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A Light-weight Transformer-based Self-supervised
Matching Network for Heterogeneous Images

Wang Zhang, Tingting Li, Yuntian Zhang, Gensheng Pei, Xiruo Jiang, and Yazhou Yao

Abstract—Matching visible and near-infrared (NIR) images
remains a significant challenge in remote sensing image fusion.
The nonlinear radiometric differences between heterogeneous
remote sensing images make the image matching task even
more difficult. Deep learning has gained substantial attention in
computer vision tasks in recent years. However, many methods
rely on supervised learning and necessitate large amounts of
annotated data. Nevertheless, annotated data is frequently limited
in the field of remote sensing image matching. To address
this challenge, this paper proposes a novel keypoint descriptor
approach that obtains robust feature descriptors via a self-
supervised matching network. A light-weight transformer net-
work, termed as LTFormer, is designed to generate deep-level
feature descriptors. Furthermore, we implement an innovative
triplet loss function, LT Loss, to enhance the matching perfor-
mance further. Our approach outperforms conventional hand-
crafted local feature descriptors and proves equally competi-
tive compared to state-of-the-art deep learning-based methods,
even amidst the shortage of annotated data. Code and pre-
trained model are available at https://github.com/NUST-Machine-
Intelligence-Laboratory/LTFormer.

Index Terms—Image matching, Transformer, Light-weight,
Self-supervised learning

I. INTRODUCTION

Heterogeneous remote sensing image matching pertains to
the process of matching images from different sensors to
achieve spatial congruence of homologous points under multi-
modal imaging techniques. This task is crucial for various
remote sensing applications such as land feature change de-
tection [1], [2], remote sensing image fusion [3], and target
identification and tracking [4]. With the continuous develop-
ment of deep learning technologies [5]–[8], multiple sensor
technologies, remote sensing images can originate from dif-
ferent sensors, including visible light, infrared, and synthetic
aperture radar. The images captured by these diverse sensors
hold unique information and exhibit variations in imaging
details for identical objects, providing complementarity. To
garner richer image insights, matching the heterogeneous
images is imperative before proceeding with fusion. However,
this is challenged by significant radiometric and geometric
disparities caused by variations in imaging mechanisms, band
configurations, spatial resolution, spectral resolution, and tem-
poral phase across different sensors. Consequently, tackling
heterogeneous remote sensing image matching has become an
intricate problem demanding further explorations and solutions
in the domain of image matching. Some common examples

W. Zhang, T. Li, Y. Zhang, G. Pei, X. Jiang, and Y. Yao are with the
School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing, China.

of heterogeneous image pairs encompass visible-NIR (near-
infrared), visible-infrared, optical-SAR, and electron computed
tomography imaging-MRI, among others. In the present study,
we narrow our focus specifically to the problem of matching
visible-NIR heterogeneous remote sensing image pairs.

The current mainstream image matching methods can be
roughly divided into two directions: area-based and feature-
based matching methods. Area-based methods [9], [10] strive
to achieve high-precision image matching by leveraging pre-
established similarity measures and transformation models.
Such approaches primarily analyze superficial image informa-
tion, such as grayscale or phase features, to facilitate direct
pixel-level image matching. It establishes an intuitive and
easily comprehendible direct mapping correlation between the
superficial information and the transformation model to effec-
tuate image matching. Nevertheless, area-based methods rely
considerably on similarity measures, and factors like geomet-
ric variations, brightness fluctuations, and image distortions
may lead to deceptive similarity measures. This challenges
achieving high-precision matching for heterogeneous images
with substantial differences. Furthermore, remote sensing im-
ages typically encompass larger spatial extents and are more
susceptible to redundancy of shallow image information. Con-
sequently, area-based remote sensing image matching methods
frequently grapple with suboptimal real-time performance and
elevated memory overhead.

On the other hand, feature-based image matching techniques
[11], [12] accomplish the task by extracting geometric features
like points, lines, and surfaces from the image, subsequently
generating local feature information descriptors. Such methods
capitalize on the image’s sparse yet salient spatial geometric
features, thereby achieving efficient image matching. They
adeptly mitigate the issue of information redundancy by ab-
stracting the original comprehensive image for representation.
Consequently, feature-based image matching techniques are
apt for tasks involving considerable image differences. The
heterogeneous remote sensing image matching framework we
have designed also employs this feature-based approach.

Hand-crafted feature descriptors, though extensively em-
ployed in numerous visual applications, frequently falter when
confronting heterogeneous images due to the existence of
nonlinear radiometric variations. In contrast, deep learning-
based feature descriptors have shown superior capability in
capturing deep image information and providing better feature
descriptions. Our work concentrates on resolving the fea-
ture matching conundrum in visible and near-infrared remote
sensing images. We introduce a self-supervised descriptor
termed LTFormer, which is constructed upon the light-weight
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transformer architecture. Extensive experiments demonstrate
the effectiveness of LTFormer in handling feature matching
in visible and near-infrared remote sensing images. The main
contributions of our work can be summarized as follows:

(1) We design a self-supervised training method that utilizes
ternary data and propose a data construction strategy to
facilitate the matching process.

(2) We develop a light-weight pyramid-based transformer
network to generate deep feature descriptors, achieving com-
parable performance with fewer parameters.

(3) We instantiate the LT Loss function grounded on Triplet
Loss, which decreases the distance between positive and an-
chor samples while increasing the distance from negative sam-
ples. This loss function amplifies the discriminative prowess
of the feature descriptors.

The remaining sections of this paper are organized as
follows: Section II introduces the related work on image
matching. Section III provides a detailed description of our
method. Section IV discusses the experiments and ablation
results. The conclusion of this work is presented in Section
V.

II. RELATED WORK

A. Area-based matching method

Nowadays, the application of multi-modal images is increas-
ingly widespread in various domains. For example, in the field
of medical imaging, [9] propose a new unsupervised adaptive
method for segmenting cardiac CT images and cardiac MRI
images. In environmental monitoring, fusing visible images
with infrared images [10] can provide better object detection
and tracking capabilities, improving security surveillance and
resource management. Image matching plays a crucial role in
enabling effective information fusion between multi-modal im-
ages. In the field of remote sensing image matching, numerous
algorithms have emerged, which can be categorized into two
main types: area-based matching methods and feature-based
matching methods. Let’s provide an overview of these two
main categories: area-based and feature-based.

In traditional area-based matching methods, grayscale fea-
tures of images have always been a focal point of atten-
tion. Commonly used similarity measurement methods based
on grayscale features include Sum of Squared Differences
(SSD), Normalized Cross-Correlation (NCC), Mutual Infor-
mation (MI), [13]–[15]. These methods are relatively simple
to implement but are sensitive to external factors such as
noise and grayscale variations. Introducing deep learning for
estimating image similarity and transformation models has
become a popular direction in this category of methods.
For remote sensing images that lack obvious features, [16]
propose a multi-source image matching algorithm based on
geographic location information. This algorithm achieves im-
age registration by computing the corresponding positions
of different pixels at the same geographic location in two
pairs of images, without being limited by image features and
imaging platforms. To address the issue of poor localization
accuracy of traditional feature extraction methods in remote
sensing images, GMatchNet [17] utilizes geometric CNN to

estimate affine transformation parameters based on matching
patches. It further refines the central coordinates to improve
the localization accuracy of feature points.

Dense optical flow estimation is a special type of dis-
placement field estimation method that can handle complex
spatial mapping relationships. However, it is computationally
challenging, inefficient, and has strict prerequisites. It has been
commonly used in medical imaging and the registration of
natural images with short time spans. Recently, deep learning-
based dense optical flow estimation has also been applied to
the matching problem of high spatial resolution remote sensing
images. LiteFlowNet [18] is designed as an alternative network
to FlowNet2 [19], achieving comparable performance while
significantly reducing the number of parameters. It utilizes
a pyramid feature extraction structure and proposes a more
efficient flow inference method at each pyramid level using
a light-weight cascade network, enabling dense optical flow
estimation. LiteFlowNet2 [20] and LiteFlowNet3 [21] further
improve the accuracy and efficiency of optical flow estimation.
LiteFlowNet2 reduces the number of layers in the original
image pyramid based on computational cost and accuracy im-
provement analysis. It also introduces a simple inference net-
work called NetE, which effectively enhances computational
efficiency and estimation accuracy. LiteFlowNet3 introduces
a local flow consistency constraint to further improve the
accuracy of optical flow estimation.

Overall, due to the larger spatial extent and complex ge-
ometric distortions present in remote sensing images, area-
based matching methods are less commonly used in the field
of remote sensing imagery.

B. Feature-based matching methods

1) Handcrafted Local Feature Descriptors: With the pro-
posal and improvement of the floating descriptor [11]
SIFT [22], the feature-based image matching technique has
gradually become a research hotspot. While SIFT ensures scale
and rotation invariance through the construction of a Gaussian
difference pyramid, it overlooks the rationality of feature
point distribution. To filter out feature points with abnormal
distributions, UR-SIFT [23] utilizes stability and uniqueness
constraints to extract evenly distributed, reliable, and accu-
rately aligned feature points. MUR-SIFT [24] improves upon
SIFT to obtain uniformly distributed matching features. PC-
SIFT [25] combines the coarse matching results obtained by
SIFT with the fine matching obtained through phase corre-
lation. Considering the matching speed, [26] propose SURF,
which uses integral images and Haar wavelet transforms to
generate descriptors, reducing computational costs and accel-
erating descriptor extraction. However, it exhibits inferior scale
and rotation invariance compared to the SIFT algorithm.

While SIFT features based on the Gaussian scale space
blur the natural boundaries of objects, KAZE [27] constructs
a nonlinear scale space and employs nonlinear diffusion fil-
tering to describe features. However, it comes with a high
computational cost. Similarly, BFSIFT [12], which utilizes
bilateral filtering to construct an anisotropic scale space for
feature detection, also suffers from expensive computational
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costs. Since the introduction of BRIEF [28], the use of binary
strings as efficient feature descriptors has become increasingly
popular. In order to reduce the computational complexity while
maintaining the performance of methods such as SIFT and
SURF, binary descriptors such as BRISK [29] and ORB [30]
have been proposed, which are computationally two orders of
magnitude faster than SIFT. AKAZE [31], as an accelerated
version of KAZE, embeds Fast Explicit Diffusion (FED) in the
pyramid framework, which significantly improves the speed of
feature detection in nonlinear scale spaces.

In the field of heterogeneous remote sensing image match-
ing, [32] propose an Enhanced Affine Transformation (EAT)
method for non-rigid infrared and visible light image match-
ing. The method transforms the image matching problem into
a point set matching problem by extracting interest points
from the image edge mapping. Then, they use the EAT model
with optimal local feature estimation to construct the global
deformation and simplify the Gaussian field-based objective
function using potential correspondences between image pairs
to guide the matching process.

2) Deep Learning based Local Feature Descriptors: In re-
cent years, many studies have applied deep learning to feature-
based image matching methods [33]–[36]. These methods
generally embed deep learning models into the framework of
traditional matching methods, replacing the feature extraction
[37], [38], description [39], [40], and matching stages [41],
[42]. Compared to traditional methods, deep learning-based
matching methods extract deep semantic information from
images and learn complex spatial mapping relationships. This
enables them to meet the requirements of efficient and accurate
matching in remote sensing image matching.

The successful proposal of MatchNet [43], a dual network
architecture consisting of a feature extraction network and a
learning metric network, opens a new chapter in the use of
CNN for image matching. TFeat [44] uses three sets of training
samples to mine the positive and negative information to obtain
better feature descriptors. L2-Net [45] is a two-part network
consisting of a feature detector and a feature descriptor. The
detector network quickly extracts the information of the feature
points in the image and inputs it into the descriptor network
to obtain the feature descriptors. Based on the in-depth study
of L2 regularisation, HyNet [46] applies L2 regularisation
to all feature mappings in the network, which further im-
proves the performance of feature descriptors. In addition, the
GeoDesc [47] descriptor for multi-view reconstruction gener-
ated by integrating geometric constraints compensates for the
lack of local descriptors in the image-based 3D reconstruction
benchmarking and improves the matching accuracy.

SoSNet [48] introduces Second-Order Similarity (SOS) to
learn local descriptors and proposes Second-Order Similar-
ity Regularisation (SOSR) method. The descriptors obtained
by training perform well on some challenging tasks. DGD-
net [49] uses VGG16 as a backbone network to extract dense
feature descriptors. It constructs bootstrap scores for each pair
of descriptors to supervise the learning of the detectors. It
introduces the idea of backtracking to improve the localization
accuracy of low-resolution feature maps. Patch2Pix [50] is
a weakly supervised learning method that regresses pixel-

level matches by predicting patch-level matches and uses the
confidence scores to optimize the matching results. Although
L2 normalization can bring the distribution of descriptors
closer, it reduces their discriminative power. CNDesc [51]
proposes to use a learnable cross-normalization technique
instead of L2 normalization and designs a backbone network
that effectively improves the reusability of the descriptors as
well as the corresponding IDC loss to further improve the local
descriptor performance.

[52] propose the Common Attention Module (CoAM), a
spatial attention mechanism for processing two images si-
multaneously to determine the correspondence between them.
CoAM can be embedded in other network architectures for
training and applies to image datasets with significant differ-
ences. SuperGlue [53] introduces a graph neural network and
uses an attention-based context aggregation mechanism that
enables it to jointly reason about matching 3D scenes. A sim-
ple but effective improvement on SuperGlue, LightGlue [54]
reduces training difficulty and improves adaptability to difficult
tasks. LoFTR [55] employs a coarse-to-fine strategy for image
matching, utilizing self-attention and cross-attention layers to
extract feature descriptors, and can produce dense matching
pairs in low-texture regions of the image.

Multi-modal remote sensing image matching has been a
research difficulty and hotspot in the field of remote sensing
image matching. Firstly, there is a serious nonlinear grey
scale mapping problem in multi-modal images, and secondly,
the features of different modal images are independent of
each other. Therefore, extracting and unifying the features of
different modal images has become a key issue in matching
heterogeneous remote sensing images. There are two main-
stream research directions, one for continuing to use the
same steps as homologous image matching. [56] propose a
pseudo-siamese convolution neural network architecture that
puts optical and SAR images into two parallel network streams
at the same time and fuses the features using a fully connected
layer. [57] propose FDNet, which is a composite matching
method consisting of a residual denoising network (RDNet)
and a pseudo-siamese fully convolution network (PSFCN)
with respect to optical and SAR images. CMM-Net [58]
performs L2 normalization on the heterogeneous image fea-
ture descriptors to bring the heterogeneous features as close
together as possible. The other converts the heterogeneous im-
ages into homogeneous images by introducing network models
such as GAN before performing image matching. [59] and [60]
apply image style migration to the preprocessing of image
matching and eliminate radiometric and geometric differences
by fusing multi-modal remote sensing images. [61] propose
a new regularised conditional generative adversarial network
(GAN) for image matching preprocessing to eliminate grey
scale, texture, and style differences between multi-spectral
images and then use the classical local feature method to
complete the heterogeneous matching task.

Because of the scarcity of labeled data in remote sensing
datasets and the considerable human resources required to
annotate remote sensing images with feature points, self-
supervised learning eliminates the need to annotate the
datasets. It saves a great deal of engineering work. FM-
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Fig. 1. Overview of our LTFormer framework. The feature point detector utilizes the default SIFT algorithm, while our model is employed to generate feature
descriptors. Initiating self-supervised training begins with forming a triplet of these descriptors to obtain correspondences. In conclusion, this framework
facilitates the extraction of robust deep feature descriptions to match keypoints between visible and near-infrared images.
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Fig. 2. Overview of the self-supervised training process. By using triplet descriptors, LT Loss is utilised in the feature space to bring anchor patches as close
as possible to positive patches while moving away from negative patches.

CycleGAN [62] introduces a feature matching loss to the un-
supervised image synthesis method, CycleGAN, which aligns
the features of the heterogeneous source images.

III. PROPOSED METHOD

In this section, we introduce our proposed approach for
matching heterogeneous remote sensing images. First, in Sec-
tion III-A, we provide an overview of the general principles
of the matching method used to establish correspondences
among feature points in visible and near-infrared images.
Next, in Section III-B, we describe the self-supervised training
approach and the data construction strategy adapted to it. Last,
we will describe in detail the various important components
of the proposed approach in Section III-C.

A. Overall Framework

To achieve accurate feature matching between heteroge-
neous remote sensing images, the key is to mitigate the impact
of spectral and geometric differences and find invariant feature
representation methods. As illustrated in Figure 1, here is the
description of our proposed framework, which consists of four
main parts: feature point detection, image patch extraction,
deep feature descriptor generation, and feature matching.

Firstly, feature point detector is performed on the images
to generate the center points of image patches. Assuming
IV isible and INIR are the registered visible images and near-
infrared images, respectively. After applying a feature point
detector, we obtain Nv and Nn key points on IV isible and
INIR, respectively.During the image patch extraction process,
we extract the surrounding regions based on the detected
feature points in the visible images and near-infrared images.
These regions are then reconstructed into patches of size
128×128 pixels. As a result, we obtained two sets of patches:
{PV isible

i }i=1:Nv
and {PNIR

j }j=1:Nn
, corresponding to the

visible images and near-infrared images, respectively.
To establish the correspondence between these two sets

of patches, we introduce the ViT model to generate deep
feature descriptors. By utilizing the PVT model, each patch is
transformed into a more discriminative representation space,
which improves feature utilization and reduces the number of
parameters, denoted as:

dvi = F (PV isible
i ), dnj = F (PNIR

j ), (1)

where F (·) denotes the ViT transformation for a given patch,
dvi and dnj denote the feature descriptors. Since there are
significant differences between the features of different modal-
ities, we apply L2 normalization to the descriptors of the
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heterogeneous image features, aiming to unify them as much
as possible, denoted as:

d̂vi = dri /∥dvi ∥2, d̂nj = dnj /∥dnj ∥2, (2)

The normalized descriptors are then combined into a triplet
form and used for self-supervised learning. By minimising the
Euclidean distance between d̂vi and d̂ni in the embedding space,
we establish the correspondence between IV isible and INIR,
and ultimately achieve the accurate matching of feature points
between visible and near-infrared images.

B. Self-supervised Matching Network

Designing a self-supervised learning paradigm is crucial
for our task of generating highly discriminative models from
pre-existing unannotated data. In single-modal learning, the
definition of self-supervised learning relies on the training
objective and whether it uses human annotations for supervi-
sion. However, in multi-modal learning, it is often possible to
use one modality to provide a supervision signal for another
modality. Therefore, we have adopted the concept of triplet
loss and designed a self-supervised training method based on
a triplet loss architecture, as shown in Figure 2.

By extracting patches {PV isible
i }i=1:Nv and {PNIR

j }j=1:Nn

from visible and near-infrared images, we reconstruct triplet
image patches suitable for self-supervised training as inputs,
denoted as (Pi, P

+
i , P−

i ). Pi represents the anchor patch, P+
i

represents the positive patch, and P−
i represents the negative

patch. We can take a given visible image patch as an anchor
patch Pi and apply a homography transformation T (·) to
the corresponding near-infrared image patch to generate a
positive patch P+

i , and a negative patch P−
i can be any other

patch from the same set of near-infrared image patches. The
homography transformation T (·) generates copies of images
with different appearances, which helps the model learn fea-
ture representations with invariance and improves the model’s
generalization ability. By choosing appropriate positive and
negative patches, we can form them into a triad for input
into the network and obtain the corresponding deep feature
descriptors. The goal of training is to minimize the distance
between the anchor patch Pi and the positive patch P+

i while
maximizing the distance between the anchor patch Pi and the
negative patch P−

i .

C. Light-weight Transformer and Loss Function

Inspired by PVT (Pyramid Vision Transformer), we further
streamline the network model based on PVTv2, and finally get
the version named Light-weight Transformer (LTFormer). Al-
though PVTv2 has outperformed Swin-B and has fewer param-
eters and computational effort, it still requires a large amount
of computational resources when dealing with high-resolution
remote sensing image tasks. In order to achieve the goal of
lightweight, we reduce the number of channels in the PVTv2-
B0 network from the original Ci = {32, 64, 160, 256}i=1:4

to Ci = {16, 32, 64, 128}i=1:4. The specific hyperparameter
settings are shown in the following table.

In the context of remote sensing imagery, the interference
of factors such as scale variation and viewpoint change poses

TABLE I
DESCRIPTION OF THE PROPOSED LTFORMER ARCHITECTURE.

Output Size Layer Name Light-weight
Transformer

Stage1 H
4

× W
4

Overlapping Patch Embedding
S1 = 4

C1 = 16

Transformer Encoder

R1 = 8

N1 = 1

E1 = 8

L1 = 2

Stage2 H
8

× W
8

Overlapping Patch Embedding
S2 = 2

C2 = 32

Transformer Encoder

R2 = 4

N2 = 2

E2 = 8

L2 = 2

Stage3 H
16

× W
16

Overlapping Patch Embedding
S3 = 2

C3 = 64

Transformer Encoder

R3 = 2

N3 = 4

E3 = 4

L3 = 2

Stage4 H
32

× W
32

Overlapping Patch Embedding
S4 = 2

C4 = 128

Transformer Encoder

R4 = 1

N4 = 8

E1 = 8

L4 = 2

challenges to feature extraction. Additionally, images from
different sensors can exhibit significant differences in spectral
and geometric properties, even under unchanged viewpoints.
Therefore, in the task of feature extraction from remote sensing
images, it becomes crucial to employ adversarial sample
training and to seek a more discriminative feature space. The
Triplet Loss [63], commonly used in face recognition tasks,
can provide adversarial signals and facilitate the model in
learning the differences between samples without relying on
label information, thereby meeting the requirements of self-
supervised training.

In this case, our training samples consist of N sets of three
128-dimensional patch embeddings (Pi, P

+
i , P−

i ), forming
triplets to compute the distance differences between samples of
the same class and different classes. The learning objective of
the loss function is to increase the distance between different
class samples while reducing the distance between samples
of the same class, ensuring that the distance between samples
of the same class is smaller than that between samples of
different classes. The specific formulation of the loss function
is as follows:

LTLoss =
1

Nv

Nv∑
i=0

max{D(Pi, P
+
i ) +D(Pi, P

−
i )−M, 0},

(3)
where D(Pi, P

+
i ) denotes the calculation of the Euclidean

distance between Pi and P+
i , M is a boundary value that

controls the difference in distance between samples of the
same class and samples of different classes, and the value
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Fig. 3. Samples of The WHU-OPT-SAR dataset. The optical image is obtained by merging a visible image with a near-infrared image.

is determined as

M = |D(Pi, P
+
i ) +D(Pi, P

−
i )|/2. (4)

By adaptively adjusting the boundary value m according to the
distance difference between samples, it can help the model to
better learn the differences between samples.

IV. EXPERIMENT AND ANALYSIS

A. Experiment Setup

1) Database description: The experiment utilizes the
WHU-OPT-SAR dataset [64], which consists of images with
four channels: red (R), green (G), blue (B), and near-infrared
(NIR). The dataset covers an area of 51,448.56 square kilome-
ters with a resolution of 5 meters. It includes diverse remote
sensing images of different terrains such as mountains, forests,
hills, and plains, as well as various vegetation types, including
coniferous forests, broad-leaved forests, shrubs, and aquatic
vegetation, as shown in Figure 3. The WHU-OPT-SAR dataset
comprises a total of 100 optical images with dimensions of
5556×3704 pixels. The first 80 images are used as the training
set, while the remaining 20 images serve as the validation set.

The initial step involves separating the near-infrared channel
from the original images and dividing the dataset into visible
and near-infrared data groups. Due to the high resolution of
the original images, which hinders feature point detection, we
crop the images to a size of 926×926 pixels. In order to
maintain the same number of channels as the NIR image,
we convert the visible image to a grayscale image. Then,
we apply Contrast Limited Adaptive Histogram Equalization
(CLAHE) to enhance the contrast of the images. Following
the guidelines in section III-C, we extract a large number
of feature points from appropriately sized images and subject
them to anchor-based cropping. To generate positive samples,
we apply appropriate transformations to the near-infrared
image patches. The experiment provides three transformation

methods: small-scale scaling (Sf = [0.9, 0.95, 1.05, 1.1, 1.15]),
small-angle rotation (θ ∈ [5, 10, 15] degrees), and small-scale
translation (8 pixels). Combining all the steps, we create a
training dataset consisting of 10,000 groups of patches, as
shown in Figure 4.

2) Evaluation Metrics: The experiment employs two met-
rics to evaluate the algorithm performance: Matching Precision
and Matching Score. Matching Precision is defined as the
ratio of the number of correctly matched points (Ncorr) to the
number of key points successfully matched (Nsuss). Matching
Score is defined as the ratio of the number of correctly
matched points to the total number of matched points. The
determination of correctly matched points can be performed
using the following formula:

Corr(x) : ∥xi − xj∥ ≤ ϵ (5)

where xi represents the key points matched by the algorithm,
and xj represents the ground truth key points. They are
considered correct match points if the Euclidean distance
between them is less than the given projection error ϵ. The
projection error is fixed at ϵ = 5 in our experiment.
Nsuss depends on the matching threshold, which measures

the Euclidean distance between the depth feature descriptors
the algorithm determines to be two matches. A matching
threshold 0.5 is used, and any distance greater than this
threshold is considered a failed match point.

The algorithm’s performance on the feature point matching
task can be evaluated by calculating the matching accuracy and
matching score. The matching accuracy reflects the accuracy
of the algorithm. In contrast, the matching score considers both
the accuracy and recall of the algorithm, providing a more
comprehensive assessment of the algorithm’s performance.

3) Implementation Details: The experiment is conducted
without pre-trained weights and based on self-supervised
learning. It utilizes the Stochastic Gradient Descent (SGD)
optimizer for training, with a batch size 256. The initial
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Fig. 4. Sample triplex dataset showing triplex morphology after different homography transformations.

learning rate is set to 0.001, and a momentum of 0.9 is applied.
The training is performed on an NVIDIA A100 GPU with
40GB of memory. It consists of 50 epochs and takes 2 hours
to complete. The dimension of the deep feature descriptor is
set to 128 by default, the input image size of the model is
set to 128×128 pixels, the feature extractor is set to SIFT by
default, and the patch size is set to 64. The matching time for
a set of image pairs with dimensions of 463×463 pixels is 1
second.

B. Comparison to state-of-the-art local feature descriptor
methods

Due to the confidentiality and limited accessibility of re-
mote sensing images, there is currently no publicly available
benchmark dataset for evaluating the performance of remote
sensing image matching. Therefore, we need to create an
annotated validation dataset to perform the evaluation. We are
currently selecting the last 20 images from the WHU-OPT-
SAR dataset and dividing them into visible light and NIR
groups. Each image is cropped to a size of 463×463 pixels,
and the coordinates of feature points are recorded using a
feature extractor. Since the NIR images are extracted from the
original dataset, each visible-NIR image pair is aligned, and
the feature points correspond one-to-one. This process results
in a validation dataset consisting of 1940 image pairs.

1) Comparison to state-of-the-art Handcrafted descriptors:
To fairly compare the performance of different descriptors, we
compare traditional methods (including SIFT, ORB, AKAZE,
and BRISK) and our proposed LTFormer descriptor on the
same set of keypoints. Figure 5 displays the matching results
between visible and near-infrared images. Green lines repre-
sent correct matches, while incorrect matches are shown in
red. It is evident from the results that the LTFormer descriptor
achieves a significantly higher number of correct matches
compared to the traditional descriptors. This indicates a clear
advantage of LTFormer in matching heterogeneous images.

TABLE II
QUANTITATIVE COMPARISON OF LTFORME WITH DEEP LEARNING-BASED
FEATURE DESCRIPTORS (E.G. SOSNET, SUPERGLUE, HYNET, CNDESC,

AND HARDNET) AT DIFFERENT PATCH SIZE SCALES.

Patch Size Method Precision Matching Score

64

SoSNet [48] 0.8459 0.7389
SuperGlue [53] 0.8381 0.7511
HyNet [46] 0.8446 0.7462
CNDesc [51] 0.8302 0.7284
HardNet [65] 0.8453 0.7485
Proposed 1.0000 1.0000

128

SoSNet [48] 0.9873 0.9363
SuperGlue [53] 0.9807 0.9484
HyNet [46] 0.9886 0.9232
CNDesc [51] 0.9727 0.9254
HardNet [65] 0.9879 0.9459
Proposed 1.0000 1.0000

192

SoSNet [48] 0.9881 0.9592
SuperGlue [53] 0.9815 0.9702
HyNet [46] 0.9894 0.9452
CNDesc [51] 0.9737 0.9481
HardNet [65] 0.9887 0.9682
Proposed 1.0000 1.0000

2) Comparison to state-of-the-art learning feature descrip-
tors: Although there is no benchmark test specifically for
keypoint matching between visible and near-infrared images,
we conduct our own experiments and compare our results with
the latest deep learning-based keypoint matching methods. We
construct a dataset by ourselves and divide it into a training set
and a validation set with a 4:1 ratio. We perform benchmark
tests on supervised learning methods such as SosNet, Super-
Glue, HyNet, and CNDesc, as well as self-supervised learning
methods like HardNet [65]. In the experiments, we use the
SIFT method as the feature point extractor to ensure that all
methods were trained based on the same set of keypoints.
Table II summarizes the matching accuracy and matching
score results obtained by the six methods at different scales.
It can be observed that our method consistently achieved the
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Fig. 5. Qualitative comparison of LTFormer with traditional methods such as SIFT, ORB, AKAZE and BRISK.

best results in terms of matching accuracy and matching scores
across different image scales.

C. Ablation Studies and Analysis

1) Comparison of Feature Point Detector: We conduct LT-
Former descriptor testing on six feature point extractors: SIFT,
SURF, AKAZE, KAZE, ORB, and BRISK. We successfully
match all feature points using these extractors, as shown in
Figure 6. This indicates that our method achieves favorable
results on traditional feature point extractors like SIFT and
SURF and updated ones such as AKAZE, KAZE, ORB, and
BRISK. The results demonstrate that the LTFormer descriptor
exhibits broad applicability and robustness, enabling accurate
feature point matching across various feature point extractors.
This powerful tool can be utilized for tasks such as image
registration, object detection, and image retrieval.

2) Comparison of triplet loss variants: We compare dif-
ferent triplet loss functions, including HardNet Loss [66],
standard Triplet Loss with a fixed margin [63], adaptive margin
triplet loss [67], and our proposed LT Loss. Based on the
comparison results (see Table III), we draw the following
conclusions:

From the metrics, HardNet Loss performs poorly on het-
erogeneous image datasets with large inter-class differences
and intra-class similarities. The margin selection schemes of
standard Triplet Loss with a fixed margin and adaptive margin
triplet loss also demonstrate their limitations. This suggests
that these triplet loss functions may not adequately meet the
distribution characteristics of the samples, thereby affecting
the performance of feature learning. In contrast, our designed

TABLE III
COMPARISON OF FOUR DIFFERENT LOSS FUNCTIONS: ADAPTIVE MARGIN
TRIPLE LOSS, HARDNET LOSS, TRIPLE LOSS AND LT LOSS IN TERMS OF

ACCURACY AND SCORE MATCHING. LT LOSS GIVES BETTER
PERFORMANCE.

Loss Function Precision Matching Score
Adaptative Loss [67] 0.9883 0.9263
HardNet Loss [66] 0.9886 0.9507
Triplet Loss [63] 0.9915 0.9915
LT Loss 1.0000 1.0000

TABLE IV
PERFORMANCE OF LTFORMER ON DIFFERENT FEATURE DIMENSIONS.

Descriptor Dimension Precision Matching Score
64 0.9998 0.9998
128 1.0000 1.0000
256 1.0000 1.0000

LT Loss exhibits excellent performance. This indicates that our
loss function possesses higher discriminability, robustness, and
adaptability.

3) Comparison of feature descriptor dimension settings:
The dimension of a feature descriptor significantly impacts
its descriptive capability, particularly in the context of deep
learning-based descriptors. Higher-dimension descriptors can
provide richer feature representations by capturing more in-
tricate details and variations in the data. However, they often
come with increased computational costs. On the other hand,
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Fig. 6. Matching results of LTFormer descriptors on SIFT, SURF, AKAZE, KAZE, ORB and BRISK feature point Detectors.

reducing the dimension of a feature descriptor can lower the
computational complexity. Still, it may also result in a less
discriminative representation with a reduced ability to capture
fine-grained details. It’s essential to balance the dimension
and the desired level of descriptive power, considering the
specific application requirements and available computational
resources. For example, in our experiments with LTFormer
descriptors, we test different dimensions, as shown in Table IV.
Even at the lowest dimension of 64, the LTFormer descriptors
maintain excellent performance comparable to descriptors with
higher dimensions, such as 128 or 256. This indicates that
LTFormer can effectively capture feature information with
fewer parameters and computational requirements, making it
well-suited for practical applications in remote sensing image
matching.

V. CONCLUSION

This paper proposes a self-supervised matching network
termed as LTFormer, based on the light-weight transformer
architecture, to address the challenge of matching heteroge-
neous remote sensing images. Leveraging a triplet input and
a well-defined data construction strategy, visible and near-
infrared images are input into the matching network to derive
LTFormer descriptors. Additionally, the LT Loss function
is incorporated to enhance correspondence search within a
more discriminative feature space. Notably, our self-supervised

approach necessitates no annotated data, relying solely on the
original heterogeneous remote sensing images for training.
Comparisons with traditional handcrafted feature descriptors
and recent supervised deep learning methods demonstrate
that our approach outperforms other methods significantly in
feature matching. Future research directions include exploring
more optimal network structures and loss functions to further
improve the performance of matching heterogeneous remote
sensing images.
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