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In 2015, Kawarabayashi and Kreutzer proved the directed grid theorem — the
generalisation of the well-known excluded grid theorem to directed graphs — con-
firming a conjecture by Reed, Johnson, Robertson, Seymour, and Thomas from the
mid-nineties. The theorem states the existence of a function f such that every di-
graph of directed tree-width f(k) contains a cylindrical grid of order k as a butterfly
minor, but the given function grows non-elementarily with the size of the grid minor.
More precisely, it contains a tower whose height depends on the size of the grid.

In this paper we present an alternative proof of the directed grid theorem which is
conceptually much simpler, more modular in its composition and also improves the
upper bound for the function f to a power tower of height 22.

Our proof is inspired by the breakthrough result of Chekuri and Chuzhoy, who
proved a polynomial bound for the excluded grid theorem for undirected graphs.
We translate a key concept of their proof to directed graphs by introducing cycles
of well-linked sets (CWS), and show that any digraph of high directed tree-width
contains a large CWS, which in turn contains a large cylindrical grid, improving the
result due to Kawarabayashi and Kreutzer from an non-elementary to an elementary
function.

∗The results in this manuscript were also presented in Milani’s PhD thesis [Mil24].
†The research of Meike Hatzel was supported by the Federal Ministry of Education and Research (BMBF)

and by a fellowship within the IFI programme of the German Academic Exchange Service (DAAD).
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An immediate application of our result is that we can improve the bound for
Younger’s conjecture—the directed Erdős-Pósa property—proved by Reed, Robert-
son, Seymour and Thomas [RRST96] from a non-elementary to an elementary func-
tion. The same improvement applies to other types of Erdős-Pósa style problems on
directed graphs. To the best of our knowledge this is the first significant improvement
on the bound for Younger’s conjecture since it was proved in 1996.

Since its publication in STOC 2015, the Directed Grid Theorem has found numer-
ous applications (see for example [CLMS19, GKKK20b, JWZ23, GKW24, HRW19]),
all of which directly benefit from our main result.

Finally, we believe that the theoretical tools developed in this work may find
applications beyond the directed grid theorem, in a similar way as the path-of-sets-
system framework due to Chekuri and Chuzhoy [CC16] did for undirected graphs
(see for example [HKPS22, CC15, CN19]).
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1 Introduction

The excluded grid theorem by Robertson and Seymour is a central result in the study of
graph minors and is the first major building block of their Graph Minors project [RS]. Ad-
ditionally, the theorem has found a huge number of applications beyond its original scope, for
instance in the theory of graph algorithms (see for example [CFK+15]). Based on a conjec-
ture by Reed, Johnson, Robertson, Seymour and Thomas from the mid-nineties [JRST01b],
Kawarabayashi and Kreutzer proved in 2015 [KK15] an excluded grid theorem for directed
graphs, i.e. the existence of a function f such that every digraph of directed tree-width f(k)
contains a cylindrical grid of order k as a butterfly minor. In addition they proved that there
is an XP algorithm that either produces a directed tree decomposition of width at most f(k)
or finds a cylindrical grid of order k as a butterfly minor. Campos et al. [CLMS19] improved
their result from XP to FPT. The directed grid theorem has been used to prove advanced
results in digraph structure theory [GKKK20b, GKKK20a, GKKK22], Erdős-Pósa/cycle pack-
ing [MMP+22, AKKW16, ACH+19, KKKX23], and matching theory [HRW19, GKW24] as well
as for algorithmic results [BJCH16, EMW17].
For a certain class of problems on digraphs, the presence of a cylindrical grid minor immediately

results in a positive instance. The strength of the directed grid theorem is then fully realised in
providing a win-win scenario. On one hand we have low directed treewidth, which in many cases
allows us to compute the problem on a subset of the vertex set of size f(k). On the other we have
a cylindrical grid minor. The function f is the major determinant of the efficiency of algorithms
obtained through this method. Unfortunately, the original function by Kawarabayashi and
Kreutzer is non-elementary, specifically it contains a tower whose height is dependent on the
size of the grid. Our main contribution is an improvement on the proof of the directed grid
theorem in two ways. First, by improving the bound on the function f to an elementary one,
and second, by developing novel techniques which allow us to make the proof more modular and
easier to understand.
More precisely, we require the directed tree-width of a digraph to be at least a power tower of

height 5 for finding a split or segmentation (Theorem 5.15), a power tower of height 7 for finding
a path of well-linked sets of width w and length ℓ (Theorem 10.9), and a power tower of height
22 if we want to obtain a cylindrical grid of order k (Theorem 1.2).
Further, our result gives better bounds for several Erdős-Pósa-like theorems for digraphs. More

precisely we say that a graph H has the Erdős-Pósa property if there is a function lH such that
in any digraph D we can either find n disjoint H-butterfly minors or lH(n) vertices covering
all H-butterfly minors. Amiri, Kawarabayashi, Kreutzer and Wollan [AKKW16] prove that the
Erdős-Pósa property holds for strongly connected directed graphs precisely when they are minors
of the cylindrical grid. Their methods relies heavily on the use of a directed grid and the functions
lH they obtained depends on the function determined in Kawarabayashi and Kreutzer’s Directed
Grid Theorem. Thus, our result provides new elementary functions for this result. When H is
a directed cycle on two vertices C2, this result is equivalent to Younger’s conjecture, which was
proven to be true in 1996 by Reed, Robertson, Seymour and Thomas. Their proof resulted in a
non-elementary function lC2 and has since not been improved. Our new bound for f , together
with the result in [AKKW16], gives the first (to the best of our knowledge) elementary bound
for the function lC2 .
Inspired by path-of-sets system framework due to Chekuri and Chuzhoy [CC16], which played

an important role in their proof of a polynomial bound for the undirected grid theorem, we also
build our proof around finding sequences of sets which are highly connected in one direction.
In order to handle all the cases that appear in the directed setting, we need to consider two
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types of highly connected sets, namely well-linked and order-linked sets, which in turn lead us
to our definitions of paths of well-linked sets, paths of order-linked sets and cycles of well-linked
sets. The latter three concepts naturally capture the connectivity properties provided by fences,
acyclic grids and cylindrical grids, respectively.
In order to obtain the connectivity properties required above, we develop a framework based

on the known concept of temporal digraphs (see, e.g. [CHMZ20, Mol20]), which also naturally
models our setting where disjoint paths intersect a sequence of disjoint subgraphs in the same
order. We then introduce the concept of H-routings for digraphs and temporal digraphs, which,
on digraphs, is a weaker property than having H as an immersion or as a butterfly minor. In
particular, obtaining the desired connectivity corresponds to finding temporal walks in certain
temporal digraphs and constructing H-routings from these walks.
Our modular approach facilitates the transfer of the intermediate results in our proof to other

settings. Well-linked sets play an important role in several results in the theory of digraphs (for
example, in [RRST96, JRST01b, EMW17, KK15]) and our framework provides additional tools
for obtaining such sets.
Further, by reusing the existing concept of temporal digraphs, we also make the proof of the

directed grid theorem more accessible to a larger community. Indeed, one of the important
steps in obtaining an acyclic grid in our proof is Lemma 6.10, whose bound is currently not
polynomial. Reducing this bound is an important step towards improving the function of the
directed grid theorem, and both the statement and its proof can be expressed using the language
of temporal digraphs.
From an algorithmic perspective, our intermediate concepts facilitate the design of efficient

algorithms for finding a directed grid, as questions regarding finding long walks in temporal
digraphs, constructing H-routings, obtaining well-linked sets and constructing a cylindrical grid
from a cycle of well-linked sets can all be considered independently from each other, simplifying
the process of identifying bottlenecks and computational obstacles in each step of the proof.
The paper is organized as follows. In Section 2 we provide an overview of the proof. Sections 3

and 4 contain preliminary definitions which are used throughout the paper. We construct a web
in a digraph of high directed treewidth in Section 5, improving the corresponding step of the
proof of [KK15] from a non-elementary to an elementary bound. We introduce our framework
on temporal digraphs in Section 6, where we also obtain the H-routings from which we construct
our order-linked and well-linked sets. In sections 7 to 9 we introduce the concepts of paths of
order-linked sets, paths of well-linked sets and cycles of well-linked sets, respectively, and show
how to obtain the corresponding type of grid from each of them. Finally, in sections 10 and 11 we
apply the framework developed in the sections above in order to construct a path of well-linked
sets and a cycle of well-linked sets, obtaining one of our main results.

Theorem 1.1. Let w, ℓ be integers. Every digraph D with dtw(D) ≥ dtw1.1(w, ℓ) contains a
cycle of well-linked sets (S,P) of width w and length ℓ.

Since we prove in Theorem 9.3 that every cycle of well-linked sets contains a cylindrical grid,
the theorem above yields another of our main results.

Theorem 1.2. Every digraph D with dtw(D) ≥ dtw1.2(k) contains a cylindrical grid of order
k as a butterfly minor.

2 An overview of the proof

We provide an overview of our contribution with sketches of proofs for essential statements. We
leave the numbers of all environments the same as in the full version, which follows after.
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We use standard definitions for (directed) graphs without loops or multiedges (unless specifically
stated otherwise), see Section 3 for the formal statements. When working with a set or another
structure X containing digraphs, we write D(X) to mean the digraph obtained by taking the
union of all digraphs in X. A set A is ordered when it comes equipped with an ordering ≤A of
its vertices. We denote the digraph of a path on k vertices by Pk. For the bidirected path on k
vertices, we write P⃗

⃗

k := ({u1, u2, . . . , uk}, {(ui, uj) | 1 ≤ i, j ≤ k and |i− j| = 1}). The cycle
on k vertices is given by Ck := ({u0, u1, . . . , uk−1}, {(ui, ui+1 mod k) | 0 ≤ i < k}). Finally, we
write K⃗

⃗

k := ({u1, u2, . . . , uk}, {(ui, uj) | 1 ≤ i, j ≤ k and i ̸= j}) for the complete digraph on k
vertices.
We consider different connectivity measures for digraphs. A digraph D is said to be strongly

connected if for every u, v ∈ V there is a u-v-path and a v-u-path in D. We say D is uni-
lateral [HNC65] if for every u, v ∈ V there is a u-v-path or a v-u-path in D. Finally, D is
weakly-connected if the underlying undirected graph of D is connected.
Let A,B ⊆ V (D) be vertex sets in a digraph D. An A-B-linkage L of order k is a set of k

disjoint paths {L1, L2, . . . , Lk} = L such that start(Li) ⊆ A and end(Li) ⊆ B for all 1 ≤ i ≤ k.
We write start(L) for the set {start(Li) | Li ∈ L} and, similarly, we write end(L) for the set
{end(Li) | Li ∈ L}. We extend the notation for path concatenation to linkages. Given two
linkages P = {P1, P2, . . . , Pp} and Q = {Q1, Q2, . . . , Qq} such that end(P) = start(Q) , we write
P · Q for the linkage {Pa · Qb | Pa ∈ P, Qb ∈ Q and end(Pa) = start(Qb)}. Additionally, we
sometimes use a linkage L as a function L : start(L) → end(L) . The expression L(a) = b then
means that L contains a path starting in a and ending in b.
Let A,B be sets of vertices in a digraph D. We say that A is well-linked to B in D if for every
A′ ⊆ A and every B′ ⊆ B with |A′| = |B′| there is an A′-B′ linkage of order |A′| in D.
Let D be a digraph, let H ⊆ D be a subgraph, and let L be a linkage of order k. We say that L

is minimal with respect to H, or H-minimal, if for all edges e ∈ ⋃
P∈LE(P ) \ E(H) there is no

start(L)-end(L)-linkage of order k in the graph (L ∪H) − e. Given a linkage L in a digraph D
and a subgraph H ⊆ D, it is always possible to obtain a linkage L′ with same order and same
endpoints as L which is H-minimal by iteratively removing edges e ∈ E(L) \ E(H) for which
a start(L)-end(L) linkage of order |L| exists avoiding e. The following is a particularly useful
property of minimal linkages, and was also extensively used in the proof of [KK15].

Definition 3.5 (weak minimality). A linkage L in a digraph D is weakly k-minimal with respect
to a subgraph H of D if for every P1 · e ·P2 ∈ L where e ∈ E(L) \E(H) there is a V (P1)-V (P2)-
separator of size at most k − 1 in (L ∪H)− e.

Observation 3.6. Let H be a subgraph of a digraph D and let L be a linkage which is H-
minimal. Then L is weakly |L|-minimal with respect to H.

Given a digraph D and an arc (u, v) ∈ E(D) , we say that (u, v) is butterfly contractible if∣∣N in
D(v)

∣∣ = 1 or |Nout
D (u)| = 1. A digraph H is a butterfly minor of D if it can be obtained from

a subgraph of D by contracting butterfly contractible edges.
A cylindrical grid of order k is a digraph consisting of k pairwise disjoint directed cycles
C1, C2, . . . , Ck of length 2k, together with a set of 2k pairwise vertex disjoint paths P1, P2, . . . , P2k

of length k − 1 such that
• each path Pi has exactly one vertex in common with each cycle Cj and both endpoints of
Pi are in V (C1) ∪ V (Ck) ,

• the paths P1, P2, . . . , P2k appear on each Ci in this order, and
• for each 1 ≤ i ≤ 2k, if i is odd, then the cycles C1, C2, . . . , Ck occur on Pi in this order

and, if i is even, then the cycles occur in the reverse order Ck, Ck−1, . . . , C1.
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Removing all edges ending in P1 results in a structure called a (k, k)-fence.
Two linkages H and V in a digraph D build an (h, v)-web (H,V) if every path in V intersects

every path in H. The set start(V) is called the top of the web, while the set end(V) is called the
bottom of the web. Finally, (H,V) is well-linked if end(V) is well-linked to start(V) in D.

2.1 Cycles and paths of sets

We construct a cylindrical grid by first constructing an acyclic grid and then finding a fence inside
it. To achieve this, we first construct objects which contain similar connectivity properties as
these three types of grid, while not necessarily being planar.
We introduce the concepts of r-order-linkedness and shifts in order to capture the connectivity

provided by acyclic grids.

Shifts and order-linkedness Let A = (a1, . . . , an) and B = (b1, . . . , bm) be ordered sets. Let
r ∈ N, let A′ be an ordered subset of A and let B′ be an ordered subset of B such that |A′| = |B′| .
We say that B′ is an r-shift of A′ if there is a bijection π : A′ → B′ such that

• for all ai ∈ A′ we have that π(ai) = bj implies i ≤ j;
• there are at most r vertices ai ∈ A′ with π(ai) ̸= bi; and
• for all ai, aj ∈ A′, if ai ≤A aj , then π(ai) ≤B π(aj).

Let H be a digraph, A = (a1, . . . , an) , B = (b1, . . . , bm) ⊆ V (H) be ordered sets and let r ∈ N.
We say that A is r-order-linked to B in H if for every A′ ⊆ A and every B′ ⊆ B with |A′| = |B′|
where B′ is an r-shift of A′ witnessed by the bijection π there is an A′-B′-linkage L in H
satisfying π(a) = L(a) for all a ∈ A′.
We can now define the concepts of paths of well-linked sets, which behave like fences, and of

paths of r-order-linked sets, which behave like acyclic grids.

Definition 7.3 and 8.1 (path of r-order-linked/well-linked sets). A path of r-order-linked/well-
linked sets of width w and length ℓ is a tuple (S,P) such that

1. S is a sequence of ℓ+1 pairwise disjoint subgraphs (S0, . . . , Sℓ) , which are called clusters,
2. for every 0 ≤ i ≤ ℓ there are disjoint ordered sets A(Si), B(Si) ⊆ V (Si) of size w such that
A(Si) is r-order-linked/well-linked to B(Si) in Si,

3. P is a sequence of ℓ pairwise disjoint linkages (P0,P1, . . . ,Pℓ−1) such that, for every 0 ≤
i < ℓ, Pi is a B(Si)-A(Si+1)-linkage of order w which is internally disjoint from Si and
Si+1 and disjoint from every S ∈ S \ {Si, Si+1}.

Further, a path of r-order-linked sets (S,P) is called uniform if for all 0 ≤ i < ℓ and for all
b1, b2 ∈ B(Si) we have that b1 ≤B(Si) b2 implies Pi(b1) ≤A(Si+1) Pi(b2). A path of well-linked
sets is called strict if every vertex in Si lies on an A(Si)-B(Si)-path.

A cycle of well-linked sets of width w and length ℓ is a pair (S,P∪{Pℓ}) where (S,P) is a path
of well-linked sets of width w and length ℓ − 1, and Pℓ is a linkage from the B-set of the last
cluster to the A-set of the first cluster that is internally disjoint from (S,P).
We obtain the following connection between paths of order-linked sets and paths of well-linked

sets, allowing us to focus on obtaining paths of order-linked sets when proving our main result.
The construction is quite similar to the one used to obtain a fence from an acyclic grid, and the
bounds we obtain are essentially the same.

Lemma 8.3. Let w8.3(w, ℓ) := w(ℓ + 1). Every path of w-order-linked sets (S, P) of width at
least w8.3(w, ℓ) and length at least ℓ contains a path of well-linked sets (S ′,P′) of width w and
length ℓ.
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Since we can construct acyclic grids, fences and cylindrical grids from the objects defined above,
it suffices for our results to show that digraphs of high directed tree-width contain a large cycle
of well-linked sets.

Theorem 9.3. Every cycle of well-linked sets of width w ≥ w9.3(k) and length ℓ ≥ ℓ9.3(k)
contains a cylindrical grid of order k.

This allows us to divide our proof into roughly three main “parts”.
The first part consists of finding a well-linked web (P,Q) from a bramble of high order where P

is minimal with respect to Q. We emphasise that the requirement of minimality is what makes
obtaining such a web very challenging.
After obtaining the well-linked web, we can obtain a similar structure where one linkage is

“ordered” according to the other, constructing objects which are called splits and segmentations
in [KK15].

Theorem 5.15. Let D be a digraph. If dtw(D) ≥ t5.15(x, y, q, k), then D contains one of the
following

(D1) a cylindrical grid of order k as a butterfly minor,

(D2) a (y, q)-split (P ′,Q′) of (P1,Q1) in D, where end(Q′) is well-linked to start(Q′), or

(D3) an (x, q)-segmentation (P ′,Q′) of (P1,Q1) inD, where end(P ′) is well-linked to start(P ′).

In the second part, we construct a path of well-linked sets from the splits and segmentations
obtained previously, together with a back-linkage, which is a linkage from the B-set of the last
cluster to the A-set of the first in the path of well-linked sets.

Theorem 10.9. Every digraph D with dtw(D) ≥ t10.9(w, ℓ) contains a path of well-linked sets
(S = (S0, S1, . . . , Sℓ) ,P) of width w and length ℓ such that B(Sℓ) is well-linked to A(S0) in D.

In the third and final part, we obtain a cycle of well-linked sets from a path of well-linked sets
with a back-linkage.

Theorem 11.22. Let w, ℓ be integers, let (S = (S0, S1, . . . , Sℓ′) ,P) be a strict path of well-
linked sets of width w′ and length ℓ′ and let R be a B(Sℓ′)-A(S0) linkage of order r. If w′ ≥
w11.22(w, ℓ, r) , r ≥ r11.22(w, ℓ) and ℓ′ ≥ ℓ11.22(w, ℓ, r) , then D((S,P) ∪R) contains a cycle of
well-linked sets of width w and length ℓ.

We then combine the statements above to produce the first of our main results.

Theorem 1.1. Let w, ℓ be integers. Every digraph D with dtw(D) ≥ dtw1.1(w, ℓ) contains a
cycle of well-linked sets (S,P) of width w and length ℓ.

Proof. Let r1 = r11.22(w, ℓ) , w1 = w11.22(w, ℓ, r) + r and ℓ1 = ℓ11.22(w, ℓ, r) . By Theorem 10.9,
D contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ1) ,P) of width w11.22(w, ℓ) and length
ℓ1 := ℓ11.22(w, ℓ) where B(Sℓ1) is well-linked to A(S0) in D. Hence, there is a B(Sℓ1)-A(S0)
linkage R of order r1 in D. By Theorem 11.22, D(S ∪ P ∪R) contains a cycle of well-linked sets
(S ′,P′) of width w and length ℓ. □

We note that [KK22] also split their proof into three parts, which served as a base for the outline
of our proof. However, the bounds they obtain for all three of their corresponding statements
grow larger than any elementary function, and so we essentially need to improve upon nearly all
of their proofs.
Combining Theorems 1.1 and 9.3 then yields our improvement of the Directed Grid Theorem.
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Theorem 1.2. Every digraph D with dtw(D) ≥ dtw1.2(k) contains a cylindrical grid of order
k as a butterfly minor.

2.2 Obtaining a path of well-linked sets

Several steps of our proofs revolve around linkages which intersect certain subgraphs in an
ordered fashion. To simplify our arguments and reasoning and to avoid repetition, we model
this configuration in an abstract manner with the help of the concept of temporal digraphs.
A temporal digraph is a pair T = (V,A) consisting of a vertex set V and sequence of arc sets A =
(A1, A2, . . . Aℓ) such that Dt(T ) := (V,At) is a digraph for all 1 ≤ t ≤ ℓ. We also refer to Dt(T )
as layer t of T and call t a time step. The lifetime of D is given by ℓ(D) := ℓ. A temporal walk of
length n from v0 to vn in a temporal digraph T is a sequence W := (v0, t0), (v1, t1), . . . , (vn, tn)
such that (vi, vi+1) ∈ Ati and ti < ti+1 ≤ ℓ(T ) for all 0 ≤ i ≤ n − 1. If such a walk exists, we
say that v0 temporally reaches vn. A temporal walk is said to be a temporal path if no vertex
appears twice in the sequence. Finally, we say that W departs at t0 and arrives at tn, and that
tn − t0 is the duration of W.
Usage of temporal digraphs arise naturally in a directed setting. Consider the example given in

Figure 1. If we want to construct a new linkage starting and ending in a subset of the starting
and endpoints of P := {Pa, Pb, Pc}, then as soon as a path in our new linkage visits a vertex in
Q2, it can no longer use vertices from Q1, as we only have connectivity from “left” to “right”.
Further, as we want some way of ensuring that our paths are disjoint and form a linkage, we are
interested in the connectivity provided by each Qi “between” the paths in P without intersecting
other paths in P. This intuition leads us to the following definition.

QQ1 Q2 Q3

D1(T ) D2(T ) D3(T )

Pa

Pb

Pc

PaPbPc PaPbPc PaPbPc

∈ A1∈ A1 ∈ A2∈ A2 ∈ A3∈ A3

∈ A3

Pa-Pb-path

Figure 1: The layers Dj(T ) of the temporal graph T := (V = {a, b, c},A = {A1, A2, A3}) con-
structed from the graphs Qj displayed above as defined in Definition 6.3.

Definition 6.3. Let P be a linkage and let Q = {Q1, Q2, . . . , Qq} be a set of pairwise disjoint
digraphs such that each path Pi ∈ P can be partitioned as P 1

i · P 2
i · . . . · P q

i = Pi such that
V (P j

i ) ∩ V (Q) ⊆ V (Qj) for all 1 ≤ j ≤ q. The routing temporal digraph (V,A) of P through
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Q, which we also refer to as T(P,Q) T(P,Q), is constructed as follows. We set V = P and for each
1 ≤ j ≤ q we define Aj = {(Pa, Pb) | Pa, Pb ∈ P and there is a path from V (Pa) to V (Pb) inside
Qj which is internally disjoint from P}.

Routings In order to better describe the kind of connectivity that a routing temporal digraph
provides between the paths of the original linkage, we define the concept of H-routings, where H
is some digraph. We would like to point out to the reader that connectivity in temporal digraphs
is not transitive, and hence it is not sufficient to restrict the following definition to edges.

Definition 6.4. Let H be a digraph, D be a (temporal) digraph and S ⊆ V (D) . An H-routing
(over S) is a bijection φ : V (H) → S such that for each v-u path P in H we can find a φ(v)-φ(u)
(temporal) path in D which is disjoint from S \ φ(V (P )) .

In order to apply the framework defined above, we simplify the notion of splits and segmenta-
tions to slightly more general structures we call ordered and folded webs.

Definition 10.1. Let (H,V) be an (h, v)-web. We say that (H,V) is an ordered web if there
is an ordering of V = (V1, V2, . . . , Vv) for which each path H ∈ H can be decomposed into
H = H1 ·H2 · · ·Hv such that Hi intersects Vj if and only if i = j.

Definition 10.5. An (h, v)-web (H,V) is a folded web if every Vi ∈ V can be split as V a
i ·V b

i := Vi
such that both V a

i and V b
i intersect all paths of H.

It is not difficult to show that a (p, q)-segmentation (P,Q) from [KK22] is also an ordered web
(P,Q), and that a (p, q)-split (P,Q) is a folded ordered (Q,P) web.
Our main results related to routing temporal digraphs are about finding Pk, Ck and P⃗

⃗

k-routings
in different contexts. First, we show that unilateral temporal digraphs contain a walk with many
vertices. The reason why we consider temporal digraphs where the layers are unilateral is that,
given an ordered web (H,V), each layer of T(H,V) is unilateral.

Lemma 6.10. Let ℓ6.10(n, k) := 2kn
∑2kn

i=1 n
i. Let T be a temporal digraph with n vertices

where each layer is unilateral and let S ⊆ V (T ) be a set of size k. If ℓ(T ) ≥ ℓ6.10(n, k), then T
contains a temporal walk W with S ⊆ V (W ).

We can then use the walk obtained in Lemma 6.10 in order to construct a Pk-routing.

Theorem 6.12. Let ℓ6.12(n, k) := ℓ6.10
(
n, k2 − 1

)
. Let T be a temporal digraph where each

layer is unilateral. If ℓ(T ) ≥ ℓ6.12(n, k) and n := |V (T )| ≥ k2 − 1, then there is some set
S ⊆ V (T ) such that T contains a Pk-routing over S.

Intuitively, a Pk-routing in a routing temporal digraph T(P,Q) gives connectivity between the
paths in P which is similar to a column in an acyclic grid, which in turn is related to the concept
of order-linkedness defined before. This intuition is formalised below.

Lemma 7.6. Let h, k be integers. Let T be the routing temporal digraph of some linkage L
through a sequence (H1, H2, . . . ,Hh) of disjoint digraphs. Let L′ ⊆ L be a linkage of order
at most k. If T contains a Pk-routing on the paths L1, L2, . . . , Lk ∈ L′, ordered according to
their occurrence on the Pk-routing, then A is 1-order-linked to B in D

(
L ∪⋃h

i=1Hi

)
, where

A = {ai | ai is the first vertex of Li on H1} and B = {bi | bi is the last vertex of Li on Hh}.

It is not difficult to see that, given a folded ordered web (H,V), each layer of T(H,V) is
strongly-connected. Having strongly-connected layers allows us to obtain Ck or P⃗

⃗

k-routings
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instead. Intuitively, because these two types of routings provide connectivity in both directions
between the paths of our linkage P, we are able to use them to obtain well-linked instead of
order-linked sets.

Theorem 6.16. Let T be a temporal digraph such that Di(T ) is strongly-connected for all
1 ≤ i ≤ ℓ(T ) . If ℓ(T ) ≥ ℓ6.16(k) , then for every set S ⊆ V (T ) with |S| ≥ s6.16(k) there is a
subset S′ ⊆ S with |S′| = k such that D contains an H-routing over S′ for some H ∈ {Ck, P⃗

⃗

k}.

Corollary 10.8. Let (H,V) be a folded ordered (h, v)-web. If h ≥ h10.7(w) and v ≥ v10.7(w, ℓ),
then (H,V) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and length
ℓ. Additionally, A(S0) ⊆ start(H) and B(Sℓ) ⊆ end(H).

We can now use the results above to prove Theorem 10.9.
Proof sketch of Theorem 10.9. By Theorem 5.15, we have one of three cases. If D contains a
cylindrical grid of order wℓ, then it contains a cycle of well-linked sets of width w and length ℓ.
If D contains a (y, q)-split (V,H), then this split is essentially a folded ordered web (H,V).

By Corollary 10.8, we can construct a path of well-linked paths from this split. Moreover,
the beginning and the end of this path of well-linked sets coincides with start(V) and end(V),
respectively. As end(V) is well-linked to start(V), the path of well-linked sets obtained satisfies
the restrictions in the statement.
In the last case, D an (x, q)-segmentation (H,V), which also means that (H,V) is an ordered

web. Applying Lemma 10.4 to (H,V) yields a path of well-linked sets. Moreover, the beginning
and the end of this path of well-linked sets coincides with start(H) and end(H), respectively. As
end(H) is well-linked to start(H), the path of well-linked sets obtained satisfies the restrictions
in the statement. □

2.2.1 Constructing a cycle of well-linked sets

As we can find paths of well-linked sets with their final B-set being well-linked to the initial
A-set, our goal is to find a linkage between these two sets that is internally disjoint from the
path of well-linked sets in order to obtain a cycle of well-linked sets in the end.

Back-linkage intersecting cluster by cluster First we further analyse the ways a back-linkage
can intersect a given path of well-linked sets.
Let (S,P) be a path of well-linked sets of length ℓ. A jump of length k over (S,P) is a path R

with start(R) ∈ V (Si)∪V (Pi) and end(R) ⊆ V (Sj)∪V (Pj) (if j = ℓ, we require end(R) ⊆ V (Sj)
instead) such that |j − i| = k. If i < j, then R is a forward jump. If i ≥ j and R is internally
disjoint from (S,P) , then R is a backward jump.
Let R be a partial back-linkage for (S,P) . We say that R intersects (S,P) cluster by cluster if
R does not contain any forward or backward jump of length greater than one over (S,P) . We
can show that in case we do not immediately obtain the desired cycle of well-linked sets we can
find a back-linkage that intersects cluster by cluster, thus in a slightly more ordered fashion.

Lemma 11.6. Let ℓ1, w1, ℓ2, w2 be integers, let (S = (S0, S1, . . . Sℓ′) ,P = (P0,P1, . . . ,Pℓ′−1)) be
a strict path of well-linked sets of length ℓ′ ≥ ℓ′11.6(w1, ℓ1, ℓ2,m) and width w′ ≥ w′

11.6(w1, w2)
with a partial back-linkage R of order at least w2 in a digraph D such that R is weakly m-
minimal with respect to (S,P) . Then D contains at least one of the following:

(C1) a cycle of well-linked sets of length ℓ1 and width w1, or
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(C2) a path of well-linked sets of length ℓ2 and width w2 together with a partial back-linkage
R′ ⊆ R of order w2 intersecting it cluster-by-cluster.

Proof sketch. First we establish that if there are no long back-jumps, then we can obtain (C2).
We then choose a maximal family J of nested longer and longer back-jumps and consider the
subpath of well-linked sets all elements of J jump over.
If |J | < w1, then use the partial back-linkage over the whole path of well-linked sets to construct

a partial back-linkage over the subpath by using linkages in the unused parts, the back-linkage
and Menger’s Theorem. As J is chosen maximally there are no more long back-jumps over this
subpath of well-linked sets, which again allows us to obtain (C2).
So assume J contains w1 jumps. We use the jumps in J to construct a partial back-linkage

for the subpath of well-linked sets that is completely disjoint. We do so by finding a linkage X1

from the last cluster to the start-vertices of the jumps, and a linkage X2 from the end-vertices
to the first cluster. In a path of well-linked sets is always possible to find a path of well-linked
sets of reduced width choosing subsets of the first A-set and the last B-set. Thus, we can find
a path of well-linked sets of reduced width with the end-vertices of X2 being the first A-set and
the start-vertices X1 being the last B-set, yielding the cycle of well-linked sets of length ℓ1 and
width w1, satisfying (C1). □

Getting a 2-horizontal web Given a path of well-linked sets and a back-linkage intersecting
it cluster by cluster, we construct a new type of web, which we call q-horizontal web, that
“preserves” the cluster by cluster property of the back-linkage.

Definition 11.7 (q-horizontal web). Let (H,V) be a web. We say that (H,V) is a q-horizontal
web if every path Hi ∈ H can be decomposed into paths H1

i ·H2
i · . . . ·Hq

i = Hi and every path
Vj ∈ V can be decomposed into paths V 1

j ·V 2
j ·. . .·V q

j = Vj such that V x
j ∩Hi ⊆ Hq−x+1

i ∪Hq−x+2
i

and V x
j ∩Hq−x+1

i ̸= ∅ for all 1 ≤ x ≤ q, where for simplicity we define Hq+1
i to be empty.

We can construct an ordered web (R,V) from a back-linkage R and a path of well-linked sets
(S,P) (Lemma 11.8). From there we find a new “horizontal” linkage H which is weakly |H|-
minimal with respect to V such that (H,V) is a 2-horizontal web. Further, H goes forwards
through the path of well-linked sets (S,P), visiting the clusters of S in the order given by
S. Clearly, (S,P) contains some forward linkage, and the construction of V makes us able to
construct H such that it forms a web together with V.
We obtain H by first making it minimal with respect to V. If H does not intersect V as required

for them to form a 2-horizontal web, we can find a cycle of well-linked sets. Towards this end, we
prove (in Lemma 11.10) that a path of well-linked sets that contains a forward linkage disjoint
from the back-linkage also contains a cycle of well-linked sets.
Now, given a path of well-linked sets and a large forward linkage L, we can construct a new

path of well-linked sets (S ′,P′) (Lemma 11.9) and a subset L∗ ⊆ L disjoint from (S ′,P′) and
also disjoint from the back-linkage R. Applying results from Section 10 (Corollary 10.3), we
obtain another path of well-linked sets (S ′′,P′′) going in the same direction as R. With respect
to (S ′′,P′′), the forward linkage L∗ now acts like a back-linkage which is disjoint from (S ′′,P′′),
which yields a cycle of well-linked sets (Lemma 11.10).
Going back to constructing H, we can argue that it must intersect V enough, even when taking
H minimal with respect to V, forming an object we call a semi-web.
From a semi-web (H,V) we can construct (Observation 11.12) a horizontal web (H′,V ′) such

that H′ is weakly |H|-minimal with respect to V or find large H′ ⊆ H and V ′ ⊆ V which are
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internally disjoint and satisfy some additional conditions. This we need for the final construction
of the 2-horizontal web we are looking for unless we already find a cycle of well-linked sets during
the construction (Lemma 11.14).

Lemma 11.14. Let w, ℓ, h, v be integers, let (S,P) be a strict path of well-linked sets of
length ℓ′ ≥ ℓ11.14(w,m) and width w′ = w11.14(h,w,m) with a back-linkage R of order r ≥
r11.14(h,w, v,m) intersecting (S,P) cluster by cluster such that R is weakly m-minimal with
respect to (S,P) . Then, D(S ∪ P ∪R) contains one of the following:

(H1) a cycle of well-linked sets of width w and length ℓ, or

(H2) a weakly m11.14(h,w)-minimal 2-horizontal web (H,V) where V ⊆ R, |H| ≥ h and
|V| ≥ v.

Using the 2-horizontal web We split the 2-horizontal web (H,V) obtained above into two
parts H = H1 ·H2 in order to construct a new path of well-linked sets with H1 and then use H2

to complete the cycles.
To construct a path of well-linked sets (S,P) in H1, we adapt the construction in the proof of

[KK15, Lemma 5.15], obtaining a split or a more suitable kind of segmentation (Lemma 11.18).
This allows us to continue from the last cluster of (S,P) to H2 without intersecting (S,P) again,
which in turn allows us to construct a folded ordered web or an ordered web (Lemma 11.19),
allowing us to apply the results of Section 10.
The tools established so far already allow us to construct a cycle of well-linked sets from a

folded ordered web. So we have an ordered web (H′,V ′) which ends on end
(
H1

)
. We use the

subpaths of the paths in H′ after their last intersection with V ′ to construct a linkage to H2

that is disjoint from a path of order-linked sets built from the ordered web (Lemma 11.20). We
use the paths in V1 to construct a back-linkage. Using the weak minimality of H with respect
to V, we avoid intersections between V1 and the path of order-linked sets we constructed.

Lemma 11.21. Let (H,V) be a 2-horizontal web where H is weakly c-minimal with respect to
V. If |H| ≥ h11.21(w, ℓ) and |V| ≥ v11.21(w, ℓ, c) , then D((H,V)) contains a cycle of well-linked
sets of length ℓ and width w.

From a path of well-linked sets to a cycle of well-linked sets Having gained enough insight
on how to disentangle the back-linkage from the path of well-linked sets, we can now show how
to obtain a cycle of well-linked sets.
Proof sketch of Theorem 11.22. Assume, without loss of generality, that R is weakly r-minimal
with respect to (S,P) . Applying Lemma 11.6 to (S,P) and R yields two cases. If (C1) holds,
then we obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (C2)
holds, and D((S,P) ∪R) contains a path of well-linked sets (S ′,P′) of width w1 and length ℓ1
with a back-linkage R′ of order w1 intersecting (S ′,P′) cluster by cluster such that R′ ⊆ R.
Note that R′ is also weakly r-minimal with respect to (S ′,P′) .
Applying Lemma 11.14 to (S ′,P′) and R′ yields two further cases. If (H1) holds, then we

obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (H2) holds,
and we obtain a 2-horizontal (h, v)-web (H,V) such that H is weakly m-minimal with respect
to V which, by Lemma 11.21, contains a cycle of well-linked sets of width w and length ℓ. □
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3 Preliminaries

In this section we fix our notation and recall standard concepts and results from the literature
used throughout the paper.

Sequences, sets, and functions. Given sequences S1 := (x1, x2, . . . , xj) and S2 := (y1, y2, . . . ,
yk), we write S1 · S2 for the sequence S3 := (x1, x2, . . . , xj , y1, y2, . . . , yk). We say that S1 · S2 is
a decomposition of S3. The following is a well-known theorem about sequences of numbers due
to Erdős and Szekeres.

Theorem 3.1 ([ES35]). Let r, s ∈ N. Every sequence of distinct numbers of length at least
(r − 1) (s− 1)+1 contains a monotonically increasing subsequence of length r or a monotonically
decreasing subsequence of length s.

We usually consider functions f : A → B to be partial, that is, the domain Dom(f) is not
necessarily A.
An ordered set is a sequence A = (a1, . . . , ak) such that all elements of A are distinct. The

order ≤A: A × A induced by A is defined by ai ≤A aj for all 1 ≤ i ≤ j ≤ k. An ordered subset
A′ ⊆ A then is just a subsequence of A, that is, the order of the elements is preserved. If we
obtain an ordered set A′ from a set A by fixing an order, we call A′ an ordering of A.

Power towers and polynomials Let d be an integer and V = {x1, . . . , xk} a set of variables.
A polynomial of degree d over V is a function p(x1, x2, . . . , xk) of the form p(x1, x2, . . . , xk) =∑n

i=1(ciΠ
k
j=1x

ej,i
j ), where for each 1 ≤ i ≤ n and each 1 ≤ j ≤ k we have that ci ∈ R, ej,i ∈ N

and
∑k

j=1 ej,i ≤ d. We write polyd(x1, x2, . . . , xk) for the set of all functions f for which there
is a polynomial p of degree d over the variable set x1, x2, . . . , xk. such that f(x1, x2, . . . , xk) ∈
O(p(x1, x2, . . . , xk)).
We define power towers as follows. Given an integer h and a set of functions F over a set of

variables V , we define a set of functions 2h↑↑F recursively as follows. We set 20↑↑F = F and
define 2h↑↑F as {f : R|V | → R | f ∈ O(2g(V )), g ∈ 2h−1↑↑F } for h > 1. If F = polyd(V ), we say
that an f ∈ 2h↑↑F is a power tower of height h.

Graphs and digraphs. We denote by E(G) the edge set of a graph G, directed or not, and by
V (G) its vertex set. We often use G for undirected and D for directed graphs.
Let D be a digraph. Given a set X ⊆ V (D), we write D−X for the digraph (Y := V (D) \X,
E(D) ⊆ Y ×Y ). Similarly, given a set F ⊆ E(D), we write D−F for the digraph (V (D) , V (A)\
F ).
If u ̸= v ∈ V (D), we write D+ (v, u) for the digraph (V (D) , E(D)∪ {(v, u)}). We also extend

this operation to vertices and digraphs in the obvious way.
If D is a digraph and v ∈ V (D), then N in

D(v) := {u ∈ V | (u, v) ∈ E} si the set of in-neighbours
and Nout

D (v) := {u ∈ V | (v, u) ∈ E} the set of out-neighbours of v. By deginD(v) :=
∣∣N in(v)

∣∣ we
denote the in-degree of v and by degoutD (v) := |Nout(v)| its out-degree. When working with a set
or another structure X containing digraphs, we write D(X) to mean the digraph obtained by
taking the union of all digraphs in X.

Paths and walks. A walk of length ℓ in a digraph D is a sequence of vertices
W := (v0, v1, . . . , vℓ) such that (vi, vi+1) ⊆ E(D), for all 0 ≤ i < ℓ. We write start(W ) for
v0 and end(W ) for vℓ and say that W is a v0-vℓ-walk.
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A walk W := (v0, v1, . . . , vℓ) is called a path if no vertex appears twice in it and it is called a
cycle if v0 = vℓ and vi ̸= vj for all 0 ≤ i < j < ℓ.
We often identify a walk W in D with the corresponding subgraph and write V (W ) and E(W )

for the set of vertices and edges appearing on it.
Given two walks W1 := (x1, x2, . . . , xj) and W2 := (y1, y2, . . . , yk) with end(W1) = start(W2),

we make use of the concatenation notation for sequences and write W1 ·W2 for the walk W3 :=
(x1, x2, . . . , xj , y2, y3, . . . , yk). We say that W1 ·W2 is a decomposition of W3. If W1 or W2 is
an empty sequence, then the result of W1 ·W2 is the other walk (or the empty sequence if both
walks are empty).
Let P be a path in a digraph D and let X be a set of vertices with V (P )∩X ̸= ∅. We consider

the vertices p1, . . . , pm of P ordered by their occurrence on P . Let i be the highest index such
that pi ∈ X and let j be the smallest index such that pj ∈ X. We call pi the last vertex of P in
X or, depending on the perspective, the last element of X on P , and pj the first vertex of P in
X or the first vertex of X on P .
If v ∈ V (D) we denote by out∗(v) the set of vertices reachable from v in D and by in∗(v) the

set of vertices from which v can be reached in D.

Special digraphs. We denote the digraph of a path on k vertices by Pk. For the bidirected
path on k vertices, we write P⃗

⃗

k := ({u1, u2, . . . , uk}, {(ui, uj) | 1 ≤ i, j ≤ k and |i− j| = 1}).
The cycle on k vertices is given by Ck := ({u0, u1, . . . , uk−1}, {(ui, ui+1 mod k) | 0 ≤ i < k}).
Finally, we write K⃗

⃗

k := ({u1, u2, . . . , uk}, {(ui, uj) | 1 ≤ i, j ≤ k and i ̸= j}) for the complete
digraph on k vertices.

Connectivity. A digraph D is said to be strongly connected if for every u, v ∈ V there is a
u-v-path and a v-u-path in D. We say D is unilateral if for every u, v ∈ V there is a u-v-path
or a v-u-path in D. Finally, D is weakly-connected if the underlying undirected graph of D is
connected.
A feedback vertex set of D is a set X ⊆ V (D) such that D−X is acyclic. Similarly, a feedback

arc set of D is a set F ⊆ E(D) such that D − F is acyclic.

Linkages and separators. Let A,B ⊆ V (D). An A−B-walk is a walk W that starts in A and
ends in B. A set X ⊆ V (D) is an A-B separator if there are no A-B-paths in D −X.
A linkage in D is a set L of pairwise vertex disjoint paths. The order |L| of L is the number of

paths it contains.
An A-B-linkage of order k is a linkage L := {L1, L2, . . . , Lk} such that start(Li) ∈ A and
end(Li) ∈ B for all 1 ≤ i ≤ k. We write start(L) for the set {start(Li) | Li ∈ L} and end(L)
for the set {end(Li) | Li ∈ L}. We also extend the notation for path concatenation to linkages.
Given linkages P = {P1, P2, . . . , Pk} and Q = {Q1, Q2, . . . , Qk} such that end(P) = start(Q),
we write P · Q for the linkage {Pa ·Qb | Pa ∈ P, Qb ∈ Q and end(Pa) = start(Qb)}.
It often is convenient to use a linkage L as a function L : start(L) → end(L). The expression
L(a) = b then means that L contains a path starting in a and ending in b.
We frequently use the following classical result by Menger.

Theorem 3.2 (Menger’s Theorem). Let D be a digraph, A,B ⊆ V (D) with |A| = |B|. There
is an A-B-linkage of size k in D if and only if every A-B separator has size at least k.

Let D be a digraph, A,B ⊆ V (D), and c ∈ N. An A-B-linkage with congestion cin D is a set L
of A-B-paths such that no vertex of V (D) occurs in more than c distinct paths in L. A linkage
of congestion 1 is called integral and a linkage of congestion 2 is called half-integral.
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A simple application of Theorem 3.2 yields the following lemma (see e.g. [KK15]).

Lemma 3.3. Let D be a digraph, A,B ⊆ V (D). If there is an A-B-linkage of order ck̇ and
congestion c in D, then there is an integral A-B-linkage of order k in D.

Throughout the paper we frequently work with a special kind of linkages that we define next.

Definition 3.4 (minimal linkages). Let D be a digraph, let H ⊆ D be a subgraph, and let
L be a linkage of order k. L is minimal with respect to H, or H-minimal, if for all edges
e ∈ ⋃

P∈LE(P ) \E(H) there is no start(L)-end(L)-linkage of order k in the graph (L ∪H)− e.

Given a linkage L in a digraph D and a subgraph H ⊆ D, we can always obtain a linkage L′

with same order and same endpoints as L which is H-minimal by iteratively removing edges
e ∈ E(L) \ E(H) for which a start(L)-end(L)-linkage of order |L| exists avoiding e.
Minimal linkages were used extensively in [KK15]. The idea is that when constructing paths

of an H-minimal linkage L, we always prefer to use edges of H over edges not in E(H). This
implies the following property which we exploit frequently in our proofs.

Definition 3.5 (weak minimality). A linkage L in a digraph D is weakly k-minimal with respect
to a subgraph H of D if for every P1 · e · P2 ∈ L with e ∈ E(L) \E(H) there is a V (P1)-V (P2)-
separator of size at most k − 1 in (L ∪H)− e.

Observation 3.6. Let H be a subgraph of a digraph D and let L be a linkage which is H-
minimal. Then L is weakly |L|-minimal with respect to H.

Proof. Assume towards a contradiction that there is some L ∈ L and some e ∈ E(L) \ E(H)
such that L can be decomposed into L1 · e · L2 and there is no V (L1)-V (L2) separator of size
less than |L| in D(L ∪H) − e. By Theorem 3.2, there is a V (L1)-V (L2)-linkage Q of order |L|
in D(L ∪H)− e.
Let S be a minimum start(L)-end(L) separator in D(L ∪H)− e. Because L is H-minimal, we

have that |S| < |L|. Hence, S must hit every path in L \ {L} and it must be disjoint from L.
Since |Q| = |L|, there is some Q ∈ Q which is not hit by S. Hence, there is a start(L)-end(L)

path in D(L ∪H)− e− S, a contradiction to the assumption that S is a separator. Thus, L is
weakly |L|-minimal with respect to H. □

We close this part by recalling the definition of well-linkedness, an important property of a
central concept in our proof, the cycle-of-well-linked-sets.

Definition 3.7. Let A,B be sets of vertices in a digraph D. We say that A is well-linked to B
in D if for every A′ ⊆ A and every B′ ⊆ B with |A′| = |B′| there is an A′-B′-linkage of order
|A′| in D.

Minors. Given a digraph D and an arc (v, u) ∈ E(D), we say that (v, u) is butterfly contractible
if degout(v) = 1 or degin(u) = 1. The butterfly contraction of (v, u) is the operation which
consists of removing v and u from D, then adding a new vertex vu, together with the arcs
{(w, vu) | w ∈ deginD(v)} and {(vu,w) | w ∈ degoutD (u)}. Note that, by definition of digraphs, we
remove duplicated arcs and loops, that is, arcs of the form (w,w). If there is a subgraph D′ of
D such that we can construct another digraph H from D′ by means of butterfly contractions,
then we say that H is a butterfly minor of D, or that D contains H as a butterfly minor.
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4 Directed Treewidth and Grids

In this section we recall directed treewidth and the dual concepts of brambles and cylindrical
grids. We also define various other forms of “grids” in directed graphs that we use in the sequel.
Directed treewidth was originally introduced by Reed [Ree99] and Johnson, Robertson, Sey-

mour, and Thomas [JRST01b], see also [JRST01a]. Adler [Adl07] showed that the original
definition in [JRST01b] of directed treewidth is not closed under butterfly minors. We therefore
use the variant of directed treewidth defined in [KK22], which is closed under taking butterfly
minors.
An arborescence T is an acyclic directed graph obtained from an undirected rooted tree by

orienting all edges away from the root. That is, T has a vertex r0, called the root of T , with the
property that for every r ∈ V (T ) there is a unique directed path from r0 to r in T . For each
r ∈ V (T ) we denote the subarborescence of T induced by the set of vertices in T reachable from
r by Tr. In particular, r is the root of Tr.

Definition 4.1 ([KK22, Definition 3.1]). A directed tree decomposition of a digraph D is a triple
(T, β, γ), where β : V (T ) → 2V (D) and γ : E(T ) → 2V (D) are functions and T is an arborescence
such that

(W1) {β(t) : t ∈ V (T )} is a partition of V (D) into (possibly empty) sets and

(W2) for every e = (s, t) ∈ E(T ), there is no closed directed walk in D − γ(e) containing a
vertex in A and a vertex in B, where A =

⋃
β(t) : t ∈ V (Tt) and B = V (D) \A.

For t ∈ V (T ) we define Γ(t) := β(t) ∪ ⋃
γ(e) : e ∼ t, where e ∼ t if e is incident to t, and we

define β(Tt) :=
⋃{β(t) : t ∈ V (Tt)}. The width of (T, β, γ) is the least integer w such that

|Γ(t)| ≤ w + 1 for all t ∈ V (T ). The directed treewidth of D is the least integer w such that D
has a directed tree decomposition of width w. The sets β(t) are called the bags and the sets
γ(e) are called the guards of the directed tree decomposition.

The natural dual to directed tree decompositions are objects called brambles. The concept of
brambles was also introduced by [JRST01b]. For the same reason as before we use the variant
of brambles defined in [KK15].

Definition 4.2. A bramble in a digraph D is a set B of strongly connected subgraphs B ⊆ D
such that B ∩B′ ̸= ∅ for all B,B′ ∈ B.
A cover of B is a set X ⊆ V (D) of vertices such that V (B)∩X ̸= ∅ for all B ∈ B. Finally, the

order of a bramble B is the minimum size of a cover for B. The bramble number bn(D) of D is
the maximum order of a bramble in D.

We also need the following relation between brambles and directed treewidth. The following
can be obtained from results due to [JRST01b] by converting brambles to havens and back, and
the statement was proven formally by [KO14].

Lemma 4.3 ([KO14, Corollary 6.4.24]). There are constants c, c′ such that for all digraphs D,
bn(D) ≤ cdtw(D) ≤ c′ bn(D).

By combining the statement (1.1) of [JRST01b] and Lemma 6.4.20 of [KO14], we obtain the
following.

Corollary 4.4 ([JRST01b] + [KO14]). Let D be a digraph. If dtw(D) ≥ 2k, then D contains
a bramble of order k.
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Figure 2: Cylindrical grid G8 of order 8 drawn in two ways. The drawing on the right illustrates
how a cylindrical grid is obtained from a fence. The dotted orange paths symbolise
the edges ei that close the cycles drawn solid on the left.

We now define another obstruction to directed treewidth called cylindrical grids. See Figure 2
for an illustration.

Definition 4.5. A cylindrical grid of order k is a digraph Gk consisting of k pairwise disjoint
directed cycles C1, C2, . . . , Ck of length 2k, together with a set of 2k pairwise vertex disjoint
paths P1, P2, . . . , P2k of length k − 1 such that

• each path Pi has exactly one vertex in common with each cycle Cj and both endpoints of
Pi are in V (C1) ∪ V (Ck),

• the paths P1, P2, . . . , P2k appear on each Ci in this order, and

• for each 1 ≤ i ≤ 2k, if i is odd, then the cycles C1, C2, . . . , Ck occur on Pi in this order
and, if i is even, then the cycles occur in the reverse order Ck, Ck−1, . . . , C1.

Besides cylindrical grids several different ways of defining “directed grids” have been considered
in the literature (for example [RRST96], [JRST01b], [KK15]). Two of these, called acyclic grids
and fences, see Figure 3, are used at various points of our proof. Since we are interested in grids
in the context of minors, we define grids by linkages instead of giving explicit vertex and edge
sets.
To motivate the following definitions let us dissect a cylindrical grid ((C1, . . . , Ck), (P1, . . . , P2k))

as follows. An important difference between cylindrical grids and grids in undirected graphs is
that cylindrical grids are locally acyclic in the following sense. Suppose we delete in each cycle
Ci the edge ei whose head is on the path P1. These edges are marked by the dotted red lines in
Figure 2. The resulting digraph is acyclic and consists of two linkages: the linkage {P1, . . . , P2k}
and the linkage {C1 − e1, . . . , Ck − ek} which contains for each cycle Ci the path that remains
once the edge ei is deleted. Digraphs of this form are called fences. See Figure 2 for a drawing of
cylindrical grids illustrating how they are constructed from a fence with additional edges closing
the cycles.
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Definition 4.6. A (p, q)-fence is a tuple (P,Q) such that

• P = (P1, P2, . . . , P2p) and Q = (Q1, Q2, . . . , Qq) are linkages,

• for each 1 ≤ i ≤ 2p and each 1 ≤ j ≤ q, the digraph Pi ∩ Qj is a path (and therefore
non-empty),

• for each 1 ≤ j ≤ q, the paths P1 ∩Qj , P2 ∩Qj , . . . , P2p ∩Qj appear in this order along Qj ,
and

• for each 1 ≤ i ≤ 2p, if i is odd then the paths Pi ∩ Q1, Pi ∩ Q2, . . . , Pi ∩ Qq appear in
this order along Pi, and if i is even instead, then the paths Pi ∩Qq, Pi ∩Qq−1, . . . , Pi ∩Q1

appear in this order along Pi.

See Figure 3b for an illustration. The “horizontal” paths, or rows, constitute the linkage Q and
the columns form the linkage P.
A useful property of a (p, q)-fence (P,Q) is that if A ⊆ start(Q) and B ⊆ end(Q) are sets with
|A| = |B| ≤ p then there is an A−B-linkage L of order |A| in the graph

⋃P ∪⋃Q.
Now let us further decompose the fence constructed from the cylindrical web to obtain an even

simpler form of directed grid. In a fence we can only route from “left to right” but we can route
“upwards” as well as “downwards”. An even simpler form of directed grid is obtained if in a fence
we remove the “upwards” paths, i.e. every second column. The resulting digraph is called an
acyclic grids, see Figure 3a.

Definition 4.7. An acyclic (p, q)-grid is a pair (P,Q) such that

• P = (P1, P2, . . . , Pp) and Q = (Q1, Q2, . . . , Qq) are linkages,

• for each 1 ≤ i ≤ p and each 1 ≤ j ≤ q, the digraph Pi ∩ Qj is a path (and therefore
non-empty),

• for each 1 ≤ j ≤ q, the paths P1 ∩Qj , P2 ∩Qj , . . . , Pp ∩Qj appear in this order along Qj ,
and

• for each 1 ≤ i ≤ p, the paths Pi ∩Q1, Pi ∩Q2, . . . , Pi ∩Qq appear in this order along Pi.

(a) An acyclic (8, 8)-grid. (b) An (8, 8)-fence.

Figure 3: An acyclic grid and a fence.

Acyclic grids only allow to route from top to bottom and left to right.
The last type of grid-like structures we define is called a web, originally introduced by Reed

et al. in [RRST96]. Webs form an important step in the proof of the directed grid theorem in
[KK15].
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5 Constructing splits and segmentations

The starting point for constructing our paths of well-linked sets and paths of order-linked sets
are splits and segmentations, which add more structure to webs by ensuring that one linkage of
the web intersects the other in an ordered fashion. We repeat below the definition of splits and
segmentations from Kawarabayashi and Kreutzer [KK22].

Definition 5.1 ([KK22, Definitions 5.6 and 5.7]). Let P and Q⋆ be linkages and let Q ⊆ Q⋆ be
a sublinkage of order q. Let r ≥ 0.

(S1) An (r, q′)-split of (P,Q) (with respect to Q⋆) is a pair (P ′,Q′) of linkages of order r = |P ′|
and q′ = |Q′| with Q′ ⊆ Q such that there is a path P ∈ P and edges e1, . . . , er−1 ∈
E(P ) \ E(Q⋆) such that P = P1e1P2 . . . er−1Pr and P ′ := (P1, . . . , Pr) and every Q ∈ Q′

can be divided into subpaths Q1, . . . , Qr such that Q = Q1e
′
1 . . . e

′
r−1Qr, for suitable edges

e′1, . . . , e
′
r−1 ∈ E(Q), and ∅ ≠ V (Q) ∩ V (Pi) ⊆ V (Qr+1−i), for all 1 ≤ i ≤ r.

(S2) A subset Q′ ⊆ Q of order q′ is a q′-segmentation of P ∈ P (with respect to Q⋆) if there are
edges e1, . . . , eq′−1 ∈ E(P )−E(Q⋆) with P = P1e1 . . . Pq′−1eq′−1Pq′ , for suitable subpaths
P1, . . . , Pq′ , such that Q′ can be ordered as (Q1, . . . , Qq′) and V (Qi) ∩ V (P ) ⊆ V (Pi).

(S3) An (r, q′)-segmentation (with respect to Q∗) is a pair (P ′,Q′) where P ′ is a linkage of
order r and Q′ is a linkage of order q′ such that Q′ is a q′-segmentation (with respect to
Q∗) of every path Pi into segments P i

1e1P
i
2 . . . eq′−1P

i
q′ .

(S4) A segmentation (P ′,Q′) is ordered if for all Pi ∈ P ′ the order
(
Q1, . . . , Qq′

)
given by the

q′-segmentation of Pi is the same. We say that (P ′,Q′) is an (ordered) (r, q′)-segmentation
of (P,Q) if Q′ ⊆ Q and every path in P ′ is a subpath of a path in P.

An (r, q)-split (P,Q) or an (r, q)-segmentation (P,Q) is well-linked if end(Q) is well-linked to
start(Q).

One can obtain splits and segmentations from webs by using the following result. We observe
that q5.2(p, q, x, y, c) ∈ 22↑↑poly

4(p,q,x,y,c).

Lemma 5.2 ([KK15, Lemma 5.13]). Let p, q, q′, r, s, c, x, y ≥ 0 be integers such that p ≥ x and
q′ ≥ q5.2(p, q, x, y, c) := (pq(q + c))2

(x−1)y+1 . If D contains a (p, q′)-web W := (P,Q) where P is q5.2
weakly c-minimal with respect to Q, then D contains one of the following:

(S1) a (y, q)-split (P ′,Q′) of (P,Q), or

(S2) an (x, q)-segmentation (P ′,Q′) of (P,Q).

Furthermore, if W is well-linked in D, then so is (P ′,Q′).

With a simple pigeon-hole principle argument, it is possible to construct an ordered segmen-
tation from a segmentation. The proof provided below is based on some steps of the proof of
Lemma 5.19 from [KK15].

Observation 5.3. Let (P,Q) be a (p, q)-segmentation. If p ≥ p5.3(k, q) := (k − 1)q! + 1, then p5.3
there is P ′ ⊆ P such that (P ′,Q) is an ordered (k, q)-segmentation.
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Proof. For each Pi ∈ P there is an ordering Qi of Q witnessing that Q is a q-segmentation of Pi.
In total, there are at most q! distinct orderings Qi. Hence, by the pigeon-hole principle, there is
some P ′ ⊆ P of size k such that Qi = Qj for all Pi, Pj ∈ P ′. □

Since the bounds for Lemma 5.2 are already elementary, in the remainder of this section we
obtain a web while making sure that all the functions that arise are elementary.
Thereby we improve upon results of [KK22], which shows that digraphs of high directed

treewidth contain a large well-linked web or a large cylindrical grid obtaining non-elementary
bounds in this step. In particular, their proof uses an iterated Ramsey argument and so the
bounds obtained are a power tower whose height depends on h, v and k (where h, v and k are
defined as in Theorem 5.4).

Theorem 5.4 ([KK22, Theorem 4.2 + Lemma 3.6 + Lemma 4.10]). Let h, v, k ∈ N. There exists
a function t5.4 : N×N×N→ N such that every digraph D with dtw(D) ≥ t5.4(h, v, k) contains
a cylindrical grid of order k as a butterfly minor or a (h, v)-web (H,V) where end(V) ∪ start(V)
is a well-linked set in D and H is V-minimal.

To achieve an elementary bound, we utilise a result known as Lovász Local Lemma, obtaining
even a polynomial bound for the step which was previously non-elementary. In total, however,
the gap between directed treewidth and the size of the ordered web we can guarantee is upper
bounded by a super-polynomial function.

Lemma 5.5 (Lovász Local Lemma [EL74, Spe77]). Consider a set E of events such that for
each A ∈ E

1. Pr[A] ≤ p < 1, and

2. A is mutually independent of a set of all but at most d other events.

If ep(d+ 1) < 1, then with positive probability none of the events in E occur.

While Lemma 5.5 above is not constructive, [MT10] provided a randomized algorithm and
[CGH13] provided a determinstic algorithm for finding an assignment of the random variables
which avoids all events E .
The proof of [KK22] for obtaining a web works by starting with a bramble of high order and

then showing that the existence of such a bramble implies the existence of an object called a
path-system1. We repeat the definition of path-system below (see Figure 4 for an illustration).

Definition 5.6 (path system [KK22]). Let G be a digraph and let ℓ, p ≥ 1. An ℓ-linked path
system of order p is a sequence S := (P,L,A), where

• A :=
(
Ain

i , A
out
i

)
1≤i≤p

such that A :=
⋃

1≤i≤pA
in
i ∪ Aout

i ⊆ V (G) is a well-linked set of
order 2ℓp and |Ain

i | = |Aout
i | = ℓ, for all 1 ≤ i ≤ p,

• P := (P1, . . . , Pp) is a sequence of pairwise vertex disjoint paths and for all 1 ≤ i ≤ p,
Ain

i , A
out
i ⊆ V (Pi) and all v ∈ Ain

i occur on Pi before any v′ ∈ Aout
i and the first vertex of

Pi is in Ain
i and the last vertex of Pi is in Aout

i and

• L := (Li,j)1≤i ̸=j≤p is a sequence of linkages such that for all 1 ≤ i ̸= j ≤ p, Li,j is a linkage
of order ℓ from Aout

i to Ain
j .

The system S is clean if for all 1 ≤ i ̸= j ≤ p and all Q ∈ Li,j , Q∩Ps = ∅ for all 1 ≤ s ≤ p with
s ̸∈ {i, j}.
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Figure 4: A clean 2-linked path-system of order 3.

We can obtain path-systems from brambles using the following lemma. We define k5.7(ℓ, p) =
(4ℓp)(2ℓp+ 1) and observe that k5.7(ℓ, p) ∈ O(ℓ2p2). k5.7

Lemma 5.7 ([KK22, Lemma 4.6]). Let D be a digraph and let ℓ, p ≥ 1. If D contains a bramble
of order k5.7(ℓ, p), then D contains an ℓ-linked path systems S of order p.

In our proof, we use a intermediate object which we call a semi-web. Unlike a web, we do not
require from a semi-web (P,Q) that the paths in P and Q pairwise intersect each other. Instead,
a semi-web has a degree which controls how much the linkages much intersect each other.
A (p, q)-web (P,Q) of avoidance d from [KK15] corresponds to a (p, q)-semi-web (P,Q) of

degree |P| · d−1
d where P is minimal with respect to Q in our notation. The main reason for this

modification is to avoid fractional calculations when determining the bounds of our functions.

Definition 5.8. Let D be a digraph. Two linkages H and V in D build a (|H| , |V|)-semi-web
(H,V) of degree d if every path in V intersects at least d paths in H.
Finally, (H,V) is well-linked if end(V) is well-linked linked to start(V) in D.

We can obtain a web from a semi-web using Lemma 5.11 below. Towards this end, we we
use observations 5.9 and 5.10, which summarize some basic properties of a linkage L which is
minimal with respect to another linkage P.

Observation 5.9 ([KK22, Lemma 2.14]). Let D be a digraph. Let P,L be linkages such that
L is minimal with respect to P. Then L is minimal with respect to P ′ for every P ′ ⊆ P.

Observation 5.10. Let P, Q be two linkages such that P is minimal with respect to Q. Let
P ∈ P. If P does not intersect any path in Q, then P \ {P} is minimal with respect to Q.

We adapt the following statement from [KK22] to our notation, fixing some small mistakes in
their proof in the process. We first define

q5.11q5.11
(
p′, q, k

)
= qk(p′)k.

1Despite the similarity in names, the path-systems we use here and the paths-of-sets systems of [CC16] are
unrelated mathematical objects.
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Lemma 5.11 ([KK22, Lemma 4.10]). Let (P ′,Q′) be a (p′, q′)-semi-web of degree k in a digraph
D such that P ′ is minimal with respect to Q′. If q′ ≥ q5.11(p

′, q, k), then D contains a well-linked
(p1, q)-web (P,Q) where P is minimal with respect to Q, P ⊆ P ′, Q ⊆ Q′ and p1 ≥ k.

Proof. Define a function f as f(Q) = {P ∈ P ′ | V (P ) ∩ V (Q) = ∅} for each Q ∈ Q′. By
assumption, |f(Q)| ≤ p′ − k for each Q ∈ Q′.
As there are

( p′
|f(Q)|

)
choices for each f(Q), and as

∑k
i=0

(
p′

p′−k

)
=

∑k
i=0

(
p′
k

)
≤ k(p′)k, by the

pigeon-hole principle there is some Q ⊆ Q′ of order q such that X := f(Qa) = f(Qb) holds for
all Qa, Qb ∈ Q.
Let P = P ′ \X and let p1 = |P|. Note that p1 ≥ k. By observations 5.9 and 5.10, P is minimal

with respect to Q. Hence, (P,Q) is a (p1, q)-web where P is minimal with respect to Q, as
desired. □

Lemma 5.12 essentially corresponds to Lemma 4.7 from [KK22], and our proof is based on
theirs. The idea is to attempt to construct a semi-web from some linkage La,b ∈ L and some
P ∈ P. If we do not find any semi-web, then it means that the linkages in L are mostly disjoint
from P. We then use this observation to argue that, for each pair Pi, Pj ∈ P, there are only
few other paths Pr ∈ P which are “bad” for the choice Pi, Pj , that is, we cannot easily construct
a clean path-system if we take Pi, Pj and Pr. This allows us to construct our “bad” events in
order to apply Lovász Local Lemma.
We define

d′(p2) = 3(p2)
2/2− 15p2/2 + 10,

ℓ5.12ℓ5.12(p2, ℓ2, d1) = ℓ2 + (p2 − 2)d1,

p5.12p5.12(q1, p2) = (2e(d′(p2) + 1)q1 + 1)p2.
Note that ℓ5.12(p2, ℓ2, d1) ∈ O(ℓ2 + d1p2) and p5.12(q1, p2) ∈ O(q1(p2)

3).

Lemma 5.12. Let d1, p2, ℓ2, q2 be integers. Let S = (P,L,A) be an ℓ-linked path-system of
order p. If ℓ ≥ ℓ5.12(p2, ℓ2, d1) and p ≥ p5.12(q1, p2), then D(S) contains one of the following

(C1) a well-linked (ℓ, q1)-semi-web (P1,Q1) of degree d1 where P1 ∈ L, Q1 ⊆ P and P1 is
minimal with respect to Q1, or

(C2) a clean ℓ2-linked path system (P2,L2,A2) of order p2.

Proof. Let d = 3(p2)
2/2− 15p2/2 + 10 and p′2 = ⌈2eq1(d+ 1)⌉ + 1.

First, if there is some Ls,t ∈ L such that Ls,t is not minimal with respect to P, then replace
such a linkage with another start(Ls,t)-end(Ls,t) linkage of the same order which is minimal with
respect to P. This does not alter the fact that S is an ℓ-linked path-system of order p. Further,
if p2 = 1, we can trivially obtain a clean ℓ2-linked path-system satisfying (C2) by taking any
path in P and setting L = ∅. Hence, we can assume that p2 ≥ 2.
Define a function γ as follows. For each distinct Ps, Pt ∈ P we set (see Section 5 for an

illustration)
γ(Ps, Pt) = {P ∈ P \ {Ps, Pt} | P intersects at least d1 paths of Ls,t or

P intersects at least d1 paths of Lt,s}.
If there is a pair of distinct Ps, Pt ∈ P such that |γ(Ps, Pt)| ≥ 2q1, then we construct our pair
(P1,Q1) as follows. By the pigeon-hole principle there is a choice of P1 ∈ {Ls,t,Lt,s} and a
set Q1 ⊆ γ(Ps, Pt) of size q1 such that every Q ∈ Q1 intersects at least d1 paths of P1. By
assumption, P1 is minimal with respect to Q1. Furthermore, end(Q1) is well-linked to start(Q1).
Hence, (P1,Q1) satisfies (C1).
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Ps Pt
Ls,t

Lt,s

γ(Ps, Pt) = γ(Pt, Ps)

Figure 5: Illustration of the set γ(Ps, Pt) used
in the proof of Lemma 5.12, given in
blue. This set consists of the paths
of P which intersect many paths in
at least one of the linkages between
Ps and Pt.

We now assume that |γ(Ps, Pt)| < 2q1 holds for all distinct Ps, Pt ∈ P. We construct a set P2

as follows.
First, distribute the elements of P arbitrarily into p2 disjoint sets X1, . . . ,Xp2 , each of size p′2.

For each Xi, define a random variable xi which corresponds to sampling one element of Xi from
an uniform distribution.
For each three distinct a, b, c ∈ {1, 2, . . . , p2}, let Aa,b,c be the event that xa ∈ γ(xb, xc).
Since the event Aa,b,c depends only on the values of xa, xb and xc, we know that Aa,b,c is

independent from Aa′,b′,c′ if {a, b, c} ∩ {a′, b′, c′} = ∅. Hence, Aa,b,c is independent from all but
at most

(
p2
3

)
−
(
p2−3
3

)
= d other events.

We now bound the value of Pr[Aa,b,c]. As there are (p′2)3 distinct choices for the tuple (xa, xb, xc)
and for each choice of xb, xc there are at most 2q1 choices of xa such that xa ∈ γ(xb, xc), we
have that Pr[Aa,b,c] ≤ (2q1(p

′
2)

2)/(p′2)
3 = 2q1/p

′
2.

Because p′2 ≥ e · (d + 1) · 2q1 + 1, from Lemma 5.5 we know that the probability that none
of the events Aa,b,c occur is positive. That is, there is some choice of x1, x2, . . . , xp2 such that
xa ̸∈ γ(xb, xc) for all three distinct a, b, c ∈ {1, 2, . . . , p2}. We set P2 = {x1, x2, . . . , xp2}.
For each distinct Ps, Pt ∈ P2 define L′

s,t = {L ∈ Ls,t | for all P ∈ P2 \ {Ps, Pt} we have V (P )∩
L = ∅}.
By choice of P2, we have that Pr ̸∈ γ(Ps, Pt) holds for all pairwise distinct Ps, Pt, Pr ∈ P2.

Hence,
∣∣L′

s,t

∣∣ ≥ |Ls,t| − (p2 − 2)d1 ≥ ℓ2.
Finally, choose A2 as the elements Ain

i , A
out
i of A satisfying Pi ∈ P2. Clearly, (P2,L2,A2) is a

clean ℓ2-linked path system of order p2, satisfying (C2). □

We obtain a bidirected clique from a clean path-system by first iteratively trying to obtain
disjoint paths inside L pairwise connecting the paths of P. If we cannot do so, then we obtain
a well-linked semi-web.
As seen before in Lemma 5.11, in order to obtain a web from a semi-web (P,Q) of degree d, we

require that Q is much larger than P. Unfortunately, it is not possible to directly use the results
of [KK22] to obtain the required web, as the sizes of the linkages P and Q provided by their
statements do not match. Instead, we need to modify the proof of [KK22, Lemma 4.8], ensuring
that in each step of the iteration described above we obtain a sufficiently large gap between Q
and P so that we can apply Lemma 5.11. Similarly, we again require a large gap between Q
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and P when obtaining a split or segmentation from a web using Lemma 5.2. Hence, we need to
“pay” the function from both Lemma 5.2 and Lemma 5.11 during each step of the iteration in
our proof.
In order to avoid repetition, we only present here the part of the proof from [KK22] which we

modify, which is Lemma 5.14 below. The remainder of the proof of [KK22, Lemma 4.8] is given
by Lemma 5.13.

Lemma 5.13 ([KK22, proof of Lemma 4.8]). Let k be an integer and let S = (P,L,A) be
a clean 1-linked path-system of order p in a digraph D such that all paths in L are pairwise
vertex-disjoint. If p ≥ p5.13(k) := 3k, then D contains a bidirected clique of order k as a butterfly
minor.

The proof of Lemma 5.14 works by iteratively constructing pairwise disjoint paths Rr. If in
some step we cannot construct the desired path Rr, then we argue that some linkage Li,j in the
clean-path system must intersect many paths of some other linkage Ls,t. Our modifications of
the proof of [KK22, Lemma 4.8] are essentially focused on ensuring that both linkages forming
the semi-web described above are large enough for us to apply lemmata 5.2 and 5.11.
We define

k′(k) = 2

(
3k

2

)
,

p5.14p5.14(k) = 3k,

ℓ5.14ℓ5.14(x, y, q, k) =
(
2xqk′(k)

)2k′(k)(y(x−1)+1)(3x)k
′(k)

.

Observe that ℓ5.14(x, y, q, k) ∈ 22↑↑poly
5(x,y,q,k).

Lemma 5.14. Let x, y, q and k be integers. Let S = (P,L,A) be a clean ℓ′-linked path system
of order p′ in a digraph D. If ℓ′ ≥ ℓ5.14(x, y, q, k) and p′ ≥ p5.14(k), then there are P1 ⊆ LP ∈ L
and Q1 ⊆ LQ ∈ L, where LP ̸= LQ, such that D contains one of the following:

(W1) a bidirected clique of order k as a butterfly minor,

(W2) a (y, q)-split (P ′,Q′) of (P1,Q1) where end(Q′) is well-linked to start(Q′), or

(W3) an (x, q)-segmentation (P ′,Q′) of (P1,Q1) where end(P ′) is well-linked to start(P ′).

Proof. Let k1 = 2
(
3k
2

)
. We define functions q′, f, p′ and q′′ recursively as follows. We start by

setting
q′(k1) = q5.11(x, q, x) , f(k1 + 1) = 0, f(k1) = q′(k1) + 1.

p′(k1) = x, and q′′(k1) = q5.2
(
p′(k1), q, x, y, p′(k1)

)
.

For 1 ≤ r < k1, we set
p′(r) = f(r + 1) + x− 1, q′′(r) = q5.2

(
p′(r), q, x, y, p′(r)

)
q′(r) = q5.11

(
p′(r), q′′(r), x

)
and f(r) = (k1 − r + 1)q′(r) + 1.

By repeatedly applying the functions above, we obtain the following recursive equality, which
will be used later

f(r) = 1 + x (k1 − r + 1) (x+ f(r + 1)− 1)x

· (q (x+ f(r + 1)− 1) (x+ q + f(r + 1)− 1))2
y(x−1)+1

.
Before proceeding with the proof, we give upper bounds for the functions defined above.

Claim 1. For all 0 ≤ r ≤ k1 − 1, we have
f(k1 − r) ≤ (2k1xq)

2(r+1)(y(x−1)+1)(3x)r+1
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Proof. We prove the statement iteratively by starting at r = 0.
f(k1) = xx+1q + 1 ≤ (2k1xq)

3x ≤ (2k1xq)
3x2y(x−1)+1

.
Hence, the bounds given above hold for r = 0. Now assume the bounds hold for some r − 1 ∈
{0, 1, . . . , k1 − 2}. We show that they also hold for r. To aid readability, we replace y(x− 1)+ 1
with w.

f(k1 − r) = x (r + 1) (x+ f(k1 − r + 1)− 1)x

· (q (x+ f(k1 − r + 1)− 1)

· (x+ q + f(k1 − r + 1)− 1))2
y(x−1)+1

+ 1

≤ x (r + 1)
(
x+ (2k1xq)

2rw(3x)r
)x

·
(
q
(
x+ (2k1xq)

2rw(3x)r
)(

x+ q + (2k1xq)
2rw(3x)r

))2w

(induction)

≤ x (r + 1)
(
2 (2k1xq)

2rw(3x)r
)x (

4q (2k1xq)
2rw+1(3x)r

)2w

(x+ q ≤ 2k1xq)

≤
(
2 (2k1xq)

2rw(3x)r
)x (

4k1xq (2k1xq)
2rw+1(3x)r

)2w

(xk1 ≤ (xk1)
2w)

=
(
2 (2k1xq)

2rw(3x)r
)x (

2 (2k1xq)
2rw+1(3x)r+1

)2w

= 22
w+x (2k1xq)

2w(2rw+1(3x)r+1)+2rwx(3x)r

≤ (2k1xq)
2w(2rw+1(3x)r+1)+2w+x+2rwx(3x)r (2 ≤ 2k1xq)

= (2k1xq)
2w(r+1)+1(3x)r+2w+1+x+2rwx(3x)r

≤ (2k1xq)
3·2w(r+1)3rxr+1

(2w(r+1)+1 (3x)r ,

2rwx (3x)r ,

2w+1 + x ≤ 2(r+1)w3rxr+1)

= (2k1xq)
2(r+1)(y(x−1)+1)(3x)r+1

(def. of w)
Hence, the statement of the claim follows by induction. □

From Claim 1 we have that f(1) ≤ ℓ5.14(x, y, q, k). Let (P = (P1, P2, . . . , P3k) ,L = (Li,j) ,A =(
Ain

i , A
out
i

)
) := S. Choose an arbitrary bijection σ : [k1] → {(i, j) | 1 ≤ i, j ≤ 3k, i ̸= j}, where

[k1] = {1, 2, . . . , k1}.
We iteratively construct linkages Lr

i,j and paths Rr, where 1 ≤ r ≤ k1, satisfying the following:

(L1) Rr is a path from Aout
i to Ain

j , where (i, j) := σ(r), and Rr does not share any internal
vertex with any path in P or in any Lr

σ(q) where q > r.

(L2)
∣∣∣Lr

σ(r)

∣∣∣ = f(r),

(L3) for all r < q ≤ k1 we have |L|rσ(q) = p′(r), and Lr
σ(q) is Lr

σ(r)-minimal, and

(L4) for all 1 ≤ i, j ≤ 3k where i ̸= j and for all P ∈ Lr
σ−1(i,j) the path P has no vertex in

common with any Pt for i ̸= t ̸= j.

We show that, if (L2) to (L4) hold on step 1 ≤ r ≤ k1, then (L1) holds on step r and if (L2)
to (L4) hold on step 1 ≤ r < k1, then (L2) to (L4) also hold on step r + 1.
For r = 1, we pick L1

σ(1) ⊆ Ls,t arbitrarily, where (s, t) = σ(1), so that
∣∣∣L1

σ(1)

∣∣∣ = f(1), satisfying

(L2) for r = 1. Further, for each 1 < q ≤ k1, we choose L1
σ(q) as a L1

σ(1)-minimal start
(
Lσ(q)

)
-
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end
(
Lσ(q)

)
linkage in D

(
L1
σ(1) ∪ Lσ(q)

)
of order p′(1). This satisfies (L3) for r = 1. Observe

that (L4) is satisfied for r = 1 because S is a clean path-system.
Now assume that (L2) to (L4) hold for step r ≥ 1. We construct the path Rr as follows.
First, let (i, j) = σ(r). We consider two cases.
Case 1: There is a path P ∈ Lr

i,j which, for each r < q ≤ k1, is internally disjoint from at least
f(r + 1) paths in Lr

σ(q).
We set Rr := P , satisfying (L1) for r. If r = k1, we are done with the iteration. Otherwise,

let (s, t) := σ(r + 1) and let Lr+1
s,t ⊆ Lr

s,t be an Aout
s -Ain

t -linkage of order f(r + 1) ≤ p′(r)

(satisfying (L2)) such that no path in Lr+1
s,t has an internal vertex in V (P ) ∪ ⋃r

r′=1 V
(
Rr′

)
(towards satisfying (L1) for r + 1). Because (L1) holds for r, we know that Lr

s,t is internally
disjoint from all Rr′ with 1 ≤ r′ < r. Hence, such a linkage Lr+1

s,t exists. Furthermore, as (L1)
holds for r, we have that every path in Lr+1

s,t is disjoint from all P ∈ P \ {Ps, Pt} (towards
satisfying (L4)).
For each r+1 < q ≤ k1, let (s′, t′) = σ(q) and choose an Aout

s′ -Ain
t′ -linkage Lr+1

σ(q) of order p′(r+1)

inside D
(
Lr
σ(q) ∪ Lr+1

s,t

)
which satisfies (L4) such that every path in Lr+1

σ(q) has no inner vertex

in V (P ) ∪⋃r
r′=1 V

(
Lr
σ(r′)

)
and which is Lr+1

s,t -minimal (satisfying (L3)). Thus, (L1) to (L4)
hold for the step r + 1.
Case 2: For every Pz ∈ Lr

i,j there is some r < qz ≤ k1 for which Pz intersects least p′(r) −
f(r + 1) + 1 = x paths in Lr

σ(qz)
.

Let (i′, j′) = σ(qz). As
∣∣∣Lr

i,j

∣∣∣ = f(r) = (k1 − r − 1)q′(r) + 1, by the pigeon-hole principle there
is a r < w ≤ k1 and a Q ⊆ Lr

i,j of order q′(r) such that all paths in Q intersect at least x paths

in Lr
σ(w). Hence,

(
Lr
σ(w),Q

)
is a (p′(r), q′(r))-semi-web of degree x. Finally, as the starting

points and endpoints of both Q and Lr
σ(w) lie in the well-linked set Aout

i ∪Ain
j ⊆ A, we have that(

Lr
σ(w),Q

)
is also a well-linked semi-web.

Applying Lemma 5.11 to
(
Lr
σ(w),Q

)
yields a well-linked (p2, q

′′(r))-web (P2,Q2) where P2 is
minimal with respect to Q2, where p′(r) ≥ p2 ≥ x. As q′′(r) ≥ q5.2(p

′(r), q, x, y, p′(r)) and P2 is
also p2-minimal with respect to Q2, we can apply Lemma 5.2 to (P2,Q2), obtaining two cases.
If Lemma 5.2(S2) holds, then we satisfy (W3). Otherwise, Lemma 5.2(S1) holds, satisfying
(W2).
If Case 2 above never occurs, then we obtain a sequence of pairwise disjoint paths R :=
(R1, R2, . . . , Rk1) such that for all 1 ≤ r ≤ k1, the path Rr is an Aout

i -Ain
j path which is

disjoint from P, where (i, j) = σ(r). By Lemma 5.13, we obtain a bidirected clique of size k as
a butterfly minor, satisfying (W1). □

We conclude this section by combining the main statements proven above, yielding the following
theorem which is used later on.
We define

ℓ′(x, y, q, k) = ℓ5.12(p5.14(2k) , ℓ5.14(x, y, q, 2k) , x) ,

t5.15t5.15(x, y, q, k) = 2(k5.7(ℓ
′(x, y, q, k) ,

p5.12(q5.11(ℓ
′(x, y, q, k) ,

q5.2(ℓ
′(x, y, q, k) , q, x, y,

ℓ′(x, y, q, k)), x), p5.14(2k))))).
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Note that t5.15(x, y, q, k) ∈ 25↑↑poly
5(x,y,q,k).

Theorem 5.15. Let D be a digraph. If dtw(D) ≥ t5.15(x, y, q, k), then D contains one of the
following

(D1) a cylindrical grid of order k as a butterfly minor,

(D2) a (y, q)-split (P ′,Q′) of some pair (P1,Q1) inD, where end(Q′) is well-linked to start(Q′),
or

(D3) an (x, q)-segmentation (P ′,Q′) of some pair (P1,Q1) in D, where end(P ′) is well-linked
to start(P ′).

Proof. Let k6 = 2k, ℓ5 = ℓ5.14(x, y, q, k6), p5 = p5.14(k6), d3 = x, ℓ2 = ℓ5.12(p5, ℓ5, d3), q4 =
q5.2(ℓ2, q, x, y, ℓ2) q3 = q5.11(ℓ2, q4, d3), p2 = p5.12(q3, p5), k1 = k5.7(ℓ2, p2).
Observe that ℓ2 = ℓ′(x, y, q, k) ≥ x and that t5.15(x, y, q, k) ≥ 2k1.
By Corollary 4.4, D contains a bramble B1 of order at least k1. By Lemma 5.7, D contains an
ℓ2-linked path-system S2 of order p2. By applying Lemma 5.12 to S2, we obtain two cases.
Case 1: Lemma 5.12(C1) holds.
Then D contains a well-linked (ℓ2, q3)-semi-web (P3,Q3) of degree d3 where P3 is minimal with

respect to Q3 and P3 ∈ L. In particular, end(P3) is well-linked to start(P3) as start(L)∪ end(L)
are vertices of a well-linked set, and end(Q3) is well-linked to start(Q3) as the starting and
endpoints of the paths in P are vertices of a well-linked set.
By Lemma 5.11, there is some p4 such that ℓ2 ≥ p4 ≥ d3 and D contains a well-linked (p4, q4)-

web (P4,Q4) where P4 is minimal with respect to Q4 and P4 ⊆ P3, Q4 ⊆ Q3. In particular,
P4 is also weakly p4-minimal with respect to Q4, end(P4) is also well-linked to start(P4) and
end(Q4) is also well-linked to start(Q4) Applying Lemma 5.2 to (P4,Q4) yields two cases. If
Lemma 5.2(S1) holds, then (D2) is satisfied. Otherwise, Lemma 5.2(S2) holds, satisfying
(D3).
Case 2: Lemma 5.12(C2) holds.
That is, D contains a clean ℓ5-linked path-system S5 of order p5. Applying Lemma 5.14 to S5

yields three cases.
If Lemma 5.14(W1) holds, then D contains a bidirected clique of order k6 as a butterfly minor.

As a cylindrical grid of order k contains k6 vertices, D also contains a cylindrical grid of order
k as butterfly minor, satisfying (D1).
If Lemma 5.14(W2) holds, then we obtain a (y, q)-split, satisfying (D2).
If Lemma 5.14(W3) holds, then we obtain an (x, q)-segmentation, satisfying (D3). □

6 Temporal digraphs and routings

In our proof we are frequently faced with problems of the following form. We have already
constructed two linkages, P and Q, say, but whereas the paths within the same linkage are
disjoint by definition, a pair of paths from different linkages may intersect arbitrarily, or not
at all. So the intersection pattern between the two linkages can be arbitrarily complex. The
problem then is to find some kind of order within the chaos, i.e. to find a subgraph of a specific
form in

⋃P ∪⋃Q.
Problems of this form occur frequently in this research area and also in the proof of the directed

grid theorem [KK15], where the authors had to solve the same kind of problems over and over
again.
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In this section we develop a framework based on temporal digraphs which allows us to rephrase
these problems in a more abstract setting. This abstraction allows us to simplify many arguments
and to unify proofs by isolating the core ideas common to several of these proofs. Moreover, our
framework allows us to obtain much better bounds and to prove elementary bounds for results
that require non-elementary bounds in [KK15].
There are several different definitions of temporal graphs and temporal walks, each useful in a

different context. Here, we make use of the notation from [CHMZ20, Mol20] and adapt it to the
directed setting. We first define our notion of temporal digraphs and walks within such digraphs
and then discuss how they arise in our context.

Definition 6.1. A temporal digraph is a pair T = (V,A) consisting of a vertex set V and
sequence of arc sets A = (A1, A2, . . . Aℓ) such that Dt(T ) := (V,At) is a digraph for all 1 ≤ t ≤ ℓ.
We also refer to Dt(T ) as layer t of T and call t a time step. The lifetime of D is given by
ℓ(D) := ℓ.

We next define paths and walks in the temporal setting. A temporal walk in a temporal digraph
T is required to obey the “timeline” of T , i.e. the order in which edges occur on the walk must
respect the time steps of T . In our setting we even need a more restrictive definition and allow
a temporal walk to only use a single edge of each layer.

Definition 6.2. A temporal walk of length n from v0 to vn in a temporal digraph T is a
sequence W := (v0, t0), (v1, t1), . . . , (vn, tn) such that (vi, vi+1) ∈ Ati and ti < ti+1 ≤ ℓ(T ) for all
0 ≤ i ≤ n− 1. If such a walk exists, we say that v0 temporally reaches vn. A temporal walk is
said to be a temporal path if no vertex appears twice in the sequence. Finally, we say that W
departs at t0 and arrives at tn, and that tn − t0 is the duration of W .

In our setting, temporal digraphs usually arise from a linkage P intersecting pairwise disjoint
digraphs Q1, . . . , Qq as formalised in the next definition. For this to work the individual paths
of the linkage must intersect the digraphs all in the same order.

QQ1 Q2 Q3

D1(T ) D2(T ) D3(T )

Pa

Pb

Pc

PaPbPc PaPbPc PaPbPc

∈ A1∈ A1 ∈ A2∈ A2 ∈ A3∈ A3

∈ A3

Pa-Pb-path

Figure 6: The layers Dj(T ) of the temporal graph T := (V = {a, b, c},A = {A1, A2, A3}) con-
structed from the graphs Qj displayed above as defined in Definition 6.3.
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Definition 6.3. Let P be a linkage and let Q = {Q1, Q2, . . . , Qq} be a set of pairwise disjoint
digraphs such that each path Pi ∈ P can be partitioned as P 1

i · P 2
i · . . . · P q

i = Pi such that
V
(
P j
i

)
∩ V (Q) ⊆ V (Qj) for all 1 ≤ j ≤ q.

The routing temporal digraph (V,A) of P through Q is constructed as follows. We set V = P
and for each 1 ≤ j ≤ q we define Aj = {(Pa, Pb) | Pa, Pb ∈ P and there is a path from V (Pa) to
V (Pb) inside Qj which is internally disjoint from P}.

See Figure 6 for an example of a temporal digraph obtained from a linkage P := {Pa, Pb, Pc}
and digraphs {Q1, Q2, Q3}.
In our application of routing temporal digraphs we want to translate paths or more general struc-

tures we construct in a routing temporal digraph T of a linkage P through Q := {Q1, . . . , Qq}
into corresponding subgraphs of

⋃P ∪ ⋃Q. This is made possible by our requirement that a
temporal walk in T is only allowed to use at most one edge in each layer. For, if W is a temporal
walk W in T and e = (Pi, Pj) ∈ E(W ) is an edge in layer Al, say, then we can replace e by
a path L(e) ⊆ Ql connecting Pi to Pj . As W contains at most one edge per layer the paths
L(e) and L(e′) for distinct edges e ̸= e′ are pairwise disjoint. Therefore, the walk W naturally
translates into a walk in

⋃P ∪⋃Q.
As the example in Figure 6 demonstrates, this would no longer work if temporal walks were

allowed to use more than one edge per layer. For instance, the digraph Q2 induces the edges
(Pc, Pb) and (Pb, Pa) in the routing temporal digraph T2 of P through {Q2}, but the walk
(Pc, Pb, Pa) in T2 does not correspond to any Pc−Pa-walk in

⋃P ∪Q2.

6.1 H-routings

We now introduce the main tools to facilitate temporal digraphs for our purposes. Our goal
is to describe connections between specific sets of vertices that involve several layers, possibly
with the additional requirement that the connections avoid a given set of forbidden vertices.
The concept of H-routings formalised in the next definition allows us to specify the required
connections by a digraph H. We now define H-routings in digraphs and temporal digraphs.

Definition 6.4. Let H be a digraph, D be a digraph or temporal digraph, and S ⊆ V (D). An
H-routing (over S) is a bijection φ : V (H) → S such that for each v-u path P in H we can find
a φ(v)-φ(u)-path (or temporal path, resp.) in D which is disjoint from S \ φ(V (P )).

Note that reachability in temporal digraphs is not transitive, as the example in Figure 6 demon-
strates: in the temporal digraph T1,3 := ({P1, P2, P3}, {A1, A3}) containing only the layers A1

and A3, Pa is reachable from Pc and Pb is reachable from Pa but Pb is not reachable from Pc.
To get a meaningful concept of H-routings we therefore have to require that not only for every
edge in H but also for every path in H there is a temporal path in T with the same start and
endpoint.
To motivate our next results let us briefly consider the following statement proved by Leaf and

Seymour for undirected graphs.

Lemma 6.5 ([LS15, statement 2.3]). Let r ≥ 1 and h ≥ 3 be integers, let G be a connected
graph with |V (G)| ≥ (r + 2)(2h− 5) + 2. Then, G contains one of the following

• a path with r vertices whose internal vertices have degree two in G, or

• a spanning tree T with at least h leaves.
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In the undirected setting, both cases of the previous lemma can be useful in terms of connectivity
they provide: a tree contains for every pair of leaves a path connecting them without intersecting
any other leaves whereas a long path yields many disjoint subpaths.
In the directed setting, however, neither out-trees nor in-trees provide any connectivity whatso-

ever between their leaves. To get a statement that we can use in the sequel we therefore have to
replace the trees used in Lemma 6.5 by something else. We first need the following well-known
result about acyclic digraphs, often stated in terms of chains and anti-chains in partial orderings.

Observation 6.6. Every acyclic digraph D with more than ℓ·p vertices but no Pp as a subgraph
contains a set X ⊆ V (D) of size ℓ such that no vertex in X can reach any other vertex in X.

Proof. For each i ≥ 0 let Li := {v ∈ V (D) : the longest path from a source to v in T has
length i}. As, by assumption, D does not contain a path of length p, Li = ∅ for all i ≥ p.
Furthermore, by construction, no vertex v ∈ Li can reach any other vertex u ∈ Li, as otherwise
the longest path from a source to u would be longer than i.
Every vertex of D lies in some Li; by the pigeon-hole principle, at least one Li must contain at

least ℓ vertices, which proves the claim. □

In the next lemma we establish a simple base case where we are guaranteed to either find a
long path or a K⃗

⃗

k-routing.

Lemma 6.7. Let D be a strongly connected digraph. Let s ∈ V (D) be a vertex such that
D − {s} contains at least kp strongly connected components. Then, D contains one of the
following:

(B1) a Pp as a subgraph, or

(B2) a K⃗
⃗

k-routing over some S ⊆ V (D).

Proof. We show that (B2) holds if (B1) does not hold.
Let T be the acyclic digraph of strongly connected components of D − {s}. As D has no path

of length p, T also has no such path. Thus, by Observation 6.6, T contains a set X ′ ⊆ V (T ) of
size k such that no vertex in X ′ can reach any other vertex in X ′ in T .
Let X ⊆ V (D) be a set of size |X| = |X ′| which contains a vertex vi ∈ V (Ci) for each strong

component Ci ∈ X ′ of D − {s}. Let φ : V (K⃗

⃗

k) → {v1, v2, . . . , vk} be a bijection. We show that
φ is a K⃗

⃗

k-routing in D.
Let vi, vj ∈ X be two distinct vertices. Let Ct ∈ V (T ) be a sink in T which is reachable from
Ci and let Cr ∈ V (T ) be a source in T which can reach Cj .
Since D is strongly connected and D−{s} is not, there is some ut ∈ V (Ct) and some ur ∈ V (Cr)

such that (ut, s) and (s, ur) are arcs in D.
Because Ci can reach Ct and Cr can reach Cj in T , there is a vi-ut path Pi,t and a ur-vj

path Pr,j in D such that Pi,t and Pr,j do not intersect any vertex in X \ {vi, vj}. Hence,
Pi,t · (ut, s) · (s, us) · Pr,j is a vi-vj path in D which is disjoint from X \ {vi, vj}.
We conclude that φ is a K⃗

⃗

k-routing in D, and so (B2) holds, as desired. □

We now prove a statement as an analogue to Lemma 6.5 in the case of directed graphs.

Theorem 6.8. Let n6.8(k, p) := 2k2p3. Every strongly connected digraph D with |V (D)| ≥ n6.8
n6.8(k, p) contains one of the following:

(S1) a Pp as a subgraph, or
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(S2) a K⃗

⃗

k-routing over some S ⊆ V (D).

Proof. We show that (S2) holds if (S1) does not hold.
We iterate from 1 to 2kp, potentially stopping earlier. On step i, we construct a vertex sequence
Xi and a digraph Di satisfying all of the following.

(A1) (v1, v2, . . . , vi) = Xi and so |Xi| ≥ i,

(A2) Di is strongly connected component of Di−1 − {vi} (and so vi is not on Di),

(A3) for every 1 ≤ j ≤ i, vj lies on Dj−1,

(A4) V (Di) ≥ (2kp− i)kp2.

Start by setting D0 = D and X0 as the empty sequence. Clearly, (A1) to (A4) hold for 0
(to simplify notation, we set D−1 := D and replace {v0} with the empty set so that (A2) is
well-defined for i = 0). On step i ≤ 2kp, we consider the following cases.
Case 1. There is a v ∈ V (Di−1) such that Di−1 − v contains at least kp strongly connected

components.
As we assume that (S1) does not hold, we know from Lemma 6.7 that (S2) holds and we are

done with the construction and the proof.
Case 2. There is a v ∈ V (Di−1) such that Di−1 − v is strongly connected.
Then set Xi := Xi−1 · (v) and set Di := Di−1 − v. It is immediate from the choice of v and

from our assumption over Di−1 − v that (A1) to (A4) hold for i as they also hold for i− 1.
Case 3. There is a v ∈ V (Di) such that the largest strongly connected component C of Di−1−v

has at least |V (Di−1)| − kp2 many vertices.
Then set Xi := Xi−1 · (v) and Di := C. Note that |V (Di−1)| − kp2 ≥ (2kp − i)kp2 as (A4)

holds for i− 1. Hence, it is again immediate from the choice of v and from our assumption over
C that (A1) to (A4) hold for i as they also hold for i− 1.
This completes the case distinction above. Now assume towards a contradiction that none of

the three cases above apply and i ≤ 2kp.
For every v ∈ V (Di−1), we know that Di−1 − v has fewer than kp strong components because

Case 1 does not apply. Further, Di−1 − v is not strongly connected, as Case 2 does not apply.
Finally, we know that each strong component of Di−1−v has fewer than |V (Di−1)−kp2| vertices
because Case 3 does not apply.
For each v ∈ V (Di−1), let Cv be the set of strong components of D′

v := Di−1 − v. Let Av =
{(u,w) : u,w ∈ V (D′

v) and there is no path from u to w in D′
v}. Let nv = |V (D′

v)|.
Now let v ∈ V (Di−1) be arbitrary. For any two distinct components C1, C2 ∈ Cv, there is no

path in D′
v from any u ∈ V (C1) to any w ∈ V (C2) or vice versa. Thus, Av contains all possible

arcs from vertices in C1 to vertices in C2 or all possible arcs from vertices in C2 to vertices in
C1. Fixing some arbitrary ordering (C1, C2, . . . , Cc) of the elements of Cv, we deduce that

|Av| ≥
∑

Ca,Cb∈Cv ,
a<b

|V (Ca)| · |V (Cb)|.

Let C ∈ Cv be a strong component of D′
v with the maximal number of vertices among all

components in Cv. The previous inequality implies that |Av| ≥ |V (C)| ·∑Ca∈Cv\{C} |V (Ca)|.
By assumption |V (C)| ≤ nv − kp2 − 1, and since the strong components of D′

v form a partition
of D′

v, we obtain that
∑

Ca∈C\{C} |V (Ca)| ≥ kp2. Note that nv − kp2 − 1 ≥ kp2 since (A4)
holds for i < 2kp. Since D′

v contains fewer than kp strong components, we also obtain |V (C)| ≥
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(nv − 1)/kp. From the inequality above, we obtain
|Av| ≥ |V (C)| ·

∑
Ca∈C\{C}

|V (Ca)|

≥ nv − 1

kp
·

∑
Ca∈C\{C}

|V (Ca)|

≥ nv − 1

kp
· kp2 = (nv − 1) · p

Hence,
∑

v∈V (Di−1)
|Av| ≥ nv · (nv − 1) · p. Since Av does not contain any reflexive tuples and

there are nv(nv − 1) non-reflexive tuples in the set V (Di−1) × V (Di−1), by the pigeon-hole
principle we deduce that there are u, v ∈ V (Di−1) and there are v1, . . . , vp ∈ V (Di−1) such that
(u, v) ∈ Avj for all 1 ≤ j ≤ p. Thus, every path from u to w in Di−1 must contain each of
the vertices v1, . . . vp and thus be of length at least p + 1 (by definition, (u,w) ̸∈ Au ∪ Aw), a
contradiction to the assumption that (S1) does not hold, that is, that D does not contain a
path of length p. Hence, one of the three cases must apply and we can complete the construction
above.
If at any point during the construction we end up at Case 1, then, as argued above, (S2) is

true and we are done. Otherwise, we know that (A1) to (A4) hold for 2kp. We now show that
(S2) holds.
Let (v1, v2, . . . , v2kp) := X2kp. We inductively construct disjoint sets Ai, Bi ⊆ {v1, . . . ,
v2pk} and we construct for each vj ∈ Bi a path P+

j ⊆ Dj from vj to V (D2kp) and a path
P−
j ⊆ Dj from V (D2kp) to vj such that

(
V (P+

j ) ∪ V (P−
j )

)
∩ Ai = ∅ for all vj ∈ Bi. Finally,

|Bi| = i, |Ai| ≥ 2kp− 2pi and the elements of Bi are contained in Xi.
We start by setting A0 := {v1, . . . , v2kp} and B0 := ∅, which obviously meet the requirements.

On step i < k, let j be minimal such that vj ∈ Ai−1.
Let P+

j be a shortest path in Dj−1 from vj to a vertex in D2kp and let P−
j be a shortest path

from a vertex in D2kp to vj , again in Dj−1. As Dj−1 is strongly connected and D2kp ⊆ Dj−1

due to (A2), such paths exist. Furthermore, P+
j and P−

j are both of length at most p and all
internal vertices of P+

j and P−
j are disjoint from Xj−1 (and so from Bi−1) due to (A2).

We define Bi = Bi−1 ∪ {vj} and Ai = Ai−1 \
(
V (P+

j ∪ P−
j )

)
. As |V (P+

j )|, |V (P−
j )| < p and

|Ai−1| ≥ 2kp − 2p(i + 1), we immediately get that |Ai| ≥ 2kp − 2pi, as required. Clearly, the
other conditions are satisfied as well.
The construction stops after k steps with a set Bk such that for each vj ∈ Bk there are paths
P+
j , P

−
j such that P+

j is a vj-V (D2kp) path and P−
j is a V (D2kp)-v path and both paths are

internally disjoint from Bk.
Let φ : V (K⃗

⃗

k) → Bk be a bijection. We show that φ is a K⃗

⃗

k-routing in D. To see this, let
vi, vj ∈ Bk and let Pi,j be a path in D2kp from the end vertex of P+

i to the start of P−
j . Then

P+
i ∪ Pi,j ∪ P−

j contains a vi−vj-path disjoint from Bk. Hence, (S2) holds and this concludes
the proof of the theorem. □

6.2 Finding Pk-routings in temporal digraphs

Of particular interest to us are H-routings in temporal digraphs where H is just a simple path
Pk. This is not surprising as, for example, an acyclic grid is nothing else than a “horizontal”
linkage Q := (Q1, . . . , Qq) that intersects a sequence P := {P1, . . . , Pp} of pairwise disjoint
digraphs Pi in the order P1, . . . , Pp where each Pi happens to be a simple path intersecting the
paths in Q in the order Q1, . . . , Qq.
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Our next goal, therefore, is to identify properties of the individual layers of a temporal digraph
T that guarantee the existence of a Pk-routing in T .
Recall from Section 3 that a digraph D is unilateral if for every pair u, v ∈ V (D) of vertices v

can reach u or u can reach v. As proved in [HNC65, Theorem 3.10], a digraph D is unilateral if
and only if there is a walk visiting all vertices of D.
We need a stronger characterisation of unilateral digraphs for our results.

Lemma 6.9. A digraph D is unilateral if and only if for every S ⊆ V (D) there is a walk W of
length at most 2kn in D with S ⊆ V (W ), where k = |S| and n = |V (D)|.

Proof. If there is a walk W in D with V (W ) = V (D), then D is clearly unilateral.
Now assumeD is unilateral and let S = {v1, v2, . . . vk} ⊆ V (D). We construct for each 1 ≤ i ≤ k

a walk Wi of length at most 2i · |V (D)| such that {v1, v2, . . . vi} ⊆ V (Wi). Start by setting W1

as the walk containing only v1.
We extend the walk Wi as follows. Let u1, u2 be the starting point and endpoint of Wi,

respectively. If there is a path P from vi+1 to u1, we construct Wi+1 by adding P to the
beginning of Wi. Similarly, if there is path P from u2 to vi+1 we construct Wi+1 by adding P
to the end of Wi. Since in both cases P has length at most |V (D)| − 1, the length of Wi+1 is at
most 2i |V (D)|+ |V (D)| ≤ 2(i+ 1) |V (D)|.
If none of the previous two cases apply, we know there is an arc (w1, w2) in Wi such that

there is a path P1 from w1 to vi+1 and a path P2 from vi+1 to w2. We construct Wi+1 by
replacing the arc (w1, w2) in Wi by the walk P1 · P2. The walk Wi+1 has length at most
2i |V (D)|+ 2 |V (D)| = 2(i+ 1) |V (D)|, as desired.
Thus, the walk Wk satisfies the statement of the lemma. □

Finding long walks in unilateral digraphs is easy. The task becomes more complicated in
temporal digraphs as the connectivity provided by individual layers may be very different. As
we show next, one direction of the previous lemma can be retained in the temporal setting.
Observe that ℓ6.10(n, k) ∈ O(k2n2kn+2).

Lemma 6.10. Let ℓ6.10(n, k) := 2kn
∑2kn

i=1 n
i. Let T be a temporal digraph with n vertices ℓ6.10

where each layer is unilateral and let S ⊆ V (T ) be a set of size k. If ℓ(T ) ≥ ℓ6.10(n, k), then T
contains a temporal walk W with S ⊆ V (W ).

Proof. By Lemma 6.9, for each 1 ≤ i ≤ ℓ(T ) there is a walk Wi of length at most 2kn in Di(T )
such that S ⊆ V (Wi). Note that there are

∑2kn
i=1 n

i distinct walks of length at most 2kn over
the vertex set of T .
As ℓ(T ) ≥ 2kn

∑2kn
i=1 n

i, by the pigeon-hole principle there is some walk W ′ which appears on
at least 2kn different layers. Let t1, t2, . . . , t2kn be time steps such that each Dti(T ) contains the
walk W ′. Now set W := ((vi, ti) | 1 ≤ i ≤ 2kn and vi is the ith vertex on W ′).
Since V (W ) = V (W ′), we also have S ⊆ V (W ), as desired. □

The next lemma establishes a special case where a temporal digraph is guaranteed to contain
a Pk-routing. Together with Lemma 6.10 this implies Theorem 6.12.

Lemma 6.11. Let D be a temporal digraph and let W be a temporal walk in D. If |V (W )| ≥
k2 − 1, then W contains a Pk-routing.

Proof. If W contains a Pk as a temporal subpath, then this subgraph also contains a Pk-routing.
So assume W does not contain any Pk as a temporal subpath.
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LetW ′ be a minimal temporal subwalk ofW such that V (W ′) = V (W ). We say that a temporal
subwalk R of W is a return around u if u appears twice on R, R starts and ends on u and all
other vertices on R appear exactly once on R. As we do not have any Pk as a temporal subpath
of W ′, we know each return contains at most k− 1 vertices. Furthermore, by minimality of W ′,
each return R around a vertex u must contain a vertex u′ which only occurs on R.
Let v1, v2, . . . va be vertices on W ′ which are not contained in any return and let X be the

shortest subwalk of W ′ containing these vertices. Clearly, X is a temporal path, as otherwise
we would have some return containing some vi. Hence, a ≤ k − 1 as there is no Pk in W .
Observe that |V (W ′)| ≥ k2− 1, that each return contains at most k− 1 vertices and that there

are at most k− 1 vertices which are not contained in any return. This implies that the walk W ′

must contain at least (k2−1)−(k−1)
k−1 = k distinct returns.

Each return Ri on W ′ contains some vertex ui which appears exactly once on W ′. Let X be
a shortest temporal subwalk of W ′ which contains S := {u1, u2, . . . uk}. This walk contains a
Pk-routing as desired, as each temporal subpath of X connecting ui to uj is internally disjoint
from S \ {ui, . . . , uj} for every 1 ≤ i < j ≤ k. □

The previous two lemmas immediately imply the following result. Observe that ℓ6.12(n, k) ∈
21↑↑poly

6(k,n).

Theorem 6.12. Let ℓ6.12(n, k) := ℓ6.10
(
n, k2 − 1

)
. Let T be a temporal digraph where each ℓ6.12

layer is unilateral. If ℓ(T ) ≥ ℓ6.12(n, k) and n := |V (T )| ≥ k2 − 1, then there is some set
S ⊆ V (T ) such that T contains a Pk-routing over S.

Proof. Let S′ ⊆ V (D) with |S′| = k2 − 1. By Lemma 6.10, T contains a temporal walk W such
that S′ ⊆ V (W ). In particular, |V (W )| ≥ k2 − 1. By Lemma 6.11, there is some S ⊆ V (W )
such that W and, hence, T contain a Pk routing over S. □

6.3 Finding Ck and P⃗

⃗

k-routings in temporal digraphs

As discussed at the beginning of the previous section, Pk-routings relate to the connectivity in
an acyclic grid, which only allows to route from top to bottom and from left to right. If instead
of an acyclic grid we consider a fence, then the fence allows us to route upwards as well as
downwards as the columns alternate in direction. Two consecutive columns taken together allow
to go from any row to any other row and in this way resemble a strongly connected digraph
like a cycle Ck or a bioriented P⃗

⃗

k much more than a Pk. In this section we aim at finding
H-routings that provide this higher level of connectivity.
We first define

s6.13s6.13(k1, k2) := 6k1(k2)
2 − 8k1k2 + 2k1 − 2(k2)

2 + 3k2
and prove the following technical lemma. Note that s6.13(k1, k2) ∈ O(k1(k2)

2).

Lemma 6.13. Let T be a temporal digraph, let W be a temporal walk in T , let k1, k2 be
integers, and let S ⊆ V (W ) be a set of size at least s6.13(k1, k2). Then there is some S′ ⊆ S
such that one of the following is true:

(R1) W contains a P⃗

⃗

k1-routing over S′, or

(R2) there are (possibly arcless) walks W1,Wa,Wb,Wc in D such that W1 is a subwalk of W
leaving and arriving at the same time steps as W , Wa ·Wb ·Wc = W1, Wa and Wc are
internally disjoint from S′, and Wb contains a Pk2-routing over S′ where the first vertex
of the Pk2 is mapped to start(Wb) and the last vertex of the Pk2 is mapped to end(Wb).
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Proof. To simplify arithmetic steps, we define k3 = (k1−1)(k2−1) and s1 = 2(k3+k2)+k2−1.
Note that (k2−1)(s1−1)+k2(4k3+k2) = 6k1(k2)

2−8k1k2+2k1−2(k2)
2+3k2 = s6.13(k1, k2) ≤ |S|.

We identify in the following claim a base case for the proof, which is used several times later
on.

Claim 1. Let Ŵ = Ŵa · Ŵb · Ŵc be a temporal walk inside W such that start
(
Ŵ

)
= start(W )

and end
(
Ŵ

)
= end(W ) and let Ŝ ⊆ V

(
Ŵa

)
∩ V

(
Ŵc

)
∩ S be a set such that each vertex of Ŝ

appears exactly once on Ŵa and exactly once on Ŵc. If |Ŝ| ≥ k3 + 1, then there is some S′ ⊆ Ŝ
such that (R1) or (R2) holds.

Proof. Since each vertex of Ŝ appears exactly once on Ŵa and exactly once on Ŵc, each of
these walks induces an ordering over the vertices of Ŝ. By Theorem 3.1, we obtain two cases.
Case 1: There is some S′ ⊆ Ŝ of size k1 such that the vertices of S′ appear on Ŵc in the

reverse order compared to their order on Ŵa.
Let Wa be a shortest temporal subpath of Ŵa containing every vertex of S′ and let Wc be a

shortest temporal subpath of Ŵc containing every vertex of S′. Note that end(Wa) = start(Wc).
We show that Wa ·Wc contains a P⃗

⃗

k1-routing over S′. Let {u1, u2, . . . , uk1} be the vertices of
the P⃗

⃗

k1 sorting according to their occurrence on the path.
Let ui, uj ∈ {u1, u2, . . . , uk1}. If i < j, then Wa contains a ui-uj path avoiding S′ \{ui, . . . , uj}.

If j > i, then Wc contains a ui-uj path avoiding S′ \ {uj , . . . , ui}. Since both Wa and Wc are
temporal paths, we have that Wa ·Wc contains a P⃗

⃗

k1-routing over S′, satisfying (R1).
Case 2: There is some S′ ⊆ Ŝ of size k2 such that the vertices of S′ appear in Ŵc in the same

order as in Ŵa.
Let Wb be the shortest temporal subpath of Ŵa containing every vertex of S′. Let Wa be a

temporal start
(
Ŵ

)
-start(Wb) path in Ŵa and let Ŵc be a temporal end(Wb)-end

(
Ŵ

)
path in

Ŵc.
Since every vertex of S′ appears exactly once, Wb contains a Pk2-routing over S′ where the first

vertex of the Pk2 is mapped to start(Wb) and the last vertex of the Pk2 is mapped to end(Wb).
Further, Wa and Wc are internally disjoint from S′. Thus, the temporal walk W1 :=Wa ·Wb ·Wc

satisfies (R2). □

Let W ′ be a minimal temporal subwalk of W such that S ⊆ V (W ′). We say that a temporal
subwalk R of W is a return around a vertex u ∈ S if u appears exactly twice on R, R starts
and ends on u and all vertices of (V (R) ∩ S) \ {u} appear exactly once on R. Note that, by
minimality of W ′, each return R around a vertex u must contain a vertex u′ ∈ S whose only
occurrence on W ′ is on R.
Let R be a return in W ′ such that the cardinality of S1 := V (R)∩S is maximum. We consider

two cases.
Case 1: |S1| ≤ s1 − 1.
We decompose W ′ into Q1 ·R1 ·Q2 ·R2 · . . . ·Qx ·Rx ·Qx+1 =W ′, where each Qi is a temporal

walk where no vertex of S appears twice and each Ri is a return in W ′. By definition of return,
such a decomposition is unique. We distinguish between two cases.
Case 1.1: x ≥ k2.
For each 1 ≤ i ≤ k2 let ui ∈ V (Ri)∩S be a vertex which occurs exactly once on W ′. Let Wa be

a temporal start(W ′)-u1 path in W ′, let Wc be a temporal uk2-end(W ′) path in W ′ and let Wb

be a temporal u1-uk2 walk in W ′ which contains every vertex of S′ := {u1, u2, . . . , uk2} exactly
once.
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Because each vertex of S′ appears exactly once, Wb contains a Pk2-routing over S′ where
u1 = start(Wb) is the first vertex of the Pk2 and uk2 = end(Wb) is the last vertex of the
Pk2 . Further, Wa and Wc are temporal walks which are internally disjoint from S′. Hence,
W1 :=Wa ·Wb ·Wc satisfies (R2).
Case 1.2: x < k2.
Since |S| ≥ (k2 − 1)(s1 − 1)+ k2(4k3 + k2) and |V (Ri) ∩ S| ≤ |S1| ≤ s1 − 1 for every 1 ≤ i ≤ x,

there is some 1 ≤ b ≤ x such that |V (Qb) ∩ S| ≥ (|S| − (k2 − 1)(s1 − 1))/k2 ≥ 4k3 + k2.
Let t1 be the time step in which Qb departs and let t2 be the time step in which Qb arrives. Let
Q′

a be a temporal start(W ′)-start(Qb) path in W ′ arriving at t1 and let Q′
c be a temporal end(Qb)-

end(W ′) path in W ′ departing at t2. Let Sa = V (Q′
a)∩S, Sb = V (Qb)∩S and Sc = V (Q′

c)∩S.
We consider three cases.
Case 1.2.1: |Sb \ (Sa ∪ Sc)| ≥ k2.
Let S′ ⊆ Sb \ (Sa ∪ Sc) be a set of size k2. Let Wb be a shortest walk inside Qb containing

every vertex of S′ exactly once. By construction of Qb, this is possible. Let Wa be a temporal
start(W ′)-start(Wb) walk in Q′

a ·Qb and let Wc be a temporal end(Wb)-end(W ′) walk in Qb ·Q′
c.

By construction, we have that Wa and Wc are internally disjoint from S′. Further, since each
vertex of S′ appears exactly once, Wb contains a Pk2-routing over S′ where the first vertex of
the Pk2 is mapped to start(Wb) and the last vertex of the Pk2 is mapped to end(Wb). Hence,
W1 :=Wa ·Wb ·Wc satisfies (R2).
Case 1.2.2: |(Sb ∩ Sa) \ Sc| ≥ k3 + 1 or |(Sb ∩ Sc) \ Sa| ≥ k3 + 1.
We assume, without loss of generality, that |(Sb ∩ Sa) \ Sc| ≥ k3 + 1. The other case follows

analogously.
Let S2 = (Sb ∩ Sa) \ Sc. Let Ŵc = Qb ·Q′

c. Each vertex of Ŝ appears exactly once on Qa and
exactly once on Ŵc. Hence, by Claim 1, there is some S′ ⊆ S2 such that (R1) or (R2) holds.
Case 1.2.3: The conditions of Case 1.2.1 and Case 1.2.2 do not apply.
We first show that |Sa ∩ Sc| ≥ k3 + 1. Since |Sb \ (Sa ∪ Sc)| ≤ k2 − 1 and |Sb| ≥ 4k3 + k2, we

have that |Sb ∩ (Sa ∪ Sc)| ≥ 4k3 + 1. Hence, |Sb ∩ Sa| ≥ 2k3 + 1 or |Sb ∩ Sc| ≥ 2k3 + 1.
Assume, without loss of generality, that |Sb ∩ Sa| ≥ 2k3 + 1 holds. Because
|(Sb ∩ Sa) \ Sc| ≤ k3, we have that |Sa ∩ Sc| ≥ k3 + 1, as desired.
Let S2 ⊆ Sa ∩ Sc be a set of size k3 + 1. Each vertex of S2 appears exactly once on Qa and

exactly once on Qc since Q′
a and Qc are temporal paths. Hence, by Claim 1, there is some

S′ ⊆ S2 such that (R1) or (R2) holds.
Case 2: |S1| ≥ s1.
Let Qa, Qb be two temporal paths inside W ′ such that Qa ·R ·Qb is a walk starting at start(W ′)

and ending at end(W ′). Note that, as start(R) = end(R), Qa · Qb is also a temporal walk. Let
S2 ⊆ S1 be the vertices of S1 which occur exactly once on Qa ·R ·Qb.
Case 2.1: |S2| ≥ k2.
Let S′ ⊆ S2 be a set of size k2. Let Wb be the temporal subpath of R which contains every

vertex in S′. As every internal vertex of R appears exactly once on R, such a path Wb exists.
Now let Wa be a start(W ′)-start(Wb) temporal path inside W ′ and let Wc be an end(Wb)-end(W ′)
temporal path inside W ′. The temporal paths Wa and Wc are internally disjoint from S′ since
the only occurrence of the vertices of S′ along W ′ is on R. Since Wb is a path containing every
vertex of S′, it also contains a Pk2-routing φ over S′. By choice of Wb, we also have that φ maps
the first vertex of the Pk2 to start(Wb) and the last vertex of the Pk2 to end(Wb). By setting
W1 :=Wa ·Wb ·Wc, we satisfy (R2).
Case 2.2: |S2| < k2.
Because |S1| ≥ s1 = 2(k3 + k2) + k2 − 1, we have that |S1 ∩ (V (Qa) ∪ V (Qb))| = |S1 \ S2| ≥
2(k3 + k2). Hence, |V (Qa) ∩ S1| ≥ k3 + k2 or |V (Qb) ∩ S1| ≥ k3 + k2.

37



Without loss of generality, we assume that |V (Qa) ∩ S1| ≥ k3 + k2, as the other case follows
analogously. Since every vertex of V (Qa) ∩ S1 is either in V (Qb) or not, we obtain two cases.
Case 2.2.1: |(V (Qa) ∩ S1) \ V (Qb)| ≥ k2.
Let S′ ⊆ (V (Qa) ∩ S1) \ V (Qb) be a set of size k2 and let Wb be a minimal temporal subpath

of Qa containing every vertex of S′. Let Wa be a start(W ′)-start(Wb) temporal walk in Qa ·Qb

and let Wc be an end(Wb)-end(W ′) temporal walk in Qa ·Qb.
Every vertex of S′ appears exactly once in the temporal walk Qa ·Qb. Since every occurrence of
S′ is on Wb and Wb is a temporal path, we have that Wb contains a Pk2-routing over S′. Since
Wb was chosen minimal, the first vertex of the Pk2 is mapped to start(Wb) and the last vertex
of the Pk2 is mapped to end(Wb). Further, W1 = Wa ·Wb ·Wc and Wa and Wb are internally
disjoint from S′, satisfying (R2).
Case 2.2.2: |V (Qa) ∩ V (Qb) ∩ S1| ≥ k3 + 1.
Let S3 ⊆ V (Qa) ∩ V (Qb) ∩ S1 be a set of size k3 + 1. As Qa and Qb are temporal paths, we

have that each vertex of S3 appears exactly once in each of those temporal paths. Hence, by
Claim 1, there is some S′ ⊆ S3 such that (R1) or (R2) holds. □

The next lemma allows us to transfer strong connectivity of each individual layer of a temporal
digraph to the temporal digraph as a whole.

Lemma 6.14. Let T be a temporal digraph in which each layer is strongly connected. If
ℓ(T ) ≥ |V (T )| − 1, then every u ∈ V (T ) temporally reaches every v ∈ V (T ).

Proof. Let u ∈ V (T ) and let n = |V (T )| − 1.
For each 0 ≤ i ≤ n let Ri be the set of vertices of T which u temporally reaches in at most i

time steps. Clearly u ∈ R0 and so |R0| = 1. Further, |Ri| ≤ |Rj | if i ≤ j.
We show that, for every 0 ≤ i < n, if |Ri| < V (T ), then |Ri+1| > |Ri|. Let Ri be such a set

and let X = V (T )\V (Ri). Since Di+1(T ) is strongly connected, there is some w ∈ Ri and some
v ∈ X such that (w, v) ∈ E(Di+1(T )). By assumption, there is a temporal walk W from u to w
within the first i layers in D. By extending W with the arc (w, v), we obtain a walk from u to
v within the first i+ 1 layers. Hence, |Ri+1| > |Ri|.
Since n ≥ |V (T )− 1| and |R0| = 1, we have that |Rn| = n + 1. Thus, u temporally reaches

every v ∈ V (T ). □

We are almost ready to prove the main result of this part which allows us to construct Ck- or
P⃗

⃗

k-routings in temporal digraphs with strongly connected layers. But first we need the following
lemma.

Lemma 6.15. Let D be a temporal digraph in which each layer is strongly connected, let
S ⊆ V (D), let v ∈ V (D) and let s ∈ S. If ℓ(D) ≥ |S| · (|V (D)| − 1), then D contains a temporal
v-s walk W with S ⊆ V (W ).

Proof. Let {s1, . . . , sk} := S be an arbitrary ordering of S such that s = sk, and let n := |V (D)|.
We iteratively construct temporal walks W1,W2, . . . ,Wk such that Wi is a walk from v to si
within the first i · (n− 1) layers and Wi contains s1, . . . , si.
Start by taking some temporal v-s1 walk W1 within the first n−1 layers. By Lemma 6.14, such

a walk exists.
On step i ≥ 2, let W ′ be the temporal si−1-si walk from layer i·(n−1)+1 to layer (i+1)·(n−1)

in D. By Lemma 6.14, such a walk exists. Now set Wi+1 = Wi · W ′. Since Wi arrives on
end(Wi) = start(W ′) on time step i(n − 1) and W ′ leaves start(W ′) on time step i(n − 1) + 1,
we have that Wi+1 is a temporal v-si+1 walk as desired.
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Thus, the walk Wk is a temporal v-s walk within the first |S| · (n− 1) layers which contains all
vertices of S. □

We define the following functions:
s6.16s6.16(k) := s6.13

(
k, s6.13

(
k, (k − 1)2 + 1

))
,

ℓ6.16ℓ6.16(n, k) := s6.16(k) + s6.13
(
k, (k − 1)2 + 1

)
· (n− 1) .

Observe that s6.16(k) ∈ O(k11) and ℓ6.16(n, k) ∈ O(k11 + k5n).
We are now ready to prove the next result which guarantees an H-routing for some H ∈
{P⃗

⃗

k,Ck} in any temporal digraph of sufficiently large lifetime as long as each layer is strongly
connected. Moreover, we even have some control over the vertex set of the H-routing. Note,
however, that we cannot choose which of the two possible routings we obtain.

Theorem 6.16. Let T be a temporal digraph such that Di(T ) is strongly connected for all
1 ≤ i ≤ ℓ(T ). If ℓ(T ) ≥ ℓ6.16(|V (T )| , k), then for every set S ⊆ V (T ) with |S| ≥ s6.16(k) there is
a subset S′ ⊆ S with |S′| = k such that D contains an H-routing over S′ for some H ∈ {Ck, P⃗

⃗

k}.

Proof. Let k2 = (k − 1)2 + 1 and let k1 = s6.13(k, k2). Let S0 ⊆ S be a set of size s6.13(k, k1).
Note that ℓ(T ) ≥ (|S0|+ k1) · (|V (T )| − 1).
Let W1 be a temporal walk of minimal length which contains all vertices of S0 within the first
|S0| · (|V (T )| − 1) layers of D. By Lemma 6.15, such a walk W1 exists.
If Lemma 6.13(R1) holds, then W1 contains a P⃗

⃗

k-routing over some S′ ⊆ S0 and we are done.
Otherwise, Lemma 6.13(R2) holds. That is, there is some S1 ⊆ S0 and there are (possibly
arcless) walks W2,Wa,Wb,Wc in W1 such that W2 is a subwalk of W1 departing and arriving at
the same time steps as W1, Wa ·Wb ·Wc =W2, Wa and Wc are internally disjoint from S1, and
Wb contains a Pk1-routing over S1 where the first vertex of the Pk1 is mapped to start(Wb) and
the last vertex of the Pk1 is mapped to end(Wb). Let φ1 be the bijection of this Pk1-routing.
Let t1 ≤ (|S0| · (V (T ) − 1)) be the time step in which W1 arrives and let W3 be a temporal

walk departing on t1 and of duration at most |S1| · (|V (T )| − 1) which visits all vertices of S1.
By Lemma 6.15, such a walk W3 exists.
If Lemma 6.13(R1) holds, then W2 contains a P⃗

⃗

k-routing over some S′ ⊆ S1 and we are done.
Otherwise, Lemma 6.13(R2) holds. That is, there is some S2 ⊆ S1 and there are (possibly
arcless) walks W4,Wd,We,Wf in W3 such that W4 is a subwalk of W3 departing and arriving at
the same time steps as W3, Wd ·We ·Wf =W4, Wd and Wf are internally disjoint from S2, and
Wf contains a Pk2-routing over S2 where the first vertex of the Pk2 is mapped to start(Wf ) and
the last vertex of the Pk2 is mapped to end(Wf ). Let φ2 be the bijection of this Pk2-routing.
By Theorem 3.1, there is some S3 ⊆ S2 of size k which satisfies one of the following two cases.

Let φ′
1 = φ1|S3

and φ′
2 = φ2|S3

.
Case 1: φ′

1 and φ′
2 induce two Pk-routings over S3 where the order of the vertices along the

Pk are the same. We show that φ′
1 also induces a Ck-routing in D. Let u1, u2, . . . , uk be the

vertices of Pk sorted according to their order along Pk. Let ui, uj ∈ V (Pk).
If i < j, then Wb contains a φ′

1(ui)-φ′
1(uj) temporal path which is disjoint from

S3 \ {φ′
1(ui), . . . , φ

′
1(uj)}.

If i > j, we construct the desired temporal path P ′ as follows. Let Q1 be a temporal φ′
1(ui)-

φ′
1(uk) walk in Wb which is disjoint from S3 \ {φ′

1(ui), . . . , φ
′
1(uk)} and end(Q1) = end(Wb) =

start(Wc). Since Wb contains a Pk-routing and φ′
1(uk) = end(Wb), such a walk Q1 exists.

Let Q2 be a temporal φ′
1(u1)-φ′

1(uj) walk in We which is disjoint from S3 \ {φ′
1(u1), . . . ,

φ′
1(uj)} and start(Q2) = start(We) = end(Wd). Since We contains a Pk-routing and φ′

1(u1) =
end(We), such a walk Q2 exists.
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We now have that Q1 ·Wc ·Wd · Q2 is a temporal φ′
1(ui)-φ′

1(uj) walk which is disjoint from
S3 \ ({φ′

1(ui), . . . , φ
′
1(uk)} ∪ {φ′

1(u1), . . . , φ
′
1(uj)}) in D. Thus, Q1 ·Wc ·Wd · Q2 contains the

desired temporal φ′
1(ui)-φ′

1(uj) path P ′. Hence, φ′
1 induces a Ck-routing over S3 ⊆ S in D.

Case 2: φ′
1 and φ′

2 induce two Pk-routings over S3 where the vertices along the Pk of φ′
2 are

ordered in reverse compared to those of the Pk of φ′
1. We show that φ′

1 induces a P⃗

⃗

k-routing
over S3 ⊆ S in D. Let u1, u2, . . . , uk be the vertices of Pk sorted according to their order along
the Pk for φ′

1. Let ui, uj ∈ V (Pk).
If i < j, then Wb contains a φ′

1(ui)-φ′
1(uj) temporal path which is disjoint from

S3 \ {φ′
1(ui), . . . , φ

′
1(uj)}.

If i > j, we take a temporal φ′
1(ui)-φ′

1(uj) path P ′ which is disjoint from S3 \ {φ′
1(uj), . . . ,

φ′
1(ui)} in We. Since φ′

2 induces a Pk-routing in We where the vertices of the Pk are ordered in
reverse when compared to the Pk of φ′

1, such a path P ′ exists. Hence, φ′
1 induces a P⃗

⃗

k-routing
over S3 ⊆ S in D. □

Our next goal is to relate H-routings, for H ∈ {Ck, P⃗

⃗

k}, to well-linkedness. Towards this aim,
we first observe the following.

Observation 6.17. Let A and B be disjoint sets of equal cardinality and let S be a sequence
containing each element of A ⊎ B exactly once. Then there are sequences S1, S2 such that
S1 · S2 = S and the following holds

(P1) S1 starts in A and ends in B or starts in B and ends in A, and

(P2) each of S1 and S2 contains as many elements of A as elements of B.

Proof. We assume, without loss of generality, that S starts at an element of A. The other case
follows analogously by swapping A and B.
Let S1 be the shortest prefix of S containing the same number of elements in A and B. Since

the first element of S1 lies on A, its last element must lie on B. If this were not the case, then
S1 would contain a prefix with more elements of B than elements of A, which implies that S1
also contains a shorter prefix with as many elements of A as elements of B, a contradiction to
the choice of S1. Hence, (P1) holds.
Let S2 be such that S1 · S2 = S. Since both S1 and S contain as many elements of A as

elements of B, we have that S2 also contains as many elements of A as elements of B. Thus,
(P2) holds. □

Note that in Observation 6.17 if S does not starts and ends in the same, then we can always
take S1 to be S and S2 to be empty.
The next observation is used when obtaining well-linkedness in case of a Ck-routing.

Observation 6.18. Let C be a directed cycle and let f : V (C) → Z be a function such that∑
v∈V (C) f(v) = 0. Then there is some v ∈ V (C) such that for every subpath P of C starting

at v we have
∑

v∈V (P ) f(v) ≥ 0.

Proof. If f(v) = 0 for all v ∈ V (C), then the statement is true. So assume otherwise and take
a subpath P of C minimising

∑
v∈V (P ) f(v). Note that the weight of this path is negative and

that P is a proper subpath of C. Let u be the vertex on C after end(P ). We claim that u
has the desired property. Suppose not and let P ′ be a negative subpath of C starting in u. If
end(P ′) /∈ V (P ), then P ·P ′ is a proper subpath of C with lower weight than P , a contradiction.
Thus end(P ′) ∈ V (P ). As P was chosen to minimise

∑
v∈V (P ) f(v), the subpath P ∩ P ′ cannot

be of positive weight and thus we obtain a contradiction to C being of total weight 0. □
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We are now ready to state and prove our last result on routings in temporal digraphs which
shows how well-linkedness can be obtained from routing temporal digraphs T . The main idea is
to use Theorem 6.16 to construct a sufficiently large number of Ck- or P⃗

⃗

k-routings in T . By the
pigeon-hole principle we either get enough P⃗

⃗

k-routings or enough Ck-routings. The previous
two observations allow us to prove that certain sets are well-linked in either of the two cases.

Lemma 6.19. Let h be some integer, let D be a digraph, let L be a linkage of order k in D and
let T be the routing temporal digraph of L through H := (H1, H2, . . . ,Hh), where each Hi is a
subgraph of D. If there is some R ∈ {P⃗

⃗

k,Ck} and there are some temporally disjoint subgraphs
T1, T2, . . . , Tk of T such that for each 1 ≤ i ≤ k there is an R-routing φi over L in Ti where
φi = φj for all 1 ≤ i, j ≤ k, then start(L) is well-linked to end(L) in D(L ∪H).

Proof. Let A ⊆ start(L) and B ⊆ end(L) be sets with n := |A| = |B|. Let φ be the R-routing
over L in each Ti. We construct an A-B linkage Q as follows.
Let LA = {L ∈ L | start(L) ⊆ A} and let LB = {L ∈ L | end(L) ⊆ B}. Let φA,B = φ|LA∪LB .

Let {a1, a2, . . . , an} := A and let {b1, b2, . . . , bn} := B.
We start by constructing temporal walks W := {W1,W2, . . . ,Wn} in T and by constructing

sets X0, . . . , Xn ⊆ LA and Y0, . . . , Yn ⊆ LB such that, for each 0 ≤ i ≤ n, we have

(W1) |Xi| = i = |Yi|,

(W2) Wi is a temporal walk in Ti which is disjoint from (LA \Xi) ∪ Yi−1, and

(W3) start(W) = LA and end(W) = LB.

We consider two cases.
Case 1: R = Ck.
Let R′ = Cn and note that φA,B is a Cn-routing in each Ti. Partition V (R′) into a sequence

of subpaths Q = (Q1, Q2, . . . , Qx) of R′ where each Qi can be decomposed into Qa
i · Qb

i such
that |V (Qa

i )| ≥ 1,
∣∣V (

Qb
i

)∣∣ ≥ 1, φA,B(V (Qa
i )) ⊆ LA and φA,B(V

(
Qb

i

)
) ⊆ LB. Since φ(V (R′)) =

LA∪LB, such a decomposition exists. Now define the function f : Q → Z with f(Qi = Qa
i ·Qb

i) =∣∣φ(Qa
i ) ∩ LA

∣∣− ∣∣φ(Qb
i) ∩ LB

∣∣.
From Observation 6.18 we know there is some v ∈ V (R′) for which every subpath P of R′

starting at v satisfies
∣∣φA,B(V (P )) ∩ LA

∣∣ ≥ ∣∣φA,B(V (P )) ∩ LB
∣∣. Let Q be the subpath of R′

starting at v and containing every vertex of R′, and let {u1, u2, . . . , un} := V (Q) be an ordering
of the vertices of Q according to their occurrence along Q.
We iteratively construct the desired walks Wi and sets Xi, Yi such that, for each 0 ≤ i ≤ n− 1,
Q can be decomposed as Qi

1 ·Qi
2 ·Qi

3 = Q satisfying the following properties

(C1) φA,B(end
(
Qi

1

)
) ∈ LA \Xi,

(C2) φA,B(V
(
Qi

2

)
\ {start

(
Qi

2

)
}) ⊆ (LB ∪Xi) \ Yi,

∣∣V (
Qi

2

)
∩ (LB \ Yi)

∣∣ ≥ 1, and

(C3) Yi ⊆ φA,B(V
(
Qi

3

)
) and φA,B(V

(
Qi

3

)
) ⊆ Yi ∪Xi.

Start by setting X0 := ∅ and Y0 := ∅. By choice of Q, (C1),(C2), (C3) and (W1) hold for
i = 0.
On step 1 ≤ i ≤ n, let Qi−1

1 ·Qi−1
2 ·Qi−1

3 = Q be a decomposition of Q satisfying (C1), (C2)
and (C3) for i − 1. Let ua = end

(
Qi−1

1

)
and let ub ∈ V

(
Qi−1

2

)
∩ (LB \ Yi−1) be the last such

vertex on Qi−1
2 . As (C1) and (C2) hold for i − 1, ua ∈ LA \Xi−1 holds and such a vertex ub

exists.
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Let Wi be a temporal φA,B(ua)-φA,B(ub) walk in Ti avoiding (LA ∪ LB) \ φA,B({ua, . . . ,
ub}). Since φA,B is an R′-routing in Ti, such a walk exists. Set Xi = Xi−1 ∪ {φA,B(ua)}
and Yi = Yi−1 ∪ {φA,B(ub)}. The walk Wi satisfies (W2) because Yi−1 ⊆ Qi−1

3 and (C3) holds
for i− 1.
We now show that Xi, Yi and Wi satisfy the required properties. Clearly (W1) holds for i. If
i < n, then

∣∣LA \Xi

∣∣ ≥ 1. As (C2) and (C3) hold for i− 1, we have LA \Xi−1 ⊆ φ(V
(
Qi−1

1

)
).

Let Qi
1 be the shortest subpath of Qi−1

1 containing every vertex of φ−1(LA \Xi) and let Qi
3 be

the ub-end(Q) subpath of Q. By construction, (C1) holds for i. Further, by choice of ub, (C3)
holds for i.
Let Qi

2 be the end
(
Qi

1

)
-start

(
Qi

3

)
subpath of Q. Since Qi

1 is a subpath of H ′ starting at v and
ending in a vertex u′a with φ(u′a) ∈ LA \Xi, we have that Qi

2 ·Qi
3 must contain some vertex of

φ−1(LB). Further, as φ(V
(
Qi

3

)
) ⊆ Yi ∪Xi due to (C3), we have that Qi

2 contains some vertex
of LB \Yi. Finally, LA \Xi ⊆ V

(
Qi

1

)
and so φA,B(V

(
Qi

2

)
\{start

(
Qi

2

)
}) ⊆ LB∪(Xi \Yi). Hence,

(C2) holds for i.
After n steps, it is immediate that (W3) holds by choice of W1,W2, . . . ,Wn.
Case 2: φ is a P⃗

⃗

k-routing.
Let R′ = P⃗

⃗

n and note that φA,B is a P⃗

⃗

n-routing in Ti for each i.
We iteratively construct the desired walks Wi and sets Xi, Yi ⊆ L′ such that, for each 0 ≤ i ≤
n− 1, the following statement holds

(P1) for each strongly connected component Zi of R′ − φ−1
A,B(Yi) we have that the set

φA,B(V (Zi)) contains as many elements of LA \Xi as elements of LB \ Yi.

Start by setting X0 := ∅ and Y0 := ∅. Clearly, (W1) and (P1) hold for i = 0.
On step 1 ≤ i ≤ n, let Z be a component (and hence a subpath) of R′ − φ−1

A,B(Xi−1) such that
φA,B(V (Z)) contains at least one element of LA \ Xi−1 and one element of LB \ Yi−1. Since
(W1) and (P1) hold for i− 1, such a component exists.
Because Z is a bidirected path, it induces a sequence over the elements of LA \ Xi−1 and of
LB \ Yi−1. Let Z ′ be the shortest subpath of Z satisfying φA,B(V (Z ′)) ∩ ((LA \Xi−1) ∪ (LB \
Yi−1)) = φ(V (Z))∩ ((LA \Xi−1)∪ (LB \ Yi−1)). By Observation 6.17, there is a subpath Z ′′ of
Z ′ starting at one of the endpoints of Z ′ such that one endpoint of Z ′′ is in LA \Xi−1 and the
other is in LB \ Yi−1, and both Z ′′ and the rest of Z ′ contain as many elements of LA \Xi−1 as
they contain elements of LB \ Yi−1. Let Z ′′ be the shortest such subpath of Z ′.
Let {z1, z2, . . . , zj} be the vertices of Z ′′ sorted according to their occurrence along Z ′′. Without

loss of generality, we have φA,B(z1) ∈ LB \Xi−1 and φA,B(zj) ∈ LA \ Yi−1.
Let ja be the smallest index such that φA,B(zja) ∈ LA \ Xi−1 . We set Wi as a temporal
φA,B(zja)-φA,B(z1) walk in Ti which is disjoint from (LA \ Xi−1) ∪ Yi−1. By choice of ja and
because φA,B is an R′-routing over LA ∪ LB in Ti and Z is a component of R′ − φA,B(Xi−1),
such a walk Wi exists.
We set Xi = Xi−1 ∪ {φA,B(zja)} and Yi = Yi−1 ∪ {φA,B(z1)}. The vertex z1 is an endpoint

of Z ′′, (P1) holds for i − 1 and φA,B(V (Z ′′) \ {z1}) contains one less vertex of LB \ Yi−1

and one less vertex of LA \ Xi−1 when compared to Z. Hence, (P1) holds for i. Further,
|Xi| = |Xi−1|+ 1 = |Yi−1|+ 1 = |Yi|, and so (W1) holds.
This completes the case distinction above and the construction of W1,W2, . . . ,Wn. We

construct an A-B linkage L′ as follows. For each 1 ≤ i ≤ n, let La
i = start(Wi), Lb

i =
end(Wi), ai = start(La

i ) and bi = end
(
Lb
i

)
. We construct a path Qi = Qa

i · Qt
i · Qb

i such
that D(Qa

i ) ⊆ La
i − D({Wj | si+1 ≤ j ≤ ℓ(T )}), D

(
Qt

i

)
⊆ D({Hj | si ≤ j ≤ si+1}) and D

(
Qb

i

)
⊆

Lb
i − D({Wj | s1 ≤ j ≤ si}).
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Since (W2) holds, each arc of Wi corresponds to some path in D which is disjoint from
{La

j | i < j ≤ n} ∪ {Lb
j | 1 ≤ j < i}. Furthermore, Wi corresponds to some path Qt

i in
D({Wj | ti ≤ j ≤ ti+1}).
We set Qa

i as the subpath of La
i ending at start

(
Qt

i

)
and we set Qb

i as the subpath of Lb
i starting

at end
(
Qt

i

)
. By construction, Qi := Qa

i ·Qt
i ·Qb

i is an ai-bi path in D(L)∪D(W) which is disjoint
from all Qj for 1 ≤ j < i. Hence, Q := {Qi | 1 ≤ i ≤ n} is an A-B linkage as desired.
Because we can construct such an A-B linkage for any choice of A,B, we have that start(L′) is

well-linked to end(L′) in D(L ∪W), as desired. □

We can now show how to obtain well-linkedness from the routing temporal digraph of some
linkage L. The idea is to use Theorem 6.16 to obtain many Ck and P⃗

⃗

k-routings. With the
pigeon-hole principle, we get many routings which are equal. We then use observations 6.17
and 6.18 in each case to argue that certain sets are well-linked. We start by defining

ℓ6.20ℓ6.20(k) := s6.16(k) ,

h6.20h6.20(k) := ℓ6.16(ℓ6.20(k) , k) · 2k
(
s6.16(k)

k

)
k!.

Note that ℓ6.20(k) ∈ O(k11) and h6.20(k) ∈ 21↑↑poly
2(k). Using the pigeon-hole principle, we can

combine Theorem 6.16 and Lemma 6.19 in order to obtain the desired statement.

Proposition 6.20. Let k be an integer, let h ≥ h6.20(k), let D be a digraph, let L be a linkage of
order ℓ6.20(k) in D and let T be the routing temporal digraph of L through H := {H1, . . . ,Hh},
where each Hi is a subgraph of D. If each layer Di(T ) is strongly connected, then there exists
some L′ ⊆ L of order k such that start(L′) is well-linked to end(L′) in D(L ∪H).

Proof. Let k1 = 2k
(s6.16(k)

k

)
k!. Define s1 = 1 and for each 1 ≤ i ≤ k1 define si = (i − 1) ·

ℓ6.16(ℓ6.20(k) , k)+1. For each 1 ≤ i ≤ k1 let Ti be the temporal subgraph of T from time step si
to si+1 − 1. Note that ℓ(Ti) = si+1 − si = ℓ6.16(ℓ6.20(k) , k) and that |L| = |V (Ti)| = s6.16(k) =
ℓ6.20(k).
By Theorem 6.16 each Ti contains a Ck-routing φi or a P⃗

⃗

k-routing φi over some set Li ⊆ L
of size k. As there are k1 = 2k

(s6.16(k)
k

)
k! temporal digraphs Ti, there is some I ⊆ {1, . . . , k1}

of size k and some H ∈ {Ck, P⃗

⃗

k} such that, for every i, j ∈ I, both Ti and Tj have an H-
routing φ := φi = φj over L′ := Li = Lj . By Lemma 6.19, start(L′) is well-linked to end(L′) in
D(L′) ∪H. □

7 Paths of order-linked sets and acyclic grids

In the previous section we already discussed the similarities between Pk-routings in routing
temporal digraphs and acyclic grids. We now develop a more abstract framework in which
we can model these intuitive observations. This enables us to lift certain properties of acyclic
grids to a more abstract setting. The techniques and results we develop in this section play an
important rôle in our proof of the directed grid theorem.
To motivate the following definitions, consider the acyclic grid illustrated in Figure 7. Suppose

we want to connect some vertex ai on the left of the grid to a vertex bj on the right. As in an
acyclic grid we can never route upwards, this is possible if and only if i ≤ j.
Let A be the ordered set containing the left-most vertices of the grid, i.e. {a1, . . . , a4} in the

example in Figure 7, ordered from top to bottom and let B be the ordered set containing the
vertices at the right, i.e. {b1, . . . , b4} in the example, again ordered from top to bottom.
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a1 b1

a2 b2

a3 b3

a4 b4

Figure 7: We illustrate r-shifts in acyclic grids. The 2-shift (b2, b3, b4) of (a1, a2, a4) is routable
in the grid as illustrated here. However the 3-shift (b2, b3, b4) of (a1, a2, a3) is not
routable in the grid.

Now suppose we are given a subset A′ ⊆ A and an equal sized subset B′ ⊆ B. Under what
conditions can we connect A′ to B′ by a linkage L in the grid? For the same reason as before we
can only connect ai ∈ A′ to bj ∈ B′ if i ≤ j. Furthermore, as the grid is planar, if {ai1 , . . . , ail}
are the vertices of A′ ordered by their order in A and likewise {bj1 , . . . , bjl} are the ordered
vertices of B′, then we have to connect ais to bjs , for all 1 ≤ s ≤ l. This implies that is ≤ js for
all 1 ≤ s ≤ l. But even if this condition is satisfied by A′ and B′, it may still not be possible to
connect A′ to B′. As the example in Figure 7 demonstrates, there simply may not be enough
columns in the grid to route all paths downwards that connect pairs ais , bjs with is < js. So we
may have to restrict the number of pairs (ais , bjs) for which we allow is < js.
This idea is formalised in the next definition by the concept of r-shifts.

Definition 7.1. Let A = (a1, . . . , an) and B = (b1, . . . , bm) be ordered sets. Let r ∈ N, let A′

be an ordered subset of A and let B′ be an ordered subset of B such that |A′| = |B′|. We say
that B′ is an r-shift of A′ if there is a bijection π : A′ → B′ such that

1. for all ai ∈ A′ we have that π(ai) = bj implies i ≤ j;

2. there are at most r vertices ai ∈ A′ with π(ai) ̸= bi; and

3. π is order preserving, that is, for all ai, aj ∈ A′, if ai ≤A aj , then π(ai) ≤B π(aj).

In the example of Figure 7, (b2, b3, b4) is a 2-shift of (a1, a2, a4) but it is a 3-shift of (a1, a2, a3).
We interested in pairs of equal sized ordered sets A and B which allow given a subset A′ ⊆ A to
route A′ to all possible r-shifts B′ ⊆ B of A′. This is formalised in the next definition. Recall
from Section 3 that we may consider a linkage L as a function L : start(L) → end(L) where L(a)
is the endpoint of the path in L starting at a.

Definition 7.2. Let H be a digraph, let A = (a1, . . . , an) , B = (b1, . . . , bm) ⊆ V (H) be ordered
sets, and let r ∈ N. We say that A is r-order-linked to B in H if for every A′ ⊆ A and every
B′ ⊆ B with |A′| = |B′| where B′ is an r-shift of A′ witnessed by the bijection π there is an
A′-B′-linkage L in H satisfying π(a) = L(a) for all a ∈ A′.
For (unordered) sets A,B ⊆ V (H), we say that A is r-order-linked to B in H if there exist

orderings A1 and B1 of A and B, respectively, such that A1 is r-order-linked to B1 in H.

To give an example, it is easily seen that in any acyclic (r, r)-grid (P,Q) the set start(Q) is
r-order-linked to end(Q).
We now define a new type of structure which can be seen as an abstraction of acyclic grids.

Definition 7.3 (path of r-order-linked sets). A path of r-order-linked sets of width w and length
ℓ is a tuple (S,P) such that
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1. S is a sequence of ℓ+1 pairwise disjoint subgraphs (S0, . . . , Sℓ), which are called clusters,

2. for every 0 ≤ i ≤ ℓ there are disjoint sets A(Si), B(Si) ⊆ V (Si) of size w such that A(Si)
is r-order-linked to B(Si) in Si,

3. P is a sequence of ℓ pairwise disjoint linkages (P0,P1, . . . ,Pℓ−1) such that, for every 0 ≤
i < ℓ, Pi is a B(Si)-A(Si+1)-linkage of order w which is internally disjoint from Si and
Si+1 and disjoint from every S ∈ S \ {Si, Si+1}.

By definition, for each 1 ≤ i ≤ ℓ there are orderings ≤A(Si) of A(Si) and ≤B(Si) of B(Si)
witnessing the r-order-linkedness of A(Si) and B(Si) in Si.
We say that (S,P) is uniform if for all 1 ≤ i ≤ ℓ we can choose orderings ≤A(Si) and ≤B(Si)

witnessing that A(Si) is r-order-linked to B(Si) so that for all 0 ≤ i < ℓ and all b1, b2 ∈ B(Si):
if b1 ≤B(Si) b2, then Pi(b1) ≤A(Si+1) Pi(b2).

The following notation is used frequently below. Given a path of r-order-linked sets (S :=
(S0, . . . , Sℓ),P := (P0, . . . ,Pℓ−1)) and indices 0 ≤ i ≤ j ≤ ℓ we define (S,P)[i, j] as the path of
r-order-linked sets from cluster i to cluster j. That is, (S,P)[i, j] := ((Si, . . . , Sj), (Pi, . . . ,Pj−1)).
To give an example, let (P,Q) be an acyclic (r2, r)-grid, where P := (P 1

1 , . . . , P
r
1 , P

1
2 , . . . ,

P r
2 , . . . , P

r
r ). Then (P,Q) contains a path of r-order-linked sets as follows. The cluster Si is

obtained as the union of the columns P j
i , for 1 ≤ j ≤ r, and, for each Q ∈ Q, the subpath Qi of

Q starting at the first vertex of Q on P 1
i and ending at the last vertex of Q on P r

i . We define
A(Si) := {start

(
Qi

)
: Q ∈ Q} and B(Si) := {end

(
Qi

)
: Q ∈ Q}. Finally, the linkages Pi, for

0 ≤ i < r, are obtained by taking the subpaths of the rows connecting Si to Si+1 in the obvious
way. Then ((S0, . . . , Sr), (P0, . . . ,Pr−1)) is a path of r-order-linked sets.
As the example shows, we can easily obtain a path of r-order linked sets from a sufficiently

large acyclic grid. Our next goal is to show that the converse is also true, albeit with bigger
bounds.
We first observe the following.

Observation 7.4. Let D = (S = (S0, S1, . . . , Sℓ) ,P) be a path of 0-order-linked sets of width
w. For every 0 ≤ i < j ≤ ℓ, every A′ ∈ {A(Si), B(Si)}, and every B′ ∈ {A(Sj), B(Sj)} there
is an A′-B′-linkage L of order w in D. Furthermore, for all i < k < j every path in L must
intersect A(Sk) and B(Sk).

Proof. We show the case where A′ = A(Si) and B′ = B(Sj). The other cases follow analogously.
For each i ≤ t ≤ j − 1 construct sets At, Bt and a linkage Lt as follows. Start by setting
Ai−1 = A′ and Li−1 as the linkage containing only the vertices of A′.
On step t, let Bt be a 0-shift of At−1 and let Rt be an At−1-Bt-linkage of order w in St. Since
A(St) is 0-order-linked to B(St), such a linkage Rt exists. Let R′

t ⊆ Pt be the set of paths with
start(R′

t) = end(Rt). Now set At = end(R′
t) and set Lt = Lt−1 · Rt · R′

t.
It is immediate from the construction that Lj is an A′-B′-linkage of order w, as desired. □

We are now ready to show that every path of 1-order-linked sets contains an acyclic grid.
Here we make use of our framework of H-routings in temporal digraphs. The idea is to use the
Pl-routings constructed in Theorem 6.12 to obtain the columns of the grid. We start by defining

w7.5w7.5(k) := k2 − 1,

ℓ7.5ℓ7.5(k) :=

(
(k2 − k − 1) ·

(
w7.5(k)

k

)
· k! + 1

)
· ℓ6.10(w7.5(k) ,w7.5(k)) .

Observe that w7.5(k) ∈ O(k2) and ℓ7.5(k) ∈ 21↑↑poly
7(k).
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Theorem 7.5. Every path of 1-order-linked sets of width at least w = w7.5(k) and length at
least ℓ7.5(k) contains an acyclic (k, k)-grid.

Proof. Let (S := (S0, S1, . . . , Sℓ) ,P := (P0,P1, . . . ,Pℓ−1)) be a path of 1-order-linked sets of
width at least w := w7.5(k) and length ℓ ≥ ℓ7.5(k). Let D = D((S,P)). By Observation 7.4,
there is an A(S0)-B(Sℓ)-linkage L of order w in D. Note that every path in L must intersect
every A(Si) and every B(Si).
Let T be the routing temporal digraph of L through S. Since A(Si) is 1-order-linked to B(Si)

for every Si ∈ S, we have that each layer of T is unilateral.
Let k1 = k(k−1), let k2 = (k1−1)·

(
w
k

)
·k!+1. For each 1 ≤ i ≤ k2, let ti = (i−1)·ℓ6.10(w,w) and

let Ti be the temporal subgraph of T from time step ti to ti+1− 1. Note that ℓ(Ti) = ℓ6.10(w,w)
and |V (Ti)| = w.
By Theorem 6.12, each Ti contains a Pk-routing φi. Since ℓ(T ) ≥ ℓ7.5(k) = k2 · ℓ6.10(w,w),

there are at least k2 subgraphs Ti. By the pigeon-hole principle, there is some set T of size k1
of temporal subgraphs Ti of T such that φ := φi = φj for all Ti, Tj ∈ T .
Let

(
T ′
1, T

′
2, . . . , T

′
k1

)
:= T be sorted according to the corresponding time steps, let Q be the

image of φ.
Let u1, u2, . . . , uk be the vertices of the Pk ordered according to their occurrence on the Pk.

We construct a sequence P of k paths where, for each 1 ≤ i ≤ k, the path Pi is constructed as
follows.
For each 1 ≤ j < k, let ti,j = (i− 1) · (k− 1)+ j and let Ri,j be a φ(uj)-φ(uj+1) temporal path

in T ′
ti,j which does not contain any path in Q \ {φ(uj), φ(uj+1)}. Note that ti,k−1 = ti+1,1 − 1.

Since φ is a Pk-routing in T ′
ti,j , such a path Ri,j exists. Finally, Ri,j corresponds to a V (φ(uj))-

V (φ(uj+1)) path Pi,j,2 in D. Let Pi,j,1 be the end(Pi,j−1,2)-start(Pi,j,2)-path in D(φ(uj)) (to
simplify notation, we choose end(Pi,0,2) as start(Pi,1,2)).
We now set Pi = Pi,1,1 · Pi,1,2 · Pi,2,1 · Pi,2,2 · . . . · Pi,k−1,2. After constructing all Pi, set P =
(P1, P2, . . . , Pk). Note that the paths in P are pairwise disjoint. It is now immediate from the
construction that (P,Q) is an acyclic (k, k)-grid. □

The previous results show that we can convert an acyclic grid into a path of r-order linked sets
and vice versa. We now turn to the problem of actually constructing a path of r-order-linked
sets in a digraph. We show first how to construct a path of 1-order-linked sets from routing
temporal digraphs containing Pk-routings. Similar to a column in an acyclic grid such a Pk-
routing allows us to shift one path to its destination without intersecting the other paths in the
linkage we construct.

Lemma 7.6. Let h, k be integers. Let T be the routing temporal digraph of some linkage L
through a sequence (H1, H2, . . . ,Hh) of disjoint digraphs. Let L′ ⊆ L be a linkage of order
at most k. If T contains a Pk-routing on the paths L1, L2, . . . , Lk ∈ L′, ordered according to
their occurrence on the Pk-routing, then A is 1-order-linked to B in D

(
L ∪⋃h

i=1Hi

)
, where

A = {ai | ai is the first vertex of Li on H1} and B = {bi | bi is the last vertex of Li on Hh}.
Proof. Let A′ ⊆ A and B′ ⊆ B such that B′ is a 1-shift of A′. Let π : A′ → B′ be the
bijection witnessing that B is a 1-shift of A′. If π(ax) = bx for all ax ∈ A′, then L′ contains an
A′-B′-linkage R such that for all ax ∈ A′ there is an ax-bx path in R, and so we are done.
Otherwise, let x ∈ {1, . . . , k} be such that ax ∈ A′ is the unique vertex such that π(ax) ̸= bx

and let by = π(ax). As B′ is a 1-shift of A′, we know that x < y and ai ̸∈ A′ for all i ∈
{x+ 1, . . . , y − 1}.
We construct an A′-B′-linkage R satisfying π(ax) = R(ax) for all ax ∈ A′ as follows. For each
aj ∈ A′, let Wj be the temporal walk in the Pk-routing starting in Lj and ending in Lj+1 and
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let W be the concatenation of Wx ·Wx+1 · . . . ·Wy−1. The temporal walk W connects Lx to Ly

in T and we can assume it starts on time step 1 and ends on time step h. If π(aj) = bj , we add
the path Lj to R. Construct L′

x as follows.
Let (vi, ti) and (vj , tj) be two consecutive elements in the sequence of W . We follow Li from Hti

to Htj , then take a path P in Htj connecting Li to Lj . By construction of T and because an ̸∈ A′

for all n ∈ {x+1, . . . , y− 1}, the path P in Htj does not intersect any other path of L. Further,
by definition of Pk-routing, Li and Lj only intersect A′ at ax or ay. Hence, L′

x is disjoint from
all Li we chose earlier. Thus, we obtain an A′-B′-linkage R such that R(ax) = π(ax) for all
ax ∈ A′ as desired. □

The previous lemma allows us to construct a path of 1-order-linked sets. We show next that
we can increase the order-linkedness of the clusters at the expense of the length of the path of
order-linked sets we obtain. The idea is to “merge” a set of consecutive clusters of a path of
r-order-linked sets into a single cluster increasing the order-linkedness.
This idea is much easier to implement in uniform paths of r-order-linked sets than in the general

case and also yields much better bounds. As the uniform case is sufficient for our application
we only consider the uniform case here.
The next lemma essentially explains how to construct in a path of r-order-linked sets a single

cluster of higher order-linkedness by merging the existing clusters into one.

Lemma 7.7. Let r, c, w be integers. Let D = (S = (S0, S1, . . . , Sℓ) ,P) be a uniform path of
r-order-linked sets of width w and length at least c− 1. Then A(S0) is cr-order-linked to B(Sℓ)
in D.

Proof. Let (P0,P1, . . . , Pℓ−1) := P. For each 0 ≤ i ≤ ℓ let φi : A(Si) → B(Si) be the bijection
witnessing that A(Si) is r-order-linked to B(Si).
We define for each 0 ≤ i ≤ ℓ two bijections αi : A(Si) → {1, 2, . . . , w} and βi : B(Si) →
{1, 2, . . . , w} according to ≤A(Si) and ≤B(Si), that is, αi(aj) ≤ αi(ak) holds if and only if
aj ≤A(Si) ak holds (and analogously for βi). In particular, we have φi = β−1

i ◦ αi. Since
(S,P) is uniform, we also have that βi(b) = αi+1(Pi(b)) for all 0 ≤ i ≤ ℓ− 1 and all b ∈ B(Si).
Let A′ ⊆ A(S0) and let B′ ⊆ B(Sℓ) be sets of size k such that B′ is a cr-shift of A′ as witnessed

by the bijection φ : A′ → B′. We also define π := βℓ ◦ φ ◦ α−1
0 .

For each 0 ≤ i ≤ c−1 we construct an A′-B(Si)-linkage Ri of order |A′| satisfying the following,

(L1) |{a ∈ A′ | βi(Ri(a)) = βℓ(φ(a))}| ≥ (i+ 1)r.

To simplify notation we set end(R−1) as A′.
On step i, let L1

i ⊆ Pi−1 be such that start
(
L1
i

)
= end(Ri−1) and let R̂i−1 = Ri−1 · L1

i .
Choose the largest possible A′′ ⊆ A′ of size at most r by starting at the largest elements of A′

with respect to ≤A(S0) and proceeding in descending order such that αi(R̂i−1(a)) ̸= π(a) for all
a ∈ A′′. Let Â = R̂i−1(A

′′).
Let B′′ = β−1

i (π(αi(Â))∪ β−1
i (αi(end

(
R̂i−1

)
\ Â)). Let φ′

i : end
(
R̂i−1

)
→ B′′ be the bijection

defined as follows

φ′
i(a) :=

{
β−1
i (π(αi(a))), a ∈ Â

β−1
i (αi(a)), a ∈ end

(
R̂i−1

)
\ Â.

Because A′′ was constructed by taking the largest elements of A′ with respect to ≤A(S0), we have

that αi(a) ̸∈ π(αi(Â)) for all a ∈ end
(
R̂i−1

)
\ Â. Hence, the set B′′ is an r-shift of end

(
R̂i−1

)
,

witnessed by φ′
i.
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Since A(Si) is r-order-linked to B(Si) in Si, there is a linkage L2
i in Si such that

φ′
i(end

(
R̂i−1

)
) = L2

i (end
(
R̂i−1

)
). We now set Ri = R̂i−1 · L2

i .
For every a ∈ A′′ we now have αi+1(Ri(a)) = φ(a). Since (L1) holds for i − 1, we also have

that (L1) holds for i.
After iterating c steps, we have that Rc−1(A

′) = φ(A′) since (L1) holds for i = c and B′ is an
cr-shift of A′. Thus, Rc−1 is an A′-B′-linkage. Hence, A(S0) is cr-order-linked to B(Sℓ). □

By applying the previous lemma repeatedly we obtain the following theorem.

Theorem 7.8. Every uniform path of r-order-linked sets D = (S = (S0, S1, . . . , Sℓ) ,P =
(P0,P1, . . . ,Pℓ−1)) of length at least cℓ and width w contains a uniform path of cr-order-linked
sets

(
S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) ,P

′ =
(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

))
of length ℓ and width w. Additionally, for

every 0 ≤ i ≤ ℓ we have S′
i ⊆ D[ci, c(i+ 1)− 1], A(S′

i) ⊆ A(Sci) and B(S′
i) ⊆ B(Sc(i+1)−1), and

for 0 ≤ i < ℓ we have P ′
i ⊆ P(c−1)(i+1).

Proof. For each 0 ≤ i ≤ ℓ let S′
i = D[ci, c(i+ 1)− 1] and set A(S′

i) := A(Sci) and B(S′
i) :=

B(Sc(i+1)−1). Note that each S′
i is a path of r-order-linked sets of width w and length c − 1.

From Lemma 7.7, we have that A(S′
i) is cr-order-linked to B(S′

i) in S′
i.

Let P′ :=
(
Pc−1,P2(c−1), . . . ,P(c−1)ℓ

)
. It is immediate that (S ′ := (S′

0, S
′
1, . . . , S

′
ℓ) ,P

′) is a
uniform path of cr-order-linked sets of width w and length ℓ satisfying the requirements in the
statement. □

8 Paths of well-linked sets and fences

In the previous section we introduced path of r-order-linked sets as a suitable abstraction of
acyclic grids. We now want to extend this idea to find a similar abstraction of fences as well.
The main difference between a fence and an acyclic grid (P,Q) is that if we are interested in

routing from left to right, that is, from start(Q) to end(Q), then if (P,Q) is an acyclic grid the
two sides are only order-linked whereas in a fence they are well-linked. Consequently we relax
the requirement of the path of r-order-linked sets to obtain a suitable abstraction of fences.

Definition 8.1 (path of well-linked sets). A path of well-linked sets of width w and length ℓ is
a tuple (S,P) such that

1. S is a sequence of ℓ+ 1 pairwise disjoint subgraphs (S0, . . . , Sℓ), called clusters,

2. for every 0 ≤ i ≤ ℓ there are disjoint sets A(Si), B(Si) ⊆ V (Si) of size w such that A(Si)
is well-linked to B(Si) in Si, and

3. P is a sequence of ℓ pairwise disjoint linkages (P0,P1, . . . ,Pℓ−1) such that, for every 0 ≤
i < ℓ, Pi is a B(Si)-A(Si+1)-linkage of order w which is internally disjoint from Si and
Si+1 and is disjoint from every S ∈ S \ {Si, Si+1}.

We call (S,P) strict if within each cluster Si every vertex v ∈ V (Si) occurs on a path from
A(Si) to B(Si) in Si.
As before we define (S,P)[i, j] := ((Si, . . . , Sj), (Pi, . . . ,Pj−1)), where 0 ≤ i ≤ j ≤ ℓ.

While acyclic grids and fences may look quite different, Reed et al. proved in [RRST96] that it
is possible to construct a fence from any given acyclic grid.

48



· · ·

S1 S2 SℓA(S1) B(S1) A(S2) B(S2) A(Sℓ) B(Sℓ)

P1

L1

Q2

A

B

Figure 8: A path of well-linked sets of width w and length ℓ. The linkage L1 connects all of
A(S1) to all of B(S1) while there are also linkages from every subset of A(Si) to every
subset of B(Si) as Q2 in S2 illustrates for example.

Lemma 8.2 ([RRST96, statement (4.7)]). Every acyclic (pq + 1, pq + 1)-grid contains a (p, q)-
fence.

We show next that a similar relation as proved in the previous lemma is also true for paths of
order-linked sets and paths of well-linked sets.

Lemma 8.3. Let w8.3(w, ℓ) := w(ℓ+1). Every path of w-order-linked sets (S = (S0, S1, . . . , Sℓ), w8.3

P = (P0,P1, . . . ,Pℓ−1)) of width at least w8.3(w, ℓ) and length at least ℓ contains a path of well-
linked sets

(
S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) ,P

′ =
(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

))
of width w and length ℓ. Further, for

every 0 ≤ i ≤ ℓ we have A(S′
i) ⊆ A(Si), B(S′

i) ⊆ B(Si), S′
i ⊆ Si and for every 0 ≤ i < ℓ we have

P ′
i ⊆ Pi.

Proof.
Recall that ≤A(Si) is the order of the vertices of A(Si) witnessing that A(Si) is w-order-linked

to B(Si) in Si. Further, let πi be the bijection witnessing this property.
In the following we construct the sets A′

i and B′
i−1 for each 1 ≤ i ≤ ℓ such that A′

i is a subset
of the smallest (i+ 1)w elements of ≤A(Si) and Pi contains a B′

i−1-A
′
i-linkage of order |A′

i|, see
Figure 9 for an illustration.
First let Â0 be the w smallest elements of ≤A(S0). For 0 < i ≤ ℓ, let Âi be the (i+1)w smallest

elements of ≤A(Si). Since |A(Si)| ≥ w(ℓ+ 1) and i ≤ ℓ, such a set exists.

Now, let P̂i−1 be the paths of Pi−1 such that end
(
P̂i−1

)
= Âi. Since Âi−1 contains the smallest

iw elements of ≤A(Si−1), there is some B′
i−1 ⊆ start

(
P̂i−1

)
of size w such that πi−1(a) ≤B(Si−1) b

for all a ∈ Âi−1 and all b ∈ B′
i−1.

Finally, choose A′
i := end

(
P̂i−1

)
for all 0 < i ≤ ℓ and A′

0 := Â0.

As A′
i ⊆ Âi for all 0 ≤ i ≤ ℓ, we have πi−1(a) ≤B(Si−1) b for all a ∈ A′

i−1 and all b ∈ B′
i−1.

Hence, for every A′ ⊆ A′
i−1 and every B′ ⊆ B′

i−1 with |A′| = |B′| we have that B′ is an r-shift of
A′. Thus, A′

i−1 is well-linked to B′
i−1 in Si−1. Let S′

i−1 be a minimal subgraph of Si−1 in which
A′

i−1 is well-linked to B′
i−1. We set A(S′

i−1) := A′
i−1 and B(S′

i−1) := B′
i−1. Choose P ′

i−1 ⊆ Pi−1

such that start
(
P ′
i−1

)
= B′

i−1 and set A′
i := end

(
P ′
i−1

)
.
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x · · ·

∣∣∣Â0

∣∣∣ = w =
∣∣A′

0

∣∣
∣∣∣Â1

∣∣∣ = 2w,
∣∣A′

1

∣∣ = w
∣∣∣Â2

∣∣∣ = 3w,
∣∣A′

2

∣∣ = w
∣∣∣Âℓ

∣∣∣ = (ℓ+ 1)w,
∣∣A′

ℓ

∣∣ = w

A′
1

B̂0

A′
2

B̂1

A′
ℓ

Â0

Â1 Â2
Âr

≤A1 ≤A2 ≤A3 ≤Ar≤B1 ≤B2 ≤B3 ≤Br

P̂0 P̂1 P̂ℓ−1

π1

Figure 9: A path of well-linked sets of width w and length ℓ. The linkage L1 connects all of
A(S1) to all of B(S1) while there are also linkages from every subset of A(Si) to every
subset of B(Si) as Q2 in S2 illustrates for example.

After constructing all sets above, we choose B′
ℓ as the w largest elements of ≤B(Sℓ). As argued

above, the set A′
ℓ is well-linked to B′

ℓ in some S′
i ⊆ Si, where we choose S′

i minimal.
We set S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) and P′ =

(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

)
. It is immediate from the construction

above that (S ′,P′) is a path of well-linked sets of width w and length ℓ satisfying the conditions
in the statement. □

We show next that every path of well-linked sets contains a fence. Towards this aim we first
show that the well-linkedness of A(Si) to B(Si) within an individual cluster Si can be preserved
when going from one cluster to the next, i.e. the set A(Si) is also well-linked to every A(Sj) and
B(Sj) for clusters Sj with j > i appearing later on the path of well-linked sets.

Lemma 8.4. Let (S := (S0, . . . , Sℓ),P := (P0, . . . ,Pℓ−1)) be a path of well-linked sets of width
w and length ℓ and let 0 ≤ i < j ≤ ℓ. Then for every 0 ≤ i < j ≤ ℓ, for each A′ ∈ {A(Si), B(Si)}
and for each B′ ∈ {B(Sj), A(Sj)} we have that A′ is well-linked to B′ in (S,P)[i, j].

Proof. We show the case where A′ = A(Si) and B′ = B(Sj). The other cases follow analogously.
Let X ⊆ A′ and Y ⊆ B′ be sets size k. We prove by induction on j − i that there is an
X-Y -linkage of order k in (S,P).
If j− i = 1, then let Bi ⊆ B(Si) be a set of size k and let Aj ⊆ A(Sj) the set of size k such that
Pi(Bi) = Aj . Since A(Si) is well-linked to B(Si) in Si, there is an A′-B1-linkage Ri of order k
in Si. Similarly, there is an Aj-B′-linkage Rj in Sj . Let R′

i ⊆ Pi be the paths of Pi such that
start(R′

i) = end(Ri). Clearly, Ri · R′
i · Rj is an A′-B′-linkage of order k.

Now consider the case where j − i > 1. Choose any subset Bi ⊆ B(Si) of order |A′| = k.
As before there is an A′-Bi-linkage R1 of order k in Si. Let R2 ⊆ Pi be the linkage with
start(R2) = end(R1). Note that end(R2) ⊆ A(Si+1). By induction, there is an end(R2)-B′-
linkage R3 of order k, and so R1 · R2 · R3 is an A′-B′-linkage of order k, as desired. □

We now apply our framework of Pk-routings in temporal digraphs to construct a fence from
a path of well-linked sets. The idea is to first construct an acyclic grid using Pk-routings and
then apply Lemma 8.3 to obtain a fence. Observe that w8.5(p, q) ∈ O(p5q5) and ℓ8.5(p, q) ∈
21↑↑poly

5(p,q).
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· · ·
· · ·
· · ·
· · ·
· · ·

D1(T ) D2(T ) D3(T ) D4(T ) Dl(T )

Figure 10: For each cluster Si we obtain a digraphDi(T ) from the temporal digraph T . Every Di

contains a path of length k1 or a Kk1-routing, which means it contains a Pk1-routing
in any case. As there are enough clusters we can find k4 − 1 agreeing on the vertices
and their order, shown in orange.

Theorem 8.5. Every path of a well-linked set (S,P) of width at least w8.5(p, q) := 2(pq + 1)5 w8.5

and length ℓ ≥ ℓ8.5(p, q) := ((pq + 1)(pq)− 1)
(
2(pq+1)5

pq+1

)
(pq + 1)! + 1 contains a (p, q)-fence. ℓ8.5

Proof. Let k1 = pq + 1 and k2 = 2(k1)
5. Let D = D((S,P)). Let (S0, S1, . . . , Sℓ) = S and let L

be an A(S0)-B(Sℓ)-linkage of order k2 in (S,P). By Lemma 8.4, such a linkage exists.
Let T be the routing temporal digraph of L through S. Note that ℓ(T ) = ℓ+ 1, see Figure 10

for an illustration. Since A(Si) is well-linked to B(Si) and every path in L must intersect both
A(Si) and B(Si) for every Si ∈ S, we have that every Di(T ) is strongly connected.
By Theorem 6.8, every Di(T ) contains a path of length k1 or a K⃗

⃗

k1-routing. In both cases,
Di(T ) contains a Pk1-routing φi. Note that there are at most k3 :=

(
k2
k1

)
· (k1)! distinct φi.

Let k4 = k1(k1 − 1). Because ℓ(T ) ≥ (k4 − 1)k3 +1, there is a subsequence S ′ of S of length k4
such that φ := φi = φj for every Si, Sj ∈ S ′. Let

(
S′
0, S

′
1, . . . , S

′
k4−1

)
:= S ′, let Q be the image

of φ and let T ′ be the routing temporal digraph of Q through S ′. Note that T ′ is a temporal
subgraph of T and that φ is a Pk1-routing in every Di(T

′). Further, ℓ(T ′) = k4 and |Q| = k1.
Let u1, u2, . . . , uk1 be the vertices of the Pk1 ordered according to their occurrence on the Pk1 .

We construct a sequence P of k1 paths where, for each 1 ≤ i ≤ k1, the path Pi is constructed as
follows.
For each 1 ≤ j < k1, let ti,j = (i−1)·(k1−1)+j and let Ri,j be a φ(uj)-φ(uj+1) path in Dti,j (T

′)
which is disjoint from every path in Q \ {φ(uj), φ(uj+1)}. Note that ti,k1−1 = ti+1,1 − 1. Since
φ is a Pk1-routing in Dti,j (T ), such a path Ri,j exists. Finally, Ri,j corresponds to a V (φ(uj))-
V (φ(uj+1)) path Pi,j,2 in D. Let Pi,j,1 be the end(Pi,j−1,2)-start(Pi,j,2)-path in D(φ(uj)) (to
simplify notation, we choose end(Pi,0,2) as start(Pi,1,2)).
We now set Pi = Pi,1,1 · Pi,1,2 · Pi,2,1 · Pi,2,2 · . . . · Pi,k1−1,2. After constructing all Pi, set
P = (P1, P2, . . . , Pk1). Note that the paths in P are pairwise disjoint.
It is immediate from the construction that (P,Q) is an acyclic (k1, k1)-grid. By

Lemma 8.2, D(P ∪Q) contains a (p, q)-fence, as desired. □

We close the section by exhibiting various routing properties of paths of well-linked sets that
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are useful below.
We first observe the following simple property.

Observation 8.6. Let D be a digraph and let A,B ⊆ V (D) be sets in D such that A is
well-linked to B. Let v ∈ V (D) be a vertex contained in some A-B path. Then there is an
(A ∪ {v})-B-linkage L of order |A| such that v ∈ start(L).

Proof. Let R be some A-B-linkage of order |A|. Let P be some A-B path containing v and let
P ′ be the v-B subpath of P . Let P ′′ be the largest subpath of P ′ with start(P ′′) = start(P ′)
which is internally disjoint from R and let R ∈ R be the path of R intersecting P ′′. Finally, let
R′ be the end(P ′′)− end(R) subpath of R. It is now immediate that R′ := (R\{R})∪{P ′′ ·R′}
is a linkage of order |R| with v ∈ start(R′). □

When working with paths of well-linked sets below we are often in a situation where we are
given two equal-sized sets X and Y of vertices in a path of well-linked sets (S,P) and we want
to find a linkage connecting X to Y in (S,P). In the next lemma we identify several cases in
which these linkages are guaranteed to exist. This lemma is frequently applied in the next steps
of the proof.

Lemma 8.7. Let (S = (S0, S1, . . . , Sℓ) ,P = (P0,P1, . . . ,Pℓ−1)) be a path of well-linked sets of
width w and length ℓ. Let X,Y ⊆ V ((S,P)) such that |X| = |Y | = k. Let f : X ∪ Y → N be
a function such that v ∈ Sf(v) ∪ Pf(v) for all v ∈ X ∪ Y . There is an X-Y -linkage L in (S,P) if
f(x) ≤ f(y)− 2 for all x ∈ X and all y ∈ Y and at least one of the following is true:

(L1) there are 0 ≤ i < j ≤ ℓ such that X ⊆ B(Si) and Y ⊆ A(Sj),

(L2) |f(x1)− f(x2)| ≥ 2 for all x1, x2 ∈ X with x1 ̸= x2 and there is some 0 ≤ i ≤ ℓ such
that Y ⊆ A(Si),

(L3) |f(y1)− f(y2)| ≥ 2 for all y1, y2 ∈ Y with y1 ̸= y2 and there is some 0 ≤ i ≤ ℓ such that
X ⊆ B(Si), or

(L4) |f(x1)− f(x2)| ≥ 2 for all x1, x2 ∈ X with x1 ̸= x2 and |f(y1)− f(y2)| ≥ 2 for all
y1, y2 ∈ Y with y1 ̸= y2.

Furthermore, choose i minimal with Si containing a vertex from X and j maximal with Sj
containing a vertex from Y . Then, L is contained inside (S,P)[i, j].

Proof. The case where (L1) holds follows directly from Lemma 8.4.
If (L2) holds, we construct an X-A(Si−1)-linkage of order k as follows. We first rename the

vertices of X such that xr ∈ V (Sr) for all xr ∈ X. For each xr ∈ X, let kr be the number of
vertices in X which appear before xr along (S,P).
By Observation 8.6, there is an (A(Sr)∪{xr})-B(Sr)-linkage Rr of order kr+1 in Sr such that
xr ∈ start(Rr). If kr > 0, then by Lemma 8.4 there is an end(Rr−1)-start(Rr)-linkage Lr−1 of
order kr = |Rr| − 1.
Clearly, the concatenation of all Rr and all Lr above (in the only order possible) yields an
X-B(Sr′)-linkage of order |X|, where r′ is the smallest index such that all vertices of X appear
before Sr′ along (S,P). Now by Lemma 8.4 we have an end(Rr′−1)-Y -linkage of order k, as
desired. The proof for the case where (L3) holds is analogous to the one of where (L2) holds
and so we omit it.
If (L4) holds, let ry be the smallest index such that Sry contains a vertex of Y and let rx be

the largest index such that Srx contains a vertex of X.
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Construct linkages Rr and Lr as in the proof of the case when (L2) holds. Let X be the linkage
obtained by concatenating all Rr and all Lr (in the only possible order) belonging to vertices
of X. Similarly, let Y be the linkage obtained by concatenating all Rr and all Lr (in the only
possible order) belonging to vertices of Y .
Note that end(X ) ⊆ B(Srx) and that start(Y) ⊆ A(Sry). Hence, by Lemma 8.4 there is an
end(X )-start(Y)-linkage of order k, as desired. □

The last statement we prove in this section helps us to deal with a situation where already have
a path of well-linked sets (S := (S0, . . . , Sℓ),P) but we would like to restrict the system so that
it “starts” at a specific set A ⊆ A(S0) and ends at some fixed set B ⊆ B(Sℓ).

Observation 8.8. Let (S = (S0, S1, . . . , Sℓ) ,P = (P0,P1, . . . ,Pℓ−1)) be a path of well-linked
sets of width at least w and length ℓ. Let A0 ⊆ A(S0) and Bℓ ⊆ B(Sℓ) with |A(S0)| = |Bℓ| = w.
Then, (S,P) contains a path of well-linked sets (S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) ,P

′ =
(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

)
)

of width w and length ℓ such that B(S′
ℓ) = Bℓ, A(S′

0) = A0, S′
i ⊆ Si for all 0 ≤ i ≤ ℓ and

P ′
i ⊆ Pi for all 0 ≤ i < ℓ.

Proof. For each 0 ≤ i < ℓ choose some Bi ⊆ B(Si) of size w and let P ′
i ⊆ Pi be such that

start(P ′
i) = Bi. For each 1 ≤ i ≤ ℓ let Ai = P ′

i−1(Bi−1).
For each 0 ≤ i ≤ ℓ let S′

i ⊆ Si be a maximal subgraph of Si such that Ai is well-linked to Bi

in S′
i and for each v ∈ V (S′

i) there is some Ai-Bi path P in S′
i containing v. Clearly, if no such

path P exists for some vertex v, then we can remove v from S′
i while preserving the property

that Ai is well-linked to Bi. Hence, such a subgraph S′
i exists. We then set A(S′

i) := Ai and
B(S′

i) := Bi.
By construction,

(
(S′

0, . . . , S
′
ℓ) ,

(
P ′
0, . . . ,P ′

ℓ−1

))
is a path of well-linked sets of width w and

length ℓ, as desired. □

9 Cycles of well-linked sets and cylindrical grids

We have already seen how paths of r-order-linked sets can be seen as an abstraction of acyclic
grids and paths of well-linked sets are an abstraction of fences. In this section we introduce the
analogous abstraction of cylindrical grids. It is easily seen that a cylindrical grid is essentially
the same as a fence together with a linkage which contains for each horizontal path Qi of the
fence a path connecting end(Qi) to start(Qi) but is otherwise disjoint from the fence.
Unsurprisingly, therefore, our abstractions of cylindrical grids, called cycle of well-linked sets,

arise from a path of well-linked sets by adding a linkage from the last to the first cluster.

Definition 9.1 (cycle of well-linked sets). A cycle of well-linked sets of width w and length ℓ
is a tuple (S,P) such that

1. S is a sequence of ℓ pairwise disjoint subgraphs (S0, . . . , Sℓ−1), which are called clusters,

2. for every 0 ≤ i < ℓ there are disjoint sets A(Si), B(Si) ⊆ V (Si) of size w such that A(Si)
is well-linked to B(Si) in Si,

3. P is a sequence of ℓ pairwise disjoint linkages (P0,P1, . . . ,Pℓ−1) such that, for every 0 ≤
i < ℓ, Pi is a B(Si)-A(S(i+1mod ℓ))-linkage of order w which is internally disjoint from Si
and Si+1 and is disjoint from every S ∈ S \ {Si, Si+1}.
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As before we call (S,P) strict if in every cluster Si every vertex v ∈ V (Si) is contained in an
A(Si)−B(Si)-path.

In the same way as a path of well-linked sets can be constructed from a fence, a cycle of well-
linked sets can be constructed from a cylindrical grid. We now turn to the converse operation,
i.e. how one can construct a cylindrical grid from a cycle of well-linked sets.
We first need the following lemma from [KK15].

Lemma 9.2 ([KK15, Lemma 6.3]). Let t be an integer, let (P,Q) be a (q, q)-fence where
q ≥ q9.2(t) := (t − 1)(2t − 1) + 1 and let R be an end(Q)-start(Q)-linkage of order q which is
internally disjoint from (P,Q). Then (P,Q) contains a cylindrical grid of order t as a butterfly
minor.

We are now ready to show how a cylindrical grid can be obtained from a cycle of well-linked
sets. We first define

w9.3w9.3(k) := w8.5(q9.2(k) , q9.2(k))

ℓ9.3ℓ9.3(k) := ℓ8.5(q9.2(k) , q9.2(k)) .

We note that w9.3(k) ∈ poly20(k) and ℓ9.3(k) ∈ 21↑↑poly
9(k).

Theorem 9.3. Every cycle of well-linked sets of width w ≥ w9.3(k) and length ℓ ≥ ℓ9.3(k)
contains a cylindrical grid of order k.

Proof. Let k1 = q9.2(k). Let ℓ1 = len8.5(k1, k1). Note that w ≥ w8.5(k1, k1) and ℓ ≥ ℓ1 + 1.
Let (S = (S0, S1, . . . , Sℓ) ,P = (P0,P1, . . . ,Pℓ)) be a cycle of well-linked sets of width w and

length ℓ. Note that D1 := (S ′ := (S0, S1, . . . , Sℓ−1) ,P
′ := (P0,P1, . . . ,Pℓ−2)) is a path of well-

linked sets of width w and length at least ℓ1.
By Theorem 8.5, D1 contains a (k1, k1)-fence (P1,Q1) such that start

(
Q1

)
⊆ A(S0) and

end
(
Q1

)
⊆ B(Sℓ−1). Let R1 ⊆ Pℓ be the set of paths satisfying end

(
R1

)
= start

(
Q1

)
. Let

R2 be an end
(
Q1

)
-start

(
R1

)
-linkage of order k1 in (S,P)[ℓ1, ℓ]. By Lemma 8.7(L1), such a link-

age R2 exists. Further, R2 is internally disjoint from (P1,Q1). By Lemma 9.2, (P1,Q1) and
R2 together contain a cylindrical grid of order k as a butterfly minor. □

With the results of this section we have now found suitable abstractions of acyclic grids, fences,
and cylindrical grids. We have also seen how to obtain, e.g. a cylindrical grid from a cycle of
well-linked sets. What remains to show is how one can find a cycle of well-linked sets in a given
digraph. We address this problem in the remainder of the paper.

10 Constructing a path of well-linked sets

We show how to obtain a path of well-linked sets from splits and segmentations by using the
results from Section 6, where we defined the routing temporal digraph of a linkage L through a
sequence of disjoint digraphs H1, H2, . . . ,Ht.
In order to construct the routing temporal digraph, the linkage L must intersect all Hi in an

ordered fashion. This means that, if one of the linkages in a web (H,V) is ordered with respect to
the other, then we can construct such a routing temporal digraph. This leads us to the following
definition of ordered web (see Figure 11 for an example of an ordered web).

Definition 10.1. Let (H,V) be an (h, v)-web. We say that (H,V) is an ordered web if there
is an ordering of V = (V1, V2, . . . , Vv) for which each path H ∈ H can be decomposed into
H = H1 ·H2 · · ·Hv such that Hi intersects Vj if and only if i = j.
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V1 V2 V3 V4 V5

H

Figure 11: A (5, 3)-ordered web (H, {V1, V2, V3, V4, V5}).

We show next how to construct a path of 1-order-linked sets from an ordered web using our
framework of H-routings developed in Section 6. We start by defining

h10.2h10.2(w) := w2 − 1,

v10.2v10.2(w, ℓ) := (wℓ ·
(
h10.2(w)

w

)
· w! + 1) · ℓ6.12(w, h10.2(w))− 1.

Observe that v10.2(w, ℓ) ∈ 21↑↑poly
13(ℓ,w).

Lemma 10.2. Let (H,V) be an ordered (h, v)-web where h = h10.2(w) and v ≥ v10.2(w, ℓ).
Then (H,V) contains a path of w-order-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and
length ℓ with the following additional properties.

• There is a start(H)-end(H)-linkage L = L1 · L2 · L3 of order w contained in H such that
L2 is an A(S0)-B(Sℓ)-linkage and both L1 and L3 are internally disjoint from (S,P).

• There is a linkage X ⊆ V of order ℓ + 1 and a bijection π : S → X such that A(Si) ⊆
V (π(Si)) and V (π(Si)) ∩ V ((S,P)) ⊆ V (Si) for each 0 ≤ i ≤ ℓ.

Proof. Let ℓ1 := wℓ+ 1 and let ℓ2 := (ℓ1 − 1) ·
(
h
w

)
· w! + 1.

We define f(i) := (i − 1) · ℓ6.12(w, h) + 1 and observe that f(i) − f(i − 1) = ℓ6.12(w, h). Let
(V1 · V2 · . . . · Vv) := V be an ordering of V witnessing that (H,V) is an ordered web. Observe
that f(ℓ2 + 1)− 1 = v10.2(w, ℓ) ≤ v.
Decompose H into H = H0 · H1 · . . . · Hℓ2 , where start(H0) = start(H), end(Hℓ2) = end(H)

and for each 1 ≤ i ≤ ℓ2 − 1, the sublinkage Hi starts at the first intersections of H with
Vf(i) and ends at the first intersections of H with Vf(i+1). For each 1 ≤ t ≤ ℓ2, let Vt :=(
Vf(t), Vf(t)+1, . . . , Vf(t)+ℓ6.12(w,h)−1

)
and let Tt be the routing temporal digraph of H through

Vt.
Each layer of each Ti is unilateral since every path in H intersects every path in V. As ℓ(Ti) =
ℓ6.12(h,w), by Theorem 6.12 each Ti contains some Pw-routing φi over some paths of H.
There are at most

(
h
w

)
·w! distinct Pw-routings φi. Hence, by the pigeon-hole principle, there is

a subset T = {Tt1 , Tt2 , . . . , Ttℓ1} of the temporal digraphs above of size ℓ1 such that φ := φi = φj

for all Ti, Tj ∈ T .
Let (u1, u2, . . . , uw) be the vertices of Pw sorted according to their order along Pw. For each
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i ∈ {1, . . . , ℓ1} let
S′
i = D

(
Hti ∪ Vti

)
,

A(S′
i) = {ai,j | 1 ≤ j ≤ w and ai,j is the first vertex of φ(uj) on Vf ′(ti)} and

B(S′
i) = {bi,j | 1 ≤ j ≤ w and bi,j is the last vertex of φ(uj) on Vf ′(ti+1)−1}.

Let T ′
i be the routing temporal digraph of Hi through V i. Since T ′

i is isomorphic to Ti, the
bijection φ induces a Pw-routing on T ′

i as well. By Lemma 7.6, each A(S′
i) is 1-order-linked to

B(S′
i) in S′

i. By choice of bi,j and ai+1,j , the path φ(uj) contains a bi,j-ai+1,j path. Hence, for
each 1 ≤ i ≤ ℓ1 there is a B(S′

i)-A(S
′
i+1)-linkage P ′

i such that (S ′ :=
(
S′
1, S

′
2, . . . , S

′
ℓ1

)
,P′ :=(

P ′
1,P ′

2, . . . ,P ′
ℓ1−1

)
) is a uniform path of 1-order-linked sets of width w and length ℓ1 − 1 = ℓw.

By Theorem 7.8, (S ′,P′) contains as a subgraph a uniform path of w-order-linked sets (S =
(S0, S1, . . . , Sℓ) ,P = (P0,P1, . . . ,Pℓ−1)) of length ℓ and width w. Additionally, for every 0 ≤
i ≤ ℓ we have Si ⊆ (S ′,P′)[wi+ 1, w(i+ 1)], A(Si) ⊆ A(S′

wi+1) and B(Si) ⊆ B(S′
w(i+1)), and

for 0 ≤ i < ℓ we have Pi ⊆ P ′
(w−1)(i+1)+1.

By construction of each S′
i, we have that A(Si) ⊆ V

(
Vf(twi+1)

)
. Let X = {Vf(twi+1) | 0 ≤ i ≤ ℓ}.

Define the bijection π : S → X as π(Si) = Vf(twi+1). Hence, X is a linkage of order ℓ+ 1 inside
V such that A(Si) ⊆ V (π(Si)) for all 0 ≤ i ≤ ℓ. Furthermore, by construction of each Si it is
immediate that V (π(Si)) ∩ V ((S,P)) ⊆ V (Si) for each 0 ≤ i ≤ ℓ.
We construct the linkage L as follows. Let Q be the image of φ and, for each 0 ≤ i ≤ ℓ2, let
Qi ⊆ Hi be the paths of Hi which are subpaths of Q.
Let L1 := Q0, L2 := Q1 · Q2 · . . . · Qℓ2 and let L3 be the B(Sℓ)-end(Q)-linkage inside Q. By

construction, L1 · L2 · L3 is a start(H)-end(H)-linkage of order w, L2 is an A(S0)-B(Sℓ)-linkage
and both L1 and L3 are internally disjoint from (S,P), as desired. □

Combining the previous lemma and Lemma 8.3 allows us to construct a path of well-linked
sets from an ordered web. At a later part of our proof we need some additional information
about how the linkage V intersects the individual clusters of the path of well-linked sets. This
is captured by the bijection π in the statement of the next result.
We define

h10.3h10.3(w, ℓ) := h10.2(w(ℓ+ 1)) ,

v10.3v10.3(w, ℓ) := v10.2(w(ℓ+ 1), ℓ) .

Note that h10.3(w, ℓ) ∈ O(w2ℓ2) and v10.3(w, ℓ) ∈ 21↑↑poly
25(w,ℓ).

Corollary 10.3. Let (H,V) be an ordered (h, v)-web such that h ≥ h10.3(w, ℓ) and v ≥
v10.3(w, ℓ). Then, there is a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and
length ℓ in D(H ∪ V) such that B(Sℓ) ⊆ end(H). Finally, there is a linkage X ⊆ V of order ℓ+1
and a bijection π : S → X such that A(Si) ⊆ V (π(Si)) and V (π(Si)) ∩ V ((S,P)) ⊆ V (Si) for
each 0 ≤ i ≤ ℓ.

Proof. By Lemma 10.2, (H,V) contains a path of w-order-linked sets (S ′ = (S′
0, S

′
1, . . . , S

′
ℓ) ,P

′ =(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

)
) of width ℓ(w+1) and length ℓ. Further, there is a linkage X ′ ⊆ V of order ℓ+1

and a bijection π′ : S ′ → X ′ such that A(S′
i) ⊆ V (π′(S′

i)) and V (π′(S′
i)) ∩ V ((S ′,P′)) ⊆ V (S′

i)
for each 0 ≤ i ≤ ℓ.
By Lemma 8.3, (S ′,P′) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ),
P = (P0,P1, . . . ,Pℓ−1)) of length ℓ and width w. Additionally, for each 0 ≤ i ≤ ℓ we have
that Si ⊆ S′

i and that A(Si) ⊆ A(S′
i).

Finally, let X = {π′(S′
i) | 0 ≤ i ≤ ℓ} and let π : S → X be the bijection given by π(Si) = π′(S′

i).
It is immediate that X and π satisfy the desired conditions in the statement. □
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We can manipulate the path of well-linked sets given by Corollary 10.3 above in order to ensure
that the extremities of the path of well-linked sets are contained in the extremities of H. This
will be useful later, when we need the end of the path of well-linked sets to be well-linked to its
beginning.
We define

h10.4h10.4(w, ℓ) = h10.3(w, ℓ) ,

v10.4v10.4(w, ℓ) = v10.3(w, ℓ+ 4w) .

Note that h10.4(w, ℓ) ∈ O(w2ℓ2) and v10.4(w, ℓ) ∈ 21↑↑poly
25(w,ℓ).

Lemma 10.4. Let (H,V) be an ordered (h, v)-web. If h ≥ h10.4(w, ℓ) and v ≥ v10.4(w, ℓ),
then (H,V) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and length
ℓ. Additionally, A(S0) ⊆ start(H) and B(Sℓ) ⊆ end(H).

Proof. Let ℓ1 = ℓ + 4w. By Corollary 10.3, D((H,V)) contains a path of well-linked sets
(S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ1

)
,P′ =

(
P ′
0,P ′

1, . . . ,P ′
ℓ1−1

)
) of width w and length ℓ1. Additionally, there

is a linkage X ⊆ V of order ℓ1 + 1 and a bijection π : S ′ → X such that A(S′
i) ⊆ V (π(S′

i)) and
V (π(S′

i)) ∩ V ((S ′,P′)) ⊆ V (S′
i) for each 0 ≤ i ≤ ℓ1.

We construct a path of well-linked sets (S,P) of width w and length ℓ as follows. For each
0 ≤ i ≤ ℓ1, let Xi = π(S′

i), let ai be the first intersection of Xi with V (S′
i) and let bi be the last

intersection of Xi with V (S′
i). Let A′ = {a0, a2, a2(w−1)} and B′ = {bℓ1 , bℓ1−2, . . . , bℓ1−2(w−1)},

let XA be the start(X )-A′ linkage of order w inside X and let XB be the B′-end(X ) linkage of
order w inside X .
By Lemma 8.7(L2), there is an A′-A(S′

2w) linkage LA of order w in (S ′,P′)[0, 2w]. Analogously,
by Lemma 8.7(L3) there is a B(S′

ℓ1−2w)-B
′ linkage LB of order w inside (S ′,P′)[ℓ1 − 2w, ℓ1].

Since V (Xi) ∩ V ((S ′,P′)) ⊆ V (S′
i) for all 0 ≤ i ≤ ℓ1, we have that YA := XA · LA is a

start(V)-A(S′
2w) linkage of order w and YB := LB · XB is a B(S′

ℓ1−2w)-end(V) linkage of order w.
Let S0 = D(S′

2w ∪ YA), A(S0) = start(YA), B(S0) = B(S′
2w), Sℓ = D

(
S′
2w+ℓ ∪ YB

)
, A(Sℓ) =

A(S′
2w+ℓ) and B(Sℓ) = end(YB). Let S =

(
S0, S

′
2w+1, S

′
2w+2 . . . , S

′
2w+ℓ−1, Sℓ

)
and P = (P2w,

P2w+1, . . . ,P2w+ℓ−1). Clearly, (S,P) is a path of well-linked sets of width w and length ℓ.
Finally, we have A(S0) ⊆ start(L1) ⊆ start(V) and B(Sℓ) ⊆ end(L3) ⊆ end(V). □

Unfortunately, the construction from Corollary 10.3 above does not guarantee that the paths in
H intersect many clusters of the resulting path of well-linked sets. The reason is that the layers
of the routing temporal digraph constructed from an ordered web are only unilateral and not
strongly connected. Therefore there is no guarantee that start(H) and end(H) are well-linked.
In the next definition we exhibit a property of webs that allows us to overcome this problem
(see Figure 12 for an illustration of folded webs).

Definition 10.5. An (h, v)-web (H,V) is a folded web if every Vi ∈ V can be split as V a
i ·V b

i := Vi
such that both V a

i and V b
i intersect all paths of H.

Folded ordered webs, correspond to splits from Definition 5.1(S1). The example shown in
Figure 13 illustrates the connection between splits and folded ordered webs, which we make
precise in the following observation.

Observation 10.6. Let (P ′,Q′) be a (2p, q)-split of (P,Q). Then there is some P ′′ containing
only subpaths of P such that (Q′,P ′′) is a folded ordered (q, p)-web.

Proof. Let (P1, P2, . . . , P2p) := P be and ordering of P ′ witnessing that (P ′,Q′) is a (2p, q)-split.
For each 1 ≤ i ≤ p let P ′

i = P2i−1 · e2i−1 · P2i, where e2i−1 is the edge inside P ′ such that
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Figure 12: A folded (5, 3)-web.

P1

P2

P3

P4

P = P1 · P2 · P3 · P4

Q = Q1 · Q2 · Q3 · Q4

Q1
Q2

Q2
Q3

Q3

Q4

Figure 13: An example of how a (3, 2) folded ordered web is obtained from a (4, 3)-split.

P2i−1 ·e2i−1 ·P2i is a subpath of P ′. Let P ′′ =
(
P ′
1, P

′
2, . . . , P

′
p

)
. Now (Q′,P ′′) is a folded ordered

(q, p)-web, which can be seen by partitioning P ′
i into P2i−1 and P2i. □

We show next that if we construct a path of well-linked set starting from an ordered web that
is also folded, then we can construct the path of well-linked sets in a way that the paths in H a
guaranteed to intersect the individual clusters of the resulting path of well-linked sets. The idea
of the construction is similar to the proof of Lemma 10.2 but now we can use Theorem 6.16 in
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the construction which yields the extra properties we need.
We define

h10.7h10.7(w) := ℓ6.20(w) ,

v10.7v10.7(w, ℓ) := h6.20(w)
(
ℓ

(
h10.7(w)

w

)
+ 1

)
.

We observe that h10.7(w) ∈ O(w11) and v10.7(w, ℓ) ∈ 21↑↑poly
2(w,ℓ).

Lemma 10.7. Let (H,V) be a folded ordered (h, v)-web. If h ≥ h10.7(w) and v ≥ v10.7(w, ℓ),
then (H,V) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and length
ℓ. Additionally, there is a start(H)-end(H)-linkage L = L1 · L2 · L3 using only arcs of H such
that L2 is an A(S0)-B(Sℓ)-linkage of order w inside (S,P) and L1 and L3 are internally disjoint
from (S,P).
Proof. Assume, without loss of generality, that h = h10.7(w), as any H′ ⊆ H of size h10.7(w) also
satisfies the assumptions of the statement above.
Let ℓ1 = h6.20(w), and ℓ2 = ℓ

(
h
w

)
+1. Let (V0, V1, . . . , Vv−1) be an ordering of V witnessing that

(H,V) is a folded ordered web.
For each 1 ≤ i ≤ ℓ2 let Hi be the maximal linkage inside H such that start

(
Hi

)
⊆ V

(
V(i−1)ℓ1

)
and end

(
Hi

)
⊆ V (Viℓ1−1). Additionally, let Ti be the routing temporal digraph of Hi through

V i :=
(
V(i−1)ℓ1 , . . . , Viℓ1−1

)
. Because (H,V) is a folded web, for every 0 ≤ j ≤ ℓ1 − 1 and every

pair of paths H i
a, H

i
b ∈ Hi there is a subpath of V(i−1)ℓ1+j from V

(
H i

a

)
to V

(
H i

b

)
. Hence, each

layer of Ti is strongly connected.
By construction, ℓ(Ti) = ℓ1 and by assumption |V (Ti)| = |H| = h10.7(w). By Proposition 6.20,

for every 1 ≤ i ≤ ℓ2 there is some Li ⊆ Hi of order w such that start(Li) is well-linked to end(Li)
inside D

(
Hi ∪ V i

)
.

By the pigeon-hole principle, there is some H′ ⊆ H of order w and some I ⊆ {1, . . . , ℓ2} of
order ℓ+1 such that Li is a sublinkage of H′ of order w for all i ∈ I. Let (t0, t1, . . . , tℓ) := I be
the ascending order of the elements of I.
For each 0 ≤ i ≤ ℓ let Si := D(Lti ∪ Vti) and set A(Si) = start(Lti) and B(Si) = end(Lti). For

each 1 ≤ i ≤ ℓ− 1 let Pi be the end(Lti)-start
(
Lti+1

)
-linkage inside H.

By construction, A(Si) is well-linked to B(Si) inside Si for all i. This implies that (S = {S0, S1,
. . . , Sℓ},P = (P0,P1, . . . ,Pℓ−1)) is a path of well-linked sets of width w and length ℓ. Further,
L is an A(S0)-B(Sℓ)-linkage of order w inside (S,P) using only arcs of H. □

In a way similar to Lemma 10.4 above, we can manipulate the path of well-linked sets obtained
from Lemma 10.7 in order to ensure that the extremities of the path of well-linked sets are
subsets of the extremities of H.

Corollary 10.8. Let (H,V) be a folded ordered (h, v)-web. If h ≥ h10.7(w) and v ≥ v10.7(w, ℓ),
then (H,V) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and length
ℓ. Additionally, A(S0) ⊆ start(H) and B(Sℓ) ⊆ end(H).

Proof. By Lemma 10.7, (V ′,H′′) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of
width w and length ℓ. Additionally, there is a start(V ′)-end(V ′) linkage L = L1 · L2 · L3 of order
w such that L2 is an A(S0)-B(Sℓ) linkage of order w inside (S,P) and L1 and L3 are internally
disjoint from (S,P).
Set S′

0 = D(S0 ∪ L1), A(S′
0) = start(L1), B(S′

0) = B(S0), S′
ℓ = D(Sℓ ∪ L3), A(S′

ℓ) = A(Sℓ)
and B(S′

ℓ) = end(L3). Because end(L1) = A(S0) and start(L3) = B(Sℓ), we have that
(S ′ := (S′

0, S1, S2, . . . , S
′
ℓ) ,P) is a path of well-linked sets of width w and length ℓ such that

A(S′
0) ⊆ start(V) and B(S′

0) ⊆ end(V). □
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We conclude this section by showing that digraphs of high treewidth contain a large path of
well-linked sets where the last cluster is well-linked to the first. As we will see later in Section 11,
we will use this well-linkedness property to construct the linkage required to close the cycle of
well-linked sets.
Define

v′(w, ℓ) = h10.7(w) + v10.4(w, ℓ) ,

t10.9t10.9(w, ℓ) = t5.15
(
2v10.7(w, ℓ) , p5.3

(
h10.4(w, ℓ) , v

′(w, ℓ)
)
, v′(w, ℓ) , (ℓ+ 1)w

)
.

Note that t10.9(w, ℓ) ∈ 27↑↑poly
25(w,ℓ).

Theorem 10.9. Every digraph D with dtw(D) ≥ t10.9(w, ℓ) contains a path of well-linked sets
(S = (S0, S1, . . . , Sℓ) ,P) of width w and length ℓ such that B(Sℓ) is well-linked to A(S0) in D.

Proof. We define ℓ1 = ℓ + 1, h3 = v10.7(w, ℓ), h2 = 2h3, v2 = h10.7(w) + v10.4(w, ℓ), h5 =
h10.4(w, ℓ). h4 = p5.3(h5, v2), Observe that t10.9(w, ℓ) = t5.15(h2, h4, v2, wℓ1).
By Theorem 5.15, we obtain three cases.
If Theorem 5.15(D1) holds, then D contains a cylindrical grid of order wℓ1, which in turn

contains a cycle of well-linked sets
(
S1 =

(
S1
0 , S

1
1 , . . . , S

1
ℓ1

)
,P1 =

(
P1
0 ,P1

1 , . . . ,P1
ℓ1

))
of width w

and length ℓ1.
Let S0 = D

(
P1
ℓ1
∪ S1

0

)
and Sℓ = D

(
S1
ℓ ∪ P1

ℓ

)
. Set A(S0) = start

(
P1
ℓ1

)
, B(S0) = B(S1

0), A(Sℓ) =
A(S1

ℓ and B(Sℓ) = end
(
P1
ℓ

)
. For each 1 ≤ i ≤ ℓ − 1, set A(Si) = A(S1

i ) and B(Si) = B(S1
i ).

It is immediate that
(
S :=

(
S0, S

1
1 , . . . , S

1
ℓ−1, Sℓ

)
,P :=

(
P1
0 ,P1

1 , . . . ,P1
ℓ

))
is a path of well-linked

sets of width w and length ℓ. Further, as B(Sℓ) ⊆ A(S1
ℓ1
) and A(S0) ⊆ B(S1

ℓ1
), we have that

B(Sℓ) is well-linked to A(S0), as desired.
If Theorem 5.15(D2) holds, then D contains a (h2, v2)-split (H2,V2) where end(V2) is well-

linked to start(V2). By Observation 10.6, there is some H3 ⊆ H2 of order h3 such that (V2,H3)
is a folded ordered (v2, h3)-web. Applying Corollary 10.8 to (V2,H3) yields a path of well-
linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width w and length ℓ such that A(S0) ⊆ start(V2) and
B(Sℓ) ⊆ end(V2). As end(V2) is well-linked to start(V2), we have that A(S0) is well-linked to
B(Sℓ), as desired.
Finally, if Theorem 5.15(D3) holds, then D contains an (h4, v2)-segmentation (H4,V4) where
end(H4) is well-linked to start(H4). By Observation 5.3, there is some H5 ⊆ H4 of order h5
such that (H5,V4) is an ordered segmentation. By definition, (H5,V4) is an ordered web. By
Lemma 10.4, D((H5,V4)) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ) ,P) of width
w and length ℓ such that A(S0) ⊆ start(H5) and B(Sℓ) ⊆ end(H5). As end(H5) is well-linked to
start(H5), we have that A(S0) is well-linked to B(Sℓ), as desired. □

11 Constructing a cycle of well-linked sets

In this section we complete the proof of Theorem 1.1. The results of the previous section allow
us to construct in any given digraph of large enough directed treewidth a path of well-linked
sets (S,P) where the last cluster Sl is well-linked to the first cluster S0. Let w be the width of
(S,P). The well-linkedness implies that there is a large B(Sl)−A(S0)-linkage R. We refer to
a B(Sl)−A(S0)-linkage R as a partial back-linkage. R is called a (total) back-linkage if it has
order w.
We analyse how this back-linkage intersects the path of well-linked sets and identify different

types of intersections that are possible. In each of these cases we are able to construct a cycle of
well-linked sets but by different techniques in each case depending on the type of intersection.
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11.1 Back-linkage intersecting cluster by cluster

The first case we consider is the case where the back-linkage is disjoint from a large part of the
path of well-linked sets. But first we need the following simple observation which shows that if
a path of well-linked sets has a back-linkage R then we can use R to construct a back-linkage
for every subpath of well-linked sets.

Lemma 11.1. Let w11.1(w) := 2w. Let (S = (S0, S1, . . . , Sℓ) ,P) be a path of well-linked sets of w11.1

width at least w11.1(w) and length ℓ in a digraph D. Let R be a B(Sℓ)-A(S0)-linkage of order
w11.1(w). Let 0 ≤ i ≤ j ≤ ℓ. Then there is a B(Sj)-A(Si)-linkage R′ of order w such that
D(R′) ∩ (S,P)[i, j] ⊆ D(R∪ start(R′) ∪ end(R′)).

Proof. If j < ℓ, then by Lemma 8.4 there is a linkage LB from B(Sj) to B(Sℓ) in (S,P)[j, ℓ]
which is internally disjoint from Sj . If j = ℓ, we set LB as the linkage containing only the
vertices of B(Sℓ) and no arcs.
Similarly, if i = 0 we set LA as the linkage containing only the vertices of A(S0) and no

arcs. Otherwise, we set LA as an A(S0)-A(Si)-linkage of order 2w in (S,P)[0, i], which exists
by Lemma 8.4.
Let L = LB · R · LA. As LB and LA are internally disjoint, we have that L is a half-integral

linkage from B(Sj) to A(Si). By Lemma 3.3, D(L) contains a B(Sk)-A(Si)-linkage R′ of order
w.
As both LA and LB are internally disjoint from (S,P)[i, j], we have that D(R′)∩ (S,P)[i, j] ⊆
D(R∪ start(R′) ∪ end(R′)). □

As explained above, given a path of well-linked sets together with a back-linkage, we construct
a cycle of well-linked sets by analysing how the back-linkage intersects the path of well-linked
sets. The next lemma deals with the simplest possible case where the back-linkage is disjoint
from the path of well-linked sets, or at least from a sufficiently large continuous subpath.
We define

ℓ′11.2ℓ′11.2(ℓ) := ℓ− 1,

r11.2w′
11.2(w) := 2w,

w′
11.2r11.2(w) := 2w.

Lemma 11.2. Let w, ℓ be integers, let (S,P) be a path of well-linked sets of length ℓ′ ≥ ℓ′11.2(ℓ)
and width w′ ≥ w′

11.2(w) with a partial back-linkage R of order r ≥ r11.2(w) in a digraph D. If
there is a 0 ≤ i ≤ ℓ′ − ℓ + 1 such that R is internally disjoint from (S,P)[i, i+ ℓ− 1], then D
contains a cycle of well-linked sets of length ℓ and width w as a subgraph.

Proof. Let D′ := (S,P)[i, i+ ℓ− 1] , (S0, S1, . . . , Sℓ′) := S and (P0,P1, . . . ,Pℓ′−1) := P. By
Lemma 11.1, there is a B(Si+ℓ−1)-A(Si)-linkage R′ of order r/2 = w such that V (R′)∩V (D′) ⊆
V (R) ∪ start(R′) ∪ end(R′). As R is internally disjoint from D′, the linkage R′ is a partial
back-linkage for D′ of order w which is also internally disjoint from D′. By Observation 8.8,
D′ contains a path of well-linked sets (S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ−1

)
,P′ =

(
P ′
0,P ′

1, . . . ,P ′
ℓ−2

)
) of

width w and length ℓ − 1 such that S′
j ⊆ Si+j for all 0 ≤ j ≤ ℓ − 1 and P ′

j ⊆ Pi+j for all
0 ≤ j ≤ ℓ − 2. Additionally, A(S′

0) = end(R′) and B(S′
ℓ−1) = start(R′). Hence, by definition,(

S ′,
(
P ′
0,P ′

1, . . . ,P ′
ℓ−1,R′)) is a cycle of well-linked sets of width w and length ℓ. □

The previous lemma shows that if the back-linkage avoids a continuous part of the path of
well-linked sets, then this allows us to construct a cycle of well-linked sets and we are done. So
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we may now assume that this does not happen, i.e. that any large enough subpath of well-linked
sets intersects the back-linkage.
Our next goal is to analyse this situation further and to draw some conclusions about the

structure of the back-linkage if this happens. We show that in this case we obtain a path of
well-linked sets and a back-linkage for it that essentially intersects the clusters one by one and in
order from the last cluster to the first. To formalise this property we first introduce the concept
of jumps.

Definition 11.3. Let (S,P) be a path of well-linked sets of length ℓ. A jump of length k over
(S,P) is a path R with start(R) ∈ V (Si) ∪ V (Pi) and end(R) ⊆ V (Sj) ∪ V (Pj) (if j = ℓ, we
require end(R) ⊆ V (Sj) instead) such that |j − i| = k. If i < j, then R is a forward jump. If
i ≥ j and R is internally disjoint from (S,P), then R is a backward jump.

Note that while a backward jump is required to be internally disjoint from the path of well-
linked sets we do not require this from a forward jump. In fact, a forward jump could simply
be a subpath of a path R ∈ R which R has in common with the path of well-linked sets (S,P).
Our next goal is to get rid of all jumps of length more than one in the back-linkage R. We say

that back-linkages without such jumps intersects (S,P) cluster by cluster.

Definition 11.4. Let (S,P) be a path of well-linked sets and let R be a partial back-linkage
for (S,P). We say that R intersects (S,P) cluster by cluster if R does not contain any forward
or backward jump of length greater than one over (S,P).

Note that even if R intersects (S,P) cluster by cluster this does not imply that the paths in
R visit the clusters strictly in reverse order Sl, Sl−1, . . . , S0. It is still possible that a path in R
intersects a cluster Si then goes back to Si+1 and then intersects Si again. So the paths in R
can go back and forth between two consecutive clusters numerous times. However, once R hits
a vertex in Si−1 it can no longer go back to Si+1.
Our next goal is to show that we can always construct a back-linkage that intersects the path

of well-linked sets cluster by cluster. We do this in two steps. In the next lemma we eliminate
forward jumps assuming that we have already eliminated all long backward jumps. In the second
step, proved in Lemma 11.6 below, we show how to get rid of backwards jumps.
The main technical tool we rely on in both steps is weak-minimality. Choosing the initial back-

linkage R to be weakly minimal gives us the tools we need to construct a path of well-linked
sets and a back-linkage intersecting it cluster by cluster.

Lemma 11.5. Let (S,P) be a strict 2 path of well-linked sets of length ℓ′ ≥ ℓ11.5(j, ℓ,m) := 3jℓm ℓ11.5
and width w in a digraph D and let R be a partial back-linkage of order at least w for (S,P)
which is weakly m-minimal with respect to (S,P) and does not induce any backwards jumps
of length j or more. Then, there is a path of well-linked sets (S ′,P′) of length ℓ and width w
within D((S,P)) with a back-linkage R′ ⊆ R such that R′ intersects (S ′,P′) cluster by cluster.

Proof. Let (S0, S1, . . . , Sℓ′) := S and (P0,P1, . . . ,Pℓ′−1) := P. First, we prove that R does
not contain any forward jumps of length more than 3mj. Suppose there was a path R ∈ R
containing a forward jump J of length more than 3mj with start(J) ∈ V (Ss) ∪ V (Ps) and
end(J) ∈ V (St) ∪ V (Pt), for some s smaller than t. Let Ra · J · Rb := R be a decomposition of

2In order to properly use the intersections of the back-linkage with the path of well-linked sets, we need the
path of well-linked sets to be strict as defined in Definition 8.1. Since we can always take a path of well-linked
sets to be strict without losing width or height, we often implicitly assume that the path of well-linked sets
we construct are strict.
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R into subpaths. Let eJ ∈ E(R) be the edge of R that has its tail in Ra and whose head is the
first vertex of J . By going to a larger forward jump containing J if necessary we may assume
w.l.o.g. that eJ is not contained in (S,P).
For each 1 ≤ i ≤ 3m let Hi = {Ss+(i−1)j+k ∪ D

(
Ps+(i−1)j+k

)
| 0 ≤ k ≤ j − 1}. As R does

not contain any backward jumps of length j or more, for every 1 ≤ i ≤ 3m there is a subgraph
Ha

i ∈ Hi which intersects Ra and there is an Hb
i ∈ Hi which intersects Rb.

For each 1 ≤ i ≤ m, let vai be an arbitrary vertex of V
(
Ha

3i−2

)
∩ V (Ra), let vbi be an arbitrary

vertex of V
(
Hb

3i

)
∩V (Rb) and let Li be a vai -v

b
i path inside (S,P)[3i− 2, 3i]. By Lemma 8.7(L4),

such a path Li exists. Note that Li is disjoint from Lj for all 1 ≤ i, j ≤ m where i ̸= j. Thus,
L = {Li | 1 ≤ i ≤ m} is a V (Ra)-V (Rb)-linkage of order m in (S,P) which does not contain
the edge eJ defined above, a contradiction to the assumption that R is weakly m-minimal with
respect to (S,P). Thus, R does not contain any forward jumps of length greater than 3mj.
Second, we construct the desired path of well-linked sets. For each 0 ≤ k < ℓ let S′

k = S3kmj

and let P ′
k be a B(S3kmj)-A(S3(k+1)mj)-linkage of order m inside the path of well-linked sets

(S,P)[3kmj, 3(k + 1)mj]. Further, let S′
ℓ = Sℓ′ and P ′

ℓ be a B(S3(ℓ−1)mj)-A(Sℓ′)-linkage of order
w inside (S,P)[3(ℓ− 1)mj, ℓ′]. By Lemma 8.7(L1), such linkages P ′

k exist.
Let S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) and let P′ =

(
P ′
0,P ′

3mj , . . .P ′
(ℓ−1)3mj

)
. Note that start(R) ⊆ V (S′

ℓ)

and end(R) ⊆ V (S′
0). By construction, (S ′,P′) is a path of well-linked sets of width w and

length ℓ. Furthermore, every jump over (S ′,P′) of length j′, for some j′, in R is a jump over
(S ′,P′) of length 3mj′. Hence, R does not contain any forward jumps or backwards jumps of
length greater than one over (S ′,P′). Finally, the linkage R is a back-linkage for (S ′,P′) and R
intersects (S ′,P′) cluster by cluster. □

The previous lemma allows us to handle forward jumps assuming that there are no backward
jumps. The next lemma we take care of backward jumps. The main idea is that if a back-linkage
contains many long backward jumps that jump over the same part of the path of well-linked
sets (S,P), then these backward jumps themselves essentially constitute a back-linkage for the
part of (S,P) they jump over. As, by definition, backward jumps are internally disjoint from
(S,P), we can apply Lemma 11.2 to obtain a cycle of well-linked sets in this case.
We define

ℓ′11.6ℓ′11.6(w1, ℓ1, ℓ2,m) := 3ℓ2m((ℓ1 + 3)(3ℓ2m)w1 + 6
(3ℓ2m)w1 − 1

w1 − 1
),

w′
11.6w′

11.6(w1, w2) := 2w2 + w1.

Observe that ℓ′11.6(w1, ℓ1, ℓ2,m) ∈ 21↑↑poly
2(w1,ℓ1,ℓ2,m).

Lemma 11.6. Let ℓ1, w1, ℓ2, w2 be integers, let (S = (S0, S1, . . . Sℓ′) ,P = (P0,P1, . . . ,
Pℓ′−1)) be a strict path of well-linked sets of length ℓ′ ≥ ℓ′11.6(w1, ℓ1, ℓ2,m) and width w′ ≥
w′

11.6(w1, w2) with a partial back-linkage R of order at least w2 in a digraph D such that R is
weakly m-minimal with respect to (S,P). Then D contains at least one of the following:

(C1) a cycle of well-linked sets of length ℓ1 and width w1, or

(C2) a path of well-linked sets of length ℓ2 and width w2 together with a partial back-linkage
R′ ⊆ R of order w2 intersecting it cluster by cluster.

Proof. We recursively define di by d1 = ℓ1 + 3 and di = 3ℓ2mdi−1 + 6. Solving the recurrence
relation, we obtain that dw1 = ((ℓ1 + 3)(3ℓ2m)w1 + 6 (3ℓ2m)w1−1

w1−1 ) and thus ℓ′ ≥ 3ℓ2mdw1 .
Let J1, J2 be two backward jumps over (S,P) and let x1, x2, y1, y2 be such that
start(J1) ⊆ V (Sy1) ∪ V (Py1), end(J1) ⊆ V (Sx1) ∪ V (Px1), start(J2) ⊆ V (Sy2) ∪ V (Py2) and
end(J2) ⊆ V (Sx2) ∪ V (Px2). We say that J1 jumps over J2 if y1 ≥ y2 + 2 and x1 + 2 ≤ x2.
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If R does not contain any jump of length at least dw1 over (S,P), then by Lemma 11.5 there is
a path of well-linked sets

(
S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ2

)
,P′) of width w2 and length ℓ2 together with a

B(S′
ℓ2
)-A(S′

0)-linkage R′ of order w2 intersecting (S ′,P′) cluster-by-cluster, satisfying (C2).
Otherwise, let r ∈ {0, . . . , w1 − 1} be the highest number for which a set J = {Jw1−r, . . . , Jw1}

of backward jumps over (S,P) exists such that for every i ∈ {w1 − r, . . . , w1} and every i+ 1 ≤
j ≤ w1, Ji is a backward jump of length at least di and Jj jumps over Ji. We distinguish between
two possible cases.
Case 1: r < w1 − 1.
Then Jw1−r is a backward jump of length at least dw1−r. Let i, j be such that
start(Jw1−r) ⊆ V (Sj) ∪ V (Pj) and end(Jw1−r) ⊆ V (Si) ∪ V (Pi). By Lemma 11.1, there is a
B(Sj−2)-A(Si+2)-linkage R′ of order w2 such that V (R′) ∩ V ((S,P)[i+ 2, j − 2]) ⊆ V (R) ∪
start(R′) ∪ end(R′). Hence, any backward jump over (S,P)[i+ 3, j − 3] contained in R′ is also
contained in R. Finally, R′ is also weakly m-minimal with respect to (S,P)[i+ 3, j − 3].
By choice of i and j, if R′ contains a backward jump J ′ over (S,P)[i+ 3, j − 3], then every

jump in J jumps over J ′. Since r is maximal, there is no backward jump over (S,P)[i+ 3, j − 3]
of length at least dw1−r−1 in R′. And because j − 3 − (i + 3) ≥ dw1−r − 6 = 3ℓ2mdw1−r−1, by
Lemma 11.5 there is a path of well-linked sets (S ′,P′) of width w2 and length ℓ2 together with a
partial back-linkage R′′ ⊆ R′ of order w2 intersecting (S ′,P′) cluster by cluster, satisfying (C2).
Case 2: r = w1 − 1, that is, w1 − r = 1.
We construct a linkage R′ as follows. Let i, j be such that start(Jw1−r) ⊆ V (Sj) ∪ V (Pj) and
end(Jw1−r) ⊆ V (Si) ∪ V (Pi).
For every two distinct jumps Jx, Jy ∈ J we have that Jx jumps over Jy or Jy jumps over Jx.

Further, J is internally disjoint from (S,P). Hence, by Lemma 8.7(L3), there is a B(Sj−2)-
start(J )-linkage X1 of order w1 in (S,P)[j − 2, ℓ′] which is internally disjoint from Sj−2 and
from J . Additionally, by Lemma 8.7(L2), there is an end(J )-A(Si+2)-linkage X2 of order w1 in
(S,P)[0, i+ 2] which is internally disjoint from Si+2 and from J . Thus, R′ := X1 · J · X2 is a
linkage.
By construction, the linkage R′ above has order at least w1 and is internally disjoint from
(S,P)[i+ 2, j − 2], which is a path of well-linked sets of length j−2− (i+2) ≥ ℓ1−1 and width
w1. Thus, by Observation 8.8, there is a path of well-linked sets (S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ1−1

)
,P′ =(

P ′
0,P ′

1, . . . ,P ′
ℓ−2

)
) of length ℓ1−1 and width w1 inside D((S,P)) such that B(S′

ℓ1−1) = start(R′)
and A(S′

0) = end(R′). By definition,
(
S ′,

(
P ′
0,P ′

1, . . . ,P ′
ℓ1−2,R′)) is a cycle of well-linked sets

of length ℓ1 and width w1, satisfying (C1). □

11.2 Obtaining a 2-horizontal web

By the results of the previous section we may now assume that we have a path of well-linked
sets together with a back-linkage going through it cluster by cluster. We use this back-linkage
to construct a new web that is in some way aligned with the cluster by cluster property of the
back-linkage.
The next definition formalises the properties we require of this new web we aim to construct.

Definition 11.7. Let (H,V) be a web. We say that (H,V) is a q-horizontal web if every path
Hi ∈ H can be decomposed into paths Hi = H1

i · H2
i · . . . · Hq

i and every path Vj ∈ V can
be decomposed into paths Vj = V 1

j · V 2
j · . . . · V q

j such that V x
j ∩ Hi ⊆ Hq−x+1

i ∪ Hq−x
i and

V x
j ∩Hq−x+1

i ̸= ∅ for all 1 ≤ x ≤ q, where for simplicity we define H0
i to be empty.
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V 1
1

V 2
1

V 3
1

Figure 14: A (4, 1)-web that is a 3-horizontal web. Four horizontal paths H1, H2, H3 and H4

partitioned into three subpaths each and one vertical path V1 partitioned into three
subpaths V 1

1 , V 2
1 and V 3

1 . V 1
1 only intersects the later two subpaths of the horizontal

paths. V 2
1 only intersects the first two, note that it always intersects the second

subpaths but not necessarily the first. Finally, V 3
1 only intersects the first subpath of

the horizontal paths.

In the next lemma we construct an ordered web from a back-linkage and a path of well-linked
sets.

Lemma 11.8. Let (S,P) be a strict path of well-linked sets of length ℓ and width at least 1 in
a digraph D, and let R be a partial back-linkage of order r intersecting (S,P) cluster by cluster.
If ℓ ≥ ℓ11.8(r, v) := 2(r − 1) + 2r(v − 1), then there is a linkage V := (V1, V2, . . . , Vv) of order v

inside D((S,P)) such that (R,V) is an ordered web and for all 1 ≤ i ≤ v there are 0 ≤ si ≤ ti ≤ ℓ
with Vi ⊆ (S,P)[si, ti] such that ti < sj for all 1 ≤ i < j ≤ v.

Proof. Let (S0, S1, . . . , Sℓ) := S and (P0,P1, . . . ,Pℓ−1) := P. To simplify notation, we set
Pℓ := ∅. Since R intersects (S,P) cluster by cluster, every R ∈ R intersects some vertex of
D(Si ∪ Pi) for every 0 ≤ i < ℓ. Let R = (R1, R2, . . . , Rr) be an arbitrary ordering of the paths
in R. For each 1 ≤ i ≤ v, construct a path V i intersecting every path in R as follows.
For each Rj ∈ R, let kij = 2(j − 1) + 2r(i− 1) and let uij be some vertex in V (Rj) ∩ V

(
Skij

)
∪

V
(
Pkij

)
. Let Qi

j be a path visiting uij with yij := start
(
Qi

j

)
∈ A(Skij

) and zij := end
(
Qi

j

)
∈

A(Skij+1). Since kij − kij−1 = 2 for all 2 ≤ j ≤ r, by Lemma 8.7(L4) there is a zij-y
i
j+1 path

V i
j inside (S,P)

[
kij , k

i
j+1

]
for every 1 ≤ j < r. Since all V i

j and all Qi
j are pairwise internally

disjoint and V i
j intersects Rj at uij , the path V i = Qi

1 · V i
1 · Qi

2 · V i
2 · . . . · Qi

r in (S,P)
[
ki1, k

i
r

]
intersects every path in R.
Let V = {V i | 1 ≤ i ≤ v}. Since ki1 − ki−1

r = 2 for all 2 ≤ i ≤ v, all paths in V are pairwise
disjoint. Further, such paths exist because ℓ ≥ kvr = 2(r − 1) + 2r(v − 1). Finally, because R
intersects (S,P) cluster by cluster, (R,V) is an ordered web. □

We now have a new web (R,V). Our next goal is to find a new “horizontal” linkage H which
is weakly |H|-minimal with respect to V such that (H,V) is a 2-horizontal web (H,V). The
idea is that H goes forwards through the path of well-linked sets (S,P) from beginning to end,
i.e. in the same direction as the path of well-linked sets itself. (S,P) contains a forward linkage
from its beginning to its end and as a result of the way the linkage V is constructed, we are
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able to construct H so that together with V it forms a web. But we also want that H is weakly
|H|-minimal with respect to V. If we simply choose H as a V-minimal forward linkage then we
can no longer guarantee that this intersects V as required for a 2-horizontal web.
To solve this problem we show that in this case we do get a cycle of well-linked sets immediately

and are done.
Towards this aim, we prove in Lemma 11.10 that any path of well-linked sets which contains a

forward linkage disjoint from the back-linkage contains a cycle of well-linked sets.
The next lemma is the first step towards this goal. We define

w′(w, ℓ, ℓ∗) := ℓ∗ + w8.3(w, ℓ) ,

q11.9q11.9(w, ℓ, ℓ
∗) := s6.16(ℓ

∗ + w8.3(w, ℓ)) ,

ℓ′11.9ℓ′11.9(w, ℓ, ℓ∗) := (3wℓ

(
q11.9(w, ℓ, ℓ

∗)
w′(w, ℓ, ℓ∗)

)
(w′(w, ℓ, ℓ∗))! + 3)

· ℓ6.16
(
q11.9(w, ℓ, ℓ

∗) , w′(w, ℓ, ℓ∗)
)
− 1.

We note that q11.9(w, ℓ, ℓ
∗) ∈ poly22(w, ℓ, ℓ∗) and ℓ′11.9(w, ℓ, ℓ∗) ∈ 21↑↑poly

243(w,ℓ,ℓ∗).

Lemma 11.9. Let ℓ∗, w be integers, let D = (S = (S0, S1, . . . , Sℓ′) ,P = (P0,P1, . . . , Pℓ′−1)) be
a strict path of well-linked sets of width w′ ≥ 1 and length ℓ′ := ℓ′11.9(w, ℓ∗). Let L be an
A(S0)-B(Sℓ′)-linkage of order at least q11.9(w, ℓ, ℓ

∗) such that every path in L intersects every
Si ∈ S. Then, there is an L∗ ⊆ L of order ℓ∗ for which D(S ∪ P) contains a path of well-linked
sets

(
S ′ = (S′

0, S
′
1, . . . , S

′
ℓ) ,P

′ =
(
P ′
0,P ′

1, . . . ,P ′
ℓ−1

))
of width w and length ℓ which is disjoint

from L∗ such that A(S′
0) ⊆ A(S0) and B(S′

ℓ) ⊆ B(Sℓ′). Further, for every 0 ≤ i < j ≤ ℓ there
are 0 ≤ i0 < i1 < j0 < j1 ≤ ℓ such that S ′

i ⊆ D[i0, i1] and S ′
j ⊆ D[j0, j1]. Finally, D(P′) ⊆ L\L∗.

Proof. Let w1 = w8.3(w, ℓ), w2 = ℓ∗ + w1, w3 = s6.16(w2). ℓ1 = wℓ, ℓ2 = ℓ1
(
w3

w2

)
w2! + 1 and

ℓ3 = ℓ6.16(w2). Note that ℓ′ ≥ 3ℓ2ℓ3 − 1 and that |L| ≥ w3.
For each 1 ≤ i ≤ ℓ2 construct a temporal digraph Ti as follows. For each 1 ≤ j ≤ ℓ3 let
si,j = 3(i − 1)ℓ3 + 3(j − 1) and note that si,1 = 1 + si−1,ℓ3 and that sℓ2,ℓ3 + 2 ≤ ℓ′. Let
H i

j = D
(
Ssi,j ∪ Ssi,j+1 ∪ Ssi,j+2

)
.

Let Hi =
(
H i

1, H
i
2, . . . ,H

i
ℓ2

)
. Let Ti be the routing temporal digraph of L through Hi as

described in Definition 6.3. Note that ℓ(Ti) = ℓ3 for every i.
Let Ai be the set containing the first intersection of each path in L with H i

1 and let Bi be the
set containing the last intersection of each path in L with H i

ℓ2
. Since every path in L intersects

every S ∈ S, we have that |Ai| = |Bi| = |L|.
We show that every layer of Ti is strongly connected. Let Dj(Ti) be layer j of Ti. Let La, Lb ∈ L

be two distinct paths. Since every path in L intersects every cluster in S, there is some a0 ∈
V
(
Ssi,j

)
and some b0 ∈ V

(
Ssi,j+2

)
such that La contains a0 and Lb contains b0. Further, there is

some a1 ∈ B(Ssi,j ) and some b1 ∈ A(Ssi,j+2) such that a0 can reach a1 in Ssi,j and b1 can reach
b0 in Ssi,j+2. As A(Ssi,j ) is well-linked to B(Ssi,j+1), there is some a2-b2 path in Ssi,j+1, where
a2 = Psi,j (a1) and b1 = Psi,j+2(b2). Hence, a0 can reach b0 in H i

j . Thus, there is a V (La)-V (Lb)

path in H i
j , which implies that Dj(Ti) is strongly connected.

As ℓ(Ti) = ℓ3 = ℓ6.16(w3, w2) and |V (Ti)| = w3 = s6.16(w2), by Theorem 6.16 Ti contains
an Ri-routing φi for some Ri ∈ {Cw2 , P⃗

⃗

w2}. Since there are ℓ2 temporal digraphs Ti, by the
pigeon-hole principle there is a set T := {Tt0 , Tt1 , . . . , Ttℓ1} of size ℓ1 + 1 of temporal digraphs
such that R := Ri = Rj and φ := φi = φj for all Ti, Tj ∈ T .
LetR′ be a path of length w2−1 inR and let u1, u2, . . . , uw2 be the vertices ofR′ sorted according

to their order on R′. Let L′ = {φ(ui) | 1 ≤ i ≤ w1}, let L∗ = {φ(ui) | w1 + 1 ≤ i ≤ w2} and let
φ′ = φ|L′ . Note that |L∗| = ℓ∗.
For each 0 ≤ j ≤ ℓ1, we construct a subgraph S′

j of D and a linkage P ′
j as follows. Note that
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φ′ is a Pw1-routing in Ttj − V (L∗). Let Qj be the set of digraphs obtained by deleting V (L∗)
from each digraph in Htj and let T ′

j be the routing temporal digraph of L′ through Qj . Observe
that φ′ is also a Pw1-routing in T ′

j .
Let A′

j = Aj∩V (L′) and let B′
j = Bj∩V (L′). By Lemma 7.6, we have that A′

j is 1-order-linked
to B′

j in D
(
Qj

)
. We set S′

j = D
(
Qj

)
and take P ′

j as the B′
j-A

′
j+1-linkage of order w1 inside L′

(to simplify notation, we set A′
ℓ1+1 = end(L′)).

After finishing the construction, let S ′ =
(
S′
0, S

′
1, . . . , S

′
ℓ1

)
and let P′ = (P ′

0,P ′
1, . . . ,

P ′
ℓ1−1). By construction, (S ′,P′) is a path of 1-order-linked sets of width w1 and length ℓ1.

Furthermore, L∗ is disjoint from (S ′,P′). Finally, we have that D
(
P ′
j

)
⊆ L \ L∗ and that

S′
j ⊆ D[tj , tj+1 − 1].
By Theorem 7.8, (S ′,P′) contains a path of w-order-linked sets

(
S2,P2

)
of width w1 and length

ℓ. By Lemma 8.3,
(
S2,P2

)
contains a path of well-linked sets (S3,P3) of width w and length ℓ

satisfying the requirements of the statement. □

With the previous lemma at hand we can now proceed as follows. Given a path of well-linked
sets and a large forward linkage L, we can construct a new path of well-linked sets and a subset
L∗ ⊆ L disjoint from it. Furthermore, L∗ is also disjoint from the back-linkage R. We now
apply Corollary 10.3 to obtain another path of well-linked sets which follows the direction of
R. With respect to this new path of well-linked sets the forward linkage L∗ now acts like a
back-linkage which is disjoint from the path of well-linked sets. As we have already seen above,
in this situation we can construct a cycle of well-linked sets.
We define

r11.10(w, ℓ) r11.10:= h10.3(2w, ℓ− 1) ,

ℓ′′(w, ℓ) := ℓ′11.6(w, ℓ, ℓ11.8(h10.3(2w, ℓ− 1) , 8w + v10.3(2w, ℓ− 1) + 2) , r11.10(w, ℓ)) ,

ℓ′11.10(w, ℓ) ℓ′11.10:= ℓ′11.9
(
w′

11.6(w, h10.3(2w, ℓ− 1)) , ℓ′′(w, ℓ) , 2w
)
,

q11.10(w, ℓ) q11.10:= q11.9
(
w, ℓ′′(w, ℓ) , h10.3(2w, ℓ− 1)

)
.

Observe that r11.10(w, ℓ) ∈ O(w2ℓ2), ℓ′11.10(w, ℓ) ∈ 23↑↑poly
25(w,ℓ) and q11.10(w, ℓ) ∈ 22↑↑poly

25(w,ℓ).

Lemma 11.10. Let (S = (S0, S1, . . . , Sℓ′) ,P = (P0,P1, . . . ,Pℓ′−1)) be a strict path of well-
linked sets of width w′ ≥ 1 and length ℓ′ ≥ ℓ′11.10(w, ℓ) with a partial back-linkage R of order
r ≥ r11.10(w, ℓ) in a digraph D. Let L be an A(S0)-B(Sℓ′) linkage of order q ≥ q11.10(w, ℓ,m)
which is internally disjoint from R such that every L ∈ L intersects some vertex of D(Si ∪ Pi)
for every 0 ≤ i ≤ ℓ′ and, for all 0 ≤ i < j ≤ ℓ′, L does not intersect D(Si ∪ Pi) after intersecting
D(Sj ∪ Pj). Then, D(S ∪ P ∪R ∪ L) contains a cycle of well-linked sets of width w and length
ℓ.

Proof. Let ℓ4 = ℓ−1, ℓ3 = 4w+1, v1 = v10.3(2w, ℓ4)+2ℓ3, w2 = h10.3(2w, ℓ4), w1 = w′
11.6(w,w2),

ℓ2 = ℓ11.8(w2, v1) and ℓ1 = ℓ′11.6(w, ℓ, ℓ2, r). Note that w2 ≥ 2w, ℓ′ ≥ ℓ′11.9(w1, ℓ1, 2w), r ≥ w2

and q ≥ q11.9(w, ℓ1, w2).
By Lemma 11.9 there is some linkage L′ ⊆ L of order 2w and a path of well-linked sets
(S1 = (S1

0 , S
1
1 , . . . , S

1
ℓ1
),P1 = (P1

0 ,P1
1 , . . . ,P1

ℓ1−1)) of width w1 and length ℓ1 inside (S,P) with
A(S1

0) ⊆ A(S0) and B(S1
ℓ1
) ⊆ B(Sℓ′) such that L′ is internally disjoint from

(
S1,P1

)
. Further,

D
(
P1

)
⊆ D(L \ L′) and S1

i ⊆ Si for all 0 ≤ i ≤ ℓ1.
Let R1 ⊆ D

((
S1,P1

))
∪D(R) be a

(
S1,P1

)
-minimal linkage of order |R| such that start

(
R1

)
=

start(R) and end
(
R1

)
= end(R). By Observation 3.6, R1 is weakly r-minimal with respect to(

S1,P1
)
. Further, R1 is internally disjoint from L′. Applying Lemma 11.6 to (S1,P1) and R1

yields two cases.
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If (C1) holds, then we have a cycle of well-linked sets of width w and length ℓ, as desired.
Otherwise, (C2) holds. That is, D

((
S1,P1

)
∪R

)
contains a path of well-linked sets

(
S2,P2

)
of length ℓ2 and width w2 and a linkage R2 ⊆ R1 of order w2 such that R2 intersects

(
S2,P2

)
cluster by cluster. Note that R2 is weakly r-minimal with respect to

(
S2,P2

)
.

By Lemma 11.8, there is some linkage V = (V1, V2, . . . , Vv1) of order v1 inside
(
S2,P2

)
such

that
(
R2,V

)
is an ordered web. Additionally, for all 1 ≤ i < j ≤ v1 there are 0 ≤ si ≤ ti < sj ≤

tj ≤ ℓ2 such that Vi ⊆ (S2,P2)[si, ti] and Vj ⊆ (S2,P2)[sj , tj ].
Let V ′ = (Vℓ3+1, Vℓ3+1, . . . , Vv1−ℓ3) and observe that |V ′| = v10.3(2w, ℓ4). Decompose R2 as
R2

a · R3 · R2
b := R2 such that R3 intersects all paths of V ′, end

(
R2

a

)
⊆ V (Vv1−ℓ3), start

(
R2

b

)
⊆

V (Vℓ3+1) and R2
a and R2

b are internally disjoint from V ′.
By Corollary 10.3,

(
R3,V ′) contains a path of well-linked sets (S3 = (S3

0 , S
3
1 , . . . , S

3
ℓ4
),

P3) of width 2w and length ℓ4 such that A(S3
0) ⊆ start

(
R3

)
and

B(S3
ℓ4
) ⊆ end

(
R3

)
. Since L′ is internally disjoint from

(
S2,P2

)
and from R, it is also internally

disjoint from
(
S3,P3

)
. We construct a partial back-linkage R4 for

(
S3,P3

)
as follows.

Choose some B′
0 ⊆ B(S0) and some A′

ℓ′ ⊆ A(Sℓ′) of size 2w. Let X1 be some end
(
R2

b

)
-B′

0-
linkage of order 2w in S0 and let X2 be some A′

ℓ′-start
(
R2

a

)
-linkage of order 2w in Sℓ′ . Since

end
(
R2

b

)
⊆ A(S0) and start

(
R2

a

)
⊆ B(Sℓ′), the linkages X1 and X2 exist.

Fix an arbitrary ordering of L′ = {L′
1, L

′
2, . . . , L

′
2w}. For each L′

i ∈ L′ let ki = 2i + 1 and
choose some vi ∈ V (Li) ∩ V (Ski ∪ Pki) and some ui ∈ V (Li) ∩ V (Sℓ′−ki ∪ Pℓ′−ki). Let Y1 =
{vi | 1 ≤ i ≤ 2w} and Y2 = {ui | 1 ≤ i ≤ 2w}. Since ki − kj ≥ 2 and ℓ′ − ki − (ℓ′ − kj) ≥ 2 if
i < j, by Lemma 8.7(L3) there is a B′′

0 -Y1-linkage Z1 of order 2w inside (S,P)[0, k2w] and by
Lemma 8.7(L2) there is a Y2-A′′

ℓ′-linkage Z2 of order 2w inside (S,P)[ℓ′ − k2w, ℓ
′].

Let L′′ be the sublinkage of L′ from Y1 to Y2. By construction, X1, X2, Z1 and Z2 are pairwise
internally disjoint. Further, R2

a and R2
b are disjoint since they are both part of the linkage R.

Hence, R′′ = R2
b · X1 · Z1 · L′′ · Z2 · X2 · R2

a is a half-integral B(S3
ℓ4
)-A(S3

0) linkage of order 2w

which is internally disjoint from
(
S3,P3

)
. By Lemma 3.3, there is a end(R′′)-start(R′′) linkage

R4 of order w inside D(R′′). Hence, R4 is a partial back-linkage of order w for
(
S3,P3

)
which

is internally disjoint from
(
S3,P3

)
.

By Observation 8.8,
(
S3,P3

)
contains as a subgraph a path of well-linked sets

(S4 =
(
S4
0 , S

4
1 , . . . , S

4
ℓ4

)
,P4) of width w and length ℓ4 with A(S4

0) = end
(
R4

)
and B(S4

ℓ4
) =

start
(
R4

)
. By definition,

(
S4,

(
P4
0 ,P4

1 , . . . ,P4
ℓ4−1,R4

))
is a cycle of well-linked sets of width w

and length ℓ. □

Recall the outline of the next steps described in the paragraph before Lemma 11.9. The previous
lemma now allows us to choose the new forward linkage H discussed there as we no longer need
to worry about the new linkage not intersecting V often enough. If that were the case, we could
reduce to the previous lemma to obtain a cycle of well-linked sets. Before we prove this in detail
in Lemma 11.14 below we first define a variant of q-horizontal webs with less strict requirements
that we call semi-web.
The reason for this is that when we choose the linkage H so that it is weakly minimal with

respect to V then we may only get a semi-web. But at least we can preserve the horizontal
property as proved below.

Definition 11.11. Let H,V be two linkages. We say that (H,V) is a c-horizontal semi-web if
H can be decomposed as H = H1 ·H2 · . . . ·Hc and V can be decomposed as V = V1 · V2 · . . . · Vc

such that D
(
Hi

)
∩ D(V) ⊆ D

(
Vc−i+1 ∪ Vc−i

)
(we set V0 = ∅ for simplicity).

We also need the following technical lemma.
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Observation 11.12. Let (H,V) be a 3-horizontal semi-web in a digraph D. Then D((H,V))
contains a linkage P = P1 · P2 of order |H| such that (P,V) is a 2-horizontal semi-web where
P is weakly |H|-minimal with respect to V. Further, start(P) = start(H), end(P) = end(H) and
start

(
P2

)
⊆ V

(
H2

)
.

Proof. Let P be a start(H)-end(H)-linkage of order |H| which is V-minimal. By Observation 3.6,
P is also weakly |H|-minimal with respect to V.
Since (H,V) is a 3-horizontal semi-web, there is no path from H1 to H3 in V. As start(P) =
start(H) = start

(
H1

)
and end(P) = end(H) = end

(
H3

)
, every path in P must intersect some

vertex of H2. Let Y be the set containing, for each P ∈ P, the last vertex of P which is also in
H2.
Decompose P into P1 ·P2 = P such that start

(
P2

)
= Y . Let V1 ·V2 ·V3 := V be a decomposition

of V witnessing that (H,V) is a 3-horizontal semi-web.
By construction, we have that V2 and V3 do not intersect P2. Hence (P,V) is a 2-horizontal

semi-web where P is weakly-|H| minimal with respect to V. □

Using the previous lemma we can construct a horizontal web (H′,V ′) from a semi-web (H,V)
such that H′ is weakly |H|-minimal with respect to V or find large H′ ⊆ H and V ′ ⊆ V which are
internally disjoint and satisfy some extra conditions specified in the next lemma. This is useful
in the last result of this section where we finally construct the 2-horizontal web we are looking
for unless we already find a cycle of well-linked sets while constructing the 2-horizontal web.
We define

h11.13h11.13(h1, h2) := 2(h2 − 1) + h1,

v11.13v11.13(h, h1, v1, h2, v2) := (v2 − 1) · 2
(
h

h2

)
+ (v1 − 1) ·

(
h

h1

)
− 1.

Note that v11.13(h, h1, v1, h2, v2) ∈ 21↑↑poly
3(h,h1,v1,h2,v2).

Lemma 11.13. Let (H,V) be a 3-horizontal semi-web such that h := |H| ≥ h11.13(h1, h2) and
v := |V| ≥ v11.13(h, h1, v1, h2, v2). Then (H,V) contains one of the following:

(W1) a 2-horizontal web (H′,V ′) where D(H′) ⊆ D(H ∪ V), V ′ ⊆ V, |H′| ≥ h1, H′ is weakly
h-minimal with respect to V and |V ′| ≥ v1, or

(W2) some linkage H′ ⊆ D(H ∪ V) of order h2 and some linkage V ′ ⊆ V of order v2 such that
H′ is internally disjoint from V ′. Additionally, start(H′) ⊆ start(H) and end(H′) ⊆ V

(
H2

)
,

or start(H′) ⊆ V
(
H2

)
and end(H′) ⊆ end(H).

Proof. By Observation 11.12, (H,V) contains a linkage P of order |H| such that (P,V) is a
2-horizontal semi-web where P is weakly |H|-minimal with respect to V. In particular, we can
decompose P as P = P1 · P2 and we can decompose V as V = V1 · V2 such that P2 is disjoint
from V2. Additionally, start(P) = start(H), end(P) = end(H) and start

(
P2

)
⊆ V

(
H2

)
.

For each Vj ∈ V and each 1 ≤ i ≤ 2 let X i
j ⊆ P i be the paths of P i which intersect Vj and let

Y i
j ⊆ P i be the paths of P i which are disjoint from Vj . Let M ⊆ V be the set of paths Vj ∈ V

for which some i exists such that
∣∣∣Y i

j

∣∣∣ ≥ h2. Let N = V \M.

Case 1: |M| ≤ (v2 − 1) · 2
(|H|
h2

)
.

Hence, |N | ≥ |V| − (v2 − 1) · 2
(|H|
h2

)
≥ (v1 − 1) ·

(|H|
h1

)
+ 1. For each Vj ∈ N let Xj = {P 1 · P 2 ∈

P | P 1 ∈ X 1
j and P 2 ∈ X 2

j }. Since X i
j ∪Y i

j = P i and
∣∣∣Y i

j

∣∣∣ < h2 for all Vj ∈ N and all 1 ≤ i ≤ 2,
we have that |Xj | ≥ |H| − 2 · (h2 − 1) ≥ h1 for every Vj ∈ N .
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There are at most
(|H|
h1

)
distinct linkages H′ ⊆ P of order h1. By the pigeon-hole principle,

there is some V ′ ⊆ V of order v1 for which some H′ ⊆ P of order h1 exists such that Xj ⊇ H′

for all Vj ∈ V ′. Hence, (H′,V ′) is a 2-horizontal web with |H′| = h1, |V ′| = v1 and H′ is weakly
|H|-minimal with respect to V ′, satisfying (W1).
Case 2: |M| ≥ (v2 − 1) · 2

(|H|
h2

)
+ 1.

By the pigeon-hole principle, there is some i ∈ {1, 2} and some H′ ⊆ P i of order h2 for which
there is a set V ′ ⊆ V of order v2 such that Y i

j ⊇ H′ for all Vj ∈ V ′. Hence, H′ is a linkage of
order h2 which is internally disjoint from V ′.
If i = 1, then start(H′) ⊆ start(P) = start(H) and end(H′) ⊆ end

(
P1

)
⊆ V

(
H2

)
.

If i = 2, then start(H′) ⊆ start
(
P2

)
⊆ V

(
H2

)
and end(H′) ⊆ end

(
P2

)
= end(H).

Hence, (W2) holds. □

In the last lemma of this section we use the results established so far to construct a weakly
minimal 2-horizontal web unless we already find a cycle of well-linked sets during the construc-
tion.
We define

w11.14w11.14(h,w, ℓ) := h11.13(h, q11.10(w, ℓ)) + 2r11.10(w, ℓ) ,

ℓ11.14ℓ11.14(w, ℓ) := 3(ℓ′11.10(w, ℓ) + 1)− 1,

r11.14r11.14(h,w) := v11.13(h11.13(h, q11.10(w, ℓ)) , h, v, q11.10(w, ℓ) , 2r11.10(w, ℓ)) ,

m11.14m11.14(h,w) := h11.13(h, q11.10(w, ℓ)) .

Observe that w11.14(h,w, ℓ) ∈ 22↑↑poly
25(h,w,ℓ), ℓ11.14(w, ℓ) ∈ 23↑↑poly

25(w,ℓ), r11.14(h,w, ℓ, v) ∈
23↑↑poly

26(h,w,ℓ,v) and m11.14(h,w, ℓ) ∈ 22↑↑poly
25(h,w,ℓ).

Lemma 11.14. Let w, ℓ, h, v be integers, let (S,P) be a strict path of well-linked sets of length
ℓ′ ≥ ℓ11.14(w, ℓ) and width w′ = w11.14(h,w, ℓ) with a back-linkage R of order r ≥ r11.14(h,w, ℓ, v)
intersecting (S,P) cluster by cluster. Then, D(S ∪ P ∪R) contains one of the following:

(H1) a cycle of well-linked sets of width w and length ℓ, or

(H2) an m11.14(h,w, ℓ)-horizontally minimal 2-horizontal web (H,V) where V ⊆ R, |H| ≥ h
and |V| ≥ v.

Proof. Let h1 = ℓ′11.10(w, ℓ), h2 = q11.10(w, ℓ), h3 = h11.13(h, h2), w1 = r11.10(w, ℓ) and v1 = 2w1.
Let (S0, S1, . . . , Sℓ′) := S and (P0,P1, . . . ,Pℓ′−1) := P. To simplify notation, set
Pℓ′ := ∅.
Let H be an A(S0)-B(Sℓ′)-linkage of order h3 in (S,P). By Lemma 8.4, such a linkage exists.
Let ti = (i − 1)(h1 + 1) for each i ∈ {1, 2, 3, 4}. Decompose H into H = H1 · H2 · H3, where
Hi is the sublinkage of H contained in (S,P)[ti, ti+1 − 1]. Decompose R iteratively as follows.
Let X0 = start(R) and let X3 = end(R). For each 0 ≤ i ≤ 3 let Yi be the vertices of R such
that for each R ∈ R the last intersection of R with D

(
Sti+1−1 ∪ Pti+1−1

)
lies in Yi. Let Xi be

the successors of the vertices of Yi in R. For each 1 ≤ i ≤ 3, let Ri be the Xi−1-Xi sublinkage
of order |R| in R. To simplify notation, set R0 as the linkage containing only the vertices of
start

(
R1

)
.

Because R intersects (S,P) cluster by cluster, we have D
(
Hi

)
∩ D(R) ⊆ D

(
R4−i∪ R3−i

)
for

all 1 ≤ i ≤ 3. Hence, (H,R) is a 3-horizontal semi-web. Further, |H| = h3 = h11.13(h, h2) and
|R| ≥ v11.13(h3, h, v, h2, v1). By Lemma 11.13, we have two cases.
Case 1: (W1) holds. That is, (H,R) contains a 2-horizontal web (H′,V ′) where D(H′) ⊆
D(H ∪R), V ′ ⊆ R, |H′| ≥ h, |V ′| ≥ v and H′ is weakly |H|-minimal with respect to V ′. This
satisfies (H2).
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Case 2: (W2) holds. That is, there is some H′ ⊆ D(H ∪R) of order h2 and some V ′ ⊆ R
of order v1 such that H′ is internally disjoint from V ′. Additionally, start(H′) ⊆ start(H) and
end(H′) ⊆ V

(
H2

)
, or start(H′) ⊆ V

(
H2

)
and end(H′) ⊆ end(H). We assume, without loss of

generality, that start(H′) ⊆ start(H) holds. The other case follows analogously by considering
H3 instead of H1.
We show that every path in H′ intersects D(Si ∪ Pi) for every 0 ≤ i ≤ h1.
Assume towards a contradiction that this is not the case. As start(H′) ⊆ A(S0) and end(H′) ⊆
V (Sh1+d) for some integer d, there is some 0 ≤ j ≤ h1 for which some H ∈ H′ exists such that
H is an A(S0)-V (Sh1+d) path which does not intersect any vertex of D(Sj ∪ Pj).
Let j0 < j be the largest index smaller than j such that H intersects D(Sj0 ∪ Pj0). Similarly,

let j1 > j be the smallest index larger than j such that H intersects D(Sj1 ∪ Pj1). Since there is
no V (Sj0 ∪ Pj0)-V (Sj1 ∪ Pj1) path which is disjoint from D(Sj ∪ Pj) inside (S,P), H contains a
V (Sj0 ∪ Pj0)-V (Sj1 ∪ Pj1) path Hx which is internally disjoint from (S,P) as a subpath. Hence,
Hx is a subpath of V ′ ⊆ R. This, however, implies that Hx is a jump of length j1 − j0 > 1, a
contradiction to the initial assumption that R intersects (S,P) cluster by cluster.
Let S′

h1
= Sh1 ∪ D(Ph1). Clearly, the digraph (S ′ :=

(
S0, S1, . . . , Sh1−1, S

′
h1

)
,

P′ := (P0,P1, . . . ,Ph1−1)) is a path of well-linked sets of width w′ ≥ 2w1 and length h1. By
Lemma 11.1, there is a partial back-linkage R′ of order w1 for (S,P)[0, h1] (and, hence, for
(S ′,P ′) as well) such that D(R′) ∩ (S ′,P′) ⊆ D(V ′ ∪ start(R′) ∪ end(R′)). As V ′ is weakly m-
minimal with respect to (S ′,P′), the back-linkage R′ is also weakly m-minimal with respect to
(S ′,P′).
As every path in H′ intersects D(Sj ∪ Pj) for every 0 ≤ j ≤ h1, by Lemma 11.10 the digraph
D(S ′ ∪ P′ ∪R′ ∪H′) contains a cycle of well-linked sets of width w and length ℓ, implying
(H1). □

11.3 Finding a cycle of well-linked sets inside a 2-horizontal web

In this section we complete the proof of our main results. The remaining open case is (H2) of
Lemma 11.14. That is, we already have constructed a 2-horizontal web (H,V) as specified in
the lemma. The idea is to construct a new path of well-linked sets on the first half of H and
then use the other half of H to complete the cycles.
We start with a few simple observations used in the sequel.

Observation 11.15. Let D be a digraph and let (P,Q) be a web where |P| = |Q|. Then
start(P) is well-linked to end(Q) in D(P ∪Q).

Proof. Let A ⊆ start(P) and B ⊆ end(Q) such that |A| = |B|. Since (P,Q) is a web, there is
no A-B separator of size less than |A|, as such a separator must hit |A| paths of P. Hence, by
Theorem 3.2 there is an A-B-linkage of size |A| in D(P ∪Q). Thus, start(P) is well-linked to
end(Q). □

Observation 11.16. Let (H,V) be a 2-horizontal web. Define H2 := {H2
i | Hi ∈ H} and

V1 := {V 1
i | Vi ∈ V}. Then, start

(
H2

)
is well-linked to end

(
V1

)
inside D

(
H2 ∪ V1

)
.

Proof. By definition
(
H2,V1

)
is a web. Hence, by Observation 11.15 start

(
H2

)
is well-linked to

end
(
V1

)
inside D

(
H2 ∪ V1

)
. □

We also need the following lemma from [KK15].
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Lemma 11.17 ([KK15, Corollary 5.12]). Let H be a digraph and let Q∗ be a linkage in H and
let Q ⊆ Q∗ be a linkage of order q. Let P ⊆ H be a path intersecting every path in Q. Let
c ≥ 0 be such that for every edge e ∈ E(P ) \E(Q∗) there are no c pairwise vertex disjoint paths
in H − e from P1 to P2 , where P = P1 · e · P2. For all s, r ≥ 0, if q ≥ (r + c) · s, then

(R1) there is an s-segmentation Q′ ⊆ Q of P with respect to Q∗ or

(R2) a (2, r)-split ((P1, P2),Q′′) of (P,Q) with respect to Q∗.

To construct a path of well-linked sets in the first half of H we suitably adapt the construc-
tion in the proof of [KK15, Lemma 5.15], as we require somewhat different properties of the
segmentation we obtain. In particular, we need the paths of the segmentation contain the end
of the linkage H1 in our horizontal web (H1 · H2,V) as this allows us to continue from the last
cluster of the path of well-linked sets we construct to H2 without intersecting the new path of
well-linked sets.
We define

q′11.18q′11.18(q, c, z) := (q(c+ 1))2
z
(22

z−1)

and note that q′11.18(q, c, z) ∈ 22↑↑poly
2(q,c,z).

Lemma 11.18. Let c, x, y, q, q′ ≥ 0 and p ≥ x be integers. Let W = (P,Q) be a (p, q′)-web
where P is weakly c-minimal with respect to Q. If q′ ≥ q′11.18(q, c, xy), then there is some
Q′ ⊆ Q such that W contains one of the following

(S1) a (y, q)-split (P ′,Q′) of (P,Q) or

(S2) an (x, q)-segmentation (P ′,Q′) of (P,Q). Additionally, end(P ′) ⊆ end(P).

Proof. For all 0 ≤ i ≤ xy we define values qi inductively as follows. We set qxy := q and
qi−1 := qi · (qi + c). We first show that q0 ≤ q′11.18(q, c, xy).

Claim 1. qi ≤ (q(c+ 1))2
xy−i

(22
xy−i−1) for all 0 ≤ i ≤ xy

Proof. Clearly qxy = q ≤ q(c+1). Assume the inequality holds from xy to i > 0. By definition
of qi−1 we obtain

qi−1 = qi · (qi + c)

≤ (q(c+ 1))2
xy−i

(22
xy−i−1) · ((q(c+ 1))2

xy−i
(22

xy−i−1) + c)

= ((q(c+ 1))2
xy−i

(22
xy−i−1))2 + (q(c+ 1))2

xy−i
(22

xy−i−1)c

= (q(c+ 1))2
xy−(i−1)

(22
xy−(i−1)−2) + (q(c+ 1))2

xy−i
(22

xy−i−1)c

≤ (q(c+ 1))2
xy−(i−1)

(22
xy−(i−1)−2 + 22

xy−i−1)

= (q(c+ 1))2
xy−(i−1)

(22
xy−i−1 · 22xy−i−1 + 22

xy−i−1)

= (q(c+ 1))2
xy−(i−1)

(22
xy−i−1 · (22xy−i−1 + 1))

≤ (q(c+ 1))2
xy−(i−1)

(22
xy−i−1 · 22xy−i

)

= (q(c+ 1))2
xy−(i−1)

(22
xy−(i−1)−1).

□

Hence, by Claim 1, we have q0 ≤ q′ ≤ (q(c+ 1))2
xy
(22

xy−1) = q′11.18(q, c, xy).
For each 0 ≤ i ≤ xy we construct a tuple Mi := (P i,Qi,Si

seg,Si
split), satisfying all of the

following
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(M1) Qi ⊆ Q∗ is a linkage of order qi and and P i ⊆ P is a linkage such that, if there is no
P ∈ Si

split \ Si
seg with end(P ) ⊆ end(P), then

∣∣P i ∪ Si
seg

∣∣ ≥ x,

(M2) (Si
split,Qi) is a (yi, qi)-split of (P,Q) and

(M3) (Si
seg,Qi) is an (xi, qi)-segmentation of (P,Q) where end

(
Si
seg

)
⊆ end(P).

Furthermore, (P i,Qi) has linkedness c and V
(
P i

)
∩ V

(
Si
seg

)
= ∅, for all i. Recall that, in

particular, this means that the paths in Si
split are the subpaths of a single path in P that is split

by edges e ∈ E(P ) \ E(Q∗).
We first set P0 := P, Q0 := Q∗, S0

seg := ∅, S0
split := ∅. Clearly, this satisfies the conditions

(M1), (M2) and (M3) defined above.
On step i + 1 ≥ 1, we do the following. If |Si

split| ≥ y or if |Si
seg| ≥ x, stop the construction.

Otherwise, proceed as follows.
We first set S ′

seg := Si
seg. If there is no P ∈ Si

split \ Si
seg such that end(P ) ⊆ end(P), we choose

a path P ∈ P i and set S ′
split = {P} and P i+1 := P i \ {P}. Clearly, end(P ) ⊆ end(P).

Otherwise, if there is some P ∈ Si
split \ Si

seg with end(P ) ⊆ end(P), we set S ′
split := Si

split and
P i+1 := P i.
Now, let P ∈ S ′

split\S ′
seg with end(P ) ⊆ end(P). We apply Lemma 11.17 to P,Qi and Q∗ setting

r = s = qi+1 in the statement of the lemma. If (R1) holds and there is a qi+1-segmentation
Q1 ⊆ Qi of P with respect to Q∗, we set

Qi+1 := Q1, Si+1
seg := Si

seg ∪ {P} and Si+1
split := Ssplit.

Otherwise, (R2) holds and there is a (2, qi+1)-split ((P1, P2) ,Q2) where Q2 ⊆ Qi. Then we set
Qi+1 := Q2,

Si+1
seg := Si

seg and

Si+1
split := (Si

split \ {P}) ∪ {P1, P2}.
If there is no P ∈

∣∣∣Si+1
split

∣∣∣ with end(P ) ⊆ end(P), then we obtained a segmentation and so added

a path to Si+1
seg . As (M1) holds for i, we have that

∣∣P i+1 ∪ Si+1
seg

∣∣ ≥ x in this case.
It is easily verified that the conditions (M1), (M2) and (M3) are maintained for P i+1, Qi+1,
Si+1
seg and Si+1

split. In particular, the linkedness c of (P i+1,Qi+1) is preserved as deleting or splitting
paths cannot increase forward connectivity. This concludes the construction.
Note that in the construction, after every y steps, either (R2) holds after every application of

Lemma 11.17, and so we find a set Si
split of size y or (R1) holds in at least one of the y steps,

and so we add a path to Si
seg. Whenever this happens, we take a new path P ∈ P i in the next

iteration, which always exists because of (M1).
Hence, in the construction above, in each step we either increase xi and add the path P with
end(P ) ⊆ end(P) to Si

seg or we increase yi. After at most i ≤ xy steps, either we have constructed
a set Si

seg of order x or a set Si
split of order y.

Because (M2) holds, if we found a set Si
split of order y, then we can choose any set Q′ ⊆ Qi of

order q and (Si
split,Q′) satisfies (S1).

If, instead, we get a set Sseg := Si
seg of order x′ ≥ x, then, by (M3), (Sseg,Qi) is an (x, q)-

segmentation of (P,Q) such that end(Sseg) ⊆ end(P), satisfying (S2).
Finally, it is easily seen that if W is well-linked then so is (Si

split,Q′) (in case (S1) holds) or
(Sseg,Qi) (in case (S2) holds). □

In the next lemma we use the split or segmentation obtained from the previous lemma to
construct a folded ordered web or an ordered web. This allows us to apply the results of
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Section 10. We define
q11.19q11.19

(
q′′, x

)
:= (q′′)2

2x−1
+ 1,

q′11.19q′11.19(q, c, x, y) := q′11.18(q, c, 2(2x− 1)(y − 1)y) , and
p11.19p11.19(x) := 2x− 1.

Note that q11.19(q
′′, x) ∈ 22↑↑poly

2(q′′,x) and q′11.19(q, c, x, y) ∈ 22↑↑poly
5(q,c,x,y).

Lemma 11.19. Let c, x, y, q′′, q′ ≥ 0, q ≥ q11.19(q
′′, x) and p ≥ p11.19(x) be integers. Let W =

(P,Q) be a (p, q′)-web where P is weakly c-minimal with respect to Q. If q′ ≥ q′11.19(q, c, x, y),
then there is some Q′ ⊆ Q and some P ′ such that D(P ′) ⊆ D(P) and W contains one of the
following

(O1) a folded ordered (q, y)-web (Q′,P ′), or

(O2) an ordered (x, q′′)-web (P ′,Q′) such that end(P ′) ⊆ end(P).

Proof. Let x1 = 2x− 1.
We apply Lemma 11.18 to W. If (S1) holds, then by Observation 10.6 we obtain a folded

ordered (q, y)-web and (O1) holds. Otherwise, (S2) holds and we obtain an (x1, q)-segmentation(
P1,Q′) of (P,Q) such that end

(
P1

)
⊆ end(P).

Recursively define qi by qx1 = q′′ and qi = len3.1(qi+1, qi+1). We show that qi ≤ (q′′)2
x1−i

+ 1
for all 1 ≤ i ≤ x1. Clearly, qx1 = q′′ ≤ (q′′)2

0
+ 1. By definition, for an arbitrary 1 ≤ i ≤ x1 we

have
qi = (qi+1 − 1)2 + 1

≤ ((q′′)2
x1−i−1

+ 1− 1)2 + 1

= (q′′)2
x1−i

+ 1.
Hence, q ≥ q1.
We construct a set Q′′ ⊆ Q′ as follows. Let {P 1

1 , P
1
2 , . . . , P

1
x1
} = P1 be an arbitrary ordering of

the paths in P1. Set Q1 = Q′ and then iterate from 2 to x1, constructing a set Qi of size qi.
On step i ≤ x1, consider the ordering ⪯i−1 of the paths in Qi−1 according to their occurrence

along P 1
i−1. By Theorem 3.1, there is a Qi ⊆ Qi−1 of order at least qi such that P 1

i intersects
Qi in order or in reverse with respect to ⪯i−1. Since Qi ⊆ Qi−1, we have that each P 1

j ∈ P1

with j ≤ i also intersects Qi in order or in reverse with respect to ⪯i−1.
After x1 steps, we set Q′′ := Qx1 . By construction, there is an ordering ⪯ of Q′′ such that each
P 1
i ∈ P1 intersects Q′′ in order or in reverse with respect to ⪯.
By the pigeon-hole principle, there is some P2 ⊆ P1 of order at least x such that every path

in P2 intersects the paths of Q′′ in the same order. Hence,
(
P2,Q′′) is an ordered (x, q′′)-web

where end
(
P2

)
⊆ P, satisfying (O2). □

The previous lemma leaves us with two cases to consider when constructing a cycle of well-
linked sets. If Lemma 11.19 returns a folded ordered web then we can use the tools established
so far to construct a cycle of well-linked sets directly.
In the second case of Lemma 11.19 we obtain an ordered web (H′,V ′) which ends on end

(
H1

)
.

We can use the final subpaths of the paths in H′ following the last path of V ′ to construct a
linkage to H2 which is disjoint from the path of order-linked sets constructed from the ordered
web. To construct a back-linkage we use the paths in V1. The paths in V1, however, may
intersect the path of order-linked sets we constructed which we need to avoid somehow. The
key to solving this problem is the weak minimality of H with respect to V. We use the paths of
V2 to construct a large linkage that contradicts the weak minimality of H.
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We first define
h11.20h11.20(w2) := p11.19

(
(w2)

2 − 1
)
,

v′(w2, ℓ2) := q11.19(((w2ℓ2 − 1)

(
(w2)

2 − 1

w2

)
w2! + 1)

· ℓ6.12
(
w2, (w2)

2 − 1
)
, (w2)

2 − 1),

v11.20v11.20(w1, ℓ1, w2, ℓ2, c) := q′11.19
(
h10.7(w1) + v′(w2, ℓ2) , c, (w2)

2 − 1, v10.7(w1, ℓ1)
)
.

Note that h11.20(w2) ∈ O((w2)
2) and v11.20(w1, ℓ1, w2, ℓ2, c) ∈ 25↑↑poly

15(w1,ℓ1,w2,ℓ2,c).

Lemma 11.20. Let (H,V) be an (h, v)-web where H is weakly c-minimal with respect to V. If
|H| ≥ h11.20(w2) and |V| ≥ v11.20(w1, ℓ1, w2, ℓ2, c), then one of the following is true:

(E1) (H,V) contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ1) ,P) of width w1 and
length ℓ1. Additionally, there is a start(V)-end(V)-linkage L = L1 ·L2 ·L3 of order w1 using
only arcs of V such that L2 is an A(S0)-B(Sℓ1)-linkage and both L1 and L3 are internally
disjoint from (S,P).

(E2) There is some V ′ ⊆ V such that (H,V ′) contains a uniform path of w2-order-linked sets
(S = (S0, S1, . . . , Sℓ2) ,P) of width w2 and length ℓ2 for which there are linkages L1,L2

such that

(L1) L1 is a B(Sℓ2)-end(H)-linkage of order w2 inside H which is internally disjoint from
V ′ and from (S,P), and

(L2) L2 ⊆ V ′ is a linkage of order ℓ2+1 where for each L2,j ∈ L2 there is some 0 ≤ i ≤ ℓ2
such that A(Si) ⊆ V (L2,j) and V (L2,j) ∩ V (S,P) ⊆ V (Si).

Proof. We define h2 = (w2)
2 − 1, h1 = v10.7(w1, ℓ1), ℓ4 = w2ℓ2, ℓ3 = ℓ6.12(w2, h2), t1 =

(ℓ4 − 1)
(
h2

w2

)
w2! + 1, v2 = t1ℓ3, v1 = h10.7(w1) + q11.19(v2).

By Lemma 11.19, there is some H1 ⊆ H such that one of the following cases hold:
Case 1: (O1) holds.
That is, there is a sublinkage V1 ⊆ V for which

(
V1,H1

)
is a folded ordered (v1, h1)-web. As

v1 ≥ h10.7(w1), by Lemma 10.7
(
V1,H1

)
contains a path of well-linked sets (S,P) of width w1

and length ℓ1. Additionally, there is a start
(
V1

)
-end

(
V1

)
-linkage L = L1 · L2 · L3 of order w1

using only arcs of V1 such that L2 is an A(S0)-B(Sℓ1)-linkage and both L1 and L3 are internally
disjoint from (S,P). This immediately satisfies (E1).
Case 2: (O2) holds.
That is,

(
H1,V

)
contains an ordered (h2, v2)-web

(
H2,V1

)
such that end

(
H2

)
⊆ end

(
H1

)
.

Decompose H2 into H2 = Q · L′
1 such that L′

1 is internally disjoint from V1 and start(L′
1) ⊆

V
(
V1

)
. Since L′

1 is internally disjoint from V1, we have that
(
Q,V1

)
is also an ordered (h2, v2)-

web.
Let

(
V 1
1 , V

1
2 , . . . , V

1
v2

)
:= V1 be an ordering of V1 witnessing that

(
Q,V1

)
is an ordered web. For

each 1 ≤ i ≤ t1 let Ti be the routing temporal digraph of Q through Gi := (V 1
(i−1)ℓ3+1, V

1
(i−1)ℓ3+2,

. . . , V 1
iℓ3

). As every path in V1 intersects every path in Q, we have that Dj(Ti) is unilateral for
all 1 ≤ i ≤ t1 and all 1 ≤ j ≤ ℓ3. Since ℓ(Ti) = ℓ3, by Theorem 6.12 we have that every Ti
contains a Pw2-routing φi over some Qi ⊆ Q.
As there are at most

(
h2

w2

)
w2! distinct φi, by the pigeon-hole principle there is some I ⊆

{1, . . . , t1} of size ℓ4 such that φ := φi = φj and Q′ := Qi = Qj hold for all i, j ∈ I.
For each i ∈ I let Ri be the maximal V

(
V 1
(i−1)ℓ3+1

)
-V

(
V 1
iℓ3

)
-linkage of order w2 inside Q′ and

let T ′
i be the routing temporal digraph of Ri through Gi. Note that φ induces a Pw2-routing ψ

over Ri in T ′
i .
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By Lemma 7.6 we have that start(Ri) is 1-order-linked to end(Ri) inside D(Ri) ∪ D(Gi) for
every i ∈ I. For every two consecutive i < j ∈ I (that is, there is no k ∈ I with i < k < j) let
R′

i be the end(Ri)-start(Rj)-linkage of order w2 in Q′. We define
P :=

(
R′

i | i ∈ I \max(I)
)
,

(P0,P1, . . . ,Pw2ℓ2−1) := P,

S := (D(Ri) ∪ D(Gi) | i ∈ I) ,
(S0, S1, . . . , Sw2ℓ2) := S,

whereas the order of the elements of S and P is given by the order of i ∈ I. Finally, we set
A(Sj) = start(Ri) and B(Sj) = end(Ri) for every 0 ≤ j ≤ ℓ2, where Ri is the sublinkage of Q′

which is inside Sj .
By choice of Ri, (S,P) is a uniform path of 1-order-linked sets of width w2 and length
w2ℓ2. By Theorem 7.8, there is a uniform path of w2-order-linked sets (S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ2

)
,

P′ =
(
P ′
0,P ′

1, . . . ,P ′
ℓ2−1

)
) of length ℓ2 and width w2 inside (S,P). Additionally, for every

0 ≤ i ≤ ℓ2 we have S′
i ⊆ (S,P)[iw2, (i+ 1)w2 − 1], A(S′

i) ⊆ A(Siw2) and B(S′
i) ⊆ B(S(i+1)w2−1),

and for 0 ≤ i < ℓ2 we have P ′
i ⊆ P(i+1)(w2−1).

Let L1 ⊆ L′
1 be the paths of L′

1 satisfying start(L1) = B(S′
ℓ2
). Since L′

1 is internally disjoint
from V1 by construction and end(L1) ⊆ end(H), we have that L1 is a B(S′

ℓ2
)-end(H)-linkage of

order w2 which is internally disjoint from V1, satisfying (L1).
For each 0 ≤ i ≤ ℓ2 let Li ∈ V1 be the path of V1 which intersects A(Si). By construction of
S, each path in V1 intersects at most one A(Sj). Since S′

i ⊆ (S,P)[iw2, (i+ 1)w2 − 1], we have
that Li intersects exactly one A(S′

i) as well. Let L2 = {Li | 0 ≤ i ≤ ℓ2}.
By construction we have V

(
V1

)
∩ V (P ′

i) ⊆ start(P ′
i) ∪ end(P ′

i) for every P ′
i ∈ P′. Further, Lj

intersects only the cluster S′
i. Hence, L2 ⊆ V1 is a linkage of order ℓ2 + 1 and for each Lj ∈ L2

there is some 0 ≤ i ≤ ℓ2 such that A(S′
i) ⊆ V (Lj) and V (Lj) ∩ V (S ′,P′) ⊆ V (S′

i), satisfying
(L2) and so (E2) as well. □

We are now ready to prove the last intermediate step required to complete the proof of Theo-
rem 11.22 from which Theorem 1.1 then follows.
We define

ℓ′(w, c) := 4w + (ℓ− 1) (c+ 1)− 2,

w′(w, ℓ) := q11.10(w, ℓ) + 2r11.10(w, ℓ) ,

v′(w) := h11.20(4w) ,

v′′(w, ℓ, c) := v11.20
(
w′(w, ℓ) , ℓ′11.10(w, ℓ) , r11.10(w, ℓ) , ℓ′(w, c) , c

)
− 1,

v′′′(w, ℓ, c) := v′′(w, ℓ, c)
(
v′(w) + 1

)
,

h11.21h11.21(w, ℓ) := 2r11.10(w, ℓ) + v′(w) + 1,

v11.21v11.21(w, ℓ, c) := v′′′(w, ℓ, c)
(
h11.21(w, ℓ)

2r11.10(w, ℓ)

)
+ 1 + h11.21(w, ℓ) c.

Observe that h11.21(w, ℓ) ∈ O(w2ℓ2) and v11.21(w, ℓ, c) ∈ 28↑↑poly
25(w,ℓ,c).

Lemma 11.21. Let (H,V) be a 2-horizontal web where H is weakly c-minimal with respect to
V. If |H| ≥ h11.21(w, ℓ) and |V| ≥ v11.21(w, ℓ, c), then D((H,V)) contains a cycle of well-linked
sets of length ℓ and width w.

Proof. We define z1 = c+ 1, q1 = q11.10(w, ℓ), ℓ4 = ℓ− 1, w4 = 2w, w3 = 2w4, w2 = r11.10(w, ℓ),
w1 = q1 + 2w2, ℓ3 = 2(w4 − 1), ℓ2 = ℓ3 + z1ℓ4, ℓ1 = ℓ′11.10(w, ℓ), m1 = 2w2, m2 = h11.20(w3),
h1 = m1 +m2 + 1, v2 = v11.20(w1, ℓ1, w3, ℓ2, c), v1 = (v2 − 1)(m2 + 1)

(
h1

m1

)
+ 1. Observe that

h11.21(w, ℓ) = m1 +m2 + 1 and v11.21(w, ℓ, c) = v1 + h11.21(w, ℓ) c.
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Decompose H into H = H1 ·H2 and decompose V into V1 ·V2 such that start
(
V2

)
⊆ V

(
H2

)
and

V2 is internally disjoint from H2. Hence, V
(
V2

)
∩V (H) ⊆ V

(
H1

)
∪start

(
V2

)
. By Definition 11.7,

such a decomposition exist. For each Hi ∈ H we write H1
i for the subpath of Hi in H1 and H2

i

for the subpath of Hi in H2.
Let V ′ ⊆ V be the paths Vj ∈ V for which there is some Hi ∈ H such that Vj contains a subpath
V ′
j with start

(
V ′
j

)
∈ V

(
H1

i

)
and end

(
V ′
j

)
∈ V

(
H2

i

)
. Let V∗ = V \ V ′. Since (H,V) is weakly

c-minimal 2-horizontal web, for each Hi ∈ H there are at most c paths in V ′ which contain a
subpath as above. Hence, |V ′| ≤ |H| c and thus |V∗| ≥ v1. Further, V∗ satisfies the following by
construction.

(V1) Let Q1
i ·Q2

i ∈ V∗ be an arbitrary decomposition of a path in V∗. If Q2
i intersects some

H2
j ∈ H2, then Q1

i is disjoint from H1
j .

Let V3 ⊆ V1 and V4 ⊆ V2 be the subpaths of V1 and V2 such that V
(
V3

)
⊆ V (V∗) and

V
(
V4

)
⊆ V (V∗). Note that V∗ = V3 · V4.

For each subpath Vi of V∗ which contains some path of V4 as a subpath define a linear ordering
⪯Vi of H1 such that Ha ⪯Vi Hb if Vi does not intersect Hb before the first intersection of Vi with
Ha. As every V 4

i ∈ V4 intersects every Ha ∈ H1, every ⪯Vi is a linear ordering. Define M(Vi)
as the set of m1 +m2 maximal elements of ⪯Vi and N (Vi) as the set of m1 maximal elements
of ⪯Vi .
For each 1 ≤ i ≤ |V∗|, decompose Vi ∈ V3 · V4 and construct a set Mi iteratively as follows.

Start with Vi = Q1
i ·Q2

i such that Q1
i ∈ V3 and Q2

i ∈ V4. Set H′ = H2 and set Mi = ∅. Repeat
the following steps until stopping.

1. Let Hj ∈ H be such that start
(
Q2

i

)
∈ V

(
H2

j

)
.

2. If H1
j ̸∈ M(Q2

i ), stop the construction.

3. Otherwise, set H′ := H′ \ {H2
j } and let Q3

i · Q4
i := Q1

i such that start
(
Q4

i

)
⊆ V (H′) and

Q4
i is internally disjoint from H′.

4. Set Q1
i := Q3

i , Q
2
i := Q4

i ·Q2
i and Mi := Mi ∪ {H1

j }.

By (V1), whenever we add some H1
j to Mi in the construction above, then H1

j ∈ M(Q4
i · Q2

i )

as well. Hence, Mi ⊆ M(Q2
i ). The construction above stops at step 2 for every Vi ∈ V∗ after at

most |M(Vi)| iterations because |M(Vi)| ≤ |H|, every path in V3 intersects every path in H2,
and |Mi| increases after each iteration.
Since |V∗| ≥ (v2 − 1)

(
h1

m1

)(
h1−m1

m2

)
+ 1, by the pigeon-hole principle there is some Q∗ ⊆ V∗ of

order v2 such that M(Q∗
i ) = M(Q∗

j ) and N ′ := N (Q∗
i ) = N (Q∗

j ) for every Q∗
i , Q

∗
j ∈ Q∗. We

set M′ = M(Q∗
i ) \ N (Q∗

i ) for some Q∗
i ∈ Q∗. Decompose Q∗ into Q∗ = Q1 · Q2 · QM · QN

such that Q1 = {Q1
i | Qi ∈ Q∗}, end

(
Q2

)
⊆ V (M′), end

(
QM

)
⊆ V (N ′), Q1 · Q2 is internally

disjoint from M′ ∪N ′, and QM is internally disjoint from N ′. By choice of M′ and N ′, such a
decomposition exists.
P1 = {H1

j ∈ H1 \ (N ′ ∪M′) | H2
j ∈ H′} and P2 = {H2

j | H1
j ∈ P1}. By construction of H′, for

each Q1
i ∈ Q1 we have that Q2

i intersects H1
j , where end

(
Q1

i

)
⊆ V

(
H2

j

)
and Q1

i ·Q2
i ∈ Q1 · Q2.

Finally,
(
M′,QM

)
is a weakly c-minimal 1-horizontal web where |M′| = m2 and

∣∣QM
∣∣ = v2.

From Lemma 11.20, we obtain two cases.
Case 1: (E1) holds.
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That is,
(
M′,QM

)
contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ1) ,P) of width w1

and length ℓ1. Additionally, there is a start
(
QM

)
-end

(
QM

)
-linkage L = L1 · L2 · L3 of order

w1 ≥ q1 using only arcs of QM such that L2 is an A(S0)-B(Sℓ)-linkage and both L1 and L3 are
internally disjoint from (S,P).
We construct a B(Sℓ1)-A(S0)-linkage R of order w2 which is internally disjoint from L2 as

follows. Take an end(L2)-end(N ′)-linkage X1 in D
(
N ′ ∪QN ∪ L3

)
. Take an end(X1)-start(L1)-

linkage X2 in D
(
H2 ∪Q1

)
. Since both

(
M′,QM

)
and

(
H2,Q1

)
are webs and end(L3) ⊆

end
(
QM

)
= start

(
QN

)
, by Observation 11.15 the linkages X1 and X2 exist.

As (E1) holds, the linkages L1, L2 and L3 are pairwise internally disjoint. Since L2 is contained
in

(
M′,QM

)
, we have that L2 is internally disjoint from M′ and, hence, from X1. Further, as

L2 only uses arcs of QM , we have that L2 is internally disjoint from X2. Hence, R′ = X1 ·X2 ·L′
1

is internally disjoint from L2, where L′
1 ⊆ L1 are the paths with start(L′

1) = end
(
X 2

)
.

Because L1,L2 and L3 only use arcs of QM and QM is internally disjoint from N ′ and from
H2, we have that L1 and L2 are internally disjoint from X1 and from X2. Hence, R′ is a
half-integral B(Sℓ1)-A(S0)-linkage, as end(L1) = start(L2) ⊇ A(S0) and start(L2) = end(L1) ⊇
B(Sℓ1). By Lemma 3.3, there is a B(Sℓ1)-A(S0)-linkage R′′ of order w2 inside D(R′). Hence, by
Lemma 11.10, D((S,P) ∪R′′) contains a cycle of well-linked sets of width w and length ℓ.
Case 2: (E2) holds.
That is, there is some Q′′ ⊆ QM such that (M′,Q′′) contains a uniform path of w3-order-linked

sets (S = (S0, S1, . . . , Sℓ2) ,P = (P0,P1, . . . ,Pℓ2−1)) of width w3 and length ℓ2 for which there
are linkages L1 and L2 satisfying (L1) and (L2).
Let L′

2 ⊆ L2 be the paths of L2 satisfying V (L′
2) ∩

⋃ℓ3
i=0 V (S2i) ̸= ∅, let L′

3 be the paths of Q2

such that end(L′
3) = start(L′

2). Finally, let Q4 ⊆ Q2 be the paths satisfying end
(
Q4

)
= start(L2)

and let Q3 ⊆ Q1 be the paths satisfying end
(
Q3

)
= start(L′

3).

Claim 1. There are i, j with j − i > ℓ4 and i ≥ ℓ3 + 1 for which some Q5 ⊆ Q3 of order w5

exists such that Q5 is internally disjoint from (S,P)[i, j].

Proof. Assume towards a contradiction that for every ℓ3 + 1 ≤ i ≤ j ≤ ℓ2 with j − i > ℓ4 and
every Q5 ⊆ Q3 of order at least w5 there is a path Q5

x ∈ Q5 which intersects some vertex of
(S,P)[i, j].
For each 1 ≤ k ≤ z1 we construct sets Sa

k ,Sb
k ⊆ S, O1

k ⊆ Q3 and bijections fa,k : O1
k → Sa

k and
fb,k : O1

k → Sb
k as follows.

Start with empty Sa
0 ,Sb

0, O1
0, fa,0 and fb,0. Iterate from 1 to z1. On step k, choose some Q1

j ∈
Q3\O1

k−1 such that Q1
j intersects some Si ∈ S in (S,P)[ℓ3 + 1 + wk, ℓ3 + 1 + w(k + 1)− 1], and

then set O1
k = O1

k−1 ∪{Q1
j}, Sa

k = Sa
k−1 ∪{Si−1} and Sb

k = Sb
k−1 ∪{Si}. Further, define fa,k and

fb,k as the functions satisfying fa,k(Qi
x) = fa,k−1(Q

i
x) for all Qi

x ∈ Sa
k−1, fb,k(Q

i
x) = fb,k−1(Q

i
x)

for all Qi
x ∈ Sb

k−1, fa,k(Q
1
j ) = Si−1, and fb,k(Q1

j ) = Si.
Because

∣∣O1
k−1

∣∣ = k − 1, we have
∣∣Q3 \ O1

k−1

∣∣ ≥ w5. Hence, in every step k, there is some
Q1

j ∈ Q3 \ O1
k−1 which intersects (S,P)[ℓ3 + 1 + w(k − 1), ℓ3 + 1 + wk − 1]. Further, (S,P) has

length ℓ2 = ℓ3 + (c + 1)ℓ4. Thus, we can construct such sets Sa
k ,Sb

k and O1
k. Let Sa = Sa

z1 ,
Sb = Sb

z1 , O1 = O1
z1 , fa = fa,z1 and fb = fb,z1 .

Let X = V
(
O1

)
∩ V ((S,P)[ℓ3 + 1, ℓ2]). We construct an X-end

(
Q3

)
-linkage Z of order z1 as

follows. For each O1
j ∈ O1 choose some x ∈ X ∩ fb(O

1
j ) and add the x-end

(
O1

)
⊆ end

(
Q3

)
subpath of O1

j to Z.
Note that |X| = |Z| ≥ z1. By choice of P 2

e , end(Z) ⊆ V
(
P 2
e

)
. Let a be the last arc of P 1

e .
Construct a V

(
P 1
e

)
-V

(
P 2
e

)
-linkage F of order c avoiding a as follows. For each O1

i ∈ O1 let
Sj = fb(O

1
i ) and let (aj,1, aj,2, . . . , aj,w3) := A(Sj) and (aj−1,1, aj−1,2, . . . , aj−1,w3) := A(Sj−1) be
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ordered according to the orders witnessing that A(Sj) is w3-order-linked to B(Sj) and A(Sj−1) is
w3-order-linked to B(Sj−1). Let L2

i ∈ L2 be the path with V
(
L2
i

)
∩ V ((S,P)) ⊆ fa(O

1
i ) = Sj−1

and let Fi be a V
(
P 1
e

)
-aj−1,1 path in Q4 · L2.

The path of w3-order-linked sets (S,P) is contained within D
(
M′ ∪QM

)
. By (L2), L2 ⊆ QM

holds. Further, Q4 is contained inside Q2. By choice of Q4, every path in Q4 intersects P 1
e . For

each O1
i ∈ O1 there is some Li

2 ∈ L2 such that A(Sj) ⊆ V
(
Li
2

)
, where Sj = fa(O

1
i ). Hence,

there is some Q4
i ∈ Q4 such that Q4

i · Li
2 contains a V

(
P 1
e

)
-aj−1,1 path as desired. Thus, the

linkage F1 above exists.
Construct an end(F1)-start(Z ′)-linkage F2 as follows. For each O1

i ∈ O1, let Sj = fb(O
1
i ) and

let F4,i be an A(Sj)-xi path in Sj , where xi ∈ start(Z) ∩ V
(
O1

i

)
. Let {aj,k} = start(F4,i). Let

F3,i be an aj−1,1-bj−1,k path in Sj−1. As {bj−1,k} is a 1-shift of {aj−1,1} and A(Sj−1) is ℓ3-
order-linked to B(Sj−1) in Sj−1, such a path F3,i exists. Now set F2,i = F3,i ·Pj−1,k ·F4,i, where
Pj−1,k ∈ Pj−1 is the bj−1,k-aj,k path in Pj−1.
Since (S,P) is a uniform path of w3-order-linked sets, each F2,i is a path. Let F3 = {F3,i |
0 ≤ i ≤ c} and F4 = {F4,i | 0 ≤ i ≤ c}. As each Sj contains at most one path of F3 ∪ F4, we
have that F3 and F4 are two disjoint linkages inside (S,P). Hence, F2 = {F2,i | 0 ≤ i ≤ c} is
a end(F1)-start(Z)-linkage of order c + 1 as desired. Finally, let F5 be the start(F1)-end(F2)-
linkage contained inside D(F1 ∪ F2). Since each path in one linkage intersects exactly one path
in the other, we have that |F5| = |F1|.
Construct an end(F5)-V

(
P 2
e

)
-linkage F3 of order z1 by following the corresponding paths of Z

until the first intersection with P 2
e . By choice of Z, this is possible.

If there is some path in F := F5 · F3 using a, we delete this path from F . Hence, we obtain
a V

(
P 1
e

)
-V

(
P 2
e

)
-linkage F of order at least c inside D

(
H1 ∪Q2 ∪QM

)
− a, contradicting the

initial assumption that (H,V) is a weakly c-minimal 2-horizontal web. □

By Claim 1, there is some Q5 ⊆ Q3 of order w3 and some ℓ3 + 1 ≤ i < j ≤ ℓ2 such that Q5 is
internally disjoint from (S,P)[i, j] and j − i ≥ ℓ4 − 1.
By Lemma 8.3, the path of w3-order-linked sets (S,P)[i, j] contains a path of well-linked sets(
S ′ =

(
S′
0, S

′
1, . . . , S

′
ℓ4

)
,P′ =

(
P ′
0,P ′

1, . . . ,P ′
ℓ4−1

))
of width w3 and length ℓ4 such that A(S′

0) ⊆
A(Si) and B(S′

ℓ4
) ⊆ B(Sj).

Construct a B(S′
ℓ4
)-A(S′

0)-linkage R of order w3 as follows.
By Observation 7.4, there is a B(S′

ℓ4
)-B(Sℓ2)-linkage Z5 of order w3 inside (S,P).

Let L′
1 ⊆ L1 be the linkage satisfying start(L′

1) = end(Z5) and let L′′
3 ⊆ L′

3 be the linkage
satisfying start(L′′

3) = end
(
Q5

)
. Take an end(L′

1)-start(L′′
3)-linkage X1 of order w3 in D

(
H2 ∪Q5

)
.

Because
(
H2,Q5

)
is a web, and because end(L′

1) ⊆ end
(
H1

)
= start

(
H2

)
and start(L′′

3) =
end

(
Q5

)
hold, by Observation 11.15 such a linkage X1 exists.

For each i ∈ {0, . . . , w3 − 1} let X2,i be a path inside D(L′′
3 ∪ L′

2) which starts on start(X1) and
ends on a2i,i ∈ A(S2i), where (a2i,0, a2i,1, . . . , a2i,w3−1) := A(S2i) is sorted according to the order
witnessing thatA(S2i) is w3-order-linked toB(S2i) inside S2i. Let X2 = {X2,0, X2,1, . . . , X2,w5−1}.
By choice of L′

2 and of L′′
3 and because (L2) holds, such a linkage X2 exists.

Construct an end(X2)-A(S2(w3−1))-linkage X3 inside (S,P) as follows. Towards this end, we
construct, for each 0 ≤ i ≤ w3 − 1, an A(S2(i−1))-A(S2i)-linkage X i

3 of order i + 1. Start with
X 0
3 := {a0,0} ⊆ A(S0).

On step i ≥ 1, let
(
b2(i−1),0, b2(i−1),1, . . . , b2(i−1),w3−1

)
:= B(S2(i−1)) be the ordering of the set

B(S2(i−1)) witnessing that A(S2(i−1)) is w3-order linked to B(S2(i−1)). Let Yi be an end
(
X i−1
3

)
-

Bi-linkage of order i in S2(i−1), where Bi = {b2(i−1),j ∈ B(S2(i−1)) | 1 ≤ j ≤ i}. Since A(S2(i−1))

is w3-order-linked to B(S2(i−1)) in S2(i−1) and end
(
X i−1
3

)
contains the minimal i elements of the

corresponding ordering, such a linkage Yi exists.
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Let Zi be a Bi-Ai the linkage of order i + 1 in P2(i−1) such that end(Yi) ⊆ start(Zi), where
Ai = {a2i,j | 1 ≤ j ≤ i + 1}. Since (S,P) is a uniform path of w3-order-linked sets, such a
linkage Zi exists. Set X i

3 = X i−1
3 · Yi · Zi. Since |Yi · Zi| = i + 1, X i

3 is a start
(
X i
3

)
-Ai-linkage

of order i + 1 (recall that, by definition of the concatenation operation ·, the additional path
in Zi which does not have a corresponding endpoint in Yi is simply added to the result of the
concatenation).
After iterating all the steps above, we obtain an end(X2)-A(S2(w3−1))-linkage X3 := Xw3−1

3

of order w3 as desired. By Lemma 7.7, A(S2(w3−1)) is w3-order-linked to A(Si) ⊇ A(S′
0) in

(S,P)[2(w3 − 1), i]. As start(X3) contains the minimal w3 elements of A(S2(w3−1)), the set
A(S′

0) is an w3-shift of A(S2(w3−1)). Hence, there is an end(X3)-A(S′
0)-linkage X4 of order w3 in

(S,P)[2(w3 − 1), i].
The concatenation X2 · X3 · X4 produces a half-integral start(L′′

3)-A(S′
0)-linkage of order w3. By

Lemma 3.3 there is a start(X2)-A(S′
0)-linkage X5 of order w4 inside D(X2 ∪ X3).

Let X6 ⊆ Z5 ·L′
1 ·X1 be the linkage of order w4 with end(X6) = start(X5). We claim that X6 ·X5

is a half-integral B(S′
ℓ4
)-A(S′

0)-linkage of order w4.
Assume towards a contradiction that there is some v ∈ V (Z5 · L′

1) ∩ V (X1) ∩ V (X5). Since
Z5 · L′

1 is contained in D
(
M′ ∪QM

)
and X1 is contained inside D

(
Q5 ∪H2

)
, we have that

v ∈ V
(
Q5

)
∩ V (M′). Furthermore, v is not in (S,P)[0, 2(w5 − 1)] as Z5 · L′

1 is disjoint from
(S,P)[0, 2(w3 − 1)] by construction. As v ∈ V (X5) and X3 · X4 is contained inside the path of
order-linked sets (S,P)[0, 2(w3 − 1)], we have that v ∈ V (X2) ⊆ V

(
Q2

)
as well. This however

implies that v ∈ V
(
Q2

)
∩V

(
Q5

)
= start

(
Q2

)
. However, start

(
Q2

)
∩V (M′) = ∅ by choice of Q2,

a contradiction to the previous observation that v ∈ V
(
Q5

)
∩ V (M′). Hence, by Lemma 3.3,

D(L1 · X1 · X6) contains a B(S′
ℓ4
)-A(S′

0)-linkage R of order w.
We show that V (R) ∩ V ((S,P)[i, j]) ⊆ B(S′

ℓ4
) ∪A(S′

0).
Because (L1) holds, we have that L′

1 is internally disjoint from (S,P). By construction we have
that V (X1)∩V

((
M′,Q2

))
⊆ V

(
Q5

)
. By choice of Q5 we have that V

(
Q5

)
∩V ((S,P)[i, j]) = ∅.

Hence, X1 is disjoint from (S,P)[i, j].
The linkage X2 is contained in D(L′′

3 · L′
2) and is thus disjoint from (S,P)[i, j] because (L2)

holds and i > 2(w3 − 1).
The linkage X5 is contained in (S,P)[0, i] and is thus internally disjoint from (S,P)[i, j]. Hence,
X5 is also internally disjoint from (S,P)[i, j]. This implies that V ((S,P)[i, j])∩V (R) ⊆ B(S′

ℓ4
)∪

A(S′
0), as desired. Hence,

(
S ′,

(
P ′
0,P ′

1, . . . ,P ′
ℓ4−1,R

))
is a cycle of well-linked sets of width w

and length ℓ, as desired. □

We are now ready to prove our main theorems. We state our main result both in terms of
cylindrical grids and in terms of cycle of well-linked sets as each may be useful in a different
context.
We define

m′(w, ℓ) := m11.14(h11.21(w, ℓ) , w, ℓ) ,

w′
11.22w′

11.22(w, ℓ) := w′
11.6(w,w11.14(h11.21(w, ℓ) , w, ℓ)) ,

r11.22r11.22(w, ℓ) := r11.14(h11.21(w, ℓ) , w, ℓ, v11.21(w, ℓ,m11.14(h11.21(w, ℓ) , w, ℓ))) ,

ℓ′11.22ℓ′11.22(w, ℓ) := ℓ′11.6(w, ℓ, ℓ11.14(w, ℓ) , r11.22(w, ℓ)) .
Observe that

w′
11.22(w, ℓ) ∈ 22↑↑poly

97(ℓ,w),

r11.22(w, ℓ) ∈ 213↑↑poly
97(ℓ,w) and

ℓ′11.22(w, ℓ) ∈ 214↑↑poly
97(ℓ,w).
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Theorem 11.22. Let w, ℓ be integers, let (S = (S0, S1, . . . , Sℓ′) ,P) be a strict path of well-linked
sets of width w′ and length ℓ′ and let R be a B(Sℓ′)-A(S0) linkage of order r. If w′ ≥ w′

11.22(w, ℓ),
r ≥ r11.22(w, ℓ) and ℓ′ ≥ ℓ′11.22(w, ℓ), then D((S,P) ∪R) contains a cycle of well-linked sets of
width w and length ℓ.

Proof. Assume, without loss of generality, that R is weakly r-minimal with respect to (S,P) and
that r = r11.22(w, ℓ). If this is not the case, we just choose a start(R)-end(R) linkage of order
r11.22(w, ℓ) ≤ |R| which is (S,P)-minimal. By Observation 3.6, such a linkage is also weakly
r11.22(w, ℓ)-minimal with respect to (S,P).
We define h = h11.21(w, ℓ), w1 = w11.14(h,w, ℓ), m = m11.14(h,w, ℓ), v = v11.21(w, ℓ,m) and
ℓ1 = ℓ11.14(w, r). Observe that w′ ≥ w′

11.6(w,w1), ℓ′ ≥ ℓ′11.6(w, ℓ, ℓ1, r) and r ≥ r11.14(h,w, v).
Applying Lemma 11.6 to (S,P) and R yields two cases. If (C1) holds, then we obtain a cycle

of well-linked sets of width w and length ℓ as desired. Otherwise, (C2) holds, and D((S,P) ∪R)
contains a path of well-linked sets (S ′,P′) of width w1 and length ℓ1 with a back-linkage R′ of
order w1 intersecting (S ′,P′) cluster by cluster such that R′ ⊆ R. Note that R′ is also weakly
r-minimal with respect to (S ′,P′).
Applying Lemma 11.14 to (S ′,P′) and R′ yields two further cases. If (H1) holds, then we

obtain a cycle of well-linked sets of width w and length ℓ as desired. Otherwise, (H2) holds,
and we obtain a 2-horizontal (h, v)-web (H,V) such that H is weakly m-minimal with respect
to V.
By Lemma 11.21, (H,V) contains a cycle of well-linked sets of width w and length ℓ, as desired.

□

We define dtw1.1(w, ℓ) := t10.9(w
′
11.22(w, ℓ) + r11.22(w, ℓ) , ℓ

′
11.22(w, ℓ)) and note that dtw1.1

dtw1.1(w, ℓ) ∈ 221↑↑poly
97(w,ℓ). The next theorem is our main result stated in terms of cycles

of well-linked sets.

Theorem 1.1. Let w, ℓ be integers. Every digraph D with dtw(D) ≥ dtw1.1(w, ℓ) contains a
cycle of well-linked sets (S,P) of width w and length ℓ.

Proof. Let r1 = r11.22(w, ℓ), w1 = w′
11.22(w, ℓ, r) + r and ℓ1 = ℓ′11.22(w, ℓ).

By Theorem 10.9, D contains a path of well-linked sets (S = (S0, S1, . . . , Sℓ1) ,P) of width w1

and length ℓ1 where B(Sℓ1) is well-linked to A(S0) in D. Hence, there is a B(Sℓ1)-A(S0) linkage
R of order r1 in D. By Theorem 11.22, D(S ∪ P ∪R) contains a cycle of well-linked sets (S ′,P′)
of width w and length ℓ. □

We close this section by stating our main result in terms of cylindrical grids. Define dtw1.2(k) :=

dtw1.1(w9.3(k) , ℓ9.3(k)) . Note that dtw1.2(k) ∈ 222↑↑poly
9(k).

Theorem 1.2. Every digraph D with dtw(D) ≥ dtw1.2(k) contains a cylindrical grid of order
k as a butterfly minor.

Proof. By Theorem 1.1, D contains a cycle of well-linked sets (S,P) of width w9.3(k) and length
ℓ9.3(k). By Theorem 9.3, (S,P) contains a cylindrical grid of order k. □

12 Younger’s Conjecture and the Erdős-Pósa property for
directed graphs

In this section we obtain an elementary bound on the function required by the Erdős-Pósa
property for directed graphs. We say that a graph H has the Erdős-Pósa property if there exists
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a function lH such that every graph G contains either k disjoint copies of H as a minor or there
exists a set S ⊂ V (G) such that G − S contains no H-minor. In [AKKW16] the Erdős-Pósa
property has been generalised to directed graphs. In particular the authors show the following
theorem.

Theorem 12.1. [AKKW16, Theorem 4.1] Let H be a strongly connected digraph. H has the
Erdős-Pósa property for butterfly (topological) minors if, and only if, there is a cylindrical grid
(wall) of order c of which H is a butterly (topological) minor. Furthermore, for every fixed
strongly connected digraph H satisfying these conditions and every k there is a polynomial time
algorithm which, given a digraphD as input, either computes k disjoint (butterfly or topological)
models of H in D or a set S of ≤ lH(k) vertices such that D−S does not contain a model of H.

The same authors also prove the following lemma, which we restate to make the bounds explicit.

Lemma 12.2 ([AKKW16, Lemma 4.2]). Let G be a directed graph with dtw(G) ≤ w. For
each strongly connected directed graph H, the graph G has either k disjoint copies of H as
a topological minor, or contains a set T of at most k · (w + 1) vertices such that H is not a
topological minor of G− T .

We can now prove the main result of this section.

Theorem 12.3. Let H be a directed graph. Let H be a digraph with the Erdős-Pósa property
for butterfly minors and let c be the order of a minimal cylindrical grid of which H is a butterfly
minor. Then for any digraph D and any natural number k either D contains k disjoint H-
butterfly minors or a set S of at most k(dtw1.1(w9.3(kc) , ℓ9.3(kc)) + 1).

Proof. If dtw(D) ≥ dtw1.1(w9.3(kc) , ℓ9.3(kc)) then by Theorem 1.2 D contains a cylindrical grid
of order kc and hence k disjoint copies of H as a butterfly minor. Otherwise, we can apply
Lemma 12.2. □

We note that when H = K⃗

⃗

2 the previous theorem is equivalent to Younger’s Conjecture, which
asks whether for every integer k ≥ 0 there exists a function lK⃗

⃗

2
(k) such that for every digraph

D, either D has k vertex-disjoint directed circuits, or D can be made acyclic by deleting at
most lK⃗

⃗

2
(k) vertices. This conjecture was settled by Reed, Robertson, Seymour and Thomas

in [RRST96], but the function they obtained was non-elementary. With our Theorem 12.3 we
obtain an elementary bound for lK⃗

⃗

2
.
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