i}\right)$-path.

In the same way as a path of well-linked sets can be constructed from a fence, a cycle of welllinked sets can be constructed from a cylindrical grid. We now turn to the converse operation, i.e. how one can construct a cylindrical grid from a cycle of well-linked sets.

We first need the following lemma from [KK15].
Lemma 9.2 ([KK15, Lemma 6.3]). Let t be an integer, let $(\mathcal{P}, \mathcal{Q})$ be a (q, q)-fence where $q \geq q_{9.2}(t):=(t-1)(2 t-1)+1$ and let \mathcal{R} be an end (\mathcal{Q})-start (\mathcal{Q})-linkage of order q which is internally disjoint from $(\mathcal{P}, \mathcal{Q})$. Then $(\mathcal{P}, \mathcal{Q})$ contains a cylindrical grid of order t as a butterfly minor.

We are now ready to show how a cylindrical grid can be obtained from a cycle of well-linked sets. We first define

$$
\begin{array}{rlr}
\mathrm{w}_{9.3}(k) & :=\mathrm{w}_{8.5}\left(\mathrm{q}_{9.2}(k), \mathrm{q}_{9.2}(k)\right) & \mathrm{w}_{9.3} \\
\ell_{9.3}(k) & :=\ell_{8.5}\left(\mathrm{q}_{9.2}(k), \mathrm{q}_{9.2}(k)\right) & \ell_{9.3}
\end{array}
$$

We note that $\mathrm{w}_{9.3}(k) \in \operatorname{poly}^{20}(k)$ and $\ell_{9.3}(k) \in 2^{1 \uparrow \uparrow \text { poly }}{ }^{9}(k)$.
Theorem 9.3. Every cycle of well-linked sets of width $w \geq w_{9.3}(k)$ and length $\ell \geq \ell_{9.3}(k)$ contains a cylindrical grid of order k.
Proof. Let $k_{1}=q_{9.2}(k)$. Let $\ell_{1}=\operatorname{len}_{8.5}\left(k_{1}, k_{1}\right)$. Note that $w \geq w_{8.5}\left(k_{1}, k_{1}\right)$ and $\ell \geq \ell_{1}+1$.
Let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell}\right)\right)$ be a cycle of well-linked sets of width w and length ℓ. Note that $D_{1}:=\left(\mathcal{S}^{\prime}:=\left(S_{0}, S_{1}, \ldots, S_{\ell-1}\right), \mathcal{P}^{\prime}:=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-2}\right)\right)$ is a path of welllinked sets of width w and length at least ℓ_{1}.
By Theorem 8.5, D_{1} contains a $\left(k_{1}, k_{1}\right)$-fence $\left(\mathcal{P}^{1}, \mathcal{Q}^{1}\right)$ such that $\operatorname{start}\left(\mathcal{Q}^{1}\right) \subseteq A\left(S_{0}\right)$ and end $\left(\mathcal{Q}^{1}\right) \subseteq B\left(S_{\ell-1}\right)$. Let $\mathcal{R}^{1} \subseteq \mathcal{P}_{\ell}$ be the set of paths satisfying end $\left(\mathcal{R}^{1}\right)=\operatorname{start}\left(\mathcal{Q}^{1}\right)$. Let \mathcal{R}^{2} be an end $\left(\mathcal{Q}^{1}\right)$-start $\left(\mathcal{R}^{1}\right)$-linkage of order k_{1} in $(\mathcal{S}, \mathcal{P})\left[\ell_{1}, \ell\right]$. By Lemma 8.7(L1), such a linkage \mathcal{R}^{2} exists. Further, \mathcal{R}^{2} is internally disjoint from $\left(\mathcal{P}^{1}, \mathcal{Q}^{1}\right)$. By Lemma $9.2,\left(\mathcal{P}^{1}, \mathcal{Q}^{1}\right)$ and \mathcal{R}^{2} together contain a cylindrical grid of order k as a butterfly minor.

With the results of this section we have now found suitable abstractions of acyclic grids, fences, and cylindrical grids. We have also seen how to obtain, e.g. a cylindrical grid from a cycle of well-linked sets. What remains to show is how one can find a cycle of well-linked sets in a given digraph. We address this problem in the remainder of the paper.

10 Constructing a path of well-linked sets

We show how to obtain a path of well-linked sets from splits and segmentations by using the results from Section 6, where we defined the routing temporal digraph of a linkage \mathcal{L} through a sequence of disjoint digraphs $H_{1}, H_{2}, \ldots, H_{t}$.
In order to construct the routing temporal digraph, the linkage \mathcal{L} must intersect all H_{i} in an ordered fashion. This means that, if one of the linkages in a web $(\mathcal{H}, \mathcal{V})$ is ordered with respect to the other, then we can construct such a routing temporal digraph. This leads us to the following definition of ordered web (see Figure 11 for an example of an ordered web).

Definition 10.1. Let $(\mathcal{H}, \mathcal{V})$ be an (h, v)-web. We say that $(\mathcal{H}, \mathcal{V})$ is an ordered web if there is an ordering of $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{v}\right)$ for which each path $H \in \mathcal{H}$ can be decomposed into $H=H_{1} \cdot H_{2} \cdots H_{v}$ such that H_{i} intersects V_{j} if and only if $i=j$.

Figure 11: A $(5,3)$-ordered web $\left(\mathcal{H},\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right\}\right)$.

We show next how to construct a path of 1-order-linked sets from an ordered web using our framework of H-routings developed in Section 6. We start by defining

$$
\begin{aligned}
\mathrm{h}_{10.2}(w) & :=w^{2}-1 \\
\mathrm{v}_{10.2}(w, \ell) & :=\left(w \ell \cdot\binom{\mathrm{~h}_{10.2}(w)}{w} \cdot w!+1\right) \cdot \ell_{6.12}\left(w, \mathrm{~h}_{10.2}(w)\right)-1
\end{aligned}
$$

Observe that $\mathrm{v}_{10.2}(w, \ell) \in 2^{1 \uparrow \uparrow p o l y}{ }^{13}(\ell, w)$.
Lemma 10.2. Let $(\mathcal{H}, \mathcal{V})$ be an ordered (h, v)-web where $h=\mathrm{h}_{10.2}(w)$ and $v \geq \mathrm{v}_{10.2}(w, \ell)$. Then $(\mathcal{H}, \mathcal{V})$ contains a path of w-order-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ with the following additional properties.

- There is a $\operatorname{start}(\mathcal{H})$-end (\mathcal{H})-linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ of order w contained in \mathcal{H} such that \mathcal{L}_{2} is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$-linkage and both \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$.
- There is a linkage $\mathcal{X} \subseteq \mathcal{V}$ of order $\ell+1$ and a bijection $\pi: \mathcal{S} \rightarrow \mathcal{X}$ such that $A\left(S_{i}\right) \subseteq$ $V\left(\pi\left(S_{i}\right)\right)$ and $V\left(\pi\left(S_{i}\right)\right) \cap V((\mathcal{S}, \mathcal{P})) \subseteq V\left(S_{i}\right)$ for each $0 \leq i \leq \ell$.

Proof. Let $\ell_{1}:=w \ell+1$ and let $\ell_{2}:=\left(\ell_{1}-1\right) \cdot\binom{h}{w} \cdot w!+1$.
We define $f(i):=(i-1) \cdot \ell_{6.12}(w, h)+1$ and observe that $f(i)-f(i-1)=\ell_{6.12}(w, h)$. Let $\left(V_{1} \cdot V_{2} \ldots \cdot V_{v}\right):=\mathcal{V}$ be an ordering of \mathcal{V} witnessing that $(\mathcal{H}, \mathcal{V})$ is an ordered web. Observe that $f\left(\ell_{2}+1\right)-1=\mathrm{v}_{10.2}(w, \ell) \leq v$.
Decompose \mathcal{H} into $\mathcal{H}=\mathcal{H}^{0} \cdot \overline{\mathcal{H}}^{1} \cdot \ldots \cdot \mathcal{H}^{\ell_{2}}$, where $\operatorname{start}\left(\mathcal{H}_{0}\right)=\operatorname{start}(\mathcal{H}), \operatorname{end}\left(\mathcal{H}_{\ell_{2}}\right)=\operatorname{end}(\mathcal{H})$ and for each $1 \leq i \leq \ell_{2}-1$, the sublinkage \mathcal{H}_{i} starts at the first intersections of \mathcal{H} with $V_{f(i)}$ and ends at the first intersections of \mathcal{H} with $V_{f(i+1)}$. For each $1 \leq t \leq \ell_{2}$, let $\mathcal{V}^{t}:=$ $\left(V_{f(t)}, V_{f(t)+1}, \ldots, V_{f(t)+\ell_{6.12}(w, h)-1}\right)$ and let T_{t} be the routing temporal digraph of \mathcal{H} through \mathcal{V}^{t}.
Each layer of each T_{i} is unilateral since every path in \mathcal{H} intersects every path in \mathcal{V}. As $\ell\left(T_{i}\right)=$ $\ell_{6.12}(h, w)$, by Theorem 6.12 each T_{i} contains some \mathbf{P}_{w}-routing φ_{i} over some paths of \mathcal{H}.
There are at most $\binom{h}{w} \cdot w$! distinct \mathbf{P}_{w}-routings φ_{i}. Hence, by the pigeon-hole principle, there is a subset $\mathcal{T}=\left\{T_{t_{1}}, T_{t_{2}}, \ldots, T_{t_{\ell_{1}}}\right\}$ of the temporal digraphs above of size ℓ_{1} such that $\varphi:=\varphi_{i}=\varphi_{j}$ for all $T_{i}, T_{j} \in \mathcal{T}$.
Let $\left(u_{1}, u_{2}, \ldots, u_{w}\right)$ be the vertices of \mathbf{P}_{w} sorted according to their order along \mathbf{P}_{w}. For each
$i \in\left\{1, \ldots, \ell_{1}\right\}$ let

$$
S_{i}^{\prime}=\mathrm{D}\left(\mathcal{H}^{t_{i}} \cup \mathcal{V}^{t_{i}}\right)
$$

$$
A\left(S_{i}^{\prime}\right)=\left\{a_{i, j} \mid 1 \leq j \leq w \text { and } a_{i, j} \text { is the first vertex of } \varphi\left(u_{j}\right) \text { on } V_{f^{\prime}\left(t_{i}\right)}\right\} \text { and }
$$

$$
B\left(S_{i}^{\prime}\right)=\left\{b_{i, j} \mid 1 \leq j \leq w \text { and } b_{i, j} \text { is the last vertex of } \varphi\left(u_{j}\right) \text { on } V_{f^{\prime}\left(t_{i}+1\right)-1}\right\}
$$

Let T_{i}^{\prime} be the routing temporal digraph of \mathcal{H}^{i} through \mathcal{V}^{i}. Since T_{i}^{\prime} is isomorphic to T_{i}, the bijection φ induces a \mathbf{P}_{w}-routing on T_{i}^{\prime} as well. By Lemma 7.6, each $A\left(S_{i}^{\prime}\right)$ is 1-order-linked to $B\left(S_{i}^{\prime}\right)$ in S_{i}^{\prime}. By choice of $b_{i, j}$ and $a_{i+1, j}$, the path $\varphi\left(u_{j}\right)$ contains a $b_{i, j} a_{i+1, j}$ path. Hence, for each $1 \leq i \leq \ell_{1}$ there is a $B\left(S_{i}^{\prime}\right)-A\left(S_{i+1}^{\prime}\right)$-linkage \mathcal{P}_{i}^{\prime} such that $\left(\mathcal{S}^{\prime}:=\left(S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{\ell_{1}}^{\prime}\right), \mathcal{P}^{\prime}:=\right.$ $\left.\left(\mathcal{P}_{1}^{\prime}, \mathcal{P}_{2}^{\prime}, \ldots, \mathcal{P}_{\ell_{1}-1}^{\prime}\right)\right)$ is a uniform path of 1-order-linked sets of width w and length $\ell_{1}-1=\ell w$. By Theorem 7.8, $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ contains as a subgraph a uniform path of w-order-linked sets $(\mathcal{S}=$ $\left.\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ of length ℓ and width w. Additionally, for every $0 \leq$ $i \leq \ell$ we have $S_{i} \subseteq\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)[w i+1, w(i+1)], A\left(S_{i}\right) \subseteq A\left(S_{w i+1}^{\prime}\right)$ and $B\left(S_{i}\right) \subseteq B\left(S_{w(i+1)}^{\prime}\right)$, and for $0 \leq i<\ell$ we have $\mathcal{P}_{i} \subseteq \mathcal{P}_{(w-1)(i+1)+1}^{\prime}$.
By construction of each S_{i}^{\prime}, we have that $A\left(S_{i}\right) \subseteq V\left(V_{f\left(t_{w i+1}\right)}\right)$. Let $\mathcal{X}=\left\{V_{f\left(t_{w i+1}\right)} \mid 0 \leq i \leq \ell\right\}$. Define the bijection $\pi: \mathcal{S} \rightarrow \mathcal{X}$ as $\pi\left(S_{i}\right)=V_{f\left(t_{w i+1}\right)}$. Hence, \mathcal{X} is a linkage of order $\ell+1$ inside \mathcal{V} such that $A\left(S_{i}\right) \subseteq V\left(\pi\left(S_{i}\right)\right)$ for all $0 \leq i \leq \ell$. Furthermore, by construction of each S_{i} it is immediate that $V\left(\pi\left(S_{i}\right)\right) \cap V((\mathcal{S}, \mathcal{P})) \subseteq V\left(S_{i}\right)$ for each $0 \leq i \leq \ell$.
We construct the linkage \mathcal{L} as follows. Let \mathcal{Q} be the image of φ and, for each $0 \leq i \leq \ell_{2}$, let $\mathcal{Q}^{i} \subseteq \mathcal{H}^{i}$ be the paths of \mathcal{H}^{i} which are subpaths of \mathcal{Q}.
Let $\mathcal{L}_{1}:=\mathcal{Q}^{0}, \mathcal{L}_{2}:=\mathcal{Q}^{1} \cdot \mathcal{Q}^{2} \cdot \ldots \cdot \mathcal{Q}^{\ell_{2}}$ and let \mathcal{L}_{3} be the $B\left(S_{\ell}\right)$-end (\mathcal{Q})-linkage inside \mathcal{Q}. By construction, $\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ is a $\operatorname{start}(\mathcal{H})$-end (\mathcal{H})-linkage of order w, \mathcal{L}_{2} is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$-linkage and both \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$, as desired.

Combining the previous lemma and Lemma 8.3 allows us to construct a path of well-linked sets from an ordered web. At a later part of our proof we need some additional information about how the linkage \mathcal{V} intersects the individual clusters of the path of well-linked sets. This is captured by the bijection π in the statement of the next result.
We define

$$
\begin{aligned}
\mathrm{h}_{10.3}(w, \ell) & :=\mathrm{h}_{10.2}(w(\ell+1)) \\
\mathrm{v}_{10.3}(w, \ell) & :=\mathrm{v}_{10.2}(w(\ell+1), \ell)
\end{aligned}
$$

Note that $\mathrm{h}_{10.3}(w, \ell) \in O\left(w^{2} \ell^{2}\right)$ and $\mathrm{v}_{10.3}(w, \ell) \in 2^{1 \uparrow \uparrow p o l y{ }^{25}(w, \ell)}$.
Corollary 10.3. Let $(\mathcal{H}, \mathcal{V})$ be an ordered (h, v)-web such that $h \geq h_{10.3}(w, \ell)$ and $v \geq$ $\mathrm{v}_{10.3}(w, \ell)$. Then, there is a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ in $\mathrm{D}(\mathcal{H} \cup \mathcal{V})$ such that $B\left(S_{\ell}\right) \subseteq \operatorname{end}(\mathcal{H})$. Finally, there is a linkage $\mathcal{X} \subseteq \mathcal{V}$ of order $\ell+1$ and a bijection $\pi: \mathcal{S} \rightarrow \mathcal{X}$ such that $A\left(S_{i}\right) \subseteq V\left(\pi\left(S_{i}\right)\right)$ and $V\left(\pi\left(S_{i}\right)\right) \cap V((\mathcal{S}, \mathcal{P})) \subseteq V\left(S_{i}\right)$ for each $0 \leq i \leq \ell$.

Proof. By Lemma 10.2, $(\mathcal{H}, \mathcal{V})$ contains a path of w-order-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}=\right.$ $\left.\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ of width $\ell(w+1)$ and length ℓ. Further, there is a linkage $\mathcal{X}^{\prime} \subseteq \mathcal{V}$ of order $\ell+1$ and a bijection $\pi^{\prime}: \mathcal{S}^{\prime} \rightarrow \mathcal{X}^{\prime}$ such that $A\left(S_{i}^{\prime}\right) \subseteq V\left(\pi^{\prime}\left(S_{i}^{\prime}\right)\right)$ and $V\left(\pi^{\prime}\left(S_{i}^{\prime}\right)\right) \cap V\left(\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)\right) \subseteq V\left(S_{i}^{\prime}\right)$ for each $0 \leq i \leq \ell$.
By Lemma 8.3, $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right)\right.$, $\left.\mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ of length ℓ and width w. Additionally, for each $0 \leq i \leq \ell$ we have that $S_{i} \subseteq S_{i}^{\prime}$ and that $A\left(S_{i}\right) \subseteq A\left(S_{i}^{\prime}\right)$.
Finally, let $\mathcal{X}=\left\{\pi^{\prime}\left(S_{i}^{\prime}\right) \mid 0 \leq i \leq \ell\right\}$ and let $\pi: \mathcal{S} \rightarrow \mathcal{X}$ be the bijection given by $\pi\left(S_{i}\right)=\pi^{\prime}\left(S_{i}^{\prime}\right)$. It is immediate that \mathcal{X} and π satisfy the desired conditions in the statement.

We can manipulate the path of well-linked sets given by Corollary 10.3 above in order to ensure that the extremities of the path of well-linked sets are contained in the extremities of \mathcal{H}. This will be useful later, when we need the end of the path of well-linked sets to be well-linked to its beginning.
We define

$$
\begin{aligned}
\mathrm{h}_{10.4}(w, \ell) & =\mathrm{h}_{10.3}(w, \ell) \\
\mathrm{v}_{10.4}(w, \ell) & =\mathrm{v}_{10.3}(w, \ell+4 w)
\end{aligned}
$$

Note that $\mathrm{h}_{10.4}(w, \ell) \in O\left(w^{2} \ell^{2}\right)$ and $\mathrm{v}_{10.4}(w, \ell) \in 2^{1 \uparrow \uparrow p^{2} y^{25}(w, \ell)}$.
Lemma 10.4. Let $(\mathcal{H}, \mathcal{V})$ be an ordered (h, v)-web. If $h \geq h_{10.4}(w, \ell)$ and $v \geq \mathrm{v}_{10.4}(w, \ell)$, then $(\mathcal{H}, \mathcal{V})$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ. Additionally, $A\left(S_{0}\right) \subseteq \operatorname{start}(\mathcal{H})$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}(\mathcal{H})$.

Proof. Let $\ell_{1}=\ell+4 w$. By Corollary 10.3, $\mathrm{D}((\mathcal{H}, \mathcal{V}))$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{1}}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell_{1}-1}^{\prime}\right)\right)$ of width w and length ℓ_{1}. Additionally, there is a linkage $\mathcal{X} \subseteq \mathcal{V}$ of order $\ell_{1}+1$ and a bijection $\pi: \mathcal{S}^{\prime} \rightarrow \mathcal{X}$ such that $A\left(S_{i}^{\prime}\right) \subseteq V\left(\pi\left(S_{i}^{\prime}\right)\right)$ and $V\left(\pi\left(S_{i}^{\prime}\right)\right) \cap V\left(\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)\right) \subseteq V\left(S_{i}^{\prime}\right)$ for each $0 \leq i \leq \ell_{1}$.
We construct a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width w and length ℓ as follows. For each $0 \leq i \leq \ell_{1}$, let $X_{i}=\pi\left(S_{i}^{\prime}\right)$, let a_{i} be the first intersection of X_{i} with $V\left(S_{i}^{\prime}\right)$ and let b_{i} be the last intersection of X_{i} with $V\left(S_{i}^{\prime}\right)$. Let $A^{\prime}=\left\{a_{0}, a_{2}, a_{2(w-1)}\right\}$ and $B^{\prime}=\left\{b_{\ell_{1}}, b_{\ell_{1}-2}, \ldots, b_{\ell_{1}-2(w-1)}\right\}$, let \mathcal{X}_{A} be the $\operatorname{start}(\mathcal{X})-A^{\prime}$ linkage of order w inside \mathcal{X} and let \mathcal{X}_{B} be the B^{\prime}-end (\mathcal{X}) linkage of order w inside \mathcal{X}.
By Lemma 8.7(L2), there is an $A^{\prime}-A\left(S_{2 w}^{\prime}\right)$ linkage \mathcal{L}_{A} of order w in $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)[0,2 w]$. Analogously, by Lemma $8.7(\mathrm{~L} 3)$ there is a $B\left(S_{\ell_{1}-2 w}^{\prime}\right)-B^{\prime}$ linkage \mathcal{L}_{B} of order w inside $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)\left[\ell_{1}-2 w, \ell_{1}\right]$.
Since $V\left(X_{i}\right) \cap V\left(\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)\right) \subseteq V\left(S_{i}^{\prime}\right)$ for all $0 \leq i \leq \ell_{1}$, we have that $\mathcal{Y}_{A}:=\mathcal{X}_{A} \cdot \mathcal{L}_{A}$ is a $\operatorname{start}(\mathcal{V})-A\left(S_{2 w}^{\prime}\right)$ linkage of order w and $\mathcal{Y}_{B}:=\mathcal{L}_{B} \cdot \mathcal{X}_{B}$ is a $B\left(S_{\ell_{1}-2 w}^{\prime}\right)$-end (\mathcal{V}) linkage of order w. Let $S_{0}=\mathrm{D}\left(S_{2 w}^{\prime} \cup \mathcal{Y}_{A}\right), A\left(S_{0}\right)=\operatorname{start}\left(\mathcal{Y}_{A}\right), B\left(S_{0}\right)=B\left(S_{2 w}^{\prime}\right), S_{\ell}=\mathrm{D}\left(S_{2 w+\ell}^{\prime} \cup \mathcal{Y}_{B}\right), A\left(S_{\ell}\right)=$ $A\left(S_{2 w+\ell}^{\prime}\right)$ and $B\left(S_{\ell}\right)=\operatorname{end}\left(\mathcal{Y}_{B}\right)$. Let $\mathcal{S}=\left(S_{0}, S_{2 w+1}^{\prime}, S_{2 w+2}^{\prime} \ldots, S_{2 w+\ell-1}^{\prime}, S_{\ell}\right)$ and $\mathcal{P}=\left(\mathcal{P}_{2 w}\right.$, $\left.\mathcal{P}_{2 w+1}, \ldots, \mathcal{P}_{2 w+\ell-1}\right)$. Clearly, $(\mathcal{S}, \mathcal{P})$ is a path of well-linked sets of width w and length ℓ. Finally, we have $A\left(S_{0}\right) \subseteq \operatorname{start}\left(\mathcal{L}_{1}\right) \subseteq \operatorname{start}(\mathcal{V})$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}\left(\mathcal{L}_{3}\right) \subseteq \operatorname{end}(\mathcal{V})$.

Unfortunately, the construction from Corollary 10.3 above does not guarantee that the paths in \mathcal{H} intersect many clusters of the resulting path of well-linked sets. The reason is that the layers of the routing temporal digraph constructed from an ordered web are only unilateral and not strongly connected. Therefore there is no guarantee that $\operatorname{start}(\mathcal{H})$ and end (\mathcal{H}) are well-linked. In the next definition we exhibit a property of webs that allows us to overcome this problem (see Figure 12 for an illustration of folded webs).

Definition 10.5. An (h, v)-web $(\mathcal{H}, \mathcal{V})$ is a folded web if every $V_{i} \in \mathcal{V}$ can be split as $V_{i}^{a} \cdot V_{i}^{b}:=V_{i}$ such that both V_{i}^{a} and V_{i}^{b} intersect all paths of \mathcal{H}.

Folded ordered webs, correspond to splits from Definition 5.1(S1). The example shown in Figure 13 illustrates the connection between splits and folded ordered webs, which we make precise in the following observation.

Observation 10.6. Let $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ be a $(2 p, q)$-split of $(\mathcal{P}, \mathcal{Q})$. Then there is some $\mathcal{P}^{\prime \prime}$ containing only subpaths of \mathcal{P} such that $\left(\mathcal{Q}^{\prime}, \mathcal{P}^{\prime \prime}\right)$ is a folded ordered (q, p)-web.

Proof. Let $\left(P_{1}, P_{2}, \ldots, P_{2 p}\right):=\mathcal{P}$ be and ordering of \mathcal{P}^{\prime} witnessing that $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ is a $(2 p, q)$-split. For each $1 \leq i \leq p$ let $P_{i}^{\prime}=P_{2 i-1} \cdot e_{2 i-1} \cdot P_{2 i}$, where $e_{2 i-1}$ is the edge inside \mathcal{P}^{\prime} such that

Figure 12: A folded (5, 3)-web.

Figure 13: An example of how a $(3,2)$ folded ordered web is obtained from a $(4,3)$-split.
$P_{2 i-1} \cdot e_{2 i-1} \cdot P_{2 i}$ is a subpath of \mathcal{P}^{\prime}. Let $\mathcal{P}^{\prime \prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{p}^{\prime}\right)$. Now $\left(\mathcal{Q}^{\prime}, \mathcal{P}^{\prime \prime}\right)$ is a folded ordered (q, p)-web, which can be seen by partitioning P_{i}^{\prime} into $P_{2 i-1}$ and $P_{2 i}$.

We show next that if we construct a path of well-linked set starting from an ordered web that is also folded, then we can construct the path of well-linked sets in a way that the paths in \mathcal{H} a guaranteed to intersect the individual clusters of the resulting path of well-linked sets. The idea of the construction is similar to the proof of Lemma 10.2 but now we can use Theorem 6.16 in
the construction which yields the extra properties we need.
We define

$$
\begin{aligned}
\mathrm{h}_{10.7}(w) & :=\ell_{6.20}(w) \\
\mathrm{v}_{10.7}(w, \ell) & :=\mathrm{h}_{6.20}(w)\left(\ell\binom{\mathrm{h}_{10.7}(w)}{w}+1\right)
\end{aligned}
$$

We observe that $\mathrm{h}_{10.7}(w) \in O\left(w^{11}\right)$ and $\mathrm{v}_{10.7}(w, \ell) \in 2^{1 \uparrow \uparrow \text { poly }}{ }^{2}(w, \ell)$.
Lemma 10.7. Let $(\mathcal{H}, \mathcal{V})$ be a folded ordered (h, v)-web. If $h \geq h_{10.7}(w)$ and $v \geq v_{10.7}(w, \ell)$, then $(\mathcal{H}, \mathcal{V})$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ. Additionally, there is a $\operatorname{start}(\mathcal{H})$-end (\mathcal{H})-linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ using only arcs of \mathcal{H} such that \mathcal{L}_{2} is an $A\left(S_{0}\right)$ - $B\left(S_{\ell}\right)$-linkage of order w inside $(\mathcal{S}, \mathcal{P})$ and \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$.

Proof. Assume, without loss of generality, that $h=h_{10.7}(w)$, as any $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ of size $h_{10.7}(w)$ also satisfies the assumptions of the statement above.
Let $\ell_{1}=\mathrm{h}_{6.20}(w)$, and $\ell_{2}=\ell\binom{h}{w}+1$. Let $\left(V_{0}, V_{1}, \ldots, V_{v-1}\right)$ be an ordering of \mathcal{V} witnessing that $(\mathcal{H}, \mathcal{V})$ is a folded ordered web.
For each $1 \leq i \leq \ell_{2}$ let \mathcal{H}^{i} be the maximal linkage inside \mathcal{H} such that $\operatorname{start}\left(\mathcal{H}^{i}\right) \subseteq V\left(V_{(i-1) \ell_{1}}\right)$ and end $\left(\mathcal{H}^{i}\right) \subseteq V\left(V_{i \ell_{1}-1}\right)$. Additionally, let T_{i} be the routing temporal digraph of \mathcal{H}^{i} through $\mathcal{V}^{i}:=\left(V_{(i-1) \ell_{1}}, \ldots, V_{i \ell_{1}-1}\right)$. Because $(\mathcal{H}, \mathcal{V})$ is a folded web, for every $0 \leq j \leq \ell_{1}-1$ and every pair of paths $H_{a}^{i}, H_{b}^{i} \in \mathcal{H}^{i}$ there is a subpath of $V_{(i-1) \ell_{1}+j}$ from $V\left(H_{a}^{i}\right)$ to $V\left(H_{b}^{i}\right)$. Hence, each layer of T_{i} is strongly connected.
By construction, $\ell\left(T_{i}\right)=\ell_{1}$ and by assumption $\left|V\left(T_{i}\right)\right|=|\mathcal{H}|=\mathrm{h}_{10.7}(w)$. By Proposition 6.20, for every $1 \leq i \leq \ell_{2}$ there is some $\mathcal{L}_{i} \subseteq \mathcal{H}_{i}$ of order w such that $\operatorname{start}\left(\mathcal{L}_{i}\right)$ is well-linked to end $\left(\mathcal{L}_{i}\right)$ inside $\mathrm{D}\left(\mathcal{H}^{i} \cup \mathcal{V}^{i}\right)$.
By the pigeon-hole principle, there is some $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ of order w and some $\mathcal{I} \subseteq\left\{1, \ldots, \ell_{2}\right\}$ of order $\ell+1$ such that \mathcal{L}_{i} is a sublinkage of \mathcal{H}^{\prime} of order w for all $i \in \mathcal{I}$. Let $\left(t_{0}, t_{1}, \ldots, t_{\ell}\right):=\mathcal{I}$ be the ascending order of the elements of \mathcal{I}.
For each $0 \leq i \leq \ell$ let $S_{i}:=\mathrm{D}\left(\mathcal{L}_{t_{i}} \cup \mathcal{V}_{t_{i}}\right)$ and set $A\left(S_{i}\right)=\operatorname{start}\left(\mathcal{L}_{t_{i}}\right)$ and $B\left(S_{i}\right)=\operatorname{end}\left(\mathcal{L}_{t_{i}}\right)$. For each $1 \leq i \leq \ell-1$ let \mathcal{P}_{i} be the end $\left(\mathcal{L}_{t_{i}}\right)$-start $\left(\mathcal{L}_{t_{i+1}}\right)$-linkage inside \mathcal{H}.
By construction, $A\left(S_{i}\right)$ is well-linked to $B\left(S_{i}\right)$ inside S_{i} for all i. This implies that $\left(\mathcal{S}=\left\{S_{0}, S_{1}\right.\right.$, $\left.\left.\ldots, S_{\ell}\right\}, \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right)\right)$ is a path of well-linked sets of width w and length ℓ. Further, \mathcal{L} is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$-linkage of order w inside $(\mathcal{S}, \mathcal{P})$ using only arcs of \mathcal{H}.

In a way similar to Lemma 10.4 above, we can manipulate the path of well-linked sets obtained from Lemma 10.7 in order to ensure that the extremities of the path of well-linked sets are subsets of the extremities of \mathcal{H}.

Corollary 10.8. Let $(\mathcal{H}, \mathcal{V})$ be a folded ordered (h, v)-web. If $h \geq h_{10.7}(w)$ and $v \geq v_{10.7}(w, \ell)$, then $(\mathcal{H}, \mathcal{V})$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ. Additionally, $A\left(S_{0}\right) \subseteq \operatorname{start}(\mathcal{H})$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}(\mathcal{H})$.

Proof. By Lemma $10.7,\left(\mathcal{V}^{\prime}, \mathcal{H}^{\prime \prime}\right)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ. Additionally, there is a $\operatorname{start}\left(\mathcal{V}^{\prime}\right)$-end $\left(\mathcal{V}^{\prime}\right)$ linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ of order w such that \mathcal{L}_{2} is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$ linkage of order w inside $(\mathcal{S}, \mathcal{P})$ and \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$.
Set $S_{0}^{\prime}=\mathrm{D}\left(S_{0} \cup \mathcal{L}_{1}\right), A\left(S_{0}^{\prime}\right)=\operatorname{start}\left(\mathcal{L}_{1}\right), B\left(S_{0}^{\prime}\right)=B\left(S_{0}\right), S_{\ell}^{\prime}=\mathrm{D}\left(S_{\ell} \cup \mathcal{L}_{3}\right), A\left(S_{\ell}^{\prime}\right)=A\left(S_{\ell}\right)$ and $B\left(S_{\ell}^{\prime}\right)=\operatorname{end}\left(\mathcal{L}_{3}\right)$. Because end $\left(\mathcal{L}_{1}\right)=A\left(S_{0}\right)$ and $\operatorname{start}\left(\mathcal{L}_{3}\right)=B\left(S_{\ell}\right)$, we have that $\left(\mathcal{S}^{\prime}:=\left(S_{0}^{\prime}, S_{1}, S_{2}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}\right)$ is a path of well-linked sets of width w and length ℓ such that $A\left(S_{0}^{\prime}\right) \subseteq \operatorname{start}(\mathcal{V})$ and $B\left(S_{0}^{\prime}\right) \subseteq \operatorname{end}(\mathcal{V})$.

We conclude this section by showing that digraphs of high treewidth contain a large path of well-linked sets where the last cluster is well-linked to the first. As we will see later in Section 11, we will use this well-linkedness property to construct the linkage required to close the cycle of well-linked sets.
Define

$$
\begin{aligned}
v^{\prime}(w, \ell) & =\mathrm{h}_{10.7}(w)+\mathrm{v}_{10.4}(w, \ell), \\
\mathrm{t}_{10.9}(w, \ell) & =\mathrm{t}_{5.15}\left(2 \mathrm{v}_{10.7}(w, \ell), \mathrm{p}_{5.3}\left(\mathrm{~h}_{10.4}(w, \ell), v^{\prime}(w, \ell)\right), v^{\prime}(w, \ell),(\ell+1) w\right) . \\
\text { Note that } \mathrm{t}_{10.9}(w, \ell) & \in 2^{7 \uparrow \uparrow p o l y}{ }^{25}(w, \ell)
\end{aligned}
$$

Theorem 10.9. Every digraph D with $\operatorname{dtw}(D) \geq \mathrm{t}_{10.9}(w, \ell)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ such that $B\left(S_{\ell}\right)$ is well-linked to $A\left(S_{0}\right)$ in D.

Proof. We define $\ell_{1}=\ell+1, h_{3}=\mathrm{v}_{10.7}(w, \ell), h_{2}=2 h_{3}, v_{2}=h_{10.7}(w)+\mathrm{v}_{10.4}(w, \ell), h_{5}=$ $\mathrm{h}_{10.4}(w, \ell) . h_{4}=\mathrm{p}_{5.3}\left(h_{5}, v_{2}\right)$, Observe that $\mathrm{t}_{10.9}(w, \ell)=\mathrm{t}_{5.15}\left(h_{2}, h_{4}, v_{2}, w \ell_{1}\right)$.
By Theorem 5.15, we obtain three cases.
If Theorem $5.15(\mathrm{D} 1)$ holds, then D contains a cylindrical grid of order $w \ell_{1}$, which in turn contains a cycle of well-linked sets $\left(\mathcal{S}^{1}=\left(S_{0}^{1}, S_{1}^{1}, \ldots, S_{\ell_{1}}^{1}\right), \mathcal{P}^{1}=\left(\mathcal{P}_{0}^{1}, \mathcal{P}_{1}^{1}, \ldots, \mathcal{P}_{\ell_{1}}^{1}\right)\right)$ of width w and length ℓ_{1}.
Let $S_{0}=\mathrm{D}\left(\mathcal{P}_{\ell_{1}}^{1} \cup S_{0}^{1}\right)$ and $S_{\ell}=\mathrm{D}\left(S_{\ell}^{1} \cup \mathcal{P}_{\ell}^{1}\right)$. Set $A\left(S_{0}\right)=\operatorname{start}\left(\mathcal{P}_{\ell_{1}}^{1}\right), B\left(S_{0}\right)=B\left(S_{0}^{1}\right), A\left(S_{\ell}\right)=$ $A\left(S_{\ell}^{1}\right.$ and $B\left(S_{\ell}\right)=\operatorname{end}\left(\mathcal{P}_{\ell}^{1}\right)$. For each $1 \leq i \leq \ell-1$, set $A\left(S_{i}\right)=A\left(S_{i}^{1}\right)$ and $B\left(S_{i}\right)=B\left(S_{i}^{1}\right)$. It is immediate that $\left(\mathcal{S}:=\left(S_{0}, S_{1}^{1}, \ldots, S_{\ell-1}^{1}, S_{\ell}\right), \mathcal{P}:=\left(\mathcal{P}_{0}^{1}, \mathcal{P}_{1}^{1}, \ldots, \mathcal{P}_{\ell}^{1}\right)\right)$ is a path of well-linked sets of width w and length ℓ. Further, as $B\left(S_{\ell}\right) \subseteq A\left(S_{\ell_{1}}^{1}\right)$ and $A\left(S_{0}\right) \subseteq B\left(S_{\ell_{1}}^{1}\right)$, we have that $B\left(S_{\ell}\right)$ is well-linked to $A\left(S_{0}\right)$, as desired.
If Theorem $5.15(\mathrm{D} 2)$ holds, then D contains a $\left(h_{2}, v_{2}\right)$-split $\left(\mathcal{H}_{2}, \mathcal{V}_{2}\right)$ where end $\left(\mathcal{V}_{2}\right)$ is welllinked to $\operatorname{start}\left(\mathcal{V}_{2}\right)$. By Observation 10.6, there is some $\mathcal{H}_{3} \subseteq \mathcal{H}_{2}$ of order h_{3} such that $\left(\mathcal{V}_{2}, \mathcal{H}_{3}\right)$ is a folded ordered $\left(v_{2}, h_{3}\right)$-web. Applying Corollary 10.8 to $\left(\mathcal{V}_{2}, \mathcal{H}_{3}\right)$ yields a path of welllinked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ such that $A\left(S_{0}\right) \subseteq \operatorname{start}\left(\mathcal{V}_{2}\right)$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}\left(\mathcal{V}_{2}\right)$. As end $\left(\mathcal{V}_{2}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{V}_{2}\right)$, we have that $A\left(S_{0}\right)$ is well-linked to $B\left(S_{\ell}\right)$, as desired.
Finally, if Theorem 5.15(D3) holds, then D contains an $\left(h_{4}, v_{2}\right)$-segmentation $\left(\mathcal{H}_{4}, \mathcal{V}_{4}\right)$ where end $\left(\mathcal{H}_{4}\right)$ is well-linked to $\operatorname{start}\left(\mathcal{H}_{4}\right)$. By Observation 5.3, there is some $\mathcal{H}_{5} \subseteq \mathcal{H}_{4}$ of order h_{5} such that $\left(\mathcal{H}_{5}, \mathcal{V}_{4}\right)$ is an ordered segmentation. By definition, $\left(\mathcal{H}_{5}, \mathcal{V}_{4}\right)$ is an ordered web. By Lemma 10.4, $\mathrm{D}\left(\left(\mathcal{H}_{5}, \mathcal{V}_{4}\right)\right)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ of width w and length ℓ such that $A\left(S_{0}\right) \subseteq \operatorname{start}\left(\mathcal{H}_{5}\right)$ and $B\left(S_{\ell}\right) \subseteq \operatorname{end}\left(\mathcal{H}_{5}\right)$. As end $\left(\mathcal{H}_{5}\right)$ is well-linked to start $\left(\mathcal{H}_{5}\right)$, we have that $A\left(S_{0}\right)$ is well-linked to $B\left(S_{\ell}\right)$, as desired.

11 Constructing a cycle of well-linked sets

In this section we complete the proof of Theorem 1.1. The results of the previous section allow us to construct in any given digraph of large enough directed treewidth a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ where the last cluster S_{l} is well-linked to the first cluster S_{0}. Let w be the width of $(\mathcal{S}, \mathcal{P})$. The well-linkedness implies that there is a large $B\left(S_{l}\right)-A\left(S_{0}\right)$-linkage \mathcal{R}. We refer to a $B\left(S_{l}\right)-A\left(S_{0}\right)$-linkage \mathcal{R} as a partial back-linkage. \mathcal{R} is called a (total) back-linkage if it has order w.
We analyse how this back-linkage intersects the path of well-linked sets and identify different types of intersections that are possible. In each of these cases we are able to construct a cycle of well-linked sets but by different techniques in each case depending on the type of intersection.

11.1 Back-linkage intersecting cluster by cluster

The first case we consider is the case where the back-linkage is disjoint from a large part of the path of well-linked sets. But first we need the following simple observation which shows that if a path of well-linked sets has a back-linkage \mathcal{R} then we can use \mathcal{R} to construct a back-linkage for every subpath of well-linked sets.

Lemma 11.1. Let $\mathrm{w}_{11.1}(w):=2 w$. Let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell}\right), \mathcal{P}\right)$ be a path of well-linked sets of width at least $\mathrm{w}_{11.1}(w)$ and length ℓ in a digraph D. Let \mathcal{R} be a $B\left(S_{\ell}\right)$ - $A\left(S_{0}\right)$-linkage of order $\mathrm{w}_{11.1}(w)$. Let $0 \leq i \leq j \leq \ell$. Then there is a $B\left(S_{j}\right)-A\left(S_{i}\right)$-linkage \mathcal{R}^{\prime} of order w such that $D\left(\mathcal{R}^{\prime}\right) \cap(\mathcal{S}, \mathcal{P})[i, j] \subseteq D\left(\mathcal{R} \cup \operatorname{start}\left(\mathcal{R}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{R}^{\prime}\right)\right)$.

Proof. If $j<\ell$, then by Lemma 8.4 there is a linkage \mathcal{L}_{B} from $B\left(S_{j}\right)$ to $B\left(S_{\ell}\right)$ in $(\mathcal{S}, \mathcal{P})[j, \ell]$ which is internally disjoint from S_{j}. If $j=\ell$, we set \mathcal{L}_{B} as the linkage containing only the vertices of $B\left(S_{\ell}\right)$ and no arcs.
Similarly, if $i=0$ we set \mathcal{L}_{A} as the linkage containing only the vertices of $A\left(S_{0}\right)$ and no arcs. Otherwise, we set \mathcal{L}_{A} as an $A\left(S_{0}\right)-A\left(S_{i}\right)$-linkage of order $2 w$ in $(\mathcal{S}, \mathcal{P})[0, i]$, which exists by Lemma 8.4.
Let $\mathcal{L}=\mathcal{L}_{B} \cdot \mathcal{R} \cdot \mathcal{L}_{A}$. As \mathcal{L}_{B} and \mathcal{L}_{A} are internally disjoint, we have that \mathcal{L} is a half-integral linkage from $B\left(S_{j}\right)$ to $A\left(S_{i}\right)$. By Lemma 3.3, $D(\mathcal{L})$ contains a $B\left(S_{k}\right)-A\left(S_{i}\right)$-linkage \mathcal{R}^{\prime} of order w.
As both \mathcal{L}_{A} and \mathcal{L}_{B} are internally disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$, we have that $D\left(\mathcal{R}^{\prime}\right) \cap(\mathcal{S}, \mathcal{P})[i, j] \subseteq$ $D\left(\mathcal{R} \cup \operatorname{start}\left(\mathcal{R}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{R}^{\prime}\right)\right)$.

As explained above, given a path of well-linked sets together with a back-linkage, we construct a cycle of well-linked sets by analysing how the back-linkage intersects the path of well-linked sets. The next lemma deals with the simplest possible case where the back-linkage is disjoint from the path of well-linked sets, or at least from a sufficiently large continuous subpath.
We define

$$
\begin{aligned}
\ell_{11.2}^{\prime}(\ell) & :=\ell-1, \\
\mathrm{w}^{\prime}{ }_{11.2}(w) & :=2 w, \\
\mathrm{r}_{11.2}(w) & :=2 w .
\end{aligned}
$$

Lemma 11.2. Let w, ℓ be integers, let $(\mathcal{S}, \mathcal{P})$ be a path of well-linked sets of length $\ell^{\prime} \geq \ell^{\prime}{ }_{11.2}(\ell)$ and width $w^{\prime} \geq w^{\prime}{ }_{11.2}(w)$ with a partial back-linkage \mathcal{R} of order $r \geq r_{11.2}(w)$ in a digraph D. If there is a $0 \leq i \leq \ell^{\prime}-\ell+1$ such that \mathcal{R} is internally disjoint from $(\mathcal{S}, \mathcal{P})[i, i+\ell-1]$, then D contains a cycle of well-linked sets of length ℓ and width w as a subgraph.

Proof. Let $D^{\prime}:=(\mathcal{S}, \mathcal{P})[i, i+\ell-1],\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right):=\mathcal{S}$ and $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right):=\mathcal{P}$. By Lemma 11.1, there is a $B\left(S_{i+\ell-1}\right)-A\left(S_{i}\right)$-linkage \mathcal{R}^{\prime} of order $r / 2=w$ such that $V\left(\mathcal{R}^{\prime}\right) \cap V\left(D^{\prime}\right) \subseteq$ $V(\mathcal{R}) \cup \operatorname{start}\left(\mathcal{R}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{R}^{\prime}\right)$. As \mathcal{R} is internally disjoint from D^{\prime}, the linkage \mathcal{R}^{\prime} is a partial back-linkage for D^{\prime} of order w which is also internally disjoint from D^{\prime}. By Observation 8.8, D^{\prime} contains a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell-1}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-2}^{\prime}\right)\right)$ of width w and length $\ell-1$ such that $S_{j}^{\prime} \subseteq S_{i+j}$ for all $0 \leq j \leq \ell-1$ and $\mathcal{P}_{j}^{\prime} \subseteq \mathcal{P}_{i+j}$ for all $0 \leq j \leq \ell-2$. Additionally, $A\left(S_{0}^{\prime}\right)=\operatorname{end}\left(\mathcal{R}^{\prime}\right)$ and $B\left(S_{\ell-1}^{\prime}\right)=\operatorname{start}\left(\mathcal{R}^{\prime}\right)$. Hence, by definition, $\left(\mathcal{S}^{\prime},\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}, \mathcal{R}^{\prime}\right)\right)$ is a cycle of well-linked sets of width w and length ℓ.

The previous lemma shows that if the back-linkage avoids a continuous part of the path of well-linked sets, then this allows us to construct a cycle of well-linked sets and we are done. So
we may now assume that this does not happen, i.e. that any large enough subpath of well-linked sets intersects the back-linkage.
Our next goal is to analyse this situation further and to draw some conclusions about the structure of the back-linkage if this happens. We show that in this case we obtain a path of well-linked sets and a back-linkage for it that essentially intersects the clusters one by one and in order from the last cluster to the first. To formalise this property we first introduce the concept of jumps.

Definition 11.3. Let $(\mathcal{S}, \mathcal{P})$ be a path of well-linked sets of length ℓ. A jump of length k over $(\mathcal{S}, \mathcal{P})$ is a path R with $\operatorname{start}(R) \in V\left(S_{i}\right) \cup V\left(\mathcal{P}_{i}\right)$ and end $(R) \subseteq V\left(S_{j}\right) \cup V\left(\mathcal{P}_{j}\right)$ (if $j=\ell$, we require end $(R) \subseteq V\left(S_{j}\right)$ instead) such that $|j-i|=k$. If $i<j$, then R is a forward jump. If $i \geq j$ and R is internally disjoint from $(\mathcal{S}, \mathcal{P})$, then R is a backward jump.

Note that while a backward jump is required to be internally disjoint from the path of welllinked sets we do not require this from a forward jump. In fact, a forward jump could simply be a subpath of a path $R \in \mathcal{R}$ which R has in common with the path of well-linked sets $(\mathcal{S}, \mathcal{P})$. Our next goal is to get rid of all jumps of length more than one in the back-linkage \mathcal{R}. We say that back-linkages without such jumps intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster.

Definition 11.4. Let $(\mathcal{S}, \mathcal{P})$ be a path of well-linked sets and let \mathcal{R} be a partial back-linkage for $(\mathcal{S}, \mathcal{P})$. We say that \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster if \mathcal{R} does not contain any forward or backward jump of length greater than one over $(\mathcal{S}, \mathcal{P})$.

Note that even if \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster this does not imply that the paths in \mathcal{R} visit the clusters strictly in reverse order $S_{l}, S_{l-1}, \ldots, S_{0}$. It is still possible that a path in \mathcal{R} intersects a cluster S_{i} then goes back to S_{i+1} and then intersects S_{i} again. So the paths in \mathcal{R} can go back and forth between two consecutive clusters numerous times. However, once R hits a vertex in S_{i-1} it can no longer go back to S_{i+1}.
Our next goal is to show that we can always construct a back-linkage that intersects the path of well-linked sets cluster by cluster. We do this in two steps. In the next lemma we eliminate forward jumps assuming that we have already eliminated all long backward jumps. In the second step, proved in Lemma 11.6 below, we show how to get rid of backwards jumps.
The main technical tool we rely on in both steps is weak-minimality. Choosing the initial backlinkage \mathcal{R} to be weakly minimal gives us the tools we need to construct a path of well-linked sets and a back-linkage intersecting it cluster by cluster.

Lemma 11.5. Let $(\mathcal{S}, \mathcal{P})$ be a strict ${ }^{2}$ path of well-linked sets of length $\ell^{\prime} \geq \ell_{11.5}(j, \ell, m):=3 j \ell m$ and width w in a digraph D and let \mathcal{R} be a partial back-linkage of order at least w for $(\mathcal{S}, \mathcal{P})$ which is weakly m-minimal with respect to $(\mathcal{S}, \mathcal{P})$ and does not induce any backwards jumps of length j or more. Then, there is a path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of length ℓ and width w within $\mathrm{D}((\mathcal{S}, \mathcal{P}))$ with a back-linkage $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ such that \mathcal{R}^{\prime} intersects $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ cluster by cluster.

Proof. Let $\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right):=\mathcal{S}$ and $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right):=\mathcal{P}$. First, we prove that \mathcal{R} does not contain any forward jumps of length more than $3 m j$. Suppose there was a path $R \in \mathcal{R}$ containing a forward jump J of length more than $3 m j$ with $\operatorname{start}(J) \in V\left(S_{s}\right) \cup V\left(\mathcal{P}_{s}\right)$ and end $(J) \in V\left(S_{t}\right) \cup V\left(\mathcal{P}_{t}\right)$, for some s smaller than t. Let $R_{a} \cdot J \cdot R_{b}:=R$ be a decomposition of

[^2]R into subpaths. Let $e_{J} \in E(R)$ be the edge of R that has its tail in R_{a} and whose head is the first vertex of J. By going to a larger forward jump containing J if necessary we may assume w.l.o.g. that e_{J} is not contained in $(\mathcal{S}, \mathcal{P})$.

For each $1 \leq i \leq 3 m$ let $\mathcal{H}_{i}=\left\{S_{s+(i-1) j+k} \cup \mathrm{D}\left(\mathcal{P}_{s+(i-1) j+k}\right) \mid 0 \leq k \leq j-1\right\}$. As \mathcal{R} does not contain any backward jumps of length j or more, for every $1 \leq i \leq 3 m$ there is a subgraph $H_{i}^{a} \in \mathcal{H}_{i}$ which intersects R_{a} and there is an $H_{i}^{b} \in \mathcal{H}_{i}$ which intersects R_{b}.
For each $1 \leq i \leq m$, let v_{i}^{a} be an arbitrary vertex of $V\left(\mathcal{H}_{3 i-2}^{a}\right) \cap V\left(R_{a}\right)$, let v_{i}^{b} be an arbitrary vertex of $V\left(\mathcal{H}_{3 i}^{b}\right) \cap V\left(R_{b}\right)$ and let L_{i} be a $v_{i}^{a}-v_{i}^{b}$ path inside $(\mathcal{S}, \mathcal{P})[3 i-2,3 i]$. By Lemma 8.7(L4), such a path L_{i} exists. Note that L_{i} is disjoint from L_{j} for all $1 \leq i, j \leq m$ where $i \neq j$. Thus, $\mathcal{L}=\left\{L_{i} \mid 1 \leq i \leq m\right\}$ is a $V\left(R_{a}\right)-V\left(R_{b}\right)$-linkage of order m in $(\mathcal{S}, \mathcal{P})$ which does not contain the edge e_{J} defined above, a contradiction to the assumption that \mathcal{R} is weakly m-minimal with respect to $(\mathcal{S}, \mathcal{P})$. Thus, \mathcal{R} does not contain any forward jumps of length greater than 3 mj .
Second, we construct the desired path of well-linked sets. For each $0 \leq k<\ell$ let $S_{k}^{\prime}=S_{3 k m j}$ and let \mathcal{P}_{k}^{\prime} be a $B\left(S_{3 k m j}\right)-A\left(S_{3(k+1) m j}\right)$-linkage of order m inside the path of well-linked sets $(\mathcal{S}, \mathcal{P})[3 k m j, 3(k+1) m j]$. Further, let $S_{\ell}^{\prime}=S_{\ell^{\prime}}$ and $\mathcal{P}_{\ell}^{\prime}$ be a $B\left(S_{3(\ell-1) m j}\right)-A\left(S_{\ell^{\prime}}\right)$-linkage of order w inside $(\mathcal{S}, \mathcal{P})\left[3(\ell-1) m j, \ell^{\prime}\right]$. By Lemma 8.7(L1), such linkages \mathcal{P}_{k}^{\prime} exist.
Let $\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right)$ and let $\mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{3 m j}^{\prime}, \ldots \mathcal{P}_{(\ell-1) 3 m j}^{\prime}\right)$. Note that start $(\mathcal{R}) \subseteq V\left(S_{\ell}^{\prime}\right)$ and $\operatorname{end}(\mathcal{R}) \subseteq V\left(S_{0}^{\prime}\right)$. By construction, $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ is a path of well-linked sets of width w and length ℓ. Furthermore, every jump over ($\mathcal{S}^{\prime}, \mathcal{P}^{\prime}$) of length j^{\prime}, for some j^{\prime}, in \mathcal{R} is a jump over $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of length $3 m j^{\prime}$. Hence, \mathcal{R} does not contain any forward jumps or backwards jumps of length greater than one over $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$. Finally, the linkage \mathcal{R} is a back-linkage for $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ and \mathcal{R} intersects $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ cluster by cluster.

The previous lemma allows us to handle forward jumps assuming that there are no backward jumps. The next lemma we take care of backward jumps. The main idea is that if a back-linkage contains many long backward jumps that jump over the same part of the path of well-linked sets $(\mathcal{S}, \mathcal{P})$, then these backward jumps themselves essentially constitute a back-linkage for the part of $(\mathcal{S}, \mathcal{P})$ they jump over. As, by definition, backward jumps are internally disjoint from $(\mathcal{S}, \mathcal{P})$, we can apply Lemma 11.2 to obtain a cycle of well-linked sets in this case.
We define

$$
\begin{aligned}
\ell_{11.6}^{\prime}\left(w_{1}, \ell_{1}, \ell_{2}, m\right) & :=3 \ell_{2} m\left(\left(\ell_{1}+3\right)\left(3 \ell_{2} m\right)^{w_{1}}+6 \frac{\left(3 \ell_{2} m\right)^{w_{1}}-1}{w_{1}-1}\right), \\
w^{\prime}{ }_{11.6}\left(w_{1}, w_{2}\right) & :=2 w_{2}+w_{1} .
\end{aligned}
$$

Observe that $\ell^{\prime}{ }_{11.6}\left(w_{1}, \ell_{1}, \ell_{2}, m\right) \in 2^{1 \uparrow \uparrow p o l y}{ }^{2}\left(w_{1}, \ell_{1}, \ell_{2}, m\right)$.
Lemma 11.6. Let $\ell_{1}, w_{1}, \ell_{2}, w_{2}$ be integers, let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots S_{\ell^{\prime}}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots\right.\right.$, $\left.\mathcal{P}_{\ell^{\prime}-1}\right)$) be a strict path of well-linked sets of length $\ell^{\prime} \geq \ell^{\prime}{ }_{11.6}\left(w_{1}, \ell_{1}, \ell_{2}, m\right)$ and width $w^{\prime} \geq$ ${ }^{\prime}{ }^{\prime} 11.6\left(w_{1}, w_{2}\right)$ with a partial back-linkage \mathcal{R} of order at least w_{2} in a digraph D such that \mathcal{R} is weakly m-minimal with respect to $(\mathcal{S}, \mathcal{P})$. Then D contains at least one of the following:
(C1) a cycle of well-linked sets of length ℓ_{1} and width w_{1}, or
(C2) a path of well-linked sets of length ℓ_{2} and width w_{2} together with a partial back-linkage $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ of order w_{2} intersecting it cluster by cluster.

Proof. We recursively define d_{i} by $d_{1}=\ell_{1}+3$ and $d_{i}=3 \ell_{2} m d_{i-1}+6$. Solving the recurrence relation, we obtain that $d_{w_{1}}=\left(\left(\ell_{1}+3\right)\left(3 \ell_{2} m\right)^{w_{1}}+6 \frac{\left(3 \ell_{2} m\right)^{w_{1}-1}}{w_{1}-1}\right)$ and thus $\ell^{\prime} \geq 3 \ell_{2} m d_{w_{1}}$.
Let J_{1}, J_{2} be two backward jumps over $(\mathcal{S}, \mathcal{P})$ and let $x_{1}, x_{2}, y_{1}, y_{2}$ be such that $\operatorname{start}\left(J_{1}\right) \subseteq V\left(S_{y_{1}}\right) \cup V\left(\mathcal{P}_{y_{1}}\right), \operatorname{end}\left(J_{1}\right) \subseteq V\left(S_{x_{1}}\right) \cup V\left(\mathcal{P}_{x_{1}}\right), \operatorname{start}\left(J_{2}\right) \subseteq V\left(S_{y_{2}}\right) \cup V\left(\mathcal{P}_{y_{2}}\right)$ and end $\left(J_{2}\right) \subseteq V\left(S_{x_{2}}\right) \cup V\left(\mathcal{P}_{x_{2}}\right)$. We say that J_{1} jumps over J_{2} if $y_{1} \geq y_{2}+2$ and $x_{1}+2 \leq x_{2}$.

If \mathcal{R} does not contain any jump of length at least $d_{w_{1}}$ over $(\mathcal{S}, \mathcal{P})$, then by Lemma 11.5 there is a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{2}}^{\prime}\right), \mathcal{P}^{\prime}\right)$ of width w_{2} and length ℓ_{2} together with a $B\left(S_{\ell_{2}}^{\prime}\right)$ - $A\left(S_{0}^{\prime}\right)$-linkage \mathcal{R}^{\prime} of order w_{2} intersecting ($\left.\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ cluster-by-cluster, satisfying (C2).
Otherwise, let $r \in\left\{0, \ldots, w_{1}-1\right\}$ be the highest number for which a set $\mathcal{J}=\left\{J_{w_{1}-r}, \ldots, J_{w_{1}}\right\}$ of backward jumps over $(\mathcal{S}, \mathcal{P})$ exists such that for every $i \in\left\{w_{1}-r, \ldots, w_{1}\right\}$ and every $i+1 \leq$ $j \leq w_{1}, J_{i}$ is a backward jump of length at least d_{i} and J_{j} jumps over J_{i}. We distinguish between two possible cases.
Case 1: $r<w_{1}-1$.
Then $J_{w_{1}-r}$ is a backward jump of length at least $d_{w_{1}-r}$. Let i, j be such that $\operatorname{start}\left(J_{w_{1}-r}\right) \subseteq V\left(S_{j}\right) \cup V\left(\mathcal{P}_{j}\right)$ and $\operatorname{end}\left(J_{w_{1}-r}\right) \subseteq V\left(S_{i}\right) \cup V\left(\mathcal{P}_{i}\right)$. By Lemma 11.1, there is a $B\left(S_{j-2}\right)-A\left(S_{i+2}\right)$-linkage \mathcal{R}^{\prime} of order w_{2} such that $V\left(\mathcal{R}^{\prime}\right) \cap V((\mathcal{S}, \mathcal{P})[i+2, j-2]) \subseteq V(\mathcal{R}) \cup$ $\operatorname{start}\left(\mathcal{R}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{R}^{\prime}\right)$. Hence, any backward jump over $(\mathcal{S}, \mathcal{P})[i+3, j-3]$ contained in \mathcal{R}^{\prime} is also contained in \mathcal{R}. Finally, \mathcal{R}^{\prime} is also weakly m-minimal with respect to $(\mathcal{S}, \mathcal{P})[i+3, j-3]$.
By choice of i and j, if \mathcal{R}^{\prime} contains a backward jump J^{\prime} over $(\mathcal{S}, \mathcal{P})[i+3, j-3]$, then every jump in \mathcal{J} jumps over J^{\prime}. Since r is maximal, there is no backward jump over $(\mathcal{S}, \mathcal{P})[i+3, j-3]$ of length at least $d_{w_{1}-r-1}$ in \mathcal{R}^{\prime}. And because $j-3-(i+3) \geq d_{w_{1}-r}-6=3 \ell_{2} m d_{w_{1}-r-1}$, by Lemma 11.5 there is a path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of width w_{2} and length ℓ_{2} together with a partial back-linkage $\mathcal{R}^{\prime \prime} \subseteq \mathcal{R}^{\prime}$ of order w_{2} intersecting ($\mathcal{S}^{\prime}, \mathcal{P}^{\prime}$) cluster by cluster, satisfying (C2).
Case 2: $r=w_{1}-1$, that is, $w_{1}-r=1$.
We construct a linkage \mathcal{R}^{\prime} as follows. Let i, j be such that $\operatorname{start}\left(J_{w_{1}-r}\right) \subseteq V\left(S_{j}\right) \cup V\left(\mathcal{P}_{j}\right)$ and end $\left(J_{w_{1}-r}\right) \subseteq V\left(S_{i}\right) \cup V\left(\mathcal{P}_{i}\right)$.
For every two distinct jumps $J_{x}, J_{y} \in \mathcal{J}$ we have that J_{x} jumps over J_{y} or J_{y} jumps over J_{x}. Further, \mathcal{J} is internally disjoint from $(\mathcal{S}, \mathcal{P})$. Hence, by Lemma $8.7(\mathrm{~L} 3)$, there is a $B\left(S_{j-2}\right)$ -$\operatorname{start}(\mathcal{J})$-linkage \mathcal{X}_{1} of order w_{1} in $(\mathcal{S}, \mathcal{P})\left[j-2, \ell^{\prime}\right]$ which is internally disjoint from S_{j-2} and from \mathcal{J}. Additionally, by Lemma 8.7(L2), there is an end (\mathcal{J}) - $A\left(S_{i+2}\right)$-linkage \mathcal{X}_{2} of order w_{1} in $(\mathcal{S}, \mathcal{P})[0, i+2]$ which is internally disjoint from S_{i+2} and from \mathcal{J}. Thus, $\mathcal{R}^{\prime}:=\mathcal{X}_{1} \cdot \mathcal{J} \cdot \mathcal{X}_{2}$ is a linkage.
By construction, the linkage \mathcal{R}^{\prime} above has order at least w_{1} and is internally disjoint from $(\mathcal{S}, \mathcal{P})[i+2, j-2]$, which is a path of well-linked sets of length $j-2-(i+2) \geq \ell_{1}-1$ and width w_{1}. Thus, by Observation 8.8, there is a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{1}-1}^{\prime}\right), \mathcal{P}^{\prime}=\right.$ $\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-2}^{\prime}\right)$) of length $\ell_{1}-1$ and width w_{1} inside $\mathrm{D}((\mathcal{S}, \mathcal{P}))$ such that $B\left(S_{\ell_{1}-1}^{\prime}\right)=\operatorname{start}\left(\mathcal{R}^{\prime}\right)$ and $A\left(S_{0}^{\prime}\right)=\operatorname{end}\left(\mathcal{R}^{\prime}\right)$. By definition, $\left(\mathcal{S}^{\prime},\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell_{1}-2}^{\prime}, \mathcal{R}^{\prime}\right)\right)$ is a cycle of well-linked sets of length ℓ_{1} and width w_{1}, satisfying (C1).

11.2 Obtaining a 2-horizontal web

By the results of the previous section we may now assume that we have a path of well-linked sets together with a back-linkage going through it cluster by cluster. We use this back-linkage to construct a new web that is in some way aligned with the cluster by cluster property of the back-linkage.
The next definition formalises the properties we require of this new web we aim to construct.
Definition 11.7. Let $(\mathcal{H}, \mathcal{V})$ be a web. We say that $(\mathcal{H}, \mathcal{V})$ is a q-horizontal web if every path $H_{i} \in \mathcal{H}$ can be decomposed into paths $H_{i}=H_{i}^{1} \cdot H_{i}^{2} \cdot \ldots \cdot H_{i}^{q}$ and every path $V_{j} \in \mathcal{V}$ can be decomposed into paths $V_{j}=V_{j}^{1} \cdot V_{j}^{2} \cdot \ldots \cdot V_{j}^{q}$ such that $V_{j}^{x} \cap H_{i} \subseteq H_{i}^{q-x+1} \cup H_{i}^{q-x}$ and $V_{j}^{x} \cap H_{i}^{q-x+1} \neq \emptyset$ for all $1 \leq x \leq q$, where for simplicity we define H_{i}^{0} to be empty.

Figure 14: A $(4,1)$-web that is a 3 -horizontal web. Four horizontal paths H_{1}, H_{2}, H_{3} and H_{4} partitioned into three subpaths each and one vertical path V_{1} partitioned into three subpaths V_{1}^{1}, V_{1}^{2} and $V_{1}^{3} \cdot V_{1}^{1}$ only intersects the later two subpaths of the horizontal paths. V_{1}^{2} only intersects the first two, note that it always intersects the second subpaths but not necessarily the first. Finally, V_{1}^{3} only intersects the first subpath of the horizontal paths.

In the next lemma we construct an ordered web from a back-linkage and a path of well-linked sets.

Lemma 11.8. Let $(\mathcal{S}, \mathcal{P})$ be a strict path of well-linked sets of length ℓ and width at least 1 in a digraph D, and let \mathcal{R} be a partial back-linkage of order r intersecting $(\mathcal{S}, \mathcal{P})$ cluster by cluster. If $\ell \geq \ell_{11.8}(r, v):=2(r-1)+2 r(v-1)$, then there is a linkage $\mathcal{V}:=\left(V_{1}, V_{2}, \ldots, V_{v}\right)$ of order v inside $\mathrm{D}((\mathcal{S}, \mathcal{P}))$ such that $(\mathcal{R}, \mathcal{V})$ is an ordered web and for all $1 \leq i \leq v$ there are $0 \leq s_{i} \leq t_{i} \leq \ell$ with $V_{i} \subseteq(\mathcal{S}, \mathcal{P})\left[s_{i}, t_{i}\right]$ such that $t_{i}<s_{j}$ for all $1 \leq i<j \leq v$.

Proof. Let $\left(S_{0}, S_{1}, \ldots, S_{\ell}\right):=\mathcal{S}$ and $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell-1}\right):=\mathcal{P}$. To simplify notation, we set $\mathcal{P}_{\ell}:=\emptyset$. Since \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster, every $R \in \mathcal{R}$ intersects some vertex of $\mathrm{D}\left(S_{i} \cup \mathcal{P}_{i}\right)$ for every $0 \leq i<\ell$. Let $\mathcal{R}=\left(R_{1}, R_{2}, \ldots, R_{r}\right)$ be an arbitrary ordering of the paths in \mathcal{R}. For each $1 \leq i \leq v$, construct a path V^{i} intersecting every path in \mathcal{R} as follows.
For each $R_{j} \in \mathcal{R}$, let $k_{j}^{i}=2(j-1)+2 r(i-1)$ and let u_{j}^{i} be some vertex in $V\left(R_{j}\right) \cap V\left(S_{k_{j}^{i}}\right) \cup$ $V\left(\mathcal{P}_{k_{j}^{i}}\right)$. Let Q_{j}^{i} be a path visiting u_{j}^{i} with $y_{j}^{i}:=\operatorname{start}\left(Q_{j}^{i}\right) \in A\left(S_{k_{j}^{i}}\right)$ and $z_{j}^{i}:=$ end $\left(Q_{j}^{i}\right) \in$ $A\left(S_{k_{j}^{i}+1}\right)$. Since $k_{j}^{i}-k_{j-1}^{i}=2$ for all $2 \leq j \leq r$, by Lemma $8.7(\mathrm{~L} 4)$ there is a $z_{j}^{i}-y_{j+1}^{i}$ path V_{j}^{i} inside $(\mathcal{S}, \mathcal{P})\left[k_{j}^{i}, k_{j+1}^{i}\right]$ for every $1 \leq j<r$. Since all V_{j}^{i} and all Q_{j}^{i} are pairwise internally disjoint and V_{j}^{i} intersects R_{j} at u_{j}^{i}, the path $V^{i}=Q_{1}^{i} \cdot V_{1}^{i} \cdot Q_{2}^{i} \cdot V_{2}^{i} \cdot \ldots \cdot Q_{r}^{i}$ in $(\mathcal{S}, \mathcal{P})\left[k_{1}^{i}, k_{r}^{i}\right]$ intersects every path in \mathcal{R}.
Let $\mathcal{V}=\left\{V^{i} \mid 1 \leq i \leq v\right\}$. Since $k_{1}^{i}-k_{r}^{i-1}=2$ for all $2 \leq i \leq v$, all paths in \mathcal{V} are pairwise disjoint. Further, such paths exist because $\ell \geq k_{r}^{v}=2(r-1)+2 r(v-1)$. Finally, because \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster, $(\mathcal{R}, \mathcal{V})$ is an ordered web.

We now have a new web $(\mathcal{R}, \mathcal{V})$. Our next goal is to find a new "horizontal" linkage \mathcal{H} which is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V} such that $(\mathcal{H}, \mathcal{V})$ is a 2 -horizontal web $(\mathcal{H}, \mathcal{V})$. The idea is that \mathcal{H} goes forwards through the path of well-linked sets $(\mathcal{S}, \mathcal{P})$ from beginning to end, i.e. in the same direction as the path of well-linked sets itself. $(\mathcal{S}, \mathcal{P})$ contains a forward linkage from its beginning to its end and as a result of the way the linkage \mathcal{V} is constructed, we are
able to construct \mathcal{H} so that together with \mathcal{V} it forms a web. But we also want that \mathcal{H} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}. If we simply choose \mathcal{H} as a \mathcal{V}-minimal forward linkage then we can no longer guarantee that this intersects \mathcal{V} as required for a 2 -horizontal web.
To solve this problem we show that in this case we do get a cycle of well-linked sets immediately and are done.
Towards this aim, we prove in Lemma 11.10 that any path of well-linked sets which contains a forward linkage disjoint from the back-linkage contains a cycle of well-linked sets.
The next lemma is the first step towards this goal. We define

$$
\begin{aligned}
w^{\prime}\left(w, \ell, \ell^{*}\right): & =\ell^{*}+\mathrm{w}_{8.3}(w, \ell), \\
\mathrm{q}_{11.9}\left(w, \ell, \ell^{*}\right): & =\mathrm{s}_{6.16}\left(\ell^{*}+\mathrm{w}_{8.3}(w, \ell)\right), \\
\ell_{11.9}^{\prime}\left(w, \ell, \ell^{*}\right): & =\left(3 w \ell\binom{\mathrm{q}_{11.9}\left(w, \ell, \ell^{*}\right)}{w^{\prime}\left(w, \ell, \ell^{*}\right)}\left(w^{\prime}\left(w, \ell, \ell^{*}\right)\right)!+3\right) \\
& \cdot \ell_{6.16}\left(\mathrm{q}_{11.9}\left(w, \ell, \ell^{*}\right), w^{\prime}\left(w, \ell, \ell^{*}\right)\right)-1 .
\end{aligned}
$$

We note that $\mathrm{q}_{11.9}\left(w, \ell, \ell^{*}\right) \in \operatorname{poly}^{22}\left(w, \ell, \ell^{*}\right)$ and $\ell^{\prime}{ }_{11.9}\left(w, \ell, \ell^{*}\right) \in 2^{1 \uparrow \uparrow p o l y}{ }^{243}\left(w, \ell, \ell^{*}\right)$.
Lemma 11.9. Let ℓ^{*}, w be integers, let $D=\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right)\right)$ be a strict path of well-linked sets of width $w^{\prime} \geq 1$ and length $\ell^{\prime}:=\ell^{\prime}{ }_{11.9}\left(w, \ell^{*}\right)$. Let \mathcal{L} be an $A\left(S_{0}\right)$ - $B\left(S_{\ell^{\prime}}\right)$-linkage of order at least $\mathrm{q}_{11.9}\left(w, \ell, \ell^{*}\right)$ such that every path in \mathcal{L} intersects every $S_{i} \in \mathcal{S}$. Then, there is an $\mathcal{L}^{*} \subseteq \mathcal{L}$ of order ℓ^{*} for which $D(\mathcal{S} \cup \mathcal{P})$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell-1}^{\prime}\right)\right)$ of width w and length ℓ which is disjoint from \mathcal{L}^{*} such that $A\left(S_{0}^{\prime}\right) \subseteq A\left(S_{0}\right)$ and $B\left(S_{\ell}^{\prime}\right) \subseteq B\left(S_{\ell^{\prime}}\right)$. Further, for every $0 \leq i<j \leq \ell$ there are $0 \leq i_{0}<i_{1}<j_{0}<j_{1} \leq \ell$ such that $\mathcal{S}_{i}^{\prime} \subseteq D\left[i_{0}, i_{1}\right]$ and $\mathcal{S}_{j}^{\prime} \subseteq D\left[j_{0}, j_{1}\right]$. Finally, $\mathrm{D}\left(\mathcal{P}^{\prime}\right) \subseteq \mathcal{L} \backslash \mathcal{L}^{*}$.
Proof. Let $w_{1}=w_{8.3}(w, \ell), w_{2}=\ell^{*}+w_{1}, w_{3}=\mathrm{s}_{6.16}\left(w_{2}\right) . \ell_{1}=w \ell, \ell_{2}=\ell_{1}\binom{w_{3}}{w_{2}} w_{2}!+1$ and $\ell_{3}=\ell_{6.16}\left(w_{2}\right)$. Note that $\ell^{\prime} \geq 3 \ell_{2} \ell_{3}-1$ and that $|\mathcal{L}| \geq w_{3}$.
For each $1 \leq i \leq \ell_{2}$ construct a temporal digraph T_{i} as follows. For each $1 \leq j \leq \ell_{3}$ let $s_{i, j}=3(i-1) \ell_{3}+3(j-1)$ and note that $s_{i, 1}=1+s_{i-1, \ell_{3}}$ and that $s_{\ell_{2}, \ell_{3}}+2 \leq \ell^{\prime}$. Let $H_{j}^{i}=D\left(S_{s_{i, j}} \cup S_{s_{i, j}+1} \cup S_{s_{i, j}+2}\right)$.
Let $\mathcal{H}^{i}=\left(H_{1}^{i}, H_{2}^{i}, \ldots, H_{\ell_{2}}^{i}\right)$. Let T_{i} be the routing temporal digraph of \mathcal{L} through \mathcal{H}^{i} as described in Definition 6.3. Note that $\ell\left(T_{i}\right)=\ell_{3}$ for every i.
Let A_{i} be the set containing the first intersection of each path in \mathcal{L} with H_{1}^{i} and let B_{i} be the set containing the last intersection of each path in \mathcal{L} with $H_{\ell_{2}}^{i}$. Since every path in \mathcal{L} intersects every $S \in \mathcal{S}$, we have that $\left|A_{i}\right|=\left|B_{i}\right|=|\mathcal{L}|$.
We show that every layer of T_{i} is strongly connected. Let $D_{j}\left(T_{i}\right)$ be layer j of T_{i}. Let $L_{a}, L_{b} \in \mathcal{L}$ be two distinct paths. Since every path in \mathcal{L} intersects every cluster in \mathcal{S}, there is some $a_{0} \in$ $V\left(S_{s_{i, j}}\right)$ and some $b_{0} \in V\left(S_{s_{i, j}+2}\right)$ such that L_{a} contains a_{0} and L_{b} contains b_{0}. Further, there is some $a_{1} \in B\left(S_{s_{i, j}}\right)$ and some $b_{1} \in A\left(S_{s_{i, j}+2}\right)$ such that a_{0} can reach a_{1} in $S_{s_{i, j}}$ and b_{1} can reach b_{0} in $S_{s_{i, j}+2}$. As $A\left(S_{s_{i, j}}\right)$ is well-linked to $B\left(S_{s_{i, j}+1}\right)$, there is some $a_{2}-b_{2}$ path in $S_{s_{i, j}+1}$, where $a_{2}=\mathcal{P}_{s_{i, j}}\left(a_{1}\right)$ and $b_{1}=\mathcal{P}_{s_{i, j}+2}\left(b_{2}\right)$. Hence, a_{0} can reach b_{0} in H_{j}^{i}. Thus, there is a $V\left(L_{a}\right)-V\left(L_{b}\right)$ path in H_{j}^{i}, which implies that $D_{j}\left(T_{i}\right)$ is strongly connected.
As $\ell\left(T_{i}\right)=\ell_{3}=\ell_{6.16}\left(w_{3}, w_{2}\right)$ and $\left|V\left(T_{i}\right)\right|=w_{3}=\mathrm{s}_{6.16}\left(w_{2}\right)$, by Theorem 6.16 T_{i} contains an R_{i}-routing φ_{i} for some $R_{i} \in\left\{\mathbf{C}_{w_{2}}, \overrightarrow{\mathbf{P}}_{w_{2}}\right\}$. Since there are ℓ_{2} temporal digraphs T_{i}, by the pigeon-hole principle there is a set $\mathcal{T}:=\left\{T_{t_{0}}, T_{t_{1}}, \ldots, T_{t_{\ell_{1}}}\right\}$ of size $\ell_{1}+1$ of temporal digraphs such that $R:=R_{i}=R_{j}$ and $\varphi:=\varphi_{i}=\varphi_{j}$ for all $T_{i}, T_{j} \in \mathcal{T}$.
Let R^{\prime} be a path of length $w_{2}-1$ in R and let $u_{1}, u_{2}, \ldots, u_{w_{2}}$ be the vertices of R^{\prime} sorted according to their order on R^{\prime}. Let $\mathcal{L}^{\prime}=\left\{\varphi\left(u_{i}\right) \mid 1 \leq i \leq w_{1}\right\}$, let $\mathcal{L}^{*}=\left\{\varphi\left(u_{i}\right) \mid w_{1}+1 \leq i \leq w_{2}\right\}$ and let $\varphi^{\prime}=\varphi_{\mid \mathcal{L}^{\prime}}$. Note that $\left|\mathcal{L}^{*}\right|=\ell^{*}$.
For each $0 \leq j \leq \ell_{1}$, we construct a subgraph S_{j}^{\prime} of D and a linkage \mathcal{P}_{j}^{\prime} as follows. Note that
φ^{\prime} is a $\mathbf{P}_{w_{1}}$-routing in $T_{t_{j}}-V\left(\mathcal{L}^{*}\right)$. Let \mathcal{Q}^{j} be the set of digraphs obtained by deleting $V\left(\mathcal{L}^{*}\right)$ from each digraph in $\mathcal{H}^{t_{j}}$ and let T_{j}^{\prime} be the routing temporal digraph of \mathcal{L}^{\prime} through \mathcal{Q}^{j}. Observe that φ^{\prime} is also a $\mathbf{P}_{w_{1}}$-routing in T_{j}^{\prime}.
Let $A_{j}^{\prime}=A_{j} \cap V\left(\mathcal{L}^{\prime}\right)$ and let $B_{j}^{\prime}=B_{j} \cap V\left(\mathcal{L}^{\prime}\right)$. By Lemma 7.6 , we have that A_{j}^{\prime} is 1 -order-linked to B_{j}^{\prime} in $D\left(\mathcal{Q}^{j}\right)$. We set $S_{j}^{\prime}=D\left(\mathcal{Q}^{j}\right)$ and take \mathcal{P}_{j}^{\prime} as the $B_{j}^{\prime}-A_{j+1}^{\prime}$-linkage of order w_{1} inside \mathcal{L}^{\prime} (to simplify notation, we set $A_{\ell_{1}+1}^{\prime}=\operatorname{end}\left(\mathcal{L}^{\prime}\right)$).
After finishing the construction, let $\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{1}}^{\prime}\right)$ and let $\mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots\right.$, $\left.\mathcal{P}_{\ell_{1}-1}^{\prime}\right)$. By construction, $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ is a path of 1 -order-linked sets of width w_{1} and length ℓ_{1}. Furthermore, \mathcal{L}^{*} is disjoint from $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$. Finally, we have that $\mathrm{D}\left(\mathcal{P}_{j}^{\prime}\right) \subseteq \mathcal{L} \backslash \mathcal{L}^{*}$ and that $S_{j}^{\prime} \subseteq D\left[t_{j}, t_{j+1}-1\right]$.
By Theorem 7.8, $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ contains a path of w-order-linked sets $\left(\mathcal{S}^{2}, \mathfrak{P}^{2}\right)$ of width w_{1} and length ℓ. By Lemma 8.3, $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$ contains a path of well-linked sets $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$ of width w and length ℓ satisfying the requirements of the statement.

With the previous lemma at hand we can now proceed as follows. Given a path of well-linked sets and a large forward linkage \mathcal{L}, we can construct a new path of well-linked sets and a subset $\mathcal{L}^{*} \subseteq \mathcal{L}$ disjoint from it. Furthermore, \mathcal{L}^{*} is also disjoint from the back-linkage \mathcal{R}. We now apply Corollary 10.3 to obtain another path of well-linked sets which follows the direction of \mathcal{R}. With respect to this new path of well-linked sets the forward linkage \mathcal{L}^{*} now acts like a back-linkage which is disjoint from the path of well-linked sets. As we have already seen above, in this situation we can construct a cycle of well-linked sets.
We define

$$
\begin{array}{rlrl}
\mathrm{r}_{11.10}(w, \ell) & :=\mathrm{h}_{10.3}(2 w, \ell-1), & \mathrm{r}_{11.10} \\
\ell^{\prime \prime}(w, \ell) & :=\ell_{11.6}^{\prime}\left(w, \ell, \ell_{11.8}\left(\mathrm{~h}_{10.3}(2 w, \ell-1), 8 w+\mathrm{v}_{10.3}(2 w, \ell-1)+2\right), \mathrm{r}_{11.10}(w, \ell)\right), & & \\
\ell_{11.10}^{\prime}(w, \ell) & :=\ell_{11.9}^{\prime}\left(\mathrm{w}^{\prime}{ }_{11.6}\left(w, \mathrm{~h}_{10.3}(2 w, \ell-1)\right), \ell^{\prime \prime}(w, \ell), 2 w\right), & \ell_{11.10}^{\prime} \\
\mathrm{q}_{11.10}(w, \ell) & :=\mathrm{q}_{11.9}\left(w, \ell^{\prime \prime}(w, \ell), \mathrm{h}_{10.3}(2 w, \ell-1)\right) & & \mathrm{q}_{11.10}
\end{array}
$$

Observe that $\mathrm{r}_{11.10}(w, \ell) \in O\left(w^{2} \ell^{2}\right), \ell^{\prime} 11.10(w, \ell) \in 2^{3 \uparrow \uparrow \text { poly }{ }^{25}(w, \ell)}$ and $\mathrm{q}_{11.10}(w, \ell) \in 2^{2 \uparrow \uparrow \text { poly }{ }^{25}(w, \ell)}$.
Lemma 11.10. Let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right)\right)$ be a strict path of welllinked sets of width $w^{\prime} \geq 1$ and length $\ell^{\prime} \geq \ell^{\prime}{ }_{11.10}(w, \ell)$ with a partial back-linkage \mathcal{R} of order $r \geq r_{11.10}(w, \ell)$ in a digraph D. Let \mathcal{L} be an $A\left(S_{0}\right)-B\left(S_{\ell^{\prime}}\right)$ linkage of order $q \geq \mathrm{q}_{11.10}(w, \ell, m)$ which is internally disjoint from \mathcal{R} such that every $L \in \mathcal{L}$ intersects some vertex of $\mathrm{D}\left(S_{i} \cup \mathcal{P}_{i}\right)$ for every $0 \leq i \leq \ell^{\prime}$ and, for all $0 \leq i<j \leq \ell^{\prime}, \mathcal{L}$ does not intersect $\mathrm{D}\left(S_{i} \cup \mathcal{P}_{i}\right)$ after intersecting $\mathrm{D}\left(S_{j} \cup \mathcal{P}_{j}\right)$. Then, $\mathrm{D}(\mathcal{S} \cup \mathcal{P} \cup \mathcal{R} \cup \mathcal{L})$ contains a cycle of well-linked sets of width w and length ℓ.

Proof. Let $\ell_{4}=\ell-1, \ell_{3}=4 w+1, v_{1}=v_{10.3}\left(2 w, \ell_{4}\right)+2 \ell_{3}, w_{2}=h_{10.3}\left(2 w, \ell_{4}\right), w_{1}=w^{\prime}{ }_{11.6}\left(w, w_{2}\right)$, $\ell_{2}=\ell_{11.8}\left(w_{2}, v_{1}\right)$ and $\ell_{1}=\ell^{\prime}{ }_{11.6}\left(w, \ell, \ell_{2}, r\right)$. Note that $w_{2} \geq 2 w, \ell^{\prime} \geq \ell^{\prime}{ }_{11.9}\left(w_{1}, \ell_{1}, 2 w\right), r \geq w_{2}$ and $q \geq \mathrm{q}_{11.9}\left(w, \ell_{1}, w_{2}\right)$.
By Lemma 11.9 there is some linkage $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ of order $2 w$ and a path of well-linked sets $\left(\mathcal{S}^{1}=\left(S_{0}^{1}, S_{1}^{1}, \ldots, S_{\ell_{1}}^{1}\right), \mathcal{P}^{1}=\left(\mathcal{P}_{0}^{1}, \mathcal{P}_{1}^{1}, \ldots, \mathcal{P}_{\ell_{1}-1}^{1}\right)\right)$ of width w_{1} and length ℓ_{1} inside $(\mathcal{S}, \mathcal{P})$ with $A\left(S_{0}^{1}\right) \subseteq A\left(S_{0}\right)$ and $B\left(S_{\ell_{1}}^{1}\right) \subseteq B\left(S_{\ell^{\prime}}\right)$ such that \mathcal{L}^{\prime} is internally disjoint from $\left(\mathcal{S}^{1}, \mathcal{P}^{1}\right)$. Further, $\mathrm{D}\left(\mathcal{P}^{1}\right) \subseteq \mathrm{D}\left(\mathcal{L} \backslash \mathcal{L}^{\prime}\right)$ and $S_{i}^{1} \subseteq S_{i}$ for all $0 \leq i \leq \ell_{1}$.
Let $\mathcal{R}^{1} \subseteq \mathrm{D}\left(\left(\mathcal{S}^{1}, \mathcal{P}^{1}\right)\right) \cup \mathrm{D}(\mathcal{R})$ be a $\left(\mathcal{S}^{1}, \mathcal{P}^{1}\right)$-minimal linkage of order $|\mathcal{R}|$ such that start $\left(\mathcal{R}^{1}\right)=$ $\operatorname{start}(\mathcal{R})$ and $\operatorname{end}\left(\mathcal{R}^{1}\right)=\operatorname{end}(\mathcal{R})$. By Observation 3.6, \mathcal{R}^{1} is weakly r-minimal with respect to $\left(\mathcal{S}^{1}, \mathcal{P}^{1}\right)$. Further, \mathcal{R}^{1} is internally disjoint from \mathcal{L}^{\prime}. Applying Lemma 11.6 to ($\mathcal{S}^{1}, \mathcal{P}^{1}$) and \mathcal{R}^{1} yields two cases.

If (C1) holds, then we have a cycle of well-linked sets of width w and length ℓ, as desired. Otherwise, (C2) holds. That is, $\mathrm{D}\left(\left(\mathcal{S}^{1}, \mathcal{P}^{1}\right) \cup \mathcal{R}\right)$ contains a path of well-linked sets $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$ of length ℓ_{2} and width w_{2} and a linkage $\mathcal{R}^{2} \subseteq \mathcal{R}^{1}$ of order w_{2} such that \mathcal{R}^{2} intersects $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$ cluster by cluster. Note that \mathcal{R}^{2} is weakly r-minimal with respect to $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$.
By Lemma 11.8, there is some linkage $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{v_{1}}\right)$ of order v_{1} inside $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$ such that $\left(\mathcal{R}^{2}, \mathcal{V}\right)$ is an ordered web. Additionally, for all $1 \leq i<j \leq v_{1}$ there are $0 \leq s_{i} \leq t_{i}<s_{j} \leq$ $t_{j} \leq \ell_{2}$ such that $V_{i} \subseteq\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)\left[s_{i}, t_{i}\right]$ and $V_{j} \subseteq\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)\left[s_{j}, t_{j}\right]$.
Let $\mathcal{V}^{\prime}=\left(V_{\ell_{3}+1}, V_{\ell_{3}+1}, \ldots, V_{v_{1}-\ell_{3}}\right)$ and observe that $\left|\mathcal{V}^{\prime}\right|=\mathrm{v}_{10.3}\left(2 w, \ell_{4}\right)$. Decompose \mathcal{R}^{2} as $\mathcal{R}_{a}^{2} \cdot \mathcal{R}^{3} \cdot \mathcal{R}_{b}^{2}:=\mathcal{R}^{2}$ such that \mathcal{R}^{3} intersects all paths of \mathcal{V}^{\prime}, end $\left(\mathcal{R}_{a}^{2}\right) \subseteq V\left(V_{v_{1}-\ell_{3}}\right)$, start $\left(\mathcal{R}_{b}^{2}\right) \subseteq$ $V\left(V_{\ell_{3}+1}\right)$ and \mathcal{R}_{a}^{2} and \mathcal{R}_{b}^{2} are internally disjoint from \mathcal{V}^{\prime}.
By Corollary $10.3,\left(\mathcal{R}^{3}, \mathcal{V}^{\prime}\right)$ contains a path of well-linked sets $\left(\mathcal{S}^{3}=\left(S_{0}^{3}, S_{1}^{3}, \ldots, S_{\ell_{4}}^{3}\right)\right.$, \mathcal{P}^{3}) of width $2 w$ and length ℓ_{4} such that $A\left(S_{0}^{3}\right) \subseteq \operatorname{start}\left(\mathcal{R}^{3}\right)$ and $B\left(S_{\ell_{4}}^{3}\right) \subseteq \operatorname{end}\left(\mathcal{R}^{3}\right)$. Since \mathcal{L}^{\prime} is internally disjoint from $\left(\mathcal{S}^{2}, \mathcal{P}^{2}\right)$ and from \mathcal{R}, it is also internally disjoint from $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$. We construct a partial back-linkage \mathcal{R}^{4} for $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$ as follows.
Choose some $B_{0}^{\prime} \subseteq B\left(S_{0}\right)$ and some $A_{\ell^{\prime}}^{\prime} \subseteq A\left(S_{\ell^{\prime}}\right)$ of size $2 w$. Let \mathcal{X}_{1} be some end $\left(\mathcal{R}_{b}^{2}\right)$ - B_{0}^{\prime} linkage of order $2 w$ in S_{0} and let \mathcal{X}_{2} be some $A_{\ell^{\prime}}^{\prime}$-start $\left(\mathcal{R}_{a}^{2}\right)$-linkage of order $2 w$ in $S_{\ell^{\prime}}$. Since $\operatorname{end}\left(\mathcal{R}_{b}^{2}\right) \subseteq A\left(S_{0}\right)$ and $\operatorname{start}\left(\mathcal{R}_{a}^{2}\right) \subseteq B\left(S_{\ell^{\prime}}\right)$, the linkages \mathcal{X}_{1} and \mathcal{X}_{2} exist.
Fix an arbitrary ordering of $\mathcal{L}^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \ldots, L_{2 w}^{\prime}\right\}$. For each $L_{i}^{\prime} \in \mathcal{L}^{\prime}$ let $k_{i}=2 i+1$ and choose some $v_{i} \in V\left(L_{i}\right) \cap V\left(S_{k_{i}} \cup \mathcal{P}_{k_{i}}\right)$ and some $u_{i} \in V\left(L_{i}\right) \cap V\left(S_{\ell^{\prime}-k_{i}} \cup \mathcal{P}_{\ell^{\prime}-k_{i}}\right)$. Let $Y_{1}=$ $\left\{v_{i} \mid 1 \leq i \leq 2 w\right\}$ and $Y_{2}=\left\{u_{i} \mid 1 \leq i \leq 2 w\right\}$. Since $k_{i}-k_{j} \geq 2$ and $\ell^{\prime}-k_{i}-\left(\ell^{\prime}-k_{j}\right) \geq 2$ if $i<j$, by Lemma 8.7(L3) there is a $B_{0}^{\prime \prime}-Y_{1}$-linkage \mathcal{Z}_{1} of order $2 w$ inside $(\mathcal{S}, \mathcal{P})\left[0, k_{2 w}\right]$ and by Lemma 8.7(L2) there is a $Y_{2}-A_{\ell^{\prime}}^{\prime \prime}$-linkage \mathcal{Z}_{2} of order $2 w$ inside $(\mathcal{S}, \mathcal{P})\left[\ell^{\prime}-k_{2 w}, \ell^{\prime}\right]$.
Let $\mathcal{L}^{\prime \prime}$ be the sublinkage of \mathcal{L}^{\prime} from Y_{1} to Y_{2}. By construction, $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{Z}_{1}$ and \mathcal{Z}_{2} are pairwise internally disjoint. Further, \mathcal{R}_{a}^{2} and \mathcal{R}_{b}^{2} are disjoint since they are both part of the linkage \mathcal{R}. Hence, $\mathcal{R}^{\prime \prime}=\mathcal{R}_{b}^{2} \cdot \mathcal{X}_{1} \cdot \mathcal{Z}_{1} \cdot \mathcal{L}^{\prime \prime} \cdot \mathcal{Z}_{2} \cdot \mathcal{X}_{2} \cdot \mathcal{R}_{a}^{2}$ is a half-integral $B\left(S_{\ell_{4}}^{3}\right)-A\left(S_{0}^{3}\right)$ linkage of order $2 w$ which is internally disjoint from $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$. By Lemma 3.3 , there is a $\operatorname{end}\left(\mathcal{R}^{\prime \prime}\right)$-start $\left(\mathcal{R}^{\prime \prime}\right)$ linkage \mathcal{R}^{4} of order w inside $\mathrm{D}\left(\mathcal{R}^{\prime \prime}\right)$. Hence, \mathcal{R}^{4} is a partial back-linkage of order w for $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$ which is internally disjoint from $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$.
By Observation 8.8, $\left(\mathcal{S}^{3}, \mathcal{P}^{3}\right)$ contains as a subgraph a path of well-linked sets $\left(\mathcal{S}^{4}=\left(S_{0}^{4}, S_{1}^{4}, \ldots, S_{\ell_{4}}^{4}\right), \mathcal{P}^{4}\right)$ of width w and length ℓ_{4} with $A\left(S_{0}^{4}\right)=\operatorname{end}\left(\mathcal{R}^{4}\right)$ and $B\left(S_{\ell_{4}}^{4}\right)=$ $\operatorname{start}\left(\mathcal{R}^{4}\right)$. By definition, $\left(\mathcal{S}^{4},\left(\mathcal{P}_{0}^{4}, \mathcal{P}_{1}^{4}, \ldots, \mathcal{P}_{\ell_{4}-1}^{4}, \mathcal{R}^{4}\right)\right)$ is a cycle of well-linked sets of width w and length ℓ.

Recall the outline of the next steps described in the paragraph before Lemma 11.9. The previous lemma now allows us to choose the new forward linkage \mathcal{H} discussed there as we no longer need to worry about the new linkage not intersecting \mathcal{V} often enough. If that were the case, we could reduce to the previous lemma to obtain a cycle of well-linked sets. Before we prove this in detail in Lemma 11.14 below we first define a variant of q-horizontal webs with less strict requirements that we call semi-web.
The reason for this is that when we choose the linkage \mathcal{H} so that it is weakly minimal with respect to \mathcal{V} then we may only get a semi-web. But at least we can preserve the horizontal property as proved below.

Definition 11.11. Let \mathcal{H}, \mathcal{V} be two linkages. We say that $(\mathcal{H}, \mathcal{V})$ is a c-horizontal semi-web if \mathcal{H} can be decomposed as $\mathcal{H}=\mathcal{H}^{1} \cdot \mathcal{H}^{2} \ldots \ldots \cdot \mathcal{H}^{c}$ and \mathcal{V} can be decomposed as $\mathcal{V}=\mathcal{V}^{1} \cdot \mathcal{V}^{2} \cdot \ldots \cdot \mathcal{V}^{c}$ such that $\mathrm{D}\left(\mathcal{H}^{i}\right) \cap \mathrm{D}(\mathcal{V}) \subseteq \mathrm{D}\left(\mathcal{V}^{c-i+1} \cup \mathcal{V}^{c-i}\right)$ (we set $\mathcal{V}^{0}=\emptyset$ for simplicity).

We also need the following technical lemma.

Observation 11.12. Let $(\mathcal{H}, \mathcal{V})$ be a 3-horizontal semi-web in a digraph D. Then $\mathrm{D}((\mathcal{H}, \mathcal{V}))$ contains a linkage $\mathcal{P}=\mathcal{P}^{1} \cdot \mathcal{P}^{2}$ of order $|\mathcal{H}|$ such that $(\mathcal{P}, \mathcal{V})$ is a 2 -horizontal semi-web where \mathcal{P} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}. Further, $\operatorname{start}(\mathcal{P})=\operatorname{start}(\mathcal{H})$, end $(\mathcal{P})=\operatorname{end}(\mathcal{H})$ and $\operatorname{start}\left(\mathcal{P}^{2}\right) \subseteq V\left(\mathcal{H}^{2}\right)$.

Proof. Let \mathcal{P} be a $\operatorname{start}(\mathcal{H})$-end (\mathcal{H})-linkage of order $|\mathcal{H}|$ which is \mathcal{V}-minimal. By Observation 3.6, \mathcal{P} is also weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}.
Since $(\mathcal{H}, \mathcal{V})$ is a 3 -horizontal semi-web, there is no path from \mathcal{H}^{1} to \mathcal{H}^{3} in \mathcal{V}. As $\operatorname{start}(\mathcal{P})=$ $\operatorname{start}(\mathcal{H})=\operatorname{start}\left(\mathcal{H}^{1}\right)$ and end $(\mathcal{P})=\operatorname{end}(\mathcal{H})=\operatorname{end}\left(\mathcal{H}^{3}\right)$, every path in \mathcal{P} must intersect some vertex of \mathcal{H}^{2}. Let Y be the set containing, for each $P \in \mathcal{P}$, the last vertex of P which is also in \mathcal{H}^{2}.
Decompose \mathcal{P} into $\mathcal{P}^{1} \cdot \mathcal{P}^{2}=\mathcal{P}$ such that $\operatorname{start}\left(\mathcal{P}^{2}\right)=Y$. Let $\mathcal{V}^{1} \cdot \mathcal{V}^{2} \cdot \mathcal{V}^{3}:=\mathcal{V}$ be a decomposition of \mathcal{V} witnessing that $(\mathcal{H}, \mathcal{V})$ is a 3 -horizontal semi-web.
By construction, we have that \mathcal{V}^{2} and \mathcal{V}^{3} do not intersect \mathcal{P}^{2}. Hence $(\mathcal{P}, \mathcal{V})$ is a 2 -horizontal semi-web where \mathcal{P} is weakly- $|\mathcal{H}|$ minimal with respect to \mathcal{V}.

Using the previous lemma we can construct a horizontal web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ from a semi-web $(\mathcal{H}, \mathcal{V})$ such that \mathcal{H}^{\prime} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V} or find large $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ and $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ which are internally disjoint and satisfy some extra conditions specified in the next lemma. This is useful in the last result of this section where we finally construct the 2 -horizontal web we are looking for unless we already find a cycle of well-linked sets while constructing the 2 -horizontal web.
We define

$$
\begin{aligned}
\mathrm{h}_{11.13}\left(h_{1}, h_{2}\right) & :=2\left(h_{2}-1\right)+h_{1}, \\
v_{11.13}\left(h, h_{1}, v_{1}, h_{2}, v_{2}\right) & :=\left(v_{2}-1\right) \cdot 2\binom{h}{h_{2}}+\left(v_{1}-1\right) \cdot\binom{h}{h_{1}}-1 .
\end{aligned}
$$

Note that $\mathrm{v}_{11.13}\left(h, h_{1}, v_{1}, h_{2}, v_{2}\right) \in 2^{1 \uparrow \uparrow p o l y}{ }^{3}\left(h, h_{1}, v_{1}, h_{2}, v_{2}\right)$.
Lemma 11.13. Let $(\mathcal{H}, \mathcal{V})$ be a 3 -horizontal semi-web such that $h:=|\mathcal{H}| \geq h_{11.13}\left(h_{1}, h_{2}\right)$ and $v:=|\mathcal{V}| \geq \mathrm{v}_{11.13}\left(h, h_{1}, v_{1}, h_{2}, v_{2}\right)$. Then $(\mathcal{H}, \mathcal{V})$ contains one of the following:
(W1) a 2-horizontal web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ where $\mathrm{D}\left(\mathcal{H}^{\prime}\right) \subseteq \mathrm{D}(\mathcal{H} \cup \mathcal{V}), \mathcal{V}^{\prime} \subseteq \mathcal{V},\left|\mathcal{H}^{\prime}\right| \geq h_{1}, \mathcal{H}^{\prime}$ is weakly h-minimal with respect to \mathcal{V} and $\left|\mathcal{V}^{\prime}\right| \geq v_{1}$, or
(W2) some linkage $\mathcal{H}^{\prime} \subseteq \mathrm{D}(\mathcal{H} \cup \mathcal{V})$ of order h_{2} and some linkage $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ of order v_{2} such that \mathcal{H}^{\prime} is internally disjoint from \mathcal{V}^{\prime}. Additionally, $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{start}(\mathcal{H})$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq V\left(\mathcal{H}^{2}\right)$, or $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq V\left(\mathcal{H}^{2}\right)$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{end}(\mathcal{H})$.

Proof. By Observation $11.12,(\mathcal{H}, \mathcal{V})$ contains a linkage \mathcal{P} of order $|\mathcal{H}|$ such that $(\mathcal{P}, \mathcal{V})$ is a 2 -horizontal semi-web where \mathcal{P} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}. In particular, we can decompose \mathcal{P} as $\mathcal{P}=\mathcal{P}^{1} \cdot \mathcal{P}^{2}$ and we can decompose \mathcal{V} as $\mathcal{V}=\mathcal{V}^{1} \cdot \mathcal{V}^{2}$ such that \mathcal{P}^{2} is disjoint from \mathcal{V}^{2}. Additionally, $\operatorname{start}(\mathcal{P})=\operatorname{start}(\mathcal{H}), \operatorname{end}(\mathcal{P})=\operatorname{end}(\mathcal{H})$ and $\operatorname{start}\left(\mathcal{P}^{2}\right) \subseteq V\left(\mathcal{H}^{2}\right)$.
For each $V_{j} \in \mathcal{V}$ and each $1 \leq i \leq 2$ let $\mathcal{X}_{j}^{i} \subseteq \mathcal{P}^{i}$ be the paths of \mathcal{P}^{i} which intersect V_{j} and let $\mathcal{Y}_{j}^{i} \subseteq \mathcal{P}^{i}$ be the paths of \mathcal{P}^{i} which are disjoint from V_{j}. Let $\mathcal{M} \subseteq \mathcal{V}$ be the set of paths $V_{j} \in \mathcal{V}$ for which some i exists such that $\left|\mathcal{Y}_{j}^{i}\right| \geq h_{2}$. Let $\mathcal{N}=\mathcal{V} \backslash \mathcal{M}$.
Case 1: $|\mathcal{M}| \leq\left(v_{2}-1\right) \cdot 2\binom{|\mathcal{H}|}{h_{2}}$.
Hence, $|\mathcal{N}| \geq|\mathcal{V}|-\left(v_{2}-1\right) \cdot 2\binom{|\mathcal{H}|}{h_{2} \mid} \geq\left(v_{1}-1\right) \cdot\binom{|\mathcal{H}|}{h_{1}}+1$. For each $V_{j} \in \mathcal{N}$ let $\mathcal{X}_{j}=\left\{P^{1} \cdot P^{2} \in\right.$ $\mathcal{P} \mid P^{1} \in \mathcal{X}_{j}^{1}$ and $\left.P^{2} \in \mathcal{X}_{j}^{2}\right\}$. Since $\mathcal{X}_{j}^{i} \cup \mathcal{Y}_{j}^{i}=\mathcal{P}^{i}$ and $\left|\mathcal{Y}_{j}^{i}\right|<h_{2}$ for all $V_{j} \in \mathcal{N}$ and all $1 \leq i \leq 2$, we have that $\left|\mathcal{X}_{j}\right| \geq|\mathcal{H}|-2 \cdot\left(h_{2}-1\right) \geq h_{1}$ for every $V_{j} \in \mathcal{N}$.

There are at most $\binom{|\mathcal{H}|}{h_{1}}$ distinct linkages $\mathcal{H}^{\prime} \subseteq \mathcal{P}$ of order h_{1}. By the pigeon-hole principle, there is some $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ of order v_{1} for which some $\mathcal{H}^{\prime} \subseteq \mathcal{P}$ of order h_{1} exists such that $\mathcal{X}_{j} \supseteq \mathcal{H}^{\prime}$ for all $V_{j} \in \mathcal{V}^{\prime}$. Hence, $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ is a 2 -horizontal web with $\left|\mathcal{H}^{\prime}\right|=h_{1},\left|\mathcal{V}^{\prime}\right|=v_{1}$ and \mathcal{H}^{\prime} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}^{\prime}, satisfying (W1).
Case 2: $|\mathcal{M}| \geq\left(v_{2}-1\right) \cdot 2\binom{\mid \mathcal{H C |}}{h_{2}}+1$.
By the pigeon-hole principle, there is some $i \in\{1,2\}$ and some $\mathcal{H}^{\prime} \subseteq \mathcal{P}^{i}$ of order h_{2} for which there is a set $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ of order v_{2} such that $\mathcal{Y}_{j}^{i} \supseteq \mathcal{H}^{\prime}$ for all $V_{j} \in \mathcal{V}^{\prime}$. Hence, \mathcal{H}^{\prime} is a linkage of order h_{2} which is internally disjoint from \mathcal{V}^{\prime}.
If $i=1$, then $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{start}(\mathcal{P})=\operatorname{start}(\mathcal{H})$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{end}\left(\mathcal{P}^{1}\right) \subseteq V\left(\mathcal{H}^{2}\right)$.
If $i=2$, then $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{start}\left(\mathcal{P}^{2}\right) \subseteq V\left(\mathcal{H}^{2}\right)$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{end}\left(\mathcal{P}^{2}\right)=\operatorname{end}(\mathcal{H})$.
Hence, (W2) holds.
In the last lemma of this section we use the results established so far to construct a weakly minimal 2-horizontal web unless we already find a cycle of well-linked sets during the construction.
We define

$$
\begin{aligned}
\mathrm{w}_{11.14}(h, w, \ell) & :=\mathrm{h}_{11.13}\left(h, \mathrm{q}_{11.10}(w, \ell)\right)+2 \mathrm{r}_{11.10}(w, \ell) \\
\ell_{11.14}(w, \ell) & :=3\left(\ell_{11.10}(w, \ell)+1\right)-1 \\
\mathrm{r}_{11.14}(h, w) & :=\mathrm{v}_{11.13}\left(\mathrm{~h}_{11.13}\left(h, \mathrm{q}_{11.10}(w, \ell)\right), h, v, \mathrm{q}_{11.10}(w, \ell), 2 \mathrm{r}_{11.10}(w, \ell)\right), \\
\mathrm{m}_{11.14}(h, w) & :=\mathrm{h}_{11.13}\left(h, \mathrm{q}_{11.10}(w, \ell)\right) .
\end{aligned}
$$

$\mathrm{w}_{11.14}$
$\ell_{11.14}$
$r_{11.14}$
$\mathrm{m}_{11.14}$

Observe that $\mathrm{w}_{11.14}(h, w, \ell) \in 2^{2 \uparrow \uparrow p o l y}{ }^{25}(h, w, \ell), \ell_{11.14}(w, \ell) \in 2^{3 \uparrow \uparrow p^{2}{ }^{25}(w, \ell)}, \mathrm{r}_{11.14}(h, w, \ell, v) \in$ $2^{3 \uparrow \uparrow \text { poly }^{26}(h, w, \ell, v)}$ and $\mathrm{m}_{11.14}(h, w, \ell) \in 2^{2 \uparrow \uparrow p^{2} y^{25}(h, w, \ell)}$.

Lemma 11.14. Let w, ℓ, h, v be integers, let $(\mathcal{S}, \mathcal{P})$ be a strict path of well-linked sets of length $\ell^{\prime} \geq \ell_{11.14}(w, \ell)$ and width $w^{\prime}=\mathrm{w}_{11.14}(h, w, \ell)$ with a back-linkage \mathcal{R} of order $r \geq \mathrm{r}_{11.14}(h, w, \ell, v)$ intersecting $(\mathcal{S}, \mathcal{P})$ cluster by cluster. Then, $\mathrm{D}(\mathcal{S} \cup \mathcal{P} \cup \mathcal{R})$ contains one of the following:
(H1) a cycle of well-linked sets of width w and length ℓ, or
(H2) an $\mathrm{m}_{11.14}(h, w, \ell)$-horizontally minimal 2-horizontal web $(\mathcal{H}, \mathcal{V})$ where $\mathcal{V} \subseteq \mathcal{R},|\mathcal{H}| \geq h$ and $|\mathcal{V}| \geq v$.

Proof. Let $h_{1}=\ell^{\prime}{ }_{11.10}(w, \ell), h_{2}=q_{11.10}(w, \ell), h_{3}=h_{11.13}\left(h, h_{2}\right), w_{1}=r_{11.10}(w, \ell)$ and $v_{1}=2 w_{1}$. Let $\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right):=\mathcal{S}$ and $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell^{\prime}-1}\right):=\mathcal{P}$. To simplify notation, set $\mathcal{P}_{\ell^{\prime}}:=\emptyset$.
Let \mathcal{H} be an $A\left(S_{0}\right)$ - $B\left(S_{\ell^{\prime}}\right)$-linkage of order h_{3} in $(\mathcal{S}, \mathcal{P})$. By Lemma 8.4, such a linkage exists.
Let $t_{i}=(i-1)\left(h_{1}+1\right)$ for each $i \in\{1,2,3,4\}$. Decompose \mathcal{H} into $\mathcal{H}=\mathcal{H}^{1} \cdot \mathcal{H}^{2} \cdot \mathcal{H}^{3}$, where \mathcal{H}^{i} is the sublinkage of \mathcal{H} contained in $(\mathcal{S}, \mathcal{P})\left[t_{i}, t_{i+1}-1\right]$. Decompose \mathcal{R} iteratively as follows. Let $X_{0}=\operatorname{start}(\mathcal{R})$ and let $X_{3}=\operatorname{end}(\mathcal{R})$. For each $0 \leq i \leq 3$ let Y_{i} be the vertices of \mathcal{R} such that for each $R \in \mathcal{R}$ the last intersection of R with $\mathrm{D}\left(S_{t_{i+1}-1} \cup \mathcal{P}_{t_{i+1}-1}\right)$ lies in Y_{i}. Let X_{i} be the successors of the vertices of Y_{i} in \mathcal{R}. For each $1 \leq i \leq 3$, let \mathcal{R}^{i} be the $X_{i-1}-X_{i}$ sublinkage of order $|\mathcal{R}|$ in \mathcal{R}. To simplify notation, set \mathcal{R}^{0} as the linkage containing only the vertices of $\operatorname{start}\left(\mathcal{R}^{1}\right)$.
Because \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster, we have $\mathrm{D}\left(\mathcal{H}^{i}\right) \cap \mathrm{D}(\mathcal{R}) \subseteq \mathrm{D}\left(\mathcal{R}^{4-i} \cup \mathcal{R}^{3-i}\right)$ for all $1 \leq i \leq 3$. Hence, $(\mathcal{H}, \mathcal{R})$ is a 3-horizontal semi-web. Further, $|\mathcal{H}|=h_{3}=\mathrm{h}_{11.13}\left(h, h_{2}\right)$ and $|\mathcal{R}| \geq \mathrm{v}_{11.13}\left(h_{3}, h, v, h_{2}, v_{1}\right)$. By Lemma 11.13, we have two cases.
Case 1: (W1) holds. That is, $(\mathcal{H}, \mathcal{R})$ contains a 2-horizontal web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ where $\mathrm{D}\left(\mathcal{H}^{\prime}\right) \subseteq$ $\mathrm{D}(\mathcal{H} \cup \mathcal{R}), \mathcal{V}^{\prime} \subseteq \mathcal{R},\left|\mathcal{H}^{\prime}\right| \geq h,\left|\mathcal{V}^{\prime}\right| \geq v$ and \mathcal{H}^{\prime} is weakly $|\mathcal{H}|$-minimal with respect to \mathcal{V}^{\prime}. This satisfies (H2).

Case 2: (W2) holds. That is, there is some $\mathcal{H}^{\prime} \subseteq \mathrm{D}(\mathcal{H} \cup \mathcal{R})$ of order h_{2} and some $\mathcal{V}^{\prime} \subseteq \mathcal{R}$ of order v_{1} such that \mathcal{H}^{\prime} is internally disjoint from \mathcal{V}^{\prime}. Additionally, $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{start}(\mathcal{H})$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq V\left(\mathcal{H}^{2}\right)$, or $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq V\left(\mathcal{H}^{2}\right)$ and end $\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{end}(\mathcal{H})$. We assume, without loss of generality, that $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq \operatorname{start}(\mathcal{H})$ holds. The other case follows analogously by considering \mathcal{H}^{3} instead of \mathcal{H}^{1}.
We show that every path in \mathcal{H}^{\prime} intersects $\mathrm{D}\left(S_{i} \cup \mathcal{P}_{i}\right)$ for every $0 \leq i \leq h_{1}$.
Assume towards a contradiction that this is not the case. As $\operatorname{start}\left(\mathcal{H}^{\prime}\right) \subseteq A\left(S_{0}\right)$ and $\operatorname{end}\left(\mathcal{H}^{\prime}\right) \subseteq$ $V\left(S_{h_{1}+d}\right)$ for some integer d, there is some $0 \leq j \leq h_{1}$ for which some $H \in \mathcal{H}^{\prime}$ exists such that H is an $A\left(S_{0}\right)-V\left(S_{h_{1}+d}\right)$ path which does not intersect any vertex of $\mathrm{D}\left(\mathcal{S}_{j} \cup \mathcal{P}_{j}\right)$.
Let $j_{0}<j$ be the largest index smaller than j such that H intersects $\mathrm{D}\left(S_{j_{0}} \cup \mathcal{P}_{j_{0}}\right)$. Similarly, let $j_{1}>j$ be the smallest index larger than j such that H intersects $\mathrm{D}\left(S_{j_{1}} \cup \mathcal{P}_{j_{1}}\right)$. Since there is no $V\left(S_{j_{0}} \cup \mathcal{P}_{j_{0}}\right)-V\left(S_{j_{1}} \cup \mathcal{P}_{j_{1}}\right)$ path which is disjoint from $\mathrm{D}\left(S_{j} \cup \mathcal{P}_{j}\right)$ inside $(\mathcal{S}, \mathcal{P}), H$ contains a $V\left(S_{j_{0}} \cup \mathcal{P}_{j_{0}}\right)-V\left(S_{j_{1}} \cup \mathcal{P}_{j_{1}}\right)$ path H_{x} which is internally disjoint from $(\mathcal{S}, \mathcal{P})$ as a subpath. Hence, H_{x} is a subpath of $\mathcal{V}^{\prime} \subseteq \mathcal{R}$. This, however, implies that H_{x} is a jump of length $j_{1}-j_{0}>1$, a contradiction to the initial assumption that \mathcal{R} intersects $(\mathcal{S}, \mathcal{P})$ cluster by cluster.
Let $S_{h_{1}}^{\prime}=S_{h_{1}} \cup \mathrm{D}\left(\mathcal{P}_{h_{1}}\right)$. Clearly, the digraph $\left(\mathcal{S}^{\prime}:=\left(S_{0}, S_{1}, \ldots, S_{h_{1}-1}, S_{h_{1}}^{\prime}\right)\right.$, $\left.\mathcal{P}^{\prime}:=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{h_{1}-1}\right)\right)$ is a path of well-linked sets of width $w^{\prime} \geq 2 w_{1}$ and length h_{1}. By Lemma 11.1, there is a partial back-linkage \mathcal{R}^{\prime} of order w_{1} for $(\mathcal{S}, \mathcal{P})\left[0, h_{1}\right]$ (and, hence, for $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ as well) such that $\mathrm{D}\left(\mathcal{R}^{\prime}\right) \cap\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right) \subseteq \mathrm{D}\left(\mathcal{V}^{\prime} \cup \operatorname{start}\left(\mathcal{R}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{R}^{\prime}\right)\right)$. As \mathcal{V}^{\prime} is weakly m minimal with respect to $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$, the back-linkage \mathcal{R}^{\prime} is also weakly m-minimal with respect to $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$.
As every path in \mathcal{H}^{\prime} intersects $\mathrm{D}\left(S_{j} \cup \mathcal{P}_{j}\right)$ for every $0 \leq j \leq h_{1}$, by Lemma 11.10 the digraph $\mathrm{D}\left(\mathcal{S}^{\prime} \cup \mathcal{P}^{\prime} \cup \mathcal{R}^{\prime} \cup \mathcal{H}^{\prime}\right)$ contains a cycle of well-linked sets of width w and length ℓ, implying (H1).

11.3 Finding a cycle of well-linked sets inside a 2 -horizontal web

In this section we complete the proof of our main results. The remaining open case is (H2) of Lemma 11.14. That is, we already have constructed a 2 -horizontal web $(\mathcal{H}, \mathcal{V})$ as specified in the lemma. The idea is to construct a new path of well-linked sets on the first half of \mathcal{H} and then use the other half of \mathcal{H} to complete the cycles.
We start with a few simple observations used in the sequel.
Observation 11.15. Let D be a digraph and let $(\mathcal{P}, \mathcal{Q})$ be a web where $|\mathcal{P}|=|\mathcal{Q}|$. Then $\operatorname{start}(\mathcal{P})$ is well-linked to end (\mathcal{Q}) in $\mathrm{D}(\mathcal{P} \cup \mathcal{Q})$.

Proof. Let $A \subseteq \operatorname{start}(\mathcal{P})$ and $B \subseteq \operatorname{end}(\mathcal{Q})$ such that $|A|=|B|$. Since $(\mathcal{P}, \mathcal{Q})$ is a web, there is no $A-B$ separator of size less than $|A|$, as such a separator must hit $|A|$ paths of \mathcal{P}. Hence, by Theorem 3.2 there is an A - B-linkage of $\operatorname{size}|A| \operatorname{in~} \mathrm{D}(\mathcal{P} \cup \mathcal{Q})$. Thus, $\operatorname{start}(\mathcal{P})$ is well-linked to end (\mathcal{Q}).

Observation 11.16. Let $(\mathcal{H}, \mathcal{V})$ be a 2 -horizontal web. Define $\mathcal{H}^{2}:=\left\{H_{i}^{2} \mid H_{i} \in \mathcal{H}\right\}$ and $\mathcal{V}^{1}:=\left\{V_{i}{ }^{1} \mid V_{i} \in \mathcal{V}\right\}$. Then, $\operatorname{start}\left(\mathcal{H}^{2}\right)$ is well-linked to end $\left(\mathcal{V}^{1}\right)$ inside $\mathrm{D}\left(\mathcal{H}^{2} \cup \mathcal{V}^{1}\right)$.

Proof. By definition $\left(\mathcal{H}^{2}, \mathcal{V}^{1}\right)$ is a web. Hence, by Observation $11.15 \operatorname{start}\left(\mathcal{H}^{2}\right)$ is well-linked to end $\left(\mathcal{V}^{1}\right)$ inside $\mathrm{D}\left(\mathcal{H}^{2} \cup \mathcal{V}^{1}\right)$.

We also need the following lemma from [KK15].

Lemma 11.17 ([KK15, Corollary 5.12]). Let H be a digraph and let \mathcal{Q}^{*} be a linkage in H and let $\mathcal{Q} \subseteq \mathcal{Q}^{*}$ be a linkage of order q. Let $P \subseteq H$ be a path intersecting every path in \mathcal{Q}. Let $c \geq 0$ be such that for every edge $e \in E(P) \backslash E\left(\mathcal{Q}^{*}\right)$ there are no c pairwise vertex disjoint paths in $H-e$ from P_{1} to P_{2}, where $P=P_{1} \cdot e \cdot P_{2}$. For all $s, r \geq 0$, if $q \geq(r+c) \cdot s$, then
(R1) there is an s-segmentation $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ of P with respect to \mathcal{Q}^{*} or
(R2) a $(2, r)$-split $\left(\left(P_{1}, P_{2}\right), \mathcal{Q}^{\prime \prime}\right)$ of (P, \mathcal{Q}) with respect to \mathcal{Q}^{*}.
To construct a path of well-linked sets in the first half of \mathcal{H} we suitably adapt the construction in the proof of [KK15, Lemma 5.15], as we require somewhat different properties of the segmentation we obtain. In particular, we need the paths of the segmentation contain the end of the linkage \mathcal{H}^{1} in our horizontal web $\left(\mathcal{H}^{1} \cdot \mathcal{H}^{2}, \mathcal{V}\right)$ as this allows us to continue from the last cluster of the path of well-linked sets we construct to \mathcal{H}^{2} without intersecting the new path of well-linked sets.
We define

$$
\mathrm{q}_{11.18}^{\prime}(q, c, z):=(q(c+1))^{2^{z}}\left(2^{2^{z}-1}\right)
$$

and note that $\mathrm{q}^{\prime}{ }_{11.18}(q, c, z) \in 2^{2 \uparrow \uparrow \text { poly }^{2}(q, c, z)}$.
Lemma 11.18. Let $c, x, y, q, q^{\prime} \geq 0$ and $p \geq x$ be integers. Let $\mathcal{W}=(\mathcal{P}, \mathcal{Q})$ be a $\left(p, q^{\prime}\right)$-web where \mathcal{P} is weakly c-minimal with respect to \mathcal{Q}. If $q^{\prime} \geq \mathrm{q}^{\prime}{ }_{11.18}(q, c, x y)$, then there is some $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ such that \mathcal{W} contains one of the following
(S1) a (y, q)-split $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $(\mathcal{P}, \mathcal{Q})$ or
(S2) an (x, q)-segmentation $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ of $(\mathcal{P}, \mathcal{Q})$. Additionally, end $\left(\mathcal{P}^{\prime}\right) \subseteq \operatorname{end}(\mathcal{P})$.
Proof. For all $0 \leq i \leq x y$ we define values q_{i} inductively as follows. We set $q_{x y}:=q$ and $q_{i-1}:=q_{i} \cdot\left(q_{i}+c\right)$. We first show that $q_{0} \leq \mathrm{q}^{\prime}{ }_{11.18}(q, c, x y)$.
Claim 1. $q_{i} \leq(q(c+1))^{2^{x y-i}}\left(2^{2^{x y-i}-1}\right)$ for all $0 \leq i \leq x y$
Proof. Clearly $q_{x y}=q \leq q(c+1)$. Assume the inequality holds from $x y$ to $i>0$. By definition of q_{i-1} we obtain

$$
\left.\begin{array}{rl}
q_{i-1} & =q_{i} \cdot\left(q_{i}+c\right) \\
& \leq(q(c+1))^{x y-i}\left(2^{x y-i}-1\right.
\end{array}\right) \cdot\left((q(c+1))^{x y-i}\left(2^{x y-i}-1\right)+c\right) ~\left(2^{x y-i}\left(2^{x y-i}-1\right)\right)^{2}+(q(c+1))^{x^{x y-i}}\left(2^{x y-i}-1\right) c .
$$

Hence, by Claim 1, we have $q_{0} \leq q^{\prime} \leq(q(c+1))^{2^{x y}}\left(2^{2^{x y}}-1\right)=\mathrm{q}^{\prime}{ }_{11.18}(q, c, x y)$.
For each $0 \leq i \leq x y$ we construct a tuple $\mathcal{M}_{i}:=\left(\mathcal{P}^{i}, \mathcal{Q}^{i}, \mathcal{S}_{\text {seg }}^{i}, \mathcal{S}_{\text {split }}^{i}\right)$, satisfying all of the following
$(\mathrm{M} 1) \mathcal{Q}^{i} \subseteq \mathcal{Q}^{*}$ is a linkage of order q_{i} and and $\mathcal{P}^{i} \subseteq \mathcal{P}$ is a linkage such that, if there is no $P \in \mathcal{S}_{\text {split }}^{i} \backslash \mathcal{S}_{\text {seg }}^{i}$ with end $(P) \subseteq \operatorname{end}(\mathcal{P})$, then $\left|\mathcal{P}^{i} \cup \mathcal{S}_{\text {seg }}^{i}\right| \geq x$,
(M2) $\left(\mathcal{S}_{\text {split }}^{i}, \mathcal{Q}^{i}\right)$ is a $\left(y_{i}, q_{i}\right)$-split of $(\mathcal{P}, \mathcal{Q})$ and
(M3) $\left(\mathcal{S}_{\text {seg }}^{i}, \mathcal{Q}^{i}\right)$ is an $\left(x_{i}, q_{i}\right)$-segmentation of $(\mathcal{P}, \mathcal{Q})$ where end $\left(\mathcal{S}_{\text {seg }}^{i}\right) \subseteq \operatorname{end}(\mathcal{P})$.
Furthermore, $\left(\mathcal{P}^{i}, \mathcal{Q}^{i}\right)$ has linkedness c and $V\left(\mathcal{P}^{i}\right) \cap V\left(\mathcal{S}_{\text {seg }}^{i}\right)=\emptyset$, for all i. Recall that, in particular, this means that the paths in $\mathcal{S}_{\text {split }}^{i}$ are the subpaths of a single path in \mathcal{P} that is split by edges $e \in E(P) \backslash E\left(\mathcal{Q}^{*}\right)$.
We first set $\mathcal{P}^{0}:=\mathcal{P}, \mathcal{Q}^{0}:=\mathcal{Q}^{*}, \mathcal{S}_{\text {seg }}^{0}:=\emptyset, \mathcal{S}_{\text {split }}^{0}:=\emptyset$. Clearly, this satisfies the conditions (M1), (M2) and (M3) defined above.
On step $i+1 \geq 1$, we do the following. If $\left|\mathcal{S}_{\text {split }}^{i}\right| \geq y$ or if $\left|\mathcal{S}_{\text {seg }}^{i}\right| \geq x$, stop the construction. Otherwise, proceed as follows.
We first set $\mathcal{S}_{\text {seg }}^{\prime}:=\mathcal{S}_{\text {seg }}^{i}$. If there is no $P \in \mathcal{S}_{\text {split }}^{i} \backslash \mathcal{S}_{\text {seg }}^{i}$ such that end $(P) \subseteq$ end (\mathcal{P}), we choose a path $P \in \mathcal{P}^{i}$ and set $\mathcal{S}_{\text {split }}^{\prime}=\{P\}$ and $\mathcal{P}^{i+1}:=\mathcal{P}^{i} \backslash\{P\}$. Clearly, end $(P) \subseteq \operatorname{end}(\mathcal{P})$.
Otherwise, if there is some $P \in \mathcal{S}_{\text {split }}^{i} \backslash \mathcal{S}_{\text {seg }}^{i}$ with end $(P) \subseteq \operatorname{end}(\mathcal{P})$, we set $\mathcal{S}_{\text {split }}^{\prime}:=\mathcal{S}_{\text {split }}^{i}$ and $\mathcal{P}^{i+1}:=\mathcal{P}^{i}$.
Now, let $P \in \mathcal{S}_{\text {split }}^{\prime} \backslash \mathcal{S}_{\text {seg }}^{\prime}$ with end $(P) \subseteq \operatorname{end}(\mathcal{P})$. We apply Lemma 11.17 to P, \mathcal{Q}^{i} and \mathcal{Q}^{*} setting $r=s=q_{i+1}$ in the statement of the lemma. If (R1) holds and there is a q_{i+1}-segmentation $\mathcal{Q}_{1} \subseteq \mathcal{Q}^{i}$ of P with respect to \mathcal{Q}^{*}, we set

$$
\mathcal{Q}^{i+1}:=\mathcal{Q}_{1}, \quad \mathcal{S}_{\text {seg }}^{i+1}:=\mathcal{S}_{\text {seg }}^{i} \cup\{P\} \quad \text { and } \quad \mathcal{S}_{\text {split }}^{i+1}:=\mathcal{S}_{\text {split }}
$$

Otherwise, (R2) holds and there is a $\left(2, q_{i+1}\right)$-split $\left(\left(P_{1}, P_{2}\right), \mathcal{Q}_{2}\right)$ where $\mathcal{Q}_{2} \subseteq \mathcal{Q}^{i}$. Then we set

$$
\begin{aligned}
\mathcal{Q}^{i+1} & :=\mathcal{Q}_{2}, \\
\mathcal{S}_{\text {seg }}^{i+1} & :=\mathcal{S}_{\text {seg }}^{i} \quad \text { and } \\
\mathcal{S}_{\text {split }}^{i+1} & :=\left(\mathcal{S}_{\text {split }}^{i} \backslash\{P\}\right) \cup\left\{P_{1}, P_{2}\right\}
\end{aligned}
$$

If there is no $P \in\left|\mathcal{S}_{\text {split }}^{i+1}\right|$ with $\operatorname{end}(P) \subseteq \operatorname{end}(\mathcal{P})$, then we obtained a segmentation and so added a path to $\mathcal{S}_{\text {seg }}^{i+1}$. As (M1) holds for i, we have that $\left|\mathcal{P}^{i+1} \cup \mathcal{S}_{\text {seg }}^{i+1}\right| \geq x$ in this case.
It is easily verified that the conditions (M1), (M2) and (M3) are maintained for $\mathcal{P}^{i+1}, \mathcal{Q}^{i+1}$, $\mathcal{S}_{\text {seg }}^{i+1}$ and $\mathcal{S}_{\text {split }}^{i+1}$. In particular, the linkedness c of $\left(\mathcal{P}^{i+1}, \mathcal{Q}^{i+1}\right)$ is preserved as deleting or splitting paths cannot increase forward connectivity. This concludes the construction.
Note that in the construction, after every y steps, either (R2) holds after every application of Lemma 11.17, and so we find a set $\mathcal{S}_{\text {split }}^{i}$ of size y or (R1) holds in at least one of the y steps, and so we add a path to $\mathcal{S}_{\text {seg }}^{i}$. Whenever this happens, we take a new path $P \in \mathcal{P}^{i}$ in the next iteration, which always exists because of (M1).
Hence, in the construction above, in each step we either increase x_{i} and add the path P with end $(P) \subseteq \operatorname{end}(\mathcal{P})$ to $\mathcal{S}_{\text {seg }}^{i}$ or we increase y_{i}. After at most $i \leq x y$ steps, either we have constructed a set $\mathcal{S}_{\text {seg }}^{i}$ of order x or a set $\mathcal{S}_{\text {split }}^{i}$ of order y.
Because (M2) holds, if we found a set $\mathcal{S}_{\text {split }}^{i}$ of order y, then we can choose any set $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}^{i}$ of order q and $\left(\mathcal{S}_{\text {split }}^{i}, \mathcal{Q}^{\prime}\right)$ satisfies ($\mathbf{S 1}$).
If, instead, we get a set $\mathcal{S}_{\text {seg }}:=\mathcal{S}_{\text {seg }}^{i}$ of order $x^{\prime} \geq x$, then, by $(\mathbf{M} 3),\left(\mathcal{S}_{\text {seg }}, \mathcal{Q}^{i}\right)$ is an (x, q) segmentation of $(\mathcal{P}, \mathcal{Q})$ such that end $\left(\mathcal{S}_{\text {seg }}\right) \subseteq \operatorname{end}(\mathcal{P})$, satisfying (S2).
Finally, it is easily seen that if \mathcal{W} is well-linked then so is $\left(\mathcal{S}_{\text {split }}^{i}, \mathcal{Q}^{\prime}\right)$ (in case (S 1) holds) or $\left(\mathcal{S}_{\text {seg }}, \mathcal{Q}^{i}\right)$ (in case (S 2) holds).

In the next lemma we use the split or segmentation obtained from the previous lemma to construct a folded ordered web or an ordered web. This allows us to apply the results of

Section 10. We define

$$
\begin{aligned}
\mathrm{q}_{11.19}\left(q^{\prime \prime}, x\right) & :=\left(q^{\prime \prime}\right)^{2^{2 x-1}}+1 \\
\mathrm{q}_{11.19}^{\prime}(q, c, x, y) & :=\mathrm{q}_{11.18}^{\prime}(q, c, 2(2 x-1)(y-1) y), \text { and } \\
\mathrm{p}_{11.19}(x) & :=2 x-1
\end{aligned}
$$

Note that $\mathrm{q}_{11.19}\left(q^{\prime \prime}, x\right) \in 2^{2 \uparrow \uparrow \text { poly }^{2}\left(q^{\prime \prime}, x\right)}$ and $\mathrm{q}^{\prime}{ }_{11.19}(q, c, x, y) \in 2^{2 \uparrow \uparrow \text { poly }^{5}(q, c, x, y)}$.
Lemma 11.19. Let $c, x, y, q^{\prime \prime}, q^{\prime} \geq 0, q \geq \mathrm{q}_{11.19}\left(q^{\prime \prime}, x\right)$ and $p \geq \mathrm{p}_{11.19}(x)$ be integers. Let $\mathcal{W}=$ $(\mathcal{P}, \mathcal{Q})$ be a $\left(p, q^{\prime}\right)$-web where \mathcal{P} is weakly c-minimal with respect to \mathcal{Q}. If $q^{\prime} \geq \mathrm{q}^{\prime}{ }_{11.19}(q, c, x, y)$, then there is some $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ and some \mathcal{P}^{\prime} such that $\mathrm{D}\left(\mathcal{P}^{\prime}\right) \subseteq \mathrm{D}(\mathcal{P})$ and W contains one of the following
(O1) a folded ordered (q, y)-web $\left(\mathcal{Q}^{\prime}, \mathcal{P}^{\prime}\right)$, or
(O2) an ordered $\left(x, q^{\prime \prime}\right)$-web $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ such that end $\left(\mathcal{P}^{\prime}\right) \subseteq \operatorname{end}(\mathcal{P})$.
Proof. Let $x_{1}=2 x-1$.
We apply Lemma 11.18 to \mathcal{W}. If (S1) holds, then by Observation 10.6 we obtain a folded ordered (q, y)-web and (O1) holds. Otherwise, (S2) holds and we obtain an $\left(x_{1}, q\right)$-segmentation $\left(\mathcal{P}^{1}, \mathcal{Q}^{\prime}\right)$ of $(\mathcal{P}, \mathcal{Q})$ such that end $\left(\mathcal{P}^{1}\right) \subseteq \operatorname{end}(\mathcal{P})$.
Recursively define q_{i} by $q_{x_{1}}=q^{\prime \prime}$ and $q_{i}=\operatorname{len}_{3.1}\left(q_{i+1}, q_{i+1}\right)$. We show that $q_{i} \leq\left(q^{\prime \prime}\right)^{2^{x_{1}-i}}+1$ for all $1 \leq i \leq x_{1}$. Clearly, $q_{x_{1}}=q^{\prime \prime} \leq\left(q^{\prime \prime}\right)^{2^{0}}+1$. By definition, for an arbitrary $1 \leq i \leq x_{1}$ we have

$$
\begin{aligned}
q_{i} & =\left(q_{i+1}-1\right)^{2}+1 \\
& \leq\left(\left(q^{\prime \prime}\right)^{2^{x_{1}-i-1}}+1-1\right)^{2}+1 \\
& =\left(q^{\prime \prime}\right)^{2^{x_{1}-i}}+1
\end{aligned}
$$

Hence, $q \geq q_{1}$.
We construct a set $\mathcal{Q}^{\prime \prime} \subseteq \mathcal{Q}^{\prime}$ as follows. Let $\left\{P_{1}^{1}, P_{2}^{1}, \ldots, P_{x_{1}}^{1}\right\}=\mathcal{P}^{1}$ be an arbitrary ordering of the paths in \mathcal{P}^{1}. Set $\mathcal{Q}_{1}=\mathcal{Q}^{\prime}$ and then iterate from 2 to x_{1}, constructing a set \mathcal{Q}_{i} of size q_{i}.
On step $i \leq x_{1}$, consider the ordering \preceq_{i-1} of the paths in \mathcal{Q}_{i-1} according to their occurrence along P_{i-1}^{1}. By Theorem 3.1, there is a $\mathcal{Q}_{i} \subseteq \mathcal{Q}_{i-1}$ of order at least q_{i} such that P_{i}^{1} intersects \mathcal{Q}_{i} in order or in reverse with respect to \preceq_{i-1}. Since $\mathcal{Q}_{i} \subseteq \mathcal{Q}_{i-1}$, we have that each $P_{j}^{1} \in \mathcal{P}^{1}$ with $j \leq i$ also intersects \mathcal{Q}_{i} in order or in reverse with respect to \preceq_{i-1}.
After x_{1} steps, we set $\mathcal{Q}^{\prime \prime}:=\mathcal{Q}_{x_{1}}$. By construction, there is an ordering \preceq of $\mathcal{Q}^{\prime \prime}$ such that each $P_{i}^{1} \in \mathcal{P}^{1}$ intersects $\mathcal{Q}^{\prime \prime}$ in order or in reverse with respect to \preceq.
By the pigeon-hole principle, there is some $\mathcal{P}^{2} \subseteq \mathcal{P}^{1}$ of order at least x such that every path in \mathcal{P}^{2} intersects the paths of $\mathcal{Q}^{\prime \prime}$ in the same order. Hence, $\left(\mathcal{P}^{2}, \mathcal{Q}^{\prime \prime}\right)$ is an ordered $\left(x, q^{\prime \prime}\right)$-web where end $\left(\mathcal{P}^{2}\right) \subseteq \mathcal{P}$, satisfying (O 2).

The previous lemma leaves us with two cases to consider when constructing a cycle of welllinked sets. If Lemma 11.19 returns a folded ordered web then we can use the tools established so far to construct a cycle of well-linked sets directly.
In the second case of Lemma 11.19 we obtain an ordered web $\left(\mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ which ends on end $\left(\mathcal{H}^{1}\right)$. We can use the final subpaths of the paths in \mathcal{H}^{\prime} following the last path of \mathcal{V}^{\prime} to construct a linkage to \mathcal{H}^{2} which is disjoint from the path of order-linked sets constructed from the ordered web. To construct a back-linkage we use the paths in \mathcal{V}^{1}. The paths in \mathcal{V}^{1}, however, may intersect the path of order-linked sets we constructed which we need to avoid somehow. The key to solving this problem is the weak minimality of \mathcal{H} with respect to \mathcal{V}. We use the paths of \mathcal{V}^{2} to construct a large linkage that contradicts the weak minimality of \mathcal{H}.

We first define

$$
\begin{aligned}
\mathrm{h}_{11.20}\left(w_{2}\right) & :=\mathrm{p}_{11.19}\left(\left(w_{2}\right)^{2}-1\right), \\
v^{\prime}\left(w_{2}, \ell_{2}\right) & :=\mathrm{q}_{11.19}\left(\left(\left(w_{2} \ell_{2}-1\right)\binom{\left(w_{2}\right)^{2}-1}{w_{2}} w_{2}!+1\right)\right. \\
& \left.\cdot \ell_{6.12}\left(w_{2},\left(w_{2}\right)^{2}-1\right),\left(w_{2}\right)^{2}-1\right), \\
\mathrm{v}_{11.20}\left(w_{1}, \ell_{1}, w_{2}, \ell_{2}, c\right) & :=\mathrm{q}_{11.20}^{\prime}{ }_{11.19}\left(\mathrm{~h}_{10.7}\left(w_{1}\right)+v^{\prime}\left(w_{2}, \ell_{2}\right), c,\left(w_{2}\right)^{2}-1, \mathrm{v}_{10.7}\left(w_{1}, \ell_{1}\right)\right) .
\end{aligned}
$$

Note that $\mathrm{h}_{11.20}\left(w_{2}\right) \in O\left(\left(w_{2}\right)^{2}\right)$ and $\mathrm{v}_{11.20}\left(w_{1}, \ell_{1}, w_{2}, \ell_{2}, c\right) \in 2^{5 \uparrow \uparrow \text { poly }{ }^{15}\left(w_{1}, \ell_{1}, w_{2}, \ell_{2}, c\right)}$.
Lemma 11.20. Let $(\mathcal{H}, \mathcal{V})$ be an (h, v)-web where \mathcal{H} is weakly c-minimal with respect to \mathcal{V}. If $|\mathcal{H}| \geq \mathrm{h}_{11.20}\left(w_{2}\right)$ and $|\mathcal{V}| \geq \mathrm{v}_{11.20}\left(w_{1}, \ell_{1}, w_{2}, \ell_{2}, c\right)$, then one of the following is true:
(E1) $(\mathcal{H}, \mathcal{V})$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{1}}\right), \mathcal{P}\right)$ of width w_{1} and length ℓ_{1}. Additionally, there is a $\operatorname{start}(\mathcal{V})$-end (\mathcal{V})-linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ of order w_{1} using only arcs of \mathcal{V} such that \mathcal{L}_{2} is an $A\left(S_{0}\right)$ - $B\left(S_{\ell_{1}}\right)$-linkage and both \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$.
(E2) There is some $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ such that $\left(\mathcal{H}, \mathcal{V}^{\prime}\right)$ contains a uniform path of w_{2}-order-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{2}}\right), \mathcal{P}\right)$ of width w_{2} and length ℓ_{2} for which there are linkages $\mathcal{L}_{1}, \mathcal{L}_{2}$ such that
(L1) \mathcal{L}_{1} is a $B\left(S_{\ell_{2}}\right)$-end (\mathcal{H})-linkage of order w_{2} inside \mathcal{H} which is internally disjoint from \mathcal{V}^{\prime} and from $(\mathcal{S}, \mathcal{P})$, and
(L2) $\mathcal{L}_{2} \subseteq \mathcal{V}^{\prime}$ is a linkage of order $\ell_{2}+1$ where for each $L_{2, j} \in \mathcal{L}_{2}$ there is some $0 \leq i \leq \ell_{2}$ such that $A\left(S_{i}\right) \subseteq V\left(L_{2, j}\right)$ and $V\left(L_{2, j}\right) \cap V(\mathcal{S}, \mathcal{P}) \subseteq V\left(S_{i}\right)$.
Proof. We define $h_{2}=\left(w_{2}\right)^{2}-1, h_{1}=v_{10.7}\left(w_{1}, \ell_{1}\right), \ell_{4}=w_{2} \ell_{2}, \ell_{3}=\ell_{6.12}\left(w_{2}, h_{2}\right), t_{1}=$ $\left(\ell_{4}-1\right)\binom{h_{2}}{w_{2}} w_{2}!+1, v_{2}=t_{1} \ell_{3}, v_{1}=\mathrm{h}_{10.7}\left(w_{1}\right)+\mathrm{q}_{11.19}\left(v_{2}\right)$.
By Lemma 11.19, there is some $\mathcal{H}^{1} \subseteq \mathcal{H}$ such that one of the following cases hold:
Case 1: (O1) holds.
That is, there is a sublinkage $\mathcal{V}^{1} \subseteq \mathcal{V}$ for which $\left(\mathcal{V}^{1}, \mathcal{H}^{1}\right)$ is a folded ordered $\left(v_{1}, h_{1}\right)$-web. As $v_{1} \geq \mathrm{h}_{10.7}\left(w_{1}\right)$, by Lemma $10.7\left(\mathcal{V}^{1}, \mathcal{H}^{1}\right)$ contains a path of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width w_{1} and length ℓ_{1}. Additionally, there is a $\operatorname{start}\left(\mathcal{V}^{1}\right)$-end $\left(\mathcal{V}^{1}\right)$-linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ of order w_{1} using only arcs of \mathcal{V}^{1} such that \mathcal{L}_{2} is an $A\left(S_{0}\right)$ - $B\left(S_{\ell_{1}}\right)$-linkage and both \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$. This immediately satisfies (E1).
Case 2: (O2) holds.
That is, $\left(\mathcal{H}^{1}, \mathcal{V}\right)$ contains an ordered $\left(h_{2}, v_{2}\right)$-web $\left(\mathcal{H}^{2}, \mathcal{V}^{1}\right)$ such that end $\left(\mathcal{H}^{2}\right) \subseteq \operatorname{end}\left(\mathcal{H}^{1}\right)$.
Decompose \mathcal{H}^{2} into $\mathcal{H}^{2}=\mathcal{Q} \cdot \mathcal{L}_{1}^{\prime}$ such that \mathcal{L}_{1}^{\prime} is internally disjoint from \mathcal{V}^{1} and $\operatorname{start}\left(\mathcal{L}_{1}^{\prime}\right) \subseteq$ $V\left(\mathcal{V}^{1}\right)$. Since \mathcal{L}_{1}^{\prime} is internally disjoint from \mathcal{V}^{1}, we have that $\left(\mathcal{Q}, \mathcal{V}^{1}\right)$ is also an ordered $\left(h_{2}, v_{2}\right)$ web.
Let $\left(V_{1}^{1}, V_{2}^{1}, \ldots, V_{v_{2}}^{1}\right):=\mathcal{V}^{1}$ be an ordering of \mathcal{V}^{1} witnessing that $\left(\mathcal{Q}, \mathcal{V}^{1}\right)$ is an ordered web. For each $1 \leq i \leq t_{1}$ let T_{i} be the routing temporal digraph of \mathcal{Q} through $G_{i}:=\left(V_{(i-1) \ell_{3}+1}^{1}, V_{(i-1) \ell_{3}+2}^{1}\right.$, $\left.\ldots, V_{i \ell_{3}}^{1}\right)$. As every path in \mathcal{V}^{1} intersects every path in \mathcal{Q}, we have that $D_{j}\left(T_{i}\right)$ is unilateral for all $1 \leq i \leq t_{1}$ and all $1 \leq j \leq \ell_{3}$. Since $\ell\left(T_{i}\right)=\ell_{3}$, by Theorem 6.12 we have that every T_{i} contains a $\mathbf{P}_{w_{2}}$-routing φ_{i} over some $\mathcal{Q}_{i} \subseteq \mathcal{Q}$.
As there are at most $\binom{h_{2}}{w_{2}} w_{2}$! distinct φ_{i}, by the pigeon-hole principle there is some $\mathcal{I} \subseteq$ $\left\{1, \ldots, t_{1}\right\}$ of size ℓ_{4} such that $\varphi:=\varphi_{i}=\varphi_{j}$ and $\mathcal{Q}^{\prime}:=\mathcal{Q}_{i}=\mathcal{Q}_{j}$ hold for all $i, j \in \mathcal{I}$.
For each $i \in \mathcal{I}$ let \mathcal{R}_{i} be the maximal $V\left(V_{(i-1) \ell_{3}+1}^{1}\right)-V\left(V_{i \ell_{3}}^{1}\right)$-linkage of order w_{2} inside \mathcal{Q}^{\prime} and let T_{i}^{\prime} be the routing temporal digraph of \mathcal{R}_{i} through G_{i}. Note that φ induces a $\mathbf{P}_{w_{2}}$-routing ψ over \mathcal{R}_{i} in T_{i}^{\prime}.

By Lemma 7.6 we have that $\operatorname{start}\left(\mathcal{R}_{i}\right)$ is 1 -order-linked to end $\left(\mathcal{R}_{i}\right)$ inside $\mathrm{D}\left(\mathcal{R}_{i}\right) \cup \mathrm{D}\left(G_{i}\right)$ for every $i \in \mathcal{I}$. For every two consecutive $i<j \in \mathcal{I}$ (that is, there is no $k \in \mathcal{I}$ with $i<k<j$) let \mathcal{R}_{i}^{\prime} be the end $\left(\mathcal{R}_{i}\right)-\operatorname{start}\left(\mathcal{R}_{j}\right)$-linkage of order w_{2} in \mathcal{Q}^{\prime}. We define

$$
\begin{aligned}
\mathcal{P} & :=\left(\mathcal{R}_{i}^{\prime} \mid i \in \mathcal{I} \backslash \max (\mathcal{I})\right), \\
\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{w_{2} \ell_{2}-1}\right) & :=\mathcal{P}, \\
\mathcal{S} & :=\left(\mathrm{D}\left(\mathcal{R}_{i}\right) \cup \mathrm{D}\left(G_{i}\right) \mid i \in \mathcal{I}\right), \\
\left(S_{0}, S_{1}, \ldots, S_{w_{2} \ell_{2}}\right) & :=\mathcal{S},
\end{aligned}
$$

whereas the order of the elements of \mathcal{S} and \mathcal{P} is given by the order of $i \in \mathcal{I}$. Finally, we set $A\left(S_{j}\right)=\operatorname{start}\left(\mathcal{R}_{i}\right)$ and $B\left(S_{j}\right)=\operatorname{end}\left(\mathcal{R}_{i}\right)$ for every $0 \leq j \leq \ell_{2}$, where \mathcal{R}_{i} is the sublinkage of \mathcal{Q}^{\prime} which is inside S_{j}.
By choice of $\mathcal{R}_{i},(\mathcal{S}, \mathcal{P})$ is a uniform path of 1 -order-linked sets of width w_{2} and length $w_{2} \ell_{2}$. By Theorem 7.8, there is a uniform path of w_{2}-order-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{2}}^{\prime}\right)\right.$, $\left.\mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell_{2}-1}^{\prime}\right)\right)$ of length ℓ_{2} and width w_{2} inside $(\mathcal{S}, \mathcal{P})$. Additionally, for every $0 \leq i \leq \ell_{2}$ we have $S_{i}^{\prime} \subseteq(\mathcal{S}, \mathcal{P})\left[i w_{2},(i+1) w_{2}-1\right], A\left(S_{i}^{\prime}\right) \subseteq A\left(S_{i w_{2}}\right)$ and $B\left(S_{i}^{\prime}\right) \subseteq B\left(S_{(i+1) w_{2}-1}\right)$, and for $0 \leq i<\ell_{2}$ we have $\mathcal{P}_{i}^{\prime} \subseteq \mathcal{P}_{(i+1)\left(w_{2}-1\right)}$.
Let $\mathcal{L}_{1} \subseteq \mathcal{L}_{1}^{\prime}$ be the paths of \mathcal{L}_{1}^{\prime} satisfying start $\left(\mathcal{L}_{1}\right)=B\left(S_{\ell_{2}}^{\prime}\right)$. Since \mathcal{L}_{1}^{\prime} is internally disjoint from \mathcal{V}^{1} by construction and end $\left(\mathcal{L}_{1}\right) \subseteq \operatorname{end}(\mathcal{H})$, we have that \mathcal{L}_{1} is a $B\left(S_{\ell_{2}}^{\prime}\right)$-end (\mathcal{H})-linkage of order w_{2} which is internally disjoint from \mathcal{V}^{1}, satisfying (L1).
For each $0 \leq i \leq \ell_{2}$ let $L_{i} \in \mathcal{V}^{1}$ be the path of \mathcal{V}^{1} which intersects $A\left(S_{i}\right)$. By construction of \mathcal{S}, each path in \mathcal{V}^{1} intersects at most one $A\left(S_{j}\right)$. Since $S_{i}^{\prime} \subseteq(\mathcal{S}, \mathcal{P})\left[i w_{2},(i+1) w_{2}-1\right]$, we have that L_{i} intersects exactly one $A\left(S_{i}^{\prime}\right)$ as well. Let $\mathcal{L}_{2}=\left\{L_{i} \mid 0 \leq i \leq \ell_{2}\right\}$.
By construction we have $V\left(\mathcal{V}^{1}\right) \cap V\left(\mathcal{P}_{i}^{\prime}\right) \subseteq \operatorname{start}\left(\mathcal{P}_{i}^{\prime}\right) \cup \operatorname{end}\left(\mathcal{P}_{i}^{\prime}\right)$ for every $\mathcal{P}_{i}^{\prime} \in \mathcal{P}^{\prime}$. Further, L_{j} intersects only the cluster S_{i}^{\prime}. Hence, $\mathcal{L}_{2} \subseteq \mathcal{V}^{1}$ is a linkage of order $\ell_{2}+1$ and for each $L_{j} \in \mathcal{L}_{2}$ there is some $0 \leq i \leq \ell_{2}$ such that $A\left(S_{i}^{\prime}\right) \subseteq V\left(L_{j}\right)$ and $V\left(L_{j}\right) \cap V\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right) \subseteq V\left(S_{i}^{\prime}\right)$, satisfying (L2) and so (E2) as well.

We are now ready to prove the last intermediate step required to complete the proof of Theorem 11.22 from which Theorem 1.1 then follows.
We define

$$
\begin{array}{rlr}
\ell^{\prime}(w, c) & :=4 w+(\ell-1)(c+1)-2, \\
w^{\prime}(w, \ell) & :=\mathrm{q}_{11.10}(w, \ell)+2 \mathrm{r}_{11.10}(w, \ell), \\
v^{\prime}(w) & =\mathrm{h}_{11.20}(4 w), & \\
v^{\prime \prime}(w, \ell, c) & :=\mathrm{v}_{11.20}\left(w^{\prime}(w, \ell), \ell^{\prime}{ }_{11.10}(w, \ell), \mathrm{r}_{11.10}(w, \ell), \ell^{\prime}(w, c), c\right)-1, & \\
v^{\prime \prime \prime}(w, \ell, c) & =v^{\prime \prime}(w, \ell, c)\left(v^{\prime}(w)+1\right), & \mathrm{h}_{11.21} \\
\mathrm{~h}_{11.21}(w, \ell) & :=2 \mathrm{r}_{11.10}(w, \ell)+v^{\prime}(w)+1, & \mathrm{v}_{11.21} \\
\mathrm{v}_{11.21}(w, \ell, c) & :=v^{\prime \prime \prime}(w, \ell, c)\binom{\mathrm{h}_{11.21}(w, \ell)}{2 \mathrm{r}_{11.10}(w, \ell)}+1+\mathrm{h}_{11.21}(w, \ell) c . &
\end{array}
$$

Observe that $\mathrm{h}_{11.21}(w, \ell) \in O\left(w^{2} \ell^{2}\right)$ and $\mathrm{v}_{11.21}(w, \ell, c) \in 2^{8 \uparrow \uparrow p o l y}{ }^{25}(w, \ell, c)$.
Lemma 11.21. Let $(\mathcal{H}, \mathcal{V})$ be a 2 -horizontal web where \mathcal{H} is weakly c-minimal with respect to \mathcal{V}. If $|\mathcal{H}| \geq \mathrm{h}_{11.21}(w, \ell)$ and $|\mathcal{V}| \geq \mathrm{v}_{11.21}(w, \ell, c)$, then $\mathrm{D}((\mathcal{H}, \mathcal{V}))$ contains a cycle of well-linked sets of length ℓ and width w.

Proof. We define $z_{1}=c+1, q_{1}=\mathrm{q}_{11.10}(w, \ell), \ell_{4}=\ell-1, w_{4}=2 w, w_{3}=2 w_{4}, w_{2}=r_{11.10}(w, \ell)$, $w_{1}=q_{1}+2 w_{2}, \ell_{3}=2\left(w_{4}-1\right), \ell_{2}=\ell_{3}+z_{1} \ell_{4}, \ell_{1}=\ell^{\prime}{ }_{11.10}(w, \ell), m_{1}=2 w_{2}, m_{2}=h_{11.20}\left(w_{3}\right)$, $h_{1}=m_{1}+m_{2}+1, v_{2}=\mathrm{v}_{11.20}\left(w_{1}, \ell_{1}, w_{3}, \ell_{2}, c\right), v_{1}=\left(v_{2}-1\right)\left(m_{2}+1\right)\binom{h_{1}}{m_{1}}+1$. Observe that $\mathrm{h}_{11.21}(w, \ell)=m_{1}+m_{2}+1$ and $\mathrm{v}_{11.21}(w, \ell, c)=v_{1}+\mathrm{h}_{11.21}(w, \ell) c$.

Decompose \mathcal{H} into $\mathcal{H}=\mathcal{H}^{1} \cdot \mathcal{H}^{2}$ and decompose \mathcal{V} into $\mathcal{V}^{1} \cdot \mathcal{V}^{2}$ such that start $\left(\mathcal{V}^{2}\right) \subseteq V\left(\mathcal{H}^{2}\right)$ and \mathcal{V}^{2} is internally disjoint from \mathcal{H}^{2}. Hence, $V\left(\mathcal{V}^{2}\right) \cap V(\mathcal{H}) \subseteq V\left(\mathcal{H}^{1}\right) \cup$ start $\left(\mathcal{V}^{2}\right)$. By Definition 11.7, such a decomposition exist. For each $H_{i} \in \mathcal{H}$ we write H_{i}^{1} for the subpath of H_{i} in \mathcal{H}^{1} and H_{i}^{2} for the subpath of H_{i} in \mathcal{H}^{2}.
Let $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ be the paths $V_{j} \in \mathcal{V}$ for which there is some $H_{i} \in \mathcal{H}$ such that V_{j} contains a subpath V_{j}^{\prime} with start $\left(V_{j}^{\prime}\right) \in V\left(H_{i}^{1}\right)$ and $\operatorname{end}\left(V_{j}^{\prime}\right) \in V\left(H_{i}^{2}\right)$. Let $\mathcal{V}^{*}=\mathcal{V} \backslash \mathcal{V}^{\prime}$. Since $(\mathcal{H}, \mathcal{V})$ is weakly c-minimal 2-horizontal web, for each $H_{i} \in \mathcal{H}$ there are at most c paths in \mathcal{V}^{\prime} which contain a subpath as above. Hence, $\left|\mathcal{V}^{\prime}\right| \leq|\mathcal{H}| c$ and thus $\left|\mathcal{V}^{*}\right| \geq v_{1}$. Further, \mathcal{V}^{*} satisfies the following by construction.
(V1) Let $Q_{i}^{1} \cdot Q_{i}^{2} \in \mathcal{V}^{*}$ be an arbitrary decomposition of a path in \mathcal{V}^{*}. If Q_{i}^{2} intersects some $H_{j}^{2} \in \mathcal{H}^{2}$, then Q_{i}^{1} is disjoint from H_{j}^{1}.

Let $\mathcal{V}^{3} \subseteq \mathcal{V}^{1}$ and $\mathcal{V}^{4} \subseteq \mathcal{V}^{2}$ be the subpaths of \mathcal{V}^{1} and \mathcal{V}^{2} such that $V\left(\mathcal{V}^{3}\right) \subseteq V\left(\mathcal{V}^{*}\right)$ and $V\left(\mathcal{V}^{4}\right) \subseteq V\left(\mathcal{V}^{*}\right)$. Note that $\mathcal{V}^{*}=\mathcal{V}^{3} \cdot \mathcal{V}^{4}$.
For each subpath V_{i} of \mathcal{V}^{*} which contains some path of \mathcal{V}^{4} as a subpath define a linear ordering $\preceq_{V_{i}}$ of \mathcal{H}^{1} such that $H_{a} \preceq_{V_{i}} H_{b}$ if V_{i} does not intersect H_{b} before the first intersection of V_{i} with H_{a}. As every $V_{i}^{4} \in \mathcal{V}^{4}$ intersects every $H_{a} \in \mathcal{H}^{1}$, every $\preceq_{V_{i}}$ is a linear ordering. Define $\mathcal{M}\left(V_{i}\right)$ as the set of $m_{1}+m_{2}$ maximal elements of $\preceq_{V_{i}}$ and $\mathcal{N}\left(V_{i}\right)$ as the set of m_{1} maximal elements of $\preceq_{V_{i}}$.
For each $1 \leq i \leq\left|\mathcal{V}^{*}\right|$, decompose $V_{i} \in \mathcal{V}^{3} \cdot \mathcal{V}^{4}$ and construct a set \mathcal{M}_{i} iteratively as follows. Start with $V_{i}=Q_{i}^{1} \cdot Q_{i}^{2}$ such that $Q_{i}^{1} \in \mathcal{V}^{3}$ and $Q_{i}^{2} \in \mathcal{V}^{4}$. Set $\mathcal{H}^{\prime}=\mathcal{H}^{2}$ and set $\mathcal{M}_{i}=\emptyset$. Repeat the following steps until stopping.

1. Let $H_{j} \in \mathcal{H}$ be such that $\operatorname{start}\left(Q_{i}^{2}\right) \in V\left(H_{j}^{2}\right)$.
2. If $H_{j}^{1} \notin \mathcal{M}\left(Q_{i}^{2}\right)$, stop the construction.
3. Otherwise, set $\mathcal{H}^{\prime}:=\mathcal{H}^{\prime} \backslash\left\{H_{j}^{2}\right\}$ and let $Q_{i}^{3} \cdot Q_{i}^{4}:=Q_{i}^{1}$ such that start $\left(Q_{i}^{4}\right) \subseteq V\left(\mathcal{H}^{\prime}\right)$ and Q_{i}^{4} is internally disjoint from \mathcal{H}^{\prime}.
4. Set $Q_{i}^{1}:=Q_{i}^{3}, Q_{i}^{2}:=Q_{i}^{4} \cdot Q_{i}^{2}$ and $\mathcal{M}_{i}:=\mathcal{M}_{i} \cup\left\{H_{j}^{1}\right\}$.

By (V1), whenever we add some H_{j}^{1} to \mathcal{M}_{i} in the construction above, then $H_{j}^{1} \in \mathcal{M}\left(Q_{i}^{4} \cdot \mathcal{Q}_{i}^{2}\right)$ as well. Hence, $\mathcal{M}_{i} \subseteq \mathcal{M}\left(Q_{i}^{2}\right)$. The construction above stops at step 2 for every $V_{i} \in \mathcal{V}^{*}$ after at most $\left|\mathcal{M}\left(V_{i}\right)\right|$ iterations because $\left|\mathcal{M}\left(V_{i}\right)\right| \leq|\mathcal{H}|$, every path in \mathcal{V}^{3} intersects every path in \mathcal{H}^{2}, and $\left|\mathcal{M}_{i}\right|$ increases after each iteration.
Since $\left|\mathcal{V}^{*}\right| \geq\left(v_{2}-1\right)\binom{h_{1}}{m_{1}}\binom{h_{1}-m_{1}}{m_{2}}+1$, by the pigeon-hole principle there is some $\mathcal{Q}^{*} \subseteq \mathcal{V}^{*}$ of order v_{2} such that $\mathcal{M}\left(Q_{i}^{*}\right)=\mathcal{M}\left(Q_{j}^{*}\right)$ and $\mathcal{N}^{\prime}:=\mathcal{N}\left(Q_{i}^{*}\right)=\mathcal{N}\left(Q_{j}^{*}\right)$ for every $Q_{i}^{*}, Q_{j}^{*} \in \mathcal{Q}^{*}$. We set $\mathcal{M}^{\prime}=\mathcal{M}\left(Q_{i}^{*}\right) \backslash \mathcal{N}\left(Q_{i}^{*}\right)$ for some $Q_{i}^{*} \in \mathcal{Q}^{*}$. Decompose \mathcal{Q}^{*} into $\mathcal{Q}^{*}=\mathcal{Q}^{1} \cdot \mathcal{Q}^{2} \cdot \mathcal{Q}^{M} \cdot \mathcal{Q}^{N}$ such that $\mathcal{Q}^{1}=\left\{Q_{i}^{1} \mid Q_{i} \in \mathcal{Q}^{*}\right\}$, end $\left(\mathcal{Q}^{2}\right) \subseteq V\left(\mathcal{M}^{\prime}\right)$, end $\left(\mathcal{Q}^{M}\right) \subseteq V\left(\mathcal{N}^{\prime}\right)$, $\mathcal{Q}^{1} \cdot \mathcal{Q}^{2}$ is internally disjoint from $\mathcal{M}^{\prime} \cup \mathcal{N}^{\prime}$, and \mathcal{Q}^{M} is internally disjoint from \mathcal{N}^{\prime}. By choice of \mathcal{M}^{\prime} and \mathcal{N}^{\prime}, such a decomposition exists.
$\mathcal{P}^{1}=\left\{H_{j}^{1} \in \mathcal{H}^{1} \backslash\left(\mathcal{N}^{\prime} \cup \mathcal{M}^{\prime}\right) \mid H_{j}^{2} \in \mathcal{H}^{\prime}\right\}$ and $\mathcal{P}^{2}=\left\{H_{j}^{2} \mid H_{j}^{1} \in \mathcal{P}^{1}\right\}$. By construction of \mathcal{H}^{\prime}, for each $Q_{i}^{1} \in \mathcal{Q}^{1}$ we have that Q_{i}^{2} intersects H_{j}^{1}, where end $\left(Q_{i}^{1}\right) \subseteq V\left(H_{j}^{2}\right)$ and $Q_{i}^{1} \cdot Q_{i}^{2} \in \mathcal{Q}^{1} \cdot \mathcal{Q}^{2}$. Finally, $\left(\mathcal{M}^{\prime}, \mathcal{Q}^{M}\right)$ is a weakly c-minimal 1 -horizontal web where $\left|\mathcal{M}^{\prime}\right|=m_{2}$ and $\left|\mathcal{Q}^{M}\right|=v_{2}$. From Lemma 11.20, we obtain two cases.
Case 1: (E1) holds.

That is, $\left(\mathcal{M}^{\prime}, \mathcal{Q}^{M}\right)$ contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{1}}\right), \mathcal{P}\right)$ of width w_{1} and length ℓ_{1}. Additionally, there is a $\operatorname{start}\left(\mathcal{Q}^{M}\right)$-end $\left(\mathcal{Q}^{M}\right)$-linkage $\mathcal{L}=\mathcal{L}_{1} \cdot \mathcal{L}_{2} \cdot \mathcal{L}_{3}$ of order $w_{1} \geq q_{1}$ using only arcs of \mathcal{Q}^{M} such that \mathcal{L}_{2} is an $A\left(S_{0}\right)-B\left(S_{\ell}\right)$-linkage and both \mathcal{L}_{1} and \mathcal{L}_{3} are internally disjoint from $(\mathcal{S}, \mathcal{P})$.
We construct a $B\left(S_{\ell_{1}}\right)-A\left(S_{0}\right)$-linkage \mathcal{R} of order w_{2} which is internally disjoint from \mathcal{L}_{2} as follows. Take an end $\left(\mathcal{L}_{2}\right)$-end $\left(\mathcal{N}^{\prime}\right)$-linkage \mathcal{X}_{1} in $\mathrm{D}\left(\mathcal{N}^{\prime} \cup \mathcal{Q}^{N} \cup \mathcal{L}_{3}\right)$. Take an end $\left(\mathcal{X}_{1}\right)$-start $\left(\mathcal{L}_{1}\right)$ linkage \mathcal{X}_{2} in $\mathrm{D}\left(\mathcal{H}^{2} \cup \mathcal{Q}^{1}\right)$. Since both $\left(\mathcal{M}^{\prime}, \mathcal{Q}^{M}\right)$ and $\left(\mathcal{H}^{2}, \mathcal{Q}^{1}\right)$ are webs and $\operatorname{end}\left(\mathcal{L}_{3}\right) \subseteq$ end $\left(\mathcal{Q}^{M}\right)=\operatorname{start}\left(\mathcal{Q}^{N}\right)$, by Observation 11.15 the linkages \mathcal{X}_{1} and \mathcal{X}_{2} exist.
As (E1) holds, the linkages $\mathcal{L}_{1}, \mathcal{L}_{2}$ and \mathcal{L}_{3} are pairwise internally disjoint. Since \mathcal{L}_{2} is contained in $\left(\mathcal{M}^{\prime}, \mathcal{Q}^{M}\right)$, we have that \mathcal{L}_{2} is internally disjoint from \mathcal{M}^{\prime} and, hence, from \mathcal{X}_{1}. Further, as \mathcal{L}_{2} only uses arcs of \mathcal{Q}^{M}, we have that \mathcal{L}_{2} is internally disjoint from \mathcal{X}_{2}. Hence, $\mathcal{R}^{\prime}=\mathcal{X}_{1} \cdot \mathcal{X}_{2} \cdot \mathcal{L}_{1}^{\prime}$ is internally disjoint from \mathcal{L}_{2}, where $\mathcal{L}_{1}^{\prime} \subseteq \mathcal{L}_{1}$ are the paths with $\operatorname{start}\left(\mathcal{L}_{1}^{\prime}\right)=\operatorname{end}\left(\mathcal{X}^{2}\right)$.
Because $\mathcal{L}_{1}, \mathcal{L}_{2}$ and \mathcal{L}_{3} only use arcs of \mathcal{Q}^{M} and \mathcal{Q}^{M} is internally disjoint from \mathcal{N}^{\prime} and from \mathcal{H}^{2}, we have that \mathcal{L}_{1} and \mathcal{L}_{2} are internally disjoint from \mathcal{X}_{1} and from \mathcal{X}_{2}. Hence, \mathcal{R}^{\prime} is a half-integral $B\left(S_{\ell_{1}}\right)-A\left(S_{0}\right)$-linkage, as end $\left(\mathcal{L}_{1}\right)=\operatorname{start}\left(\mathcal{L}_{2}\right) \supseteq A\left(S_{0}\right)$ and $\operatorname{start}\left(\mathcal{L}_{2}\right)=\operatorname{end}\left(\mathcal{L}_{1}\right) \supseteq$ $B\left(S_{\ell_{1}}\right)$. By Lemma 3.3, there is a $B\left(S_{\ell_{1}}\right)-A\left(S_{0}\right)$-linkage $\mathcal{R}^{\prime \prime}$ of order w_{2} inside $\mathrm{D}\left(\mathcal{R}^{\prime}\right)$. Hence, by Lemma 11.10, $\mathrm{D}\left((\mathcal{S}, \mathcal{P}) \cup \mathcal{R}^{\prime \prime}\right)$ contains a cycle of well-linked sets of width w and length ℓ.
Case 2: (E2) holds.
That is, there is some $\mathcal{Q}^{\prime \prime} \subseteq \mathcal{Q}^{M}$ such that $\left(\mathcal{M}^{\prime}, \mathcal{Q}^{\prime \prime}\right)$ contains a uniform path of w_{3}-order-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{2}}\right), \mathcal{P}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell_{2}-1}\right)\right)$ of width w_{3} and length ℓ_{2} for which there are linkages \mathcal{L}_{1} and \mathcal{L}_{2} satisfying (L1) and (L2).
Let $\mathcal{L}_{2}^{\prime} \subseteq \mathcal{L}_{2}$ be the paths of \mathcal{L}_{2} satisfying $V\left(\mathcal{L}_{2}^{\prime}\right) \cap \bigcup_{i=0}^{\ell_{3}} V\left(S_{2 i}\right) \neq \emptyset$, let \mathcal{L}_{3}^{\prime} be the paths of \mathcal{Q}^{2} such that end $\left(\mathcal{L}_{3}^{\prime}\right)=\operatorname{start}\left(\mathcal{L}_{2}^{\prime}\right)$. Finally, let $\mathcal{Q}^{4} \subseteq \mathcal{Q}^{2}$ be the paths satisfying end $\left(\mathcal{Q}^{4}\right)=\operatorname{start}\left(\mathcal{L}_{2}\right)$ and let $\mathcal{Q}^{3} \subseteq \mathcal{Q}^{1}$ be the paths satisfying end $\left(\mathcal{Q}^{3}\right)=\operatorname{start}\left(\mathcal{L}_{3}^{\prime}\right)$.
Claim 1. There are i, j with $j-i>\ell_{4}$ and $i \geq \ell_{3}+1$ for which some $\mathcal{Q}^{5} \subseteq \mathcal{Q}^{3}$ of order w_{5} exists such that \mathcal{Q}^{5} is internally disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$.

Proof. Assume towards a contradiction that for every $\ell_{3}+1 \leq i \leq j \leq \ell_{2}$ with $j-i>\ell_{4}$ and every $\mathcal{Q}^{5} \subseteq \mathcal{Q}^{3}$ of order at least w_{5} there is a path $Q_{x}^{5} \in \mathcal{Q}^{5}$ which intersects some vertex of $(\mathcal{S}, \mathcal{P})[i, j]$.
For each $1 \leq k \leq z_{1}$ we construct sets $\mathcal{S}_{k}^{a}, \mathcal{S}_{k}^{b} \subseteq \mathcal{S}, \mathcal{O}_{k}^{1} \subseteq \mathcal{Q}^{3}$ and bijections $f_{a, k}: \mathcal{O}_{k}^{1} \rightarrow \mathcal{S}_{k}^{a}$ and $f_{b, k}: \mathcal{O}_{k}^{1} \rightarrow \mathcal{S}_{k}^{b}$ as follows.
Start with empty $\mathcal{S}_{0}^{a}, \mathcal{S}_{0}^{b}, \mathcal{O}_{0}^{1}, f_{a, 0}$ and $f_{b, 0}$. Iterate from 1 to z_{1}. On step k, choose some $Q_{j}^{1} \in$ $\mathcal{Q}^{3} \backslash \mathcal{O}_{k-1}^{1}$ such that Q_{j}^{1} intersects some $S_{i} \in \mathcal{S}$ in $(\mathcal{S}, \mathcal{P})\left[\ell_{3}+1+w k, \ell_{3}+1+w(k+1)-1\right]$, and then set $\mathcal{O}_{k}^{1}=\mathcal{O}_{k-1}^{1} \cup\left\{Q_{j}^{1}\right\}, \mathcal{S}_{k}^{a}=\mathcal{S}_{k-1}^{a} \cup\left\{S_{i-1}\right\}$ and $\mathcal{S}_{k}^{b}=\mathcal{S}_{k-1}^{b} \cup\left\{S_{i}\right\}$. Further, define $f_{a, k}$ and $f_{b, k}$ as the functions satisfying $f_{a, k}\left(Q_{x}^{i}\right)=f_{a, k-1}\left(Q_{x}^{i}\right)$ for all $Q_{x}^{i} \in \mathcal{S}_{k-1}^{a}, f_{b, k}\left(Q_{x}^{i}\right)=f_{b, k-1}\left(Q_{x}^{i}\right)$ for all $Q_{x}^{i} \in \mathcal{S}_{k-1}^{b}, f_{a, k}\left(Q_{j}^{1}\right)=S_{i-1}$, and $f_{b, k}\left(Q_{j}^{1}\right)=S_{i}$.
Because $\left|\mathcal{O}_{k-1}^{1}\right|=k-1$, we have $\left|\mathcal{Q}^{3} \backslash \mathcal{O}_{k-1}^{1}\right| \geq w_{5}$. Hence, in every step k, there is some $Q_{j}^{1} \in \mathcal{Q}^{3} \backslash \mathcal{O}_{k-1}^{1}$ which intersects $(\mathcal{S}, \mathcal{P})\left[\ell_{3}+1+w(k-1), \ell_{3}+1+w k-1\right]$. Further, $(\mathcal{S}, \mathcal{P})$ has length $\ell_{2}=\ell_{3}+(c+1) \ell_{4}$. Thus, we can construct such sets $\mathcal{S}_{k}^{a}, \mathcal{S}_{k}^{b}$ and \mathcal{O}_{k}^{1}. Let $\mathcal{S}^{a}=\mathcal{S}_{z_{1}}^{a}$, $\mathcal{S}^{b}=\mathcal{S}_{z_{1}}^{b}, \mathcal{O}^{1}=\mathcal{O}_{z_{1}}^{1}, f_{a}=f_{a, z_{1}}$ and $f_{b}=f_{b, z_{1}}$.
Let $X=V\left(\mathcal{O}^{1}\right) \cap V\left((\mathcal{S}, \mathcal{P})\left[\ell_{3}+1, \ell_{2}\right]\right)$. We construct an X-end $\left(\mathcal{Q}^{3}\right)$-linkage \mathcal{Z} of order z_{1} as follows. For each $O_{j}^{1} \in \mathcal{O}^{1}$ choose some $x \in X \cap f_{b}\left(O_{j}^{1}\right)$ and add the x-end $\left(\mathcal{O}^{1}\right) \subseteq \operatorname{end}\left(\mathcal{Q}^{3}\right)$ subpath of O_{j}^{1} to \mathcal{Z}.
Note that $|X|=|\mathcal{Z}| \geq z_{1}$. By choice of P_{e}^{2}, end $(\mathcal{Z}) \subseteq V\left(P_{e}^{2}\right)$. Let a be the last arc of P_{e}^{1}.
Construct a $V\left(P_{e}^{1}\right)-V\left(P_{e}^{2}\right)$-linkage \mathcal{F} of order c avoiding a as follows. For each $O_{i}^{1} \in \mathcal{O}^{1}$ let $S_{j}=f_{b}\left(O_{i}^{1}\right)$ and let $\left(a_{j, 1}, a_{j, 2}, \ldots, a_{j, w_{3}}\right):=A\left(S_{j}\right)$ and $\left(a_{j-1,1}, a_{j-1,2}, \ldots, a_{j-1, w_{3}}\right):=A\left(S_{j-1}\right)$ be
ordered according to the orders witnessing that $A\left(S_{j}\right)$ is w_{3}-order-linked to $B\left(S_{j}\right)$ and $A\left(S_{j-1}\right)$ is w_{3}-order-linked to $B\left(S_{j-1}\right)$. Let $L_{i}^{2} \in \mathcal{L}_{2}$ be the path with $V\left(L_{i}^{2}\right) \cap V((\mathcal{S}, \mathcal{P})) \subseteq f_{a}\left(O_{i}^{1}\right)=S_{j-1}$ and let F_{i} be a $V\left(P_{e}^{1}\right)-a_{j-1,1}$ path in $\mathcal{Q}^{4} \cdot \mathcal{L}_{2}$.
The path of w_{3}-order-linked sets $(\mathcal{S}, \mathcal{P})$ is contained within $\mathrm{D}\left(\mathcal{M}^{\prime} \cup \mathcal{Q}^{M}\right)$. By (L2), $\mathcal{L}_{2} \subseteq \mathcal{Q}^{M}$ holds. Further, \mathcal{Q}^{4} is contained inside \mathcal{Q}^{2}. By choice of \mathcal{Q}^{4}, every path in \mathcal{Q}^{4} intersects P_{e}^{1}. For each $O_{i}^{1} \in \mathcal{O}^{1}$ there is some $L_{2}^{i} \in \mathcal{L}_{2}$ such that $A\left(S_{j}\right) \subseteq V\left(L_{2}^{i}\right)$, where $S_{j}=f_{a}\left(O_{i}^{1}\right)$. Hence, there is some $Q_{i}^{4} \in \mathcal{Q}^{4}$ such that $Q_{i}^{4} \cdot L_{2}^{i}$ contains a $V\left(P_{e}^{1}\right)-a_{j-1,1}$ path as desired. Thus, the linkage \mathcal{F}_{1} above exists.
Construct an end $\left(\mathcal{F}_{1}\right)-\operatorname{start}\left(\mathcal{Z}^{\prime}\right)$-linkage \mathcal{F}_{2} as follows. For each $O_{i}^{1} \in \mathcal{O}^{1}$, let $S_{j}=f_{b}\left(O_{i}^{1}\right)$ and let $F_{4, i}$ be an $A\left(S_{j}\right)$ - x_{i} path in S_{j}, where $x_{i} \in \operatorname{start}(\mathcal{Z}) \cap V\left(O_{i}^{1}\right)$. Let $\left\{a_{j, k}\right\}=\operatorname{start}\left(F_{4, i}\right)$. Let $F_{3, i}$ be an $a_{j-1,1}-b_{j-1, k}$ path in S_{j-1}. As $\left\{b_{j-1, k}\right\}$ is a 1 -shift of $\left\{a_{j-1,1}\right\}$ and $A\left(S_{j-1}\right)$ is $\ell_{3^{-}}$ order-linked to $B\left(S_{j-1}\right)$ in S_{j-1}, such a path $F_{3, i}$ exists. Now set $F_{2, i}=F_{3, i} \cdot P_{j-1, k} \cdot F_{4, i}$, where $P_{j-1, k} \in \mathcal{P}_{j-1}$ is the $b_{j-1, k}-a_{j, k}$ path in \mathcal{P}_{j-1}.
Since $(\mathcal{S}, \mathcal{P})$ is a uniform path of w_{3}-order-linked sets, each $F_{2, i}$ is a path. Let $\mathcal{F}_{3}=\left\{F_{3, i} \mid\right.$ $0 \leq i \leq c\}$ and $\mathcal{F}_{4}=\left\{F_{4, i} \mid 0 \leq i \leq c\right\}$. As each S_{j} contains at most one path of $\mathcal{F}_{3} \cup \mathcal{F}_{4}$, we have that \mathcal{F}_{3} and \mathcal{F}_{4} are two disjoint linkages inside $(\mathcal{S}, \mathcal{P})$. Hence, $\mathcal{F}_{2}=\left\{F_{2, i} \mid 0 \leq i \leq c\right\}$ is a end $\left(\mathcal{F}_{1}\right)$-start (\mathcal{Z})-linkage of order $c+1$ as desired. Finally, let \mathcal{F}_{5} be the $\operatorname{start}\left(\mathcal{F}_{1}\right)$-end $\left(\mathcal{F}_{2}\right)$ linkage contained inside $\mathrm{D}\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)$. Since each path in one linkage intersects exactly one path in the other, we have that $\left|\mathcal{F}_{5}\right|=\left|\mathcal{F}_{1}\right|$.
Construct an end $\left(\mathcal{F}_{5}\right)-V\left(P_{e}^{2}\right)$-linkage \mathcal{F}_{3} of order z_{1} by following the corresponding paths of \mathcal{Z} until the first intersection with P_{e}^{2}. By choice of \mathcal{Z}, this is possible.
If there is some path in $\mathcal{F}:=\mathcal{F}_{5} \cdot \mathcal{F}_{3}$ using a, we delete this path from \mathcal{F}. Hence, we obtain a $V\left(P_{e}^{1}\right)-V\left(P_{e}^{2}\right)$-linkage \mathcal{F} of order at least c inside $\mathrm{D}\left(\mathcal{H}^{1} \cup \mathcal{Q}^{2} \cup \mathcal{Q}^{M}\right)-a$, contradicting the initial assumption that $(\mathcal{H}, \mathcal{V})$ is a weakly c-minimal 2 -horizontal web.

By Claim 1, there is some $\mathcal{Q}^{5} \subseteq \mathcal{Q}^{3}$ of order w_{3} and some $\ell_{3}+1 \leq i<j \leq \ell_{2}$ such that \mathcal{Q}^{5} is internally disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$ and $j-i \geq \ell_{4}-1$.
By Lemma 8.3, the path of w_{3}-order-linked sets $(\mathcal{S}, \mathcal{P})[i, j]$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}=\left(S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\ell_{4}}^{\prime}\right), \mathcal{P}^{\prime}=\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell_{4}-1}^{\prime}\right)\right)$ of width w_{3} and length ℓ_{4} such that $A\left(S_{0}^{\prime}\right) \subseteq$ $A\left(S_{i}\right)$ and $B\left(S_{\ell_{4}}^{\prime}\right) \subseteq B\left(S_{j}\right)$.
Construct a $B\left(S_{\ell_{4}}^{\prime}\right)-A\left(S_{0}^{\prime}\right)$-linkage \mathcal{R} of order w_{3} as follows.
By Observation 7.4 , there is a $B\left(S_{\ell_{4}}^{\prime}\right)$ - $B\left(S_{\ell_{2}}\right)$-linkage \mathcal{Z}_{5} of order w_{3} inside $(\mathcal{S}, \mathcal{P})$.
Let $\mathcal{L}_{1}^{\prime} \subseteq \mathcal{L}_{1}$ be the linkage satisfying $\operatorname{start}\left(\mathcal{L}_{1}^{\prime}\right)=\operatorname{end}\left(\mathcal{Z}_{5}\right)$ and let $\mathcal{L}_{3}^{\prime \prime} \subseteq \mathcal{L}_{3}^{\prime}$ be the linkage satisfying $\operatorname{start}\left(\mathcal{L}_{3}^{\prime \prime}\right)=\operatorname{end}\left(\mathcal{Q}^{5}\right)$. Take an end $\left(\mathcal{L}_{1}^{\prime}\right)$-start $\left(\mathcal{L}_{3}^{\prime \prime}\right)$-linkage \mathcal{X}_{1} of order w_{3} in $\mathrm{D}\left(\mathcal{H}^{2} \cup \mathcal{Q}^{5}\right)$. Because $\left(\mathcal{H}^{2}, \mathcal{Q}^{5}\right)$ is a web, and because end $\left(\mathcal{L}_{1}^{\prime}\right) \subseteq \operatorname{end}\left(\mathcal{H}^{1}\right)=\operatorname{start}\left(\mathcal{H}^{2}\right)$ and $\operatorname{start}\left(\mathcal{L}_{3}^{\prime \prime}\right)=$ end $\left(\mathcal{Q}^{5}\right)$ hold, by Observation 11.15 such a linkage \mathcal{X}_{1} exists.
For each $i \in\left\{0, \ldots, w_{3}-1\right\}$ let $X_{2, i}$ be a path inside $\mathrm{D}\left(\mathcal{L}_{3}^{\prime \prime} \cup \mathcal{L}_{2}^{\prime}\right)$ which starts on $\operatorname{start}\left(\mathcal{X}_{1}\right)$ and ends on $a_{2 i, i} \in A\left(S_{2 i}\right)$, where $\left(a_{2 i, 0}, a_{2 i, 1}, \ldots, a_{2 i, w_{3}-1}\right):=A\left(S_{2 i}\right)$ is sorted according to the order witnessing that $A\left(S_{2 i}\right)$ is w_{3}-order-linked to $B\left(S_{2 i}\right)$ inside $S_{2 i}$. Let $\mathcal{X}_{2}=\left\{X_{2,0}, X_{2,1}, \ldots, X_{2, w_{5}-1}\right\}$. By choice of \mathcal{L}_{2}^{\prime} and of $\mathcal{L}_{3}^{\prime \prime}$ and because (L2) holds, such a linkage \mathcal{X}_{2} exists.
Construct an end $\left(\mathcal{X}_{2}\right)-A\left(S_{2\left(w_{3}-1\right)}\right)$-linkage \mathcal{X}_{3} inside $(\mathcal{S}, \mathcal{P})$ as follows. Towards this end, we construct, for each $0 \leq i \leq w_{3}-1$, an $A\left(S_{2(i-1)}\right)-A\left(S_{2 i}\right)$-linkage \mathcal{X}_{3}^{i} of order $i+1$. Start with $\mathcal{X}_{3}^{0}:=\left\{a_{0,0}\right\} \subseteq A\left(S_{0}\right)$.
On step $i \geq 1$, let $\left(b_{2(i-1), 0}, b_{2(i-1), 1}, \ldots, b_{2(i-1), w_{3}-1}\right):=B\left(S_{2(i-1)}\right)$ be the ordering of the set $B\left(S_{2(i-1)}\right)$ witnessing that $A\left(S_{2(i-1)}\right)$ is w_{3}-order linked to $B\left(S_{2(i-1)}\right)$. Let \mathcal{Y}_{i} be an end $\left(\mathcal{X}_{3}^{i-1}\right)$ -B_{i}-linkage of order i in $S_{2(i-1)}$, where $B_{i}=\left\{b_{2(i-1), j} \in B\left(S_{2(i-1)}\right) \mid 1 \leq j \leq i\right\}$. Since $A\left(S_{2(i-1)}\right)$ is w_{3}-order-linked to $B\left(S_{2(i-1)}\right)$ in $S_{2(i-1)}$ and end $\left(\mathcal{X}_{3}^{i-1}\right)$ contains the minimal i elements of the corresponding ordering, such a linkage \mathcal{Y}_{i} exists.

Let \mathcal{Z}_{i} be a $B_{i}-A_{i}$ the linkage of order $i+1$ in $\mathcal{P}_{2(i-1)}$ such that end $\left(\mathcal{Y}_{i}\right) \subseteq \operatorname{start}\left(\mathcal{Z}_{i}\right)$, where $A_{i}=\left\{a_{2 i, j} \mid 1 \leq j \leq i+1\right\}$. Since $(\mathcal{S}, \mathcal{P})$ is a uniform path of w_{3}-order-linked sets, such a linkage \mathcal{Z}_{i} exists. Set $\mathcal{X}_{3}^{i}=\mathcal{X}_{3}^{i-1} \cdot \mathcal{Y}_{i} \cdot \mathcal{Z}_{i}$. Since $\left|\mathcal{Y}_{i} \cdot \mathcal{Z}_{i}\right|=i+1, \mathcal{X}_{3}^{i}$ is a start $\left(\mathcal{X}_{3}^{i}\right)$ - A_{i}-linkage of order $i+1$ (recall that, by definition of the concatenation operation \cdot, the additional path in \mathcal{Z}_{i} which does not have a corresponding endpoint in \mathcal{Y}_{i} is simply added to the result of the concatenation).
After iterating all the steps above, we obtain an end $\left(\mathcal{X}_{2}\right)-A\left(S_{2\left(w_{3}-1\right)}\right)$-linkage $\mathcal{X}_{3}:=\mathcal{X}_{3}^{w_{3}-1}$ of order w_{3} as desired. By Lemma 7.7, $A\left(S_{2\left(w_{3}-1\right)}\right)$ is w_{3}-order-linked to $A\left(S_{i}\right) \supseteq A\left(S_{0}^{\prime}\right)$ in $(\mathcal{S}, \mathcal{P})\left[2\left(w_{3}-1\right), i\right]$. As $\operatorname{start}\left(\mathcal{X}_{3}\right)$ contains the minimal w_{3} elements of $A\left(S_{2\left(w_{3}-1\right)}\right)$, the set $A\left(S_{0}^{\prime}\right)$ is an w_{3}-shift of $A\left(S_{2\left(w_{3}-1\right)}\right)$. Hence, there is an end $\left(\mathcal{X}_{3}\right)$ - $A\left(S_{0}^{\prime}\right)$-linkage \mathcal{X}_{4} of order w_{3} in $(\mathcal{S}, \mathcal{P})\left[2\left(w_{3}-1\right), i\right]$.
The concatenation $\mathcal{X}_{2} \cdot \mathcal{X}_{3} \cdot \mathcal{X}_{4}$ produces a half-integral start $\left(\mathcal{L}_{3}^{\prime \prime}\right)$ - $A\left(S_{0}^{\prime}\right)$-linkage of order w_{3}. By Lemma 3.3 there is a $\operatorname{start}\left(\mathcal{X}_{2}\right)-A\left(S_{0}^{\prime}\right)$-linkage \mathcal{X}_{5} of order w_{4} inside $\mathrm{D}\left(\mathcal{X}_{2} \cup \mathcal{X}_{3}\right)$.
Let $\mathcal{X}_{6} \subseteq \mathcal{Z}_{5} \cdot \mathcal{L}_{1}^{\prime} \cdot \mathcal{X}_{1}$ be the linkage of order w_{4} with end $\left(\mathcal{X}_{6}\right)=\operatorname{start}\left(\mathcal{X}_{5}\right)$. We claim that $\mathcal{X}_{6} \cdot \mathcal{X}_{5}$ is a half-integral $B\left(S_{\ell_{4}}^{\prime}\right)$ - $A\left(S_{0}^{\prime}\right)$-linkage of order w_{4}.
Assume towards a contradiction that there is some $v \in V\left(\mathcal{Z}_{5} \cdot \mathcal{L}_{1}^{\prime}\right) \cap V\left(\mathcal{X}_{1}\right) \cap V\left(\mathcal{X}_{5}\right)$. Since $\mathcal{Z}_{5} \cdot \mathcal{L}_{1}^{\prime}$ is contained in $\mathrm{D}\left(\mathcal{M}^{\prime} \cup \mathcal{Q}^{M}\right)$ and \mathcal{X}_{1} is contained inside $\mathrm{D}\left(\mathcal{Q}^{5} \cup \mathcal{H}^{2}\right)$, we have that $v \in V\left(\mathcal{Q}^{5}\right) \cap V\left(\mathcal{M}^{\prime}\right)$. Furthermore, v is not in $(\mathcal{S}, \mathcal{P})\left[0,2\left(w_{5}-1\right)\right]$ as $\mathcal{Z}_{5} \cdot \mathcal{L}_{1}^{\prime}$ is disjoint from $(\mathcal{S}, \mathcal{P})\left[0,2\left(w_{3}-1\right)\right]$ by construction. As $v \in V\left(\mathcal{X}_{5}\right)$ and $\mathcal{X}_{3} \cdot \mathcal{X}_{4}$ is contained inside the path of order-linked sets $(\mathcal{S}, \mathcal{P})\left[0,2\left(w_{3}-1\right)\right]$, we have that $v \in V\left(\mathcal{X}_{2}\right) \subseteq V\left(\mathcal{Q}^{2}\right)$ as well. This however implies that $v \in V\left(\mathcal{Q}^{2}\right) \cap V\left(\mathcal{Q}^{5}\right)=\operatorname{start}\left(\mathcal{Q}^{2}\right)$. However, $\operatorname{start}\left(\mathcal{Q}^{2}\right) \cap V\left(\mathcal{M}^{\prime}\right)=\emptyset$ by choice of \mathcal{Q}^{2}, a contradiction to the previous observation that $v \in V\left(\mathcal{Q}^{5}\right) \cap V\left(\mathcal{M}^{\prime}\right)$. Hence, by Lemma 3.3, $\mathrm{D}\left(\mathcal{L}_{1} \cdot \mathcal{X}_{1} \cdot \mathcal{X}_{6}\right)$ contains a $B\left(S_{\ell_{4}}^{\prime}\right)-A\left(S_{0}^{\prime}\right)$-linkage \mathcal{R} of order w.
We show that $V(\mathcal{R}) \cap V((\mathcal{S}, \mathcal{P})[i, j]) \subseteq B\left(S_{\ell_{4}}^{\prime}\right) \cup A\left(S_{0}^{\prime}\right)$.
Because (L1) holds, we have that \mathcal{L}_{1}^{\prime} is internally disjoint from $(\mathcal{S}, \mathcal{P})$. By construction we have that $V\left(\mathcal{X}_{1}\right) \cap V\left(\left(\mathcal{M}^{\prime}, \mathcal{Q}^{2}\right)\right) \subseteq V\left(\mathcal{Q}^{5}\right)$. By choice of \mathcal{Q}^{5} we have that $V\left(\mathcal{Q}^{5}\right) \cap V((\mathcal{S}, \mathcal{P})[i, j])=\emptyset$. Hence, \mathcal{X}_{1} is disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$.
The linkage \mathcal{X}_{2} is contained in $\mathrm{D}\left(\mathcal{L}_{3}^{\prime \prime} \cdot \mathcal{L}_{2}^{\prime}\right)$ and is thus disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$ because (L2) holds and $i>2\left(w_{3}-1\right)$.
The linkage \mathcal{X}_{5} is contained in $(\mathcal{S}, \mathcal{P})[0, i]$ and is thus internally disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$. Hence, \mathcal{X}_{5} is also internally disjoint from $(\mathcal{S}, \mathcal{P})[i, j]$. This implies that $V((\mathcal{S}, \mathcal{P})[i, j]) \cap V(\mathcal{R}) \subseteq B\left(S_{\ell_{4}}^{\prime}\right) \cup$ $A\left(S_{0}^{\prime}\right)$, as desired. Hence, $\left(\mathcal{S}^{\prime},\left(\mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{\ell_{4}-1}^{\prime}, \mathcal{R}\right)\right)$ is a cycle of well-linked sets of width w and length ℓ, as desired.

We are now ready to prove our main theorems. We state our main result both in terms of cylindrical grids and in terms of cycle of well-linked sets as each may be useful in a different context.
We define

$$
\begin{aligned}
& m^{\prime}(w, \ell):=m_{11.14}\left(\mathrm{~h}_{11.21}(w, \ell), w, \ell\right), \\
& \mathrm{w}^{\prime}{ }_{11.22}(w, \ell):=\mathrm{w}^{\prime}{ }_{11.6}\left(w, \mathrm{w}_{11.14}\left(\mathrm{~h}_{11.21}(w, \ell), w, \ell\right)\right), \quad \mathrm{w}^{\prime} 11.22 \\
& \mathrm{r}_{11.22}(w, \ell):=\mathrm{r}_{11.14}\left(\mathrm{~h}_{11.21}(w, \ell), w, \ell, \mathrm{v}_{11.21}\left(w, \ell, \mathrm{~m}_{11.14}\left(\mathrm{~h}_{11.21}(w, \ell), w, \ell\right)\right)\right), \\
& \ell_{11.22}^{\prime}(w, \ell):=\ell_{11.6}^{\prime}\left(w, \ell, \ell_{11.14}(w, \ell), r_{11.22}(w, \ell)\right) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\mathrm{w}_{11.22}^{\prime}(w, \ell) & \in 2^{2 \uparrow \uparrow \text { poly }^{97}(\ell, w)}, \\
\mathrm{r}_{11.22}(w, \ell) & \in 2^{13 \uparrow \uparrow \mathrm{poly}^{97}(\ell, w)} \text { and } \\
\ell_{11.22}^{\prime}(w, \ell) & \in 2^{14 \uparrow \uparrow \text { poly }^{97}(\ell, w)} .
\end{aligned}
$$

Theorem 11.22. Let w, ℓ be integers, let $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell^{\prime}}\right), \mathcal{P}\right)$ be a strict path of well-linked sets of width w^{\prime} and length ℓ^{\prime} and let \mathcal{R} be a $B\left(S_{\ell^{\prime}}\right)-A\left(S_{0}\right)$ linkage of order r. If $w^{\prime} \geq \mathrm{w}^{\prime}{ }_{11.22}(w, \ell)$, $r \geq r_{11.22}(w, \ell)$ and $\ell^{\prime} \geq \ell^{\prime}{ }_{11.22}(w, \ell)$, then $\mathrm{D}((\mathcal{S}, \mathcal{P}) \cup \mathcal{R})$ contains a cycle of well-linked sets of width w and length ℓ.

Proof. Assume, without loss of generality, that \mathcal{R} is weakly r-minimal with respect to $(\mathcal{S}, \mathcal{P})$ and that $r=r_{11.22}(w, \ell)$. If this is not the case, we just choose a $\operatorname{start}(\mathcal{R})$-end (\mathcal{R}) linkage of order $r_{11.22}(w, \ell) \leq|\mathcal{R}|$ which is $(\mathcal{S}, \mathcal{P})$-minimal. By Observation 3.6, such a linkage is also weakly $\mathrm{r}_{11.22}(w, \ell)$-minimal with respect to $(\mathcal{S}, \mathcal{P})$.
We define $h=\mathrm{h}_{11.21}(w, \ell)$, $w_{1}=\mathrm{w}_{11.14}(h, w, \ell), m=\mathrm{m}_{11.14}(h, w, \ell), v=\mathrm{v}_{11.21}(w, \ell, m)$ and $\ell_{1}=\ell_{11.14}(w, r)$. Observe that $w^{\prime} \geq w^{\prime}{ }_{11.6}\left(w, w_{1}\right), \ell^{\prime} \geq \ell^{\prime}{ }_{11.6}\left(w, \ell, \ell_{1}, r\right)$ and $r \geq r_{11.14}(h, w, v)$.
Applying Lemma 11.6 to $(\mathcal{S}, \mathcal{P})$ and \mathcal{R} yields two cases. If ($\mathbf{C 1}$) holds, then we obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, $(\mathbf{C 2}$) holds, and $\mathrm{D}((\mathcal{S}, \mathcal{P}) \cup \mathcal{R})$ contains a path of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of width w_{1} and length ℓ_{1} with a back-linkage \mathcal{R}^{\prime} of order w_{1} intersecting $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ cluster by cluster such that $\mathcal{R}^{\prime} \subseteq \mathcal{R}$. Note that \mathcal{R}^{\prime} is also weakly r-minimal with respect to $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$.
Applying Lemma 11.14 to $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ and \mathcal{R}^{\prime} yields two further cases. If (H1) holds, then we obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (H2) holds, and we obtain a 2 -horizontal (h, v)-web $(\mathcal{H}, \mathcal{V})$ such that \mathcal{H} is weakly m-minimal with respect to \mathcal{V}.
By Lemma 11.21, ($\mathcal{H}, \mathcal{V})$ contains a cycle of well-linked sets of width w and length ℓ, as desired.

We define $\operatorname{dtw}_{1.1}(w, \ell):=\mathrm{t}_{10.9}\left(\mathrm{w}^{\prime}{ }_{11.22}(w, \ell)+\mathrm{r}_{11.22}(w, \ell), \ell^{\prime}{ }_{11.22}(w, \ell)\right)$ and note that $\operatorname{dtw}_{1.1}(w, \ell) \in 2^{21 \uparrow \uparrow p o l y}{ }^{97}(w, \ell)$. The next theorem is our main result stated in terms of cycles of well-linked sets.

Theorem 1.1. Let w, ℓ be integers. Every digraph D with $\operatorname{dtw}(D) \geq \operatorname{dtw}_{1.1}(w, \ell)$ contains a cycle of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width w and length ℓ.

Proof. Let $r_{1}=r_{11.22}(w, \ell), w_{1}=w^{\prime}{ }_{11.22}(w, \ell, r)+r$ and $\ell_{1}=\ell^{\prime}{ }_{11.22}(w, \ell)$.
By Theorem 10.9, D contains a path of well-linked sets $\left(\mathcal{S}=\left(S_{0}, S_{1}, \ldots, S_{\ell_{1}}\right), \mathcal{P}\right)$ of width w_{1} and length ℓ_{1} where $B\left(S_{\ell_{1}}\right)$ is well-linked to $A\left(S_{0}\right)$ in D. Hence, there is a $B\left(S_{\ell_{1}}\right)-A\left(S_{0}\right)$ linkage \mathcal{R} of order r_{1} in D. By Theorem 11.22, $\mathrm{D}(\mathcal{S} \cup \mathcal{P} \cup \mathcal{R})$ contains a cycle of well-linked sets $\left(\mathcal{S}^{\prime}, \mathcal{P}^{\prime}\right)$ of width w and length ℓ.

We close this section by stating our main result in terms of cylindrical grids. Define $\mathrm{dtw}_{1.2}(k):=$ $\mathrm{dtw}_{1.1}\left(\mathrm{w}_{9.3}(k), \ell_{9.3}(k)\right)$. Note that $\mathrm{dtw}_{1.2}(k) \in 2^{22 \uparrow \uparrow \text { poly }{ }^{9}(k)}$.

Theorem 1.2. Every digraph D with $\operatorname{dtw}(D) \geq \mathrm{dtw}_{1.2}(k)$ contains a cylindrical grid of order k as a butterfly minor.

Proof. By Theorem 1.1, D contains a cycle of well-linked sets $(\mathcal{S}, \mathcal{P})$ of width $\mathrm{w}_{9.3}(k)$ and length $\ell_{9.3}(k)$. By Theorem $9.3,(\mathcal{S}, \mathcal{P})$ contains a cylindrical grid of order k.

12 Younger's Conjecture and the Erdős-Pósa property for directed graphs

In this section we obtain an elementary bound on the function required by the Erdôs-Pósa property for directed graphs. We say that a graph H has the Erdős-Pósa property if there exists
a function l_{H} such that every graph G contains either k disjoint copies of H as a minor or there exists a set $S \subset V(G)$ such that $G-S$ contains no H-minor. In [AKKW16] the Erdôs-Pósa property has been generalised to directed graphs. In particular the authors show the following theorem.

Theorem 12.1. [AKKW16, Theorem 4.1] Let H be a strongly connected digraph. H has the Erdős-Pósa property for butterfly (topological) minors if, and only if, there is a cylindrical grid (wall) of order c of which H is a butterly (topological) minor. Furthermore, for every fixed strongly connected digraph H satisfying these conditions and every k there is a polynomial time algorithm which, given a digraph D as input, either computes k disjoint (butterfly or topological) models of H in D or a set S of $\leq l_{H}(k)$ vertices such that $D-S$ does not contain a model of H.

The same authors also prove the following lemma, which we restate to make the bounds explicit.
Lemma 12.2 ([AKKW16, Lemma 4.2]). Let G be a directed graph with $\operatorname{dtw}(G) \leq w$. For each strongly connected directed graph H, the graph G has either k disjoint copies of H as a topological minor, or contains a set T of at most $k \cdot(w+1)$ vertices such that H is not a topological minor of $G-T$.

We can now prove the main result of this section.
Theorem 12.3. Let H be a directed graph. Let H be a digraph with the Erdős-Pósa property for butterfly minors and let c be the order of a minimal cylindrical grid of which H is a butterfly minor. Then for any digraph D and any natural number k either D contains k disjoint H butterfly minors or a set S of at most $k\left(\mathrm{dtw}_{1.1}\left(\mathrm{w}_{9.3}(k c), \ell_{9.3}(k c)\right)+1\right)$.

Proof. If $\operatorname{dtw}(D) \geq \operatorname{dtw}_{1.1}\left(\mathrm{w}_{9.3}(k c), \ell_{9.3}(k c)\right)$ then by Theorem $1.2 D$ contains a cylindrical grid of order $k c$ and hence k disjoint copies of H as a butterfly minor. Otherwise, we can apply Lemma 12.2.

We note that when $H=\overleftrightarrow{\mathbf{K}}_{2}$ the previous theorem is equivalent to Younger's Conjecture, which asks whether for every integer $k \geq 0$ there exists a function $l \overrightarrow{\mathbf{K}}_{2}(k)$ such that for every digraph D, either D has k vertex-disjoint directed circuits, or D can be made acyclic by deleting at most $l \overrightarrow{\mathbf{K}}_{2}(k)$ vertices. This conjecture was settled by Reed, Robertson, Seymour and Thomas in [RRST96], but the function they obtained was non-elementary. With our Theorem 12.3 we obtain an elementary bound for $l \overrightarrow{\mathbf{K}}_{2}$.

References

$\left[\mathrm{ACH}^{+} 19\right]$ Pierre Aboulker, Nathann Cohen, Frédéric Havet, William Lochet, Phablo F. S. Moura, and Stéphan Thomassé. Subdivisions in digraphs of large out-degree or large dichromatic number. Electron. J. Comb., 26(3):research paper p3.19, 18, 2019. URL: www. combinatorics.org/ojs/index.php/eljc/article/view/v26i3p19.
[Ad107] Isolde Adler. Directed tree-width examples. Journal of Combinatorial Theory, Series B, 97(5):718-725, 2007.
[AKKW16] Saeed Akhoondian Amiri, Ken-ichi Kawarabayashi, Stephan Kreutzer, and Paul Wollan. The Erdős-Pósa property for directed graphs. arXiv preprint arXiv:1603.02504, 2016.
[BJCH16] J. Bang-Jensen, Nathann Cohen, and Frédéric Havet. Finding good 2-partitions of digraphs. II. Enumerable properties. Theor. Comput. Sci., 640:1-19, 2016. doi: 10.1016/j.tcs.2016.05.034.
[CC15] Chandra Chekuri and Julia Chuzhoy. Degree-3 treewidth sparsifiers. In Proceedings of the 26th annual ACM-SIAM symposium on discrete algorithms, SODA 2015, Portland, San Diego, CA, January 4-6, 2015, pages 242-255. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York, NY: Association for Computing Machinery (ACM), 2015. URL: citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.726.6400, doi:10.1137/1.9781611973730.19.
[CC16] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. J. ACM, 63(5):65, 2016. Id/No 40. doi:10.1145/2820609.
[CFK $\left.{ }^{+} 15\right]$ Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Cham: Springer, 2015. doi:10.1007/978-3-319-21275-3.
[CGH13] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms for the lovász local lemma. SIAM J. Comput., 42(6):2132-2155, jan 2013. doi:10.1137/100799642.
[CHMZ20] Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 30:1-30:18. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2020. doi:10.4230/LIPIcs.ISAAC. 2020.30.
[CLMS19] Victor Campos, Raul Lopes, Ana Karolinna Maia, and Ignasi Sau. Adapting the directed grid theorem into an fpt algorithm. Electronic Notes in Theoretical Computer Science, 346:229-240, 2019.
[CN19] Julia Chuzhoy and Rachit Nimavat. Large minors in expanders. arXiv preprint arXiv:1901.09349, 2019.
[EL74] Paul Erdốs and Lovász László. Problems and results on 3-chromatic hypergraphs and some related questions. Coll Math Soc J Bolyai, 10, 011974.
[EMW17] Katherine Edwards, Irene Muzi, and Paul Wollan. Half-integral linkages in highly connected directed graphs. In 25th Annual European Symposium on Algorithms (ESA 2017), volume 87, page 36. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
[ES35] Pául Erdôs and George Szekeres. A combinatorial problem in geometry. Compos. Math., 2:463-470, 1935.
[GKKK20a] Archontia C. Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and Ojoung Kwon. The canonical directed tree decomposition and its applications to the directed disjoint paths problem. CoRR, abs/2009.13184, 2020. URL: https: //arxiv.org/abs/2009.13184, arXiv:2009.13184.
[GKKK20b] Archontia C Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and Ojoung Kwon. The directed flat wall theorem. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 239-258. SIAM, 2020.
[GKKK22] Archontia C Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and Ojoung Kwon. Directed tangle tree-decompositions and applications. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 377-405. SIAM, 2022.
[GKW24] Archontia C. Giannopoulou, Stephan Kreutzer, and Sebastian Wiederrecht. Excluding a planar matching minor in bipartite graphs. J. Comb. Theory, Ser. B, 164:161-221, 2024. URL: https://doi.org/10.1016/j.jctb.2023.09.003, doi:10.1016/J. JCTB. 2023.09.003.
[HKPS22] Meike Hatzel, Pawel Komosa, Marcin Pilipczuk, and Manuel Sorge. Constant congestion brambles. Discret. Math. Theor. Comput. Sci., 24(1), 2022. URL: https://doi.org/10.46298/dmtcs.6699, doi:10.46298/DMTCS. 6699.
[HNC65] Frank Harary, R. Z. Norman, and D. Cartwright. Structural models: An introduction to the theory of directed graphs. New York-London-Sydney: John Wiley and Sons, Inc. IX, 415 p. (1965)., 1965.
[HRW19] Meike Hatzel, Roman Rabinovich, and Sebastian Wiederrecht. Cyclewidth and the grid theorem for perfect matching width of bipartite graphs. In Graph-theoretic concepts in computer science. 45th international workshop, WG 2019, Vall de Núria, Spain, June 19-21, 2019. Revised papers, pages 53-65. Cham: Springer, 2019. doi:10.1007/978-3-030-30786-8_5.
[JRST01a] Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. Addendum to Directed Tree-Width. Available e.g. from https://thomas.math.gatech.edu/ PAP/diradd.pdf, 2001.
[JRST01b] Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. Directed treewidth. Journal of Combinatorial Theory, Series B, 82(1):138-154, 2001.
[JWZ23] Ashwin Jacob, Michal Wlodarczyk, and Meirav Zehavi. Finding long directed cycles is hard even when DFVS is small or girth is large. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 65:1-65:17. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs. ESA.2023.65, doi:10.4230/LIPICS.ESA.2023.65.
[KK15] Ken-ichi Kawarabayashi and Stephan Kreutzer. The directed grid theorem. In Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, pages 655-664, 2015.
[KK22] Ken-ichi Kawarabayashi and Stephan Kreutzer. The directed grid theorem. arXiv preprint arXiv:1411.5681, 2022. URL: https://arxiv.org/abs/1411.5681v3.
[KKKX23] Ken-ichi Kawarabayashi, Stephan Kreutzer, O-joung Kwon, and Qiqin Xie. A halfintegral erdốs-pósa theorem for directed odd cycles. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3043-3062. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch118, doi:10. 1137/1.9781611977554. CH118.
[KO14] Stephan Kreutzer and Sebastian Ordyniak. Width-measures for directed graphs and algorithmic applications. Quantitative Graph Theory: Mathematical Foundations and Applications. Springer, 2014.
[LS15] Alexander Leaf and Paul Seymour. Tree-width and planar minors. Journal of Combinatorial Theory, Series B, 111:38-53, 2015.
[Mil24] Marcelo Garlet Milani. Digraph Tango: from structure to algorithms and back again. PhD thesis, Technical University of Berlin, Germany, 2024. doi:10.14279/ depositonce-20065.
[MMP $\left.{ }^{+} 22\right]$ Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge. Packing directed cycles quarter-and half-integrally. Combinatorica, pages 1-30, 2022.
[Mol20] Hendrik Molter. Classic graph problems made temporal - a parameterized complexity analysis. PhD thesis, Technical University of Berlin, Germany, 2020. URL: https: //nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374.
[MT10] Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J. ACM, 57(2):11:1-11:15, 2010. doi:10.1145/1667053.1667060.
[Ree99] Bruce Reed. Introducing directed tree width. Electronic Notes in Discrete Mathematics, 3:222-229, 1999.
[RRST96] Bruce Reed, Neil Robertson, Paul Seymour, and Robin Thomas. Packing directed circuits. Combinatorica, 16(4):535-554, 1996.
[RS] Neil Robertson and Paul Seymour. Graph minors I - XXIII, 1982-2010.
[Spe77] Joel Spencer. Asymptotic lower bounds for ramsey functions. Discrete Mathematics, 20:69-76, 1977. URL: https://www.sciencedirect.com/science/article/ pii/0012365X77900449, doi:10.1016/0012-365X(77)90044-9.

[^0]: *The results in this manuscript were also presented in Milani's PhD thesis [Mil24].
 ${ }^{\dagger}$ The research of Meike Hatzel was supported by the Federal Ministry of Education and Research (BMBF) and by a fellowship within the IFI programme of the German Academic Exchange Service (DAAD).

[^1]: ${ }^{1}$ Despite the similarity in names, the path-systems we use here and the paths-of-sets systems of [CC16] are unrelated mathematical objects.

[^2]: ${ }^{2}$ In order to properly use the intersections of the back-linkage with the path of well-linked sets, we need the path of well-linked sets to be strict as defined in Definition 8.1. Since we can always take a path of well-linked sets to be strict without losing width or height, we often implicitly assume that the path of well-linked sets we construct are strict.

