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Plasmoid instability accelerates reconnection in collisional plasmas by transforming a laminar reconnection
layer into numerous plasmoids connected by secondary current sheets in two dimensions (2D) and by fos-
tering self-generated turbulent reconnection in three dimensions (3D). In large-scale astrophysical and space
systems, plasmoid instability likely initiates in the collisional regime but may transition into the collisionless
regime as the fragmentation of the current sheet progresses toward kinetic scales. Hall MHD models are
widely regarded as a simplified yet effective representation of the transition from collisional to collisionless
reconnection. However, plasmoid instability in 2D Hall MHD simulations often leads to a single-X-line re-
connection configuration, which significantly differs from fully kinetic particle-in-cell simulation results. This
study shows that single-X-line reconnection is less likely to occur in 3D compared to 2D. Moreover, depend-
ing on the Lundquist number and the ratio between the system size and the kinetic scale, Hall MHD can
also realize 3D self-generated turbulent reconnection. We analyze the features of the self-generated turbulent
state, including the energy power spectra and the scale dependence of turbulent eddy anisotropy.

I. INTRODUCTION

Magnetic reconnection is a fundamental process that
alters the connectivity of magnetic field lines, releasing
stored magnetic energy. The magnetic energy released
by reconnection is transformed into kinetic, thermal, and
non-thermal energy of plasma in explosive events in na-
ture and laboratories, such as geomagnetic substorms,
solar flares, coronal mass ejections (CMEs), gamma-ray
bursts, and sawtooth crashes in fusion plasmas.1–7

Magnetic reconnection occurs at current sheets. In
recent years, there has been growing evidence that
large-scale reconnection current sheets will likely be-
come fragmented due to the plasmoid instability.8,9 The
plasmoid instability has been found in a wide range
of plasma models, including resistive magnetohydrody-
namics (MHD),8–23 Hall MHD,16,24,25 and fully kinetic
particle-in-cell (PIC) simulations.26–31

High-resolution two-dimensional (2D) resistive MHD
simulations indicate that the plasmoid instability leads
to a fast reconnection rate that is nearly independent of
the resistivity.9,14,18 In three-dimensional (3D) reconnec-
tion with a guide field, in addition to modes that are
symmetric along the out-of-plane direction, oblique tear-
ing modes can become unstable.32 Interaction of oblique
tearing modes leads to self-generated turbulent reconnec-
tion without the need for external forcing.28,33–35

Taking into account two-fluid and kinetic physics, the
plasmoid instability can trigger even faster collisionless
reconnection if the fragmented current sheets reach a ki-
netic scale δi that corresponds to the ion skin depth di
or the ion sound Larmor radius ρs, the latter being for
cases with a strong guide field.16,24,27 This effect leads
to the consideration of reconnection “phase diagram” in
the literature.16,21,36,37 The phase diagram organizes var-
ious types of reconnection in the parameter space of
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two dimensionless parameters: the Lundquist number
S ≡ LVA/η and the system size to the kinetic scale ra-
tio Λ ≡ L/δi . Here, L is a characteristic length scale
of the reconnection layer along the outflow direction, VA
is the Alfvén speed of the reconnecting magnetic field
component, and η is the magnetic diffusivity. Within
resistive MHD, the reconnection current sheet becomes
unstable when the Lundquist number S exceeds a critical
value Sc ∼ 104.9,38 Once the current sheet becomes un-
stable, the fragmentation continues until the secondary
current sheets become marginally stable. This condition
yields the typical widths of the secondary current sheets

to scale as δc ∼ LS
1/2
c /S.14 Comparing the secondary

current sheet width δc with the kinetic scale δi yields a

heuristic criterion Λ < S/S
1/2
c for the plasmoid-mediated

onset of collisionless reconnection.

Based on simple estimates, we can see that this on-
set criterion is satisfied for numerous types of recon-
nection events in the solar atmosphere and astrophysi-
cal systems.36 For example, consider post-CME current
sheets in the corona39,40 and UV (ultraviolet) bursts in
the transition region.41–43 Typical lengths of post-CME
current sheets are on the order of ∼ 109m, Lundquist
numbers S ∼ 1014, and di ∼ 1m; Hence, the ratio Λ =

L/di ∼ 109, which is smaller than S/S
1/2
c ∼ 1012. For

UV bursts, the lengths are estimated to be on the order of
105m, the Lundquist numbers S ∼ 1010, and di ∼ 0.1m.

The ratio Λ ∼ 106 is smaller than S/S
1/2
c ∼ 108. There-

fore, plasmoid-mediated onset of collisionless reconnec-
tion is potentially important for both types of reconnec-
tion events.

Evidence of plasmoids in both types of reconnec-
tion events is abundant. In post-CME current sheets,
plasmoid-like structures have been regularly observed as
moving blobs.39,40,45 In UV bursts, although plasmoids
are not directly visible, their existence may be inferred
from the shapes of emission line profiles, which provide
information on reconnection outflow through the Doppler
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shift. The emission line profiles of UV bursts typically
have a triangle shape, which is consistent with a highly
fluctuating reconnection outflow associated with plas-
moids. In contrast, a single-X-line reconnection geometry
will predict a double-peak line profile, which is inconsis-
tent with observation.41,43

To model the transition from collisional to collision-
less reconnection mediated by the plasmoid instabil-
ity, particle-in-cell (PIC) simulation provides a first-
principles, fully kinetic description.27,31 However, PIC
simulations, especially in 3D, are usually limited to rela-
tively small system sizes due to the computational cost.
To simulate systems of larger sizes, this study employs a
Hall MHD model incorporating two-fluid effects through
the Hall terms in the generalized Ohm’s law. Hall MHD
is often regarded as a minimal model that captures im-
portant aspects of collisonless or weakly collisional recon-
nection beyond resistive MHD.44 Previous 2D Hall MHD
studies have demonstrated the onset of Hall reconnection
mediated by plasmoid instability.16,24

From the perspective of plasmoid formation, 2D Hall
MHD reconnection is somewhat anomalous: it tends
to settle to a single-X-line geometry after expelling all
the plasmoids from the reconnection layer. This fea-
ture makes it qualitatively different from fully kinetic
PIC simulations, where new plasmoids are constantly
generated.27 The single-X-line geometry of Hall recon-
nection also appears to be inconsistent with observations
of post-CME current sheets and UV bursts, which in-
dicate that plasmoids continue to form throughout the
entire period of the events. Although non-single-X-line
2D Hall reconnection has been demonstrated, it appears
to require a fairly large system size (L/di ≳ 5000) and
may only exist in a narrow parameter space of the phase
diagram.16

The observed persistence of plasmoid formation
throughout solar reconnection events raises an important
question regarding whether Hall MHD can adequately de-
scribe these phenomena. However, it is important to note
that the preference for single-X-line reconnection in Hall
MHD may result from the assumed 2D symmetry. Will
3D systems allow the formation of complex 3D structures
and significantly change the picture? Moreover, if 3D
Hall MHD reconnection geometry deviates from a single
X-line, can it support self-generated turbulent reconnec-
tion?

To address these questions, we perform 3D Hall MHD
simulations of reconnection and compare the results with
the corresponding 2D simulations. We aim for large sys-
tem sizes, up to L/di = 1000. To mimic natural re-
connection events, we start from an initial current sheet
that is significantly thicker than di and let it thin down
self-consistently. After the plasmoid instability triggers
the onset of Hall reconnection, we continue to follow the
evolution until it reaches a saturated phase.

This paper is organized as follows. Section II describes
the governing equations and the simulation setup in de-
tail. In Section III, we present simulation results of re-

Figure 1. Initial magnetic field configuration. Black lines are
stream lines of the in-plane magnetic field component, and
colormap shows the out-of-plane component Bz.

connection geometry and reconnection rate for various
2D and 3D runs. Section IV looks more deeply into the
characteristics of the fully developed reconnection state
by examining the energy power spectra and two-point
structure functions of kinetic and magnetic fluctuations.
Finally, we discuss the implications of our findings for
large-scale astrophysical reconnection and conclude in
Section V.

II. GOVERNING EQUATIONS AND MODEL SETUP

We employ the visco-resistive Hall magnetohydrody-
namics model with an adiabatic equation of state. In
normalized units, the equations are:

∂tρ+∇ · (ρv) = 0, (1)

∂t (ρv) +∇ · (ρvv) =−∇
(
p+

B2

2

)
+∇ · (BB)

+∇ ·
(
ρν

∇v +∇vT

2

)
, (2)

∂tp+∇ · (pv) = −(γ − 1)p∇ · v, (3)

∂tB = −∇×E, (4)

E = −v ×B + di
J ×B −∇pe

ρ
+ ηJ − ηH∇2J . (5)
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Here, standard notations are used: ρ is the plasma den-
sity; v is the ion velocity; p is the total plasma pressure;
pe is the electron pressure; B is the magnetic field; E is
the electric field; J = ∇×B is the electric current den-
sity; η is the resistivity; ηH is the hyper-resistivity;46 ν is
the viscosity; and di is the ion skin depth. For simplic-
ity, we assume that the ions and electrons are locally in
thermal equilibrium. Therefore, the ion pressure pi and
the electron pressure pe are equal, and the total plasma
pressure p = pi + pe = 2pe. Electron inertia terms are
neglected in the generalized Ohm’s law, Eq. (5).

The normalization of Eqs. (1) – (5) is based on con-
stant reference values of the density n0, and the mag-
netic field B0. Lengths are normalized to the system
size L, and time is normalized to the global Alfvén time
tA = L/VA, where VA = B0/

√
4πn0mi and mi is the

ion mass. The normalization of physical variables is
given by (normalized variables → expressions in Gaus-
sian units): ρ → ρ/n0mi, B → B/B0, E → cE/B0VA,
v → v/VA, p → p/n0miV

2
A, J → J/(B0c/4πL), and

di → di/L ≡
√
mic2/4πn0e2/L.

The simulation setup is similar to that employed in
previous studies.14,16,20,33,47 In this setup, the coales-
cence of two magnetic flux tubes drives magnetic recon-
nection. The simulation box is a 3D cube in the do-
main (x, y, z) ∈ [−1/2, 1/2] × [−1/2, 1/2] × [−1/2, 1/2].
In normalized units, the initial magnetic field is given
by B = Bzẑ + ẑ × ∇ψ, where ψ = tanh (y/h)ψ0 and
ψ0 = cos (πx) sin (2πy) /2π. Here, the parameter h de-
termines the initial thickness of the current layer between
the flux tubes. The out-of-plane magnetic field compo-
nent Bz is non-uniform such that the initial configuration
is approximately force-balanced. Precisely, Bz satisfies

B2
z = B2

z0 + 5π2ψ2
0 + (∂yψ0)

2 − (∂yψ)
2
, (6)

where the parameter Bz0 sets the guide field strength.
In this study, the guide field strength Bz0 is set to unity.
The initial current sheet thickness h = 0.01. In the up-
stream region of the current layer, the reconnecting com-
ponent Bx and the guide field Bz are both approximately
equal to unity. Figure 1 shows the initial magnetic field
configuration.

The initial plasma density and pressure are both uni-
form, with ρ = 1 and pi = pe = 1 in normalized units.
The heat capacity ratio γ = 5/3 is assumed. Perfectly
conducting and free-slip boundary conditions are im-
posed along both x and y directions. Specifically, we
have v · n̂ = 0, n̂ · ∇ (n̂× v) = 0, and B · n̂ = 0 on
the boundaries. Here, n̂ is the unit vector normal to the
boundary. The z direction is assumed to be periodic.

This model system is numerically solved with a mas-
sively parallel HMHD code. The numerical algorithm48

approximates spatial derivatives by finite differences with
a five-point stencil in each direction, augmented with a
fourth-order numerical dissipation for numerical stability.
The time-stepping scheme can be chosen from several
options, including a second-order accurate trapezoidal
leapfrog method and various strong-stability-preserving

Figure 2. Time sequence for the 2D simulation with di =
0.002 in the reconnection layer. The colormap denotes the
reconnection outflow velocity vx (multimedia view).

Runge–Kutta methods.49,50 We employ the second-order
accurate trapezoidal leapfrog method in this study.
We perform two sets of simulations with the ion skin

depth di = 0.002 and 0.001. The plasma resistivity and
viscosity ν are both set to a fixed value 5× 10−6. Using
the box size as the length scale L, the system size to the
ion skin depth ratio L/di is 500 and 1000, respectively.
The Lundquist number S = VAL/η = 2 × 105 and the
magnetic Prandtl number Prm ≡ ν/η = 1. Because Hall
MHD tends to develop fine structures at small scales,
we add a small hyper-resistivity ηH = 10−13 to smooth
fluctuations at grid scales. The initial velocity is seeded
with a random noise of amplitude 10−3 to trigger the
plasmoid instability. We perform 2D and 3D simulations
with the same parameters and compare the results.
The 3D simulation mesh size is Nx × Ny × Nz =

2000 × 1000 × 2000 (2000 × 1000 for 2D), where the
grid sizes are uniform along both x and z directions, and
packed along the y direction around the midplane to re-
solve the reconnection layer better. The grid size along
the y direction is ∆y = 10−4 near the midplane (y = 0).
Moving away from the midplane, the grid size gradually
increases and reaches ∆y = 0.005 near the boundaries at
y = ±1/2.

III. RECONNECTION GEOMETRY AND
RECONNECTION RATE IN TWO-DIMENSION AND
THREE-DIMENSION SIMULATIONS

Figure 2 and the associate animation show the time
evolution of the 2D simulation with di = 0.002, corre-
sponding to L/di = 500. Here, the colormap denotes the
reconnection outflow velocity vx. The initial thinning
of the current sheet is accompanied by the formation of
reconnection outflow jets. At around t = 0.6, several
plasmoids start to form in the reconnection layer. Sub-
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sequently, the onset of Hall reconnection expels all the
plasmoids, and the reconnection geometry settles to a
single-X-line configuration at t = 1.5. The 2D simula-
tion with di = 0.001 also exhibits qualitatively similar
behavior, as shown in the animation in the supplemen-
tary material. These two runs demonstrate the strong
tendency of 2D Hall MHD to form a single-X-line re-
connection geometry, similar to the results of previous
studies.16,24

Three-dimensional (3D) simulations of the same pa-
rameters show different behaviors. In the time evolution
of the first case with di = 0.002, shown in Figure 3,
the thinning current sheet first becomes unstable, form-
ing flux ropes. The interaction between flux ropes leads
to complex dynamics and the formation of chaotic field
lines. However, all the flux ropes are eventually ejected
and the magnetic field self-organizes into a nearly single-
X-line configuration. The final state is similar to its 2D
counterpart, even though a translational symmetry is not
imposed. However, for the second case with di = 0.001
(L/di = 1000), shown in Figure 4, the magnetic config-
uration does not settle to a single-X-line. Instead, it ap-
pears to develop a self-generated turbulent state similar
to previous resistive MHD and PIC simulations.

To quantify the 3D reconnection rate, we first aver-
age the magnetic field along the z direction to obtain the
mean magnetic field B̄, which now depends only on x and
y. We then use the mean field to calculate the reconnec-
tion rate in the same manner as the calculation for the
2D reconnection rate. Figure 5 shows the time histories
of reconnection rates for these 2D and 3D runs. The first
three cases, all of which end up in a single-X-line config-
uration, yield faster reconnection rates. In comparison,
reconnection in the fourth case, which does not settle to
a single-X-line configuration, is slower. For reference, we
also add a 3D resistive MHD (i.e., di = 0) run, which
gives a substantially slower reconnection rate.

IV. CHARACTERISTICS OF THE SELF-GENERATED
TURBULENT STATE

We further investigate whether the reconnection layer
evolves to a self-generated turbulent state in the two 3D
Hall MHD simulations by examining the energy spectra
and two-point structure functions of the kinetic and mag-
netic fluctuations within the layer. Special treatments
are necessary for calculating energy spectra and struc-
ture functions due to the strong inhomogeneity and shear
in both magnetic and velocity fields. We adopt the pro-
cedure of Huang and Bhattacharjee (2016),33 which is
summarized below.

To calculate the kinetic energy spectrum, we first de-
fine a weighted velocity field w ≡ ρ1/2v such that the
kinetic energy density is a quadratic form w2/2. We
then decompose w into the sum of the mean field w̄
and the fluctuation w̃, where the mean field is defined
as the average along the z direction. The total kinetic

Figure 3. Time sequence for the 3D simulation with di =
0.002. Here, the two end plates at z = ±0.5 and the isosur-
faces of the flow speed at v = 0.4 are colored according to the
magnitude of the current density J in the logarithmic scale.
Samples of magnetic field lines are colored according to the
flow speed v. The arrows attached to field lines denote the
local velocity vector (multimedia view).



5

Figure 4. Time sequence for the 3D simulation with di =
0.001 (multimedia view).

energy is the sum of the mean-field kinetic energy Ēk ≡∫
w̄2/2 d3x and the fluctuation part of the kinetic energy

Ẽk ≡
∫
w̃2/2 d3x. Likewise, we decompose the magnetic

field B into the mean field B̄ and the fluctuation B̃.
The total magnetic energy is the sum of the mean-field
magnetic energy Ēm ≡

∫
B̄2/2 d3x and the fluctuation

part of the magnetic energy Ẽm ≡
∫
B̃2/2 d3x. We only

consider the fluctuation parts for the calculation of the
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Figure 5. Time histories of the reconnection rates for different
cases. Solid lines correspond to 3D simulations, and dashed
lines are 2D simulations.

kinetic and magnetic energy spectra.

Before we calculate the turbulence energy spectra
within the reconnection layer, we first multiply the fluc-
tuating fields B̃ and w̃ by a C∞ Planck-taper window
function,51 which equals unity within the range −0.2 ≤
x ≤ 0.2 and tapers off smoothly to zero over the ranges
where 0.2 ≤ |x| ≤ 0.4. This step reduces the influence of
irrelevant fluctuations from downstream exhaust regions,
allowing us to focus on turbulence within the reconnec-
tion layer. Next, we compute the discrete Fourier energy
spectra of Ẽk and Ẽm using the “windowed” variables
on each constant-y slice to obtain 2D energy spectra as
functions of the wave numbers kx and kz. Then, we inte-
grate the 2D energy spectra over the reconnection inflow
direction y, which is also the direction of the strongest
inhomogeneity, within the range −0.05 ≤ y ≤ 0.05. Fi-
nally, we calculate one-dimensional (1D) spectra as func-

tions of k ≡
√
k2x + k2z by integrating over the azimuthal

direction on the kx − kz plane.

Figure 6 shows the time evolution of the resulting 1D
spectra of Ẽk and Ẽm for the case of di = 0.002. Both
spectra exhibit qualitatively similar behaviors and re-
main close to equipartition between the two. When the
plasmoid instability occurs at about t = 0.6, the energy
spectra peak at k ≃ 100. Subsequently, the energy cas-
cades in both forward and inverse directions to smaller
and larger scales and quickly fills a broad range of scales
at around t = 1.0. However, because the reconnection
geometry eventually evolves to a single-X-line configura-
tion, the energy spectra do not settle to a quasi-steady
state. Instead, the fluctuation parts of the energies peak
at around t = 1.0, then gradually decay as the reconnec-
tion geometry becomes increasingly quasi-2D.

In comparison, the time evolution of the energy spectra
for the case with di = 0.001, shown in Fig. 7, is quali-
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Figure 6. Time sequences of the kinetic (upper panel) and
the magnetic energy (lower panel) spectra integrated over the
range from y = −0.05 to 0.05 for the case di = 0.002. The
tick labels of the colorbar indicate the times corresponding to
the curves.

tatively similar to the previous case at an early stage.
However, because this case does not settle to a single-
X-line configuration, the reconnection layer appears to
realize a self-generated turbulent state, where the energy
spectra become nearly time-independent after t = 1.7.

During the quasi-steady phase, the kinetic and mag-
netic energy spectra in Figure 6 approximately follow
the k−5/3 power law in the MHD range when kdi < O(1).
The spectra steepen in the sub-di range when kdi > O(1).
As a reference, we plot the k−11/3 power law in the sub-di
range, which is the prediction of Galtier and Buchlin.52

However, because we do not have a sufficient separation
between the ion skin depth di and the dissipation scale,

Figure 7. Time sequences of the kinetic (upper panel) and
the magnetic energy (lower panel) spectra integrated over the
range from y = −0.05 to 0.05 for the case di = 0.001. The
tick labels of the colorbar indicate the times corresponding to
the curves.

the energy spectra do not exhibit a definitive power law
in the sub-di range. The same two power laws are also
shown in Figure 6 for reference, even though the energy
spectra do not reach a quasi-steady phase. Notably, the
energy spectra in this case also steepen in the sub-di
range.

Next, we further investigate the alignment of turbu-
lence eddies with the local magnetic field by calculating
two-point structure functions of the kinetic and magnetic
fluctuations in terms of the parallel displacement r∥ and
the perpendicular displacement r⊥ relative to the local

magnetic field; i.e., Fw
2 (r∥, r⊥) ≡

〈
|w (x+ r)−w (x)|2

〉
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Figure 8. Two-point structure function analysis of the fully developed turbulent state for the case with di = 0.001 at t = 2.1.
The first column shows the magnitude of the fluctuating part of the magnetic field B̃, overlaid with streamlines of the in-plane
magnetic field. The second column shows contours of the structure function FB

2 (r∥, r⊥). The third column shows the relations

between the semi-major axis r∥ ∼ k−1
∥ and the semi-minor axis r⊥ ∼ k−1

⊥ of contours of the structure functions FB
2 (r∥, r⊥)

and Fw
2 (r∥, r⊥). These relationships quantify the scale dependence of anisotropy in turbulent eddies. The two dashed lines

represent the scalings of k∥ ∼ k⊥ (scale-independent) and k∥ ∼ k
2/3
⊥ (Goldreich–Sridhar theory), for reference. The first row

shows the results at y = 0, the second row at y = 0.002, and the third row at y = 0.005, respectively.

and FB
2 (r∥, r⊥) ≡

〈
|B (x+ r)−B (x)|2

〉
. Structure

functions allow us to measure the scale dependence of
the anisotropy of turbulence eddies. In MHD turbulence,
Goldreich & Sridhar (GS) theory54,55 predicts that tur-
bulence eddies become increasingly more elongated along
the magnetic field at smaller scales. More precisely, GS

theory predicts a scale-dependent relationship k∥ ∼ k
2/3
⊥

between the wavenumbers parallel (k∥) and perpendicu-

lar (k⊥).

The GS theory relies on the critical balance condition,
which assumes that the time scale for the nonlinear en-
ergy cascade of an eddy in directions perpendicular to
the magnetic field balances the Alfvén wave propagation
time scale of the eddy along the field. However, in Hall
MHD, the dispersive whistler waves at sub-di scales alter
the parallel wave propagation time and may cause differ-
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ent anisotropic scaling relations.? At MHD scales when
k∥di ≪ 1, the whistler waves become the shear Alfvén
wave, and the GS theory may still be applicable.

The GS scaling relation k∥ ∼ k
2/3
⊥ has been confirmed

by Cho and Vishniac for homogeneous MHD turbulence
using two-point structure function analysis.53 In self-
generated turbulence within reconnection layers, how-
ever, previous resistive MHD studies have shown devia-
tions from the GS scaling relation.33,34 Here, we explore
whether similar behavior is observed in MHD-scale ed-
dies for Hall MHD turbulent reconnection. In particular,
we investigate whether our simulations of inhomogeneous
reconnection layers in Hall MHD also exhibit deviations
from the GS scaling relation.

Here we adopt the procedure of Huang and Bhat-
tacharjee (2016),33 which is a modification of the pro-
cedure of Cho and Vishniac (2000)53 to accommodate
the inhomogeneous background of the reconnection layer.
Due to the strong inhomogeneity along the y direction in
our system, we calculate the structure functions for each
x–z plane, restricting displacements to lie within these in-
dividual planes, rather than using the full 3D space. For
a pair of points, we define the local magnetic field as the
average of the magnetic fields from the two points. To en-
sure consistency with displacements limited to individual
x–z planes, we measure the parallel and perpendicular
components of the displacement relative to the in-plane
component of the local magnetic field. We compute the
structure functions by averaging over 109 random pairs
of points; the x coordinates of these points are limited to
the range −0.25 ≤ x ≤ 0.25.

We focus on the case with di = 0.001 because it ap-
pears to realize a self-generated turbulent state in the re-
connection layer. In the following discussion, we present
the results from the snapshot at t = 2.1, but other snap-
shots during the quasi-steady period show similar behav-
iors. Figure 8 summarizes the outcome of this analysis.
Here, the rows correspond to different x-z slices. The
first row shows the results at y = 0, the second row at
y = 0.002, and the third row at y = 0.005, respectively.
The first column of the figure shows the magnitude of
the magnetic field fluctuation B̃, overlaid with stream-
lines of the in-plane magnetic field. The magnetic field
fluctuations form elongated eddies along the direction of
the local magnetic field. The second column shows con-
tours of the structure function FB

2 (r∥, r⊥), which clearly
show elongated eddies along the local magnetic field di-
rection. We have also performed the same analysis for the
weighted velocity field fluctuation w̃ and the correspond-
ing structure function Fw

2 (r∥, r⊥). The results are quali-
tatively similar to those of the magnetic field fluctuations;
therefore, they are not shown. The third column shows
the relations between the semi-major axes r∥ ∼ k−1

∥ and

the semi-minor axes r⊥ ∼ k−1
⊥ of contours of the struc-

ture functions FB
2 (r∥, r⊥) and Fw

2 (r∥, r⊥). These rela-
tions quantify the scale dependence of turbulent eddy
anisotropy. The two dashed lines represent the scalings

of k∥ ∼ k⊥ (scale-independent) and k∥ ∼ k
2/3
⊥ (GS the-

ory), for reference. In the first two rows at y = 0 and
y = 0.002, relatively close to the mid-plane, the relations
between r∥ and r⊥ appear to be approximately scale-
independent. This result is similar to previous resistive
MHD results.33,34 Interestingly, as we move further away
from the mid-plane to y = 0.005 (last row), the GS scal-

ing relation k∥ ∼ k
2/3
⊥ is partially recovered and appears

to be consistent with eddies much larger than the di scale.

V. DISCUSSION AND CONCLUSION

In summary, our simulations show that the occurrence
of single-X-line Hall reconnection in 3D is less proba-
ble compared to 2D. Whether the reconnection realizes a
self-generated turbulent state or a single-X-line configu-
ration in 3D Hall MHD depends on plasma parameters,
including the Lundquist number S and the system size
to kinetic scale ratio Λ = L/di. Among all the cases we
have examined, the single-X-line configuration yields the
highest reconnection rate.
The self-generated turbulent reconnection in 3D Hall

MHD exhibits significant qualitative differences com-
pared to resistive MHD. The turbulent reconnection layer
in Hall MHD is significantly broader, and the recon-
nection rate is much faster. Regardless of whether the
reconnection geometry settles to a single X-line or be-
comes turbulent, the hallmarks of Hall reconnection re-
main visible. Notably, the reconnection exhaust regions
open up and form a Petschek-like configuration (see Fig-
ures 3 and 4). We emphasize that the resemblance with
the Petschek-like configuration is just geometrical and
nothing more because the underlying Hall MHD dynam-
ics is qualitatively different from the resistive MHD dy-
namics. Nonetheless, our simulation results and future
research for even larger system sizes may shed light on
recent Parker Solar Probe in situ measurements of recon-
nection exhausts associated with interplanetary coronal
mass ejections and heliospheric current sheets, where bi-
furcated current sheets resembling Petschek’s reconnec-
tion model with a pair of slow-shocks or rotational dis-
continuities have been reported.56

Many questions remain open, particularly for applica-
tions to natural reconnection events where the system
sizes are much larger than those considered in this study
(i.e., Λ = L/di ≫ 1). Will a larger system size make
self-generated turbulent reconnection easier to realize?
Do global reconnection rate and geometry depend on the
microscopic description of reconnection physics (e.g., Hall
MHD or fully kinetic PIC) when the scale separation be-
tween L and di is large? In the future, the Hall MHD de-
scription of self-generated turbulent reconnection should
be further compared with fully-kinetic PIC simulations
or more elaborated fluid models such as high-moment
multi-fluid models,57,58 in particular in the regime when
the system size is much larger than kinetic scales.
The self-generated turbulence in the reconnection layer
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also poses new challenges to turbulence theories and fu-
ture numerical simulations. Our Hall simulation shows
that the turbulent state in the vicinity of the reconnection
mid-plane does not satisfy the Goldreich-Sridhar (GS)
scaling relation of turbulence eddy anisotropy. This re-
sult is similar to previous findings in resistive MHD simu-
lations. However, away from the mid-plane, the GS scal-
ing relation is partially recovered for large eddies. This
phenomenon has not been observed in resistive MHD sim-
ulations, and is not predicted by any theory.

Why the GS scaling relation is not satisfied in resis-
tive MHD self-generated turbulent reconnection but is
partially recovered in Hall MHD remains an open ques-
tion. Previously, Huang and Bhattacharjee argued that
the discrepancy may be because the reconnection layer
is highly inhomogeneous, with the reconnection outflow
and the magnetic field being strongly sheared.33 In Hall
MHD turbulent reconnection, the turbulent region is sig-
nificantly thicker than the resistive MHD counterpart.
Because the magnetic field is not as strongly sheared at
planes away from the mid-plane, this observation could
explain why the GS scaling relation is partially recovered
in places away from the mid-plane.

Even within the MHD regime, whether self-generated
turbulent reconnection deviates from the GS theory has
been unsettled. In a previous study, Kowal et al. showed
that the scaling relation for large-scale eddies in tur-
bulent reconnection simulations satisfies the GS scaling,
while small-scale eddies are “contaminated” by reconnec-
tion and exhibit different scaling behaviors.? However,
the initial and boundary conditions in their study dif-
fer from those in the present study: the initial condition
contains a tangential discontinuity rather than a smooth
magnetic field; the strength of the guide field is consid-
erably lower than that of the reconnecting component of
the magnetic field; the boundary conditions are periodic
in the outflow direction and open in the inflow direction.
It is unclear how much of their findings can be ascribed
to these distinctions.

It is worth mentioning that the present study uses a
compressible code. The relatively high plasma β (≈ 4
relative to the reconnecting component of the magnetic
field) and the presence of a guide field keep the plasma
close to, but not perfectly, incompressible. Through-
out the simulations, the root-mean-square density fluc-
tuation is approximately 3%, although the density can
differ from the mean value by up to 10% at some loca-
tions. Even though the compressibility of the plasma is
relatively low, the compressible waves within the system
may introduce subtle effects on the energy cascade and
eddy anisotropy.?

In order to assess the effects of compressibility, tur-
bulent reconnection should be investigated with incom-
pressible MHD and Hall MHD, as well as compressible
systems with varying plasma β. Furthermore, simula-
tions with varying guide field strengths will clarify mag-
netic shear effects. In a broader context, it is also of
great interest to further investigate how Hall and kinetic

effects affect plasmoid-mediated energy cascade in ho-
mogeneous turbulence, which is an important topic of
current research.59–63
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