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Abstract—
Depthwise and pointwise convolutions have fewer parameters

and perform fewer operations than standard convolutions. As a
result, they have become increasingly used in various compact
DNNs, including convolutional neural networks (CNNs) and
vision transformers (ViTs). However, they have a lower compute-
to-memory-access ratio than standard convolutions, making their
memory accesses often the performance bottleneck.
This paper explores fusing depthwise and pointwise convolutions
to overcome the memory access bottleneck. The focus is on
fusing these operators on GPUs. The prior art on GPU-based
fusion suffers from one or more of the following: (1) fusing
either a convolution with an element-wise or multiple non-
convolutional operators, (2) not explicitly optimizing for memory
accesses, (3) not supporting depthwise convolutions. This paper
proposes Fused Convolutional Modules (FCMs), a set of novel
fused depthwise and pointwise GPU kernels. FCMs significantly
reduce pointwise and depthwise convolutions memory accesses,
improving execution time and energy efficiency. To evaluate the
trade-offs associated with fusion and determine which convolu-
tions are beneficial to fuse and the optimal FCM parameters,
we propose FusePlanner. FusePlanner consists of cost models
to estimate the memory accesses of depthwise, pointwise, and
FCM kernels given GPU characteristics. Our experiments on
three GPUs using representative CNNs and ViTs demonstrate
that FCMs save up to 83% of the memory accesses and achieve
speedups of up to 3.7x compared to cuDNN. Complete model
implementations of various CNNs using our modules outperform
TVMs’ achieving speedups of up to 1.8x and saving up to two-
thirds of the energy.

Index Terms—Deep neural networks, depthwise convolution,
pointwise convolution, GPU, layer-fusion

I. INTRODUCTION

Convolutions are core operators in many Deep Learn-
ing (DL) models, including Convolutional Neural Networks
(CNNs) [14], [15], [20], Vision Transformers (ViTs) [10],
[13], [43], [45], [48], [49], and Graph Convolutional Net-
works (GCNs) [33], [51]. Splitting a standard convolution into
depthwise (DW) and pointwise (PW) convolutions reduces the
model size and operation count [9], [15]. To give an example,
XCeption CNN, which uses DW and PW convolutions, has
an accuracy that surpasses ResNet-152’s [14] despite being
roughly three times smaller [9]. Hence, DW and PW con-
volutions are increasingly replacing standard convolutions in
designing compact models that achieve state-of-the-art accu-
racy [9], [15], [36], [37], [43], [49].

Figure 1 demonstrates the effect of splitting a standard
convolution into depthwise separable convolution (DSC) [15],
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Fig. 1: Operation count and memory accesses of a standard,
DSC (DW+PW), and fused convolutions. The example is
taken from MobileNet. All values are normalized to the

standard convolution values

i.e. DW plus PW, on the operation count, weights, and input
and output sizes. The DW and PW convolutions require
fewer weights and perform fewer operations than standard
convolutions. However, their combined inputs and outputs are
larger. The net result is having fewer operations but more
memory accesses. In other words, DW and PW are more often
memory-bound compared to standard convolutions [26]. As a
result, their memory accesses form a performance bottleneck
on most of the commonly used accelerators.

Operator fusion, or layer fusion, reduces off-chip mem-
ory accesses considerably compared to traditional layer-by-
layer execution. In layer-by-layer execution, the convolution
processes its inputs completely and writes the results to the
main memory. However, fusing layers allows the intermediate
results to be processed at finer granularity while on-chip [2],
[6], [16], [50]. In the example in Figure 1, fusion saves 50% of
the off-chip memory accesses of the DW and PW convolutions.
Fusing a convolution with an element-wise operation like
normalization and non-linearity is a common optimization
applied by DL compilers like TVM [7] and DNNVM [46].
However, due to complex input-output dependencies among
convolutions, fusing multiple convolutions could incur numer-
ous redundant computations or memory accesses [2]. Nonethe-
less, the prior art has demonstrated that when handling the
trade-offs properly, fusing convolutions is beneficial on custom
accelerators [2], [4], [6], [12], [16], [25], [28], [31], [34], [38],
[42], [44], [46], [47], [50], [53].

As GPUs have been key accelerators in the resurgence
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of DL [20] and are the most widely-supported accelerators
by various DL frameworks [1], [3], [18], [29], they are an
ideal target of various optimizations including layer fusion.
However, when it comes to fusing multiple convolutions,
GPU programming abstractions and memory level access
constraints make managing cross-convolution dependencies
challenging [2].

The prior art on layer fusion suffers from one or more of
the following limitations. First, on GPUs, they either consider
fusing a convolution and an element-wise or multiple non-
convolutional operators [7], [11], [17], [24], do not explicitly
model and optimize memory accesses, or do not support depth-
wise convolutions [41], [54]. Second, the work targeting other
accelerators is either tightly coupled to a specific architecture
or assumes complete hardware flexibility like that offered by
FPGAs [2], [25], [38], [42], [44].

In this paper, we propose Fused Convolutional Modules
(FCMs), a set of novel fused GPU kernels of DW and PW con-
volutions. FCMs reduce global memory access considerably
leading to improved latency and energy efficiency. To evaluate
fusion trade-offs and decide when fusion gains outweigh its
overheads, we propose FusePlanner. Given a set of DW and
PW convolutions and GPU characteristics, FusePlanner’s cost
models estimate the memory accesses of depthwise, pointwise,
and FCM kernels. FusePlanner explores the feasible FCMs
and layer-by-layer implementations and suggests one that
minimizes memory access. FCMs can be used as library
routines, and with FusePlanner they can be used to derive
complete CNN execution plans. Using FusePlanner-suggested
FCM and layer-by-layer implementations, we implement and
evaluate convolutional layers of state-of-the-art CNNs and
ViTs on three GPUs. We compare our implementation with
CuDNN [8] based implementations. Moreover, we compare
the performance of full implementations of the CNNs, based
on FusePlanner-suggested FCM and layer-by-layer kernels, to
a DL compiler (TVM) [7] optimized implementations. Our
contributions are as follows:

• We propose Fused Convolutional Modules (FCMs), a set
of novel GPU kernels comprising DW and PW convolu-
tions. FCMs mitigate these convolutions’ memory access
bottleneck leading to low-latency and energy-efficient
execution.

• We propose FusePlanner, FusePlanner consists of cost
models that estimate global memory accesses of DW,
PW, and FCM kernels given a GPU architecture. Fuse-
Planner decides which layers benefit from fusion and the
implementation parameters that minimize global memory
accesses.

• We evaluate FCMs by comparing their performance
to custom, and standard DL library-based (cuDNN)
convolution kernels from representative CNNs and
ViTs on multiple GPUs. We also compare end-to-
end implementations of the CNNs utilizing FCMs and
FusePlanner-suggested layer-by-layer implementations to
TVM-optimized models.

The proposed FCMs achieve up to 1.8x speedup over
custom layer-by-layer implementations and up to 3.7x over the
best cuDNN implementations using representative CNNs and
ViTs. FCMs save up to 83% of the global memory accesses
compared to CuDNN. End-to-end implementations of four
CNNs using the proposed kernels achieve up to 1.8x speedup
compared to TVM implementations and save up to two-thirds
of the energy per inference.

II. BACKGROUND AND MOTIVATION

A. CNNs and ViTs

Convolutional neural networks (CNNs) are feed-forward
DNNs [22]. As the name suggests, the main layers in a CNN
are the convolutional layers. A convolutional layer has a set
of trainable parameters or weights grouped into filters. The
filters are applied to multi-dimensional arrays of input or
intermediate results, extracting their embedded features [23].
The inputs of a layer are known as input feature maps (IFMs)
and the outputs as output feature maps (OFMs). Feature Maps
(FMs), or activations, refer to both IFMs and OFMs. FMs
comprise a set of 2D slices known as channels.

Transformer models are based on a self-attention mech-
anism that learns the relationships between elements of a
sequence [39]. In vision transformers (ViTs), self-attention
allows modeling contextual information of the full image
and long-range dependencies both in space and time [19].
This paper focuses on convolutional ViTs that combine self-
attention with convolutions [36], [43], [49].

B. Depthwise and pointwise convolutions
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Fig. 2: Depthwise and pointwise convolutions

Depthwise (DW) and Pointwise (PW) convolutions optimize
DNNs’ size-accuracy trade-off [5], [9], [15], [32], [36], [37],
[43], [52]. They decouple the spatial and cross-channel corre-
lations [9]. As Figure 2 shows, DW convolution is applied to
the spatial dimensions,i.e. width, and height, where one filter
is applied to a single channel. PW convolution is applied to the
cross-channel dimension, where its 1× 1 filters span over all
channels. DW and PW convolutions are combined in various
ways to build efficient modules or blocks, including Depthwise
Separable Convolutions (DSC) and inverted residual with
linear bottlenecks, or inverted residuals for short, [9], [15],
[32], [37]. The DSC is composed of a DW followed by a
PW layer. The inverted residuals comprise three convolutional
layers: PW-DW-PW.
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(a) Tiled DW and PW convolution

Overlap Overlap Overlap
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intermediate results

DWPW PWDW_RPW IFMs DW OFMs

(b) Two fusion cases: DW followed by PW (DWPW), and PW followed by DW
(PWDW R)

Fig. 3: Tiled Layer-by-Layer and fused convolutions

C. CUDA-Capable GPU architecture and programming
model overview

A GPU architecture consists of a scalable array of streaming
multiprocessors (SMs) [27]. An SM is a Single-Instruction-
Multiple-Thread (SIMT) architecture that runs groups of paral-
lel threads called warps in a lockstep fashion. A CUDA kernel
is processed by a grid of threads. The grid consists of a set of
thread blocks, threads in a block run on the same SM. GPU
has a memory hierarchy of multiple levels with different access
constraints. Each thread has private local registers. Each SM
has a low-latency L1 cache, and a variable-sized portion of
that cache is configurable to serve as programmer-managed
shared memory. The shared memory is visible to all threads
in a block and has the same lifetime of the block. The rest
of the memory levels are globally accessible by threads of the
entire CUDA kernel.

D. Fusing Convolutions on GPUs

There are multiple algorithms to implement convolution on
GPU. We focus on the direct convolution implementation and
use it as the basis for the layer-by-layer and the fused kernels.
This is because other algorithms, including Winograde and
FFT, require filters of greater than 1× 1 width and height, so
they are not applicable for PW convolution [21]. Moreover,
Winograde, FFT, and GEMM optimize the computation at the
cost of more memory bandwidth requirements, which does not
suit PW and DW convolutions.

Figure 3a shows a simplified example of tiled DW and PW
convolutions. For simplicity, each weight tile has only one
filter and computes a 2d tile of 3× 3 of the OFMs. The DW
convolution has 2 × 2 filters and 4 × 4 tile of the IFMs. On
a GPU, assuming an Output Stationary (OS) dataflow, each
OFM tile gets assigned to a thread block that runs on one of the
GPU’s Streaming Multiprocessors (SMs). In the layer-by-layer
execution, each layer is implemented as one or more CUDA
kernels that process the IFMs and produce the complete OFMs.
Because the SMs’ L1/shared memory contents do not outlive a
single kernel, all the OFMs must be written back and cannot be
reused by the next layer. Note that because L1/shared memory
is private to an SM, the overlap regions among the IFM tiles,
in the case of DW, must be loaded multiple times depending
on the number of tiles sharing them.

Figure 3b shows two fusion examples. The first example
(DWPW) depicts a DW fused with its following PW, and
the second (PWDW R) shows a PW fused with a following

DW. The R indicates that this fusion entails redundant
computations, as explained at the end of the section. The
fused layers are implemented as a single kernel. On the
one hand, unlike the layer-by-layer, the OFMs of the first
layer, which are intermediate results when fusing, can be
directly reused while in the L1/shared memory. This reduces
the global memory access. On the other hand, the fused
implementation has its own constraints and overheads. First,
fusing convolutions enlarges the working set compared to the
layer-by-layer implementation. In the layer-by-layer case, the
working set consists of three tiles: OFMs, IFMs, and filter
tiles. In the fused case, there are five tiles: IFMs of the first
layer tile, OFMs of the second layer tile, two tiles of both
layers’ filters, and a tile of the intermediate results exchanged
between the two layers. Note that we show one filter in the
figures for simplicity, in practice a filter tile may contain
hundreds or thousands of filters. As more tiles compete for
the L1/shared memory, each has a smaller share. Smaller tiles
lead to more overlapping, less reuse, and more frequent access
to the global memory. Second, certain fusion cases restrict the
viable tile sizes. For example, the PW layer in the DWPW
fusion case in Figure 3b requires at least one element of each
channel of the intermediate results to produce one valid output.
Consequently, the intermediate results and the input tiles must
contain all the channels. In other words, a DW tiling similar
to the one shown in Figure 3a is not feasible. Third, the values
located at the overlap regions of intermediate results tiles must
be redundantly computed. PWDW R in Figure 3b shows an
example of this. Unlike the overlaps in the IFMs, the values
at the overlap in the intermediate results do not exist before
the fused kernel starts. They must be computed independently
by the SMs computing the overlapping tiles.

Searching for fused implementations of PW and DW con-
volutions that minimize memory accesses, and consequently
mitigate or overcome their bottlenecks requires evaluating
the gains and overheads of the feasible fusions compared to
layer-by-layer execution. We propose Fused implementations
of PW and DW convolutions and cost models that evaluate
the discussed overheads and suggest implementations that
minimize the global memory accesses.

III. FUSED CONVOLUTIONAL MODULES (FCMS)

A. FCMs overview

DW and PW convolutions are commonly found in DNNs,
e.g. CNNs and ViTs, in the form of depthwise separable
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convolutions (DSC), or inverted residuals (Section II). Fig-
ure 4 shows a sequence of two DSC blocks and a sequence
of two inverted residuals. It depicts the three possible PW
and DW combinations. Fused Convolutional Modules (FCMs)
target such combinations, which are DWPW, PWDW, and
PWPW. The PWDW FCM has two variants, one that requires
redundant computations (PWDW R shown in Figure 3b), and
one that does not (PWDW). The PWDW does not require
redundant computations if there is no tiling across the width
and height of an IFM. An FCM combines up to 6 layers,
two convolutional layers, and the normalization and activation
layers following each. As Figure 4 shows, FCMs fuse layers
of a single separable convolution or inverted residual blocks,
or layers belonging to two consecutive blocks. All the FCM
kernels adopt the efficient Output Stationary - Local Weight
Stationary (OS-LWS) dataflow [40].
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Fig. 4: Possible FCMs in DNNs composed of Depthwise
Separable Convolutions and Inverted Residuals blocks

B. FCM kernel structure

Listing 1 highlights the main parts of the skeleton of an
FCM kernel. The skeleton is divided into four main parts.
Part1 (lines 2-4) contains the declaration of the buffer used
to communicate between the first set of layers (convolution-
normalization-activation) and the second (commBuffer). The
buffer is stored in an SM’s shared memory. Shared memory
banks are organized such that consecutive words map to
consecutive banks. The access patterns to these banks are
crucial to the kernel performance. To fully utilize these banks’
throughput, the data layout is selected based on the FCM
layers implementation to always have a linear addressing with
a stride of one, a conflict-free access pattern.

Part2 (lines 6-11) contains the prefetching of layer weights.
The weights are fetched ahead of computation in two scenar-
ios. The first scenario is when the implementation of either
FCM’s two convolutions does not access the weights contigu-
ously by default due to a mismatch between the convolution
dataflow and loop ordering, and the data layout of the weights
buffer [24]. In such cases, separating the weights load from the
computation allows to load weights contiguously. The second
scenario is when warp-level primitives are used. We use a

Listing 1: FCM kernels skeleton
1 g l o b a l vo id FCM Skeleton ( / * P a r a m e t e r s * / ) {
2 / * ******************* p a r t 1******************* * /
3 s h a r e d fms d t commBuffer [ BUFFER SIZE ] ;
4 / / O the r d e c l a r a t i o n s
5 / * ******************* p a r t 2******************* * /
6 / / P r e f e t c h f u s e d l a y e r s we i gh t t i l e s
7 i f ( / * Thread ID i n l o a d e r t h r e a d IDs * / ) {
8 / / P r e f e t c h w e i g h t s t o s h a r e d memory or
9 / / r e g i s t e r s

10 }
11 / / S y n c h r o n i z e
12 / * ******************* p a r t 3******************* * /
13 / / F i r s t l a y e r c o r e
14 i f ( / * Thread ID i n Conv1 t h r e a d IDs * / ) {
15 / / Compute Conv−Norm− A c t i v a t i o n
16 / / Pack and w r i t e t o commBuffer
17 }
18 / / S y n c h r o n i z e
19 / * ******************* p a r t 4******************* * /
20 / / Second l a y e r c o r e
21 i f ( / * Thread ID i n Conv2 t h r e a d IDs * / ) {
22 / / Load second l a y e r IFM t i l e from commBuffer
23 / / Compute Conv−Norm− A c t i v a t i o n
24 / / Pack and w r i t e back t o t h e OFMs
25 }
26}

warp-level primitive ( shfl sync) to exchange the weights
between threads through registers rather than shared memory.

In parts 3 and 4 (lines 13-24), if the weights have been
fetched in part 2, they are now loaded from the shared mem-
ory or shuffled from other threads registers; otherwise, they
are loaded from global memory. Then, a fused convolution-
normalization-activation operation is applied. The implemen-
tations currently support both INT8 and FP32 data types.
In the case of INT8, dp4a CUDA intrinsic four-way dot
product with 32-bit accumulate is used. The first convolution-
normalization- activation of the FCM computes a tile of
the intermediate results and writes it to the shared comm-
Buffer. Then, the fused convolution-normalization-activation
part reads the intermediate results from the commBuffer,
computes, and writes back the FCM output to the OFMs
buffer. Synchronization is necessary between these two parts
as different threads may participate in each part. When using
INT8, every four results are grouped, or packed, into one 32-
bit integer before writing to any buffer. The weights are also
packed, weight packing is done offline since the weights do
not change in inference.

IV. FUSEPLANNER

> FCM1[DWPW]
    - Layers : 1, 2
    - GMA : Val
    - tile sizes : Val
> No fusion
     - Layer3 [PW]
    - ...

> #SMs
> L1
   - Shared
....

GPU specs
Layers specs

FusePlanner FCMs / LBL
LBL Estimator

FCMs
Estimator

>DWPW
>PWDW
>...

FCMs Fuse?
> Layer1 [DW]
   -Specs

> Layer2 [PW]
        - ...

Fig. 5: FusePlanner overview
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FusePlanner aims to identify the FCMs and layer-by-layer
implementations that minimize global memory access, given
a set of DW and PW layers and GPU specifications. Figure 5
shows an overview of FusePlanner. It takes as inputs: (1)
GPU number of SMs, L1 size, and the portion configurable as
shared memory; and (2) a DAG representing a model or set of
layers, their weight and FM specifications, and the layers con-
nectivity. We currently support generating model DAGs from
Tensorflow. FusePlanner has two main components, layer-
by-layer global memory access estimator and FCMs global
memory access estimator. FusePlanner does a first pass over
the layers and estimates their minimum global memory access
using the layer-by-layer global memory access estimator. After
that, it examines all the possible fusions and evaluates their
global memory access using the FCMs global memory access
estimator. Based on the layer-by-layer and FCM estimates,
FusePlanner outputs: (1) which layers are to be fused and
which are not, (2) which FCMs to use, and (3) the tiling that
minimizes the global memory access in each case.

A. Layer-by-layer global memory access estimator

We propose fast and simple cost models to explore the
search space for implementation parameters that minimize
global memory access efficiently. To construct a simple cost
model, we make two assumptions that prune the search space
by excluding implementations that do not perform well on
GPUs. First, the data layout guarantees that threads in a warp
access consecutive memory locations and that the memory
transactions are naturally aligned [27]. Second, the implemen-
tation follows an Output Stationary-Local Weight Stationary
(OS-LWS) dataflow [40] and guarantees that the partial sums
stay in registers and that only the final results are written
to the memory. To guarantee that, all the weights and IFM
elements needed to produce one OFM element must be in
the same tile (Section II-D). To prove the effectiveness of
this approach experimentally, we show that our layer-by-layer
implementations outperform CuDNN (Section VI-B).

The global memory accesses of kernels that meet the two
discussed assumptions are estimated using Equations 2 and
3. Where the overlap (described in Section II-D) is obtained
using Equation 1, the postfix GMA stands for global memory
access, Sz stands for size, W for width, H for height, D for
depth, and HW for height × width. As the equations show,
the OFMs are written once, because the dataflow (OS-LWS) is
a variant of OS. In the PW case, each weight tile is convolved
with all IFM tiles, and each IFM tile is convolved with all
filters. Hence, weights and IFMs memory accesses depend on
each other’s tiling. In the DW case, as at least one filter slice
must be assigned to each SM (to guarantee assumption 2),
there are no weight tiles splitting filters’ height and width.
As a result, the IFM elements, except the overlapping, are
read only once. FusePlanner explores the tile sizes that meet
two constraints. The first constraint is that the tiles fit into
the L1 cache to avoid misses and redundant loading. Note
that the subset of these tiles stored on the shared memory
portion of the cache must also fit within that portion. However,

the implementation must guarantee that; this is why it is not
expressed in the equations. The second is that the number of
OFM tiles is greater than or equal to the number of GPU SMs.
Having more OFM tiles than the number of GPU SMs ensures
that the GPU resources are not underutilized.

Overlap = (⌈ChannelW
TileW

⌉ − 1)× (FilterW − Strides)×

ChannelH + (⌈ChannelH
TileH

⌉ − 1)

× (FilterH − Strides)× ChannelW

(1)

PwGMA = ⌈ WeightsSz
WeightsTileSz

⌉ × IFMsSz + OFMsSz +

⌈ OFMsSz
OFMsTileSz

⌉ × WeightsSz

where L1Sz ≥ IFMsTileSz + OFMsTileSz +

WeightsTileSz
and #OFMsTiles ≥ #SMs

(2)

DwGMA = 2 × IFMsD × Overlap + IFMsSz +

OFMsSz + ⌈ OFMsHW
OFMsTileHW

⌉ × WeightsSz

where L1Sz ≥ IFMsTileSz + OFMsTileSz +

WeightsTileSz
and #OFMsTiles ≥ #SMs

(3)

B. FCMs global memory access estimator

Estimating an FCM global memory access is based on
Equations 2 and 3, with two key differences. First, neither the
OFMs of the first convolutional layer of an FCM nor the IFMs
of its second contribute to the global memory accesses. This
is because they are now intermediate results communicated
through the communication buffer. Secondly, the accesses of
each of the two convolutional layers are affected by the other.
Equation 4 shows an example of FCM’s global memory access
estimation, a PWDW FCM in this case. The equation again
assumes that the fused kernel meets the two assumptions
described in the previous section. The equation shows the
mentioned two key differences. First, neither the OFMs of
the PW nor the IFMs of the DW layer contribute to the global
memory accesses. Secondly, the accesses to the first layer’s
IFMs depend on both layers’ weights tiles because the OFMs
of the first layer are not written to the global memory. Hence,
when the second layer needs them, they must be recomputed,
which requires redundant loading of the corresponding IFM
elements. Finally, the overlap accesses depend on both layers’
IFMs. As the equation shows, the overall overlap is obtained
by multiplying the PW IFMs depth, rather than the DW IFMs
depth, by DW IFM overlap. This is due to the same reason,
i.e. OFMs of the FCM’s first layer are not written to the global
memory, and the overlap in the second layer’s IFM elements
are obtained by loading the first layer’s IFMs and recomputing.
The equations of the other FCMs are constructed from the PW
and DW Equations 2, and 3 similarly.
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TABLE I: Used GPUs specifications

GPU Compute #SM CUDA L1/shared L2 Off-chip
Capability cores (KB) (MB) Memory

GTX-1660 7.5 22 1408 96 1.5 GDDR5
RTX-A4000 8.6 128 6144 128 4 GDDR6
Jetson AGX Orin 8.7 16 2048 192 4 LPDDR5

PwDwGMA = (2× PwIFMsD × DwOverlap + PwIFMsSz)
× max(

⌈ PwWeightsSz
PwWeightsTileSz

⌉ , ⌈ DwWeightsSz
DwWeightsTileSz

⌉) +

⌈ DwOFMsSz
DwOFMsTileSz

⌉ × PwWeightsSz +

⌈ DwOFMsHW
DwOFMsTileHW

⌉ × DwWeightsSz

where L1Sz ≥ PwIFMsTileSz + DwOFMsTileSz +

PwWeightsTileSz+
DwWeightsTileSz + CommBufferSz
and #FCM OFMsTiles ≥ #SMs

(4)

The first constraint in Equation 4 is more restrictive in
FCMs than layer-by-layer, as five tiles rather than three
compete for the L1. And as the equation shows, simply having
smaller tiles is not always a solution as it may increase the
overall memory accesses. The effect of having two weight
tiles per SM, compared to one tile in the layer-by-layer case,
is not crucial when fusing DW and PW since DW weights are
much smaller than PWs’ in most cases. However, the effect
becomes considerable when two PW layers are fused. That is
why PWPW fusion is less likely when the weights use FP32
compared to INT8 (Table II).

FusePlanner explores all tile sizes that meet the constraints
in Equations 2, 3, and 4 and identifies the ones that minimize
the global memory accesses for the layer-by-layer and all the
possible FCM cases. The explored tile sizes are restricted to
multiples of the warp size to avoid resource underutilization.
FusePlanner suggests fusing, when there is an FCM for which
the minimum estimated global memory accesses are less than
those of its constituting layers. Otherwise, a layer-by-layer
implementation is suggested.

V. EXPERIMENTAL SETUP

A. Evaluation system

We use three GPUs, listed in Table I, with different re-
sources representing different points in the compute contin-
uum. We refer to them as GTX, RTX, and Orin in the rest of
the paper. CUDA-11.6 is used. CUDA events API is used to
measure the execution time, and nvidia-smi utility to measure
the power consumption on GTX and RTX and tegrastats on
Orin. NVIDIA Nsight Compute is used to quantify accesses
to all memory levels and their throughput and to categorize
kernels into compute and memory-bound.

B. Workloads

We evaluate the proposed modules using PW and DW
convolutions from four representative CNN models and

two ViTs. These are MobileNet (Mob v1) [15], Mo-
bileNetV2 (Mob v2) [32], XCeption (XCe) [9], Proxyless-
NAS (Prox) [5], CeiT [49], and CMT [13]. The evaluation
is done with FP32 and INT8, the original and the commonly
used precision in inference, respectively. We do a fine-grained
evaluation using pairs of layers, or fusion cases, from these
DNNs that FusePlanner suggested. Table II lists these fusion
cases, from which DNNs they are selected, and the ratios of
redundant computations if there are any. These cases represent
the scenarios where FusePlanner suggests the same fusion type
across the three GPUs. A fusion case may occur in a DNN
once or multiple times. This is because DNNs usually contain
replicated blocks composed of layers of the same hyper-
parameters. For example, F1 8 in the INT8 case represents
the second and third layers of Mob v1, but F2 8 represents
five pairs of layers (pairs located between layers 14-24). The
fused layers, consequently the FCMs, in the case of INT8 are
not necessarily the same in the case of FP32. For example,
F1 8 is different from F1 in FP32. Changing the bit-width
changes the tile sizes causing FusePlanner to make different
choices.

C. Baselines

To demonstrate the effect of fusion on global memory
access reduction and performance improvement of PW and
DW convolutions, we implement and compare the FCMs and
layer-by-layer kernels (LBL). To isolate the fusion effect, the
LBL kernels have similar dataflow and access patterns to
their fused counterpart. We compare the FCMs and LBL
kernels to cuDNN [8]. cuDNN gives the flexibility of choos-
ing the convolution algorithms, we compare against three
cuDNN algorithms that yielded the best performance on
our workloads, namely GEMM, IMPLICIT GEMM, and IM-
PLICIT PRECOMP GEMM. We also do end-to-end evalua-
tions where the four CNNs, Mob v1, Mob v2, XCe, and Prox,
are fully implemented using our FCMs and LBL kernels and
compared with TVM [7]. TVM is an open-source and widely
used end-to-end deep learning compiler. We use cuDNN as
the backend of our TVM implementation to maintain con-
sistency. TVM applies layer fusion between convolution and
non-convolution layers as a core optimization. Not all TVM
models ran successfully on all the GPUs after applying TVM’s
offline graph optimizations. Hence we ran auto-tuning for 20
iterations with the hardware in the loop which was sufficient
for all models. TVM offers several tuning heuristic options, in
our experiments, we compare our results with the best TVM
heuristic in each experiment. Note that cuDNN and TVM
implementations that we compare against fuse a single con-
volutional layer with the normalization and activation layers
following it. However, we refer to their execution as layer-
by-layer (LBL) since they do not fuse multiple convolutional
layers.
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TABLE II: Fusion cases and their ratios of redundant computations. F1-F12 using FP32, and F1 8-F12 8 using INT8.

DNN Mob v1 Mob v1 Mob v2 Mob v2 XCe XCe Prox Prox CeiT CeiT CMT CMT
FP32 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PWDW R PWDW R DWPW PWDW R PWDW R PWDW R DWPW PWDW R PWDW PWDW R PWDW PWDW R
7% 13% - 18% 4% 7% - 10% - 16% - 13%

INT8 F1 8 F2 8 F3 8 F4 8 F5 8 F6 8 F7 8 F8 8 F9 8 F10 8 F11 8 F12 8
DWPW PWDW DWPW PWPW DWPW PWDW R DWPW PWPW PWDW PWDW PWPW PWDW

- - - - - 15% - - - - - -

TABLE III: Categorizing the FP32 LBL and FCMs into
compute and memory-bound based on Roofline model

analysis. C means compute-bound and M means
memory-bound.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
GTX LBL M, M C, M M, M M, M C, M C, M M, M M, M C, M C, M C, M C, M

FCM C C M C C C M C C C C C
RTX LBL M, M C, M M, M M, M C, M C, M M, M M, M C, M C, M M, M C, M

FCM M C M M C C M M C C C C

VI. EVALUATION

A. Fusion effect: comparing FCMs to LBL

This section analyzes the effect of fusion using various
workloads, two precisions, and three GPUs. Figures 6 and 7
show the speedup achieved as a result of the fusion in the
24 cases (Table II) on the three GPUs using FP32 and
INT8 precision. FCMs outperform LBL in 67 out of the 72
experiments. The maximum achieved speedup using FP32 is
1.6x in the case of F8 on Orin and 1.8x using INT8 in the
case of F1 8 on RTX. The average speedups are 1.3x and 1.4x
using FP32 and INT8 respectively. Orin and RTX have the best
average speedups using FP32 and INT8, respectively. GTX has
the lowest speedups in both cases. In the rest of this section,
we discuss three factors that determine the speedup achieved
by FCMs. We then explore the fusion effect on different GPUs
and finally with different precisions.
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Fig. 6: Speedup of FCMs over LBL using FP32
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Factors that determine FCMs speedup: The first factor
governing the effect of fusion on speedup is whether the
fused kernels are memory- or compute-bound. In general, the
memory access reduction is translated to speedup for memory-
bound but not for compute-bound kernels. Table III shows
which kernels fall under each category. In the case of RTX, F1,
3, 4, 7, 8, and 11, which consist of two-memory-bound layers,
have higher speedups than the rest (Figure 6). The average
speedup of these six layers is 1.4x compared to 1.1x for the
other six. The same applies to GTX, the five cases where
both layers are memory-bound have an average speedup of
1.3x compared to 1.1x for the rest. Speedups among layers
within each category, compute-bound and memory-bound, are
determined by the amount of reduction in memory access
time. Figure 8 shows the global memory access time of both
FCM and LBL executions normalized to that of LBL. For
example, among the RTX six FCMs where both layers are
memory-bound, F4 has the highest memory access reduction
resulting in the highest speedup. And F12 has the highest
memory access reduction resulting in the highest speedup
among the six cases where at least one layer is compute-
bound. However, there are some exceptions. The third factor,
the existence of redundant computations, explains these
exceptions. For example, on GTX, F7 has the highest speedup
among FCMs where both layers are memory-bound even
though F4 experiences a larger reduction of the memory
access time. This is because, unlike F7, F4 has 18% redundant
computations (Table II).

There are two cases where there is a non-negligible slow-
down. These cases are F2 on RTX and F6 8 on GTX. The
three factors discussed explain this slowdown. For example,
in the case of F2 on RTX (Figure 6) not both layers are
memory-bound (Table III), the memory access reduction is
relatively low (Figure 8), and there are redundant computations
(Table II).

Speedup across GPUs: Orin and RTX have higher
speedups than GTX. Moreover, out of the five cases where
FCMs do not have speedup over LBL, three are on GTX
compared to one on Orin and One on RTX. One reason
is that GTX has the smallest L1/shared memory per SM
(Table I). This gives less room to the tiles competing on this
memory, including the communication buffer (Section IV).
Another reason is that GTX has fewer CUDA cores (Table I),
making fewer LBL kernels memory-bound. Table III shows
examples of that. First, RTX has 6 out of 12 cases where both
kernels are memory-bound compared to 5 out of 12 on GTX.
Secondly, among the 5 memory-bound cases on both GPUs,
3 remain memory-bound after fusion on RTX, namely F1,
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F4, and F8. As long as a kernel is memory-bound, reducing
global memory access time is, ideally, purely translated into
speedup. However, on GTX, these turn into compute-bound
when fused, meaning that their performance benefited from the
global memory access reduction only partially. To summarise,
our method identifies fusions that are advantageous across
different GPUs. However, the fusion effect on performance
varies depending on the GPU compute and memory resources.

Speedup and precision: Note that the FP32 FCMs are
different from the INT8 ones, but both precision’s FCMs
are representative of layers selected by FusePlanner given
the same DNN models (Section V). Hence, we here com-
ment on the general trends rather than having case-by-case
comparisons. The maximum and the average speedups are
higher using INT8 compared to FP32. This is mainly because
reducing the data size allows the L1/shared memory to fit
larger tiles (Section IV). This in turn permits fusion types
that are not feasible in FP32. For example, as Table II
shows, the dominant FCM using FP32 is PWDW R which
requires redundant computation, but in INT8 there is only
one PWDW R. In other words, most INT8 fusions do not
have redundant computations making the fusion effect more
apparent.

B. Comparison with CuDNN

Figure 9 shows a comparison between FCMs and CuDNN,
and the speedup of FCMs over the best cuDNN algorithms,
namely IMPL PRECOMP GEM. The maximum speedup is
3.7x, and the average is 2x. Our LBL implementations also
outperform CuDNN in all cases and achieve a maximum
speedup of 3x, and an average speedup of 1.5x. When
comparing cuDNN implementations, the implicit GEMM im-
plementations outperform direct GEMM. Implicit GEMMs
do not explicitly form the matrix that holds the input data
resulting in fewer memory accesses. Compared to implicit
IMPL PRECOMP GEM, the best among the three CuDNN
algorithms, our LBL implementations save up to 63% of the
global memory accesses, and FCMs save up to 83%. Generally
speaking, the results trend is similar to the one discussed in the
previous section. For example, in the cases where the pair is
composed of memory-bound layers on RTX and GTX, namely
F1, 3, 4, 7, and 8, FCMs have relatively high speedups over
cuDNN. In addition, both RTX and Orin experience higher

speedups compared to GTX. Both FCMs and LBL outperform
cuDNN in the INT8 case as well. This is implicitly shown
in the next section as we compare our results with TVM
implementations configured to use cuDNN in the backend.

C. End-to-end comparison with TVM

This section compares end-to-end CNN implementations
based on the proposed FCMs and FusePlanner-suggested LBL
kernels to TVM. In our end-to-end implementations, FusePlan-
ner iterates over the models’ DAGs and suggests which layers
to fuse and the tiling parameters that minimize the global
memory access for both FCMs and LBL kernels (Section IV).
Then the CNNs are implemented accordingly. The fused layers
range from 46-58% of the convolutional layers of the four
CNNs.

Figure 10a and 10b show the speedup of our implementa-
tions over TVM for the four CNNs using FP32 and INT8. Our
implementations constantly outperform TVM, achieving maxi-
mum speedups of 1.6x and 1.8x and average speedups of 1.4x
and 1.5x using FP32 and INT8, respectively. Different DNN
GPU combinations have different speedups, but Mob v1 has,
on average, the highest speedup. Mob v1 has a simple linear
structure, but TVM graph optimizations are more impactful
for DNNs with complex DAGs.

Figure 11a and 11b show the benefit of our implementations
on energy efficiency, i.e. energy per inference. They show
the energy-per-inference of our implementations normalized
to that of TVM. On average, our implementations consume
0.59 and 0.54 of the energy consumed by TVM using FP32
and INT8 respectively. Using FP32, The lowest energy con-
sumption is 0.34 of TVM’s, which is the case of Mob v1
on Orin. Using INT8, the lowest is 0.35 of TVM’s in the
case of Mob v2 on Orin. Generally speaking, RTX and Orin
have higher energy savings compared to GTX. An important
observation is that energy savings are, on average, higher than
the reduction in running time. This suggests that even when
fusion does not improve the latency considerably, e.g. in cases
of compute-bound convolutions, reducing the global memory
access is still beneficial as it reduces energy consumption.

VII. RELATED WORK

Layer-fusion is a key inter-layer optimization in many state-
of-the-art DNN accelerators [2], [6], [12], [16], [31], [34], [42],
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[44], [46], [47], [53]. It enables processing the intermediate
results immediately, which eliminates the need to frequently
access main memory [2], [6], [16]. Fusion is also used to
maintain high throughput on heterogeneous accelerators that
process different CNN layers using multiple layer-custom
engines [30], [31], [34], [38], [44]. In sparse DNNs, where
fewer effectual operations and data-reuse opportunities are
present within a layer, fusion maintains a reasonable efficiency
by offering higher levels of reuse, and resource utilization [47].

The prior art has demonstrated the advantages of layer
fusion on DNN accelerators. However, each has its own
shortcomings. Alwani et al. [2] and Xiao et al. [44] proposals
handle only linear CNNs like AlexNet and VGG [20], [35].
Zheng et al. [53], Zhuang et al. [55], and Jeong et al. [16]
assume that fusion suffers from an inherent limitation which
is the amount of redundant computations that scale with the
number of fused layers. However, others [2], [6] have shown
that redundant computations can be avoided at the cost of
affordable extra buffering. Xing et al. [46] and Wei et al. [42]
optimize the execution time but do not consider minimizing
DRAM accesses as a main objective. Olyaiy et al. [28]
proposed a fusing technique that targets the bottleneck block
structures, the proposed technique reduces the multiplications
by up to 20x at the cost of extra additions. FINN variants [4],

[38] focus on aggressively quantized models with binary or
ternary weights and intermediate results. Yang et al. [47] fuse
layers of highly-sparse models. Other fusion and pipelining
proposals, e.g. [12], [25], [34], work at the granularity of
different inputs or batches. Working at such high granular-
ity increases the inference latency and the off-chip traffic.
Convfusion [41] proposes hardware-agnostic fusion but leaves
supporting DW convolution and SIMD to future work.

On GPUs, the most common forms of fusion fall under
the categories described by TVM authors [7]. First, multiple
injective, or one-to-one e.g. add operators, are fused. Second,
an injective operator is fused with a reduction operator.
Third, the convolution operator is fused with one or more
element-wise operators like normalization and non-linearity.
Jia et al. [17] propose a technique to fuse stages of the
Winograd convolution algorithm. Li et al. [24] propose to fuse
softmax layer implementation to reduce its memory accesses.
Chimera [54] fuses multiple convolutions on GPUs but does
not support DW and the modeling of inter-block optimizations
and data movement estimations don’t directly apply to DW.

Unlike the prior art, in this work, we explore fusing DW
and PW convolutions to overcome memory access bottlenecks
on GPUs. We identify the fusion challenges and trade-offs
given the GPU architecture and propose cost models and a
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set of fused kernels that minimize these convolutions’ global
memory accesses leading to low latency and energy-efficient
inference.

VIII. CONCLUSION

Depthwise and pointwise convolutions are used to design
compact DNNs. However, they have a lower compute-to-
memory access ratio than the standard convolution, making
their global memory access often a bottleneck. This paper
proposes fusion as a technique to reduce these convolutions’
global memory accesses on GPUs leading to improvements in
their efficiency. We propose a set of novel fused convolutional
modules (FCMs), GPU kernels composed of fused depthwise
and pointwise convolutions. We also propose FusePlanner
which consists of cost models to estimate global memory
access of layer-by-layer and FCM kernels. Given a GPU
architecture, FusePlanner decides when to fuse, and which
FCMs to use. Our experiments show that FCMs achieve up
to 1.8x speedup over a layer-by-layer implementation and
up to 3.7x over cuDNN. End-to-end implementations of four
CNNs using the proposed kernels achieve up to 1.8x speedup
compared to TVM-optimized models and consume as little as
34% TVM-optimized models energy.
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