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Attosecond dynamics of electron transmission through atomically-thin crystalline films is studied
with an ab initio scattering theory. The temporal character of the electron propagation through
graphene multilayers is traced to the band structure of bulk graphite: In the forbidden gaps the
wave packet transit time τt saturates with thickness and in the allowed bands τt oscillates following
transmission resonances. Hitherto unknown negative transit time due to in-plane scattering is
discovered in monolayers of graphene, h-BN, and oxygen. Moreover, Wigner time delay is found
to diverge at the scattering resonances caused by the emergence of secondary diffracted beams.
This offers a way to manipulate the propagation timing of the wave packet without sacrificing the
transmitted intensity. The spatial reshaping of the wave packet at the resonances may help elucidate
details of the streaking by an inhomogeneous field at the surface.

The question of how long does it take for a quantum
particle to transit from one point to another arises in
various physical contexts, including nanotransport, pho-
tonics, and photoelectron spectroscopy. There, one en-
counters paradoxical phenomena, such as the Hartman
effect [1]—a fundamental aspect of wave propagation in a
totally reflecting medium whereby the traversal time of a
wave packet across a finite slab is independent of the slab
thickness for sufficiently thick slabs. The implied unlim-
ited velocities inspired a lively theoretical discussion [2–6]
and triggered much experimental effort in optics [7–12]
strong-field ionization [13–15], and atomic tunneling [16].
The superluminality paradox has called for a refined un-
derstanding of the notion of propagation velocity and a
rigorous definition of the transit time [2–4]. However,
over the many decades the discussion has been limited to
tunneling under a barrier, while temporal paradoxes in
classically allowed transmission have not been addressed.

The progress in attosecond photoelectron spectroscopy
of crystals [17–24] has given new prominence to the ques-
tion of how fast a quantum particle traverses a micro-
scopic distance. The measured phase shifts of the streak-
ing spectrograms [25] are commonly interpreted in terms
of the escape time of photoelectrons originating at a
depth of the order of the mean free path [17]. While
there have been attempts to understand the results in
terms of group velocity, this is not strictly justified and
completely fails in a band gap.

A rigorous way to proceed is to draw on the Wigner
time delay ∆τ , which is defined as the difference in the
time of arrival of a free particle and a scattered one in a
region far from the scatterer, see Fig. 1(d). It can be ob-
tained from the stationary states of the system as the en-
ergy derivative of the scattering phase [26–28]. Here, we
apply the phase-time formalism to a tunneling-free prop-
agation in experimentally accessible graphene multilay-
ers. ∆τ is calculated with a state-of-the-art band struc-

ture accuracy using the augmented-plane-waves based
scattering theory [29]. We obtain realistic values for the
saturated transit time in the gaps and investigate the
temporal characteristics of transmission (T ) resonances.
Most important, we reveal the essential role of the lat-
eral scattering, which is inevitably present in realistic
three-dimensional (3D) crystals, but has been completely
ignored in previous theoretical (exclusively 1D) studies.
Electron scattering from the monolayers of graphene and
hexagonal boron nitride (h-BN) allows to separate out
the lateral scattering and reveals a striking effect: at
the T -resonance due to the emergence of the secondary
diffraction beams the Wigner delay acquires large nega-
tive values, which results in a negative transit time.

This effect can be measured in a laser streaking ex-
periment: A subfemtosecond XUV pulse excites a lo-
calized state just below the surface, Fig. 1(a), and the
outgoing photoelectron is scattered by the surface over-
layer, Fig. 1(b), and further exposed in vacuum to the
laser streaking field synchronized with the XUV pulse,
Fig. 1(c). The arrival time is then inferred from the mo-
mentum transferred from the laser field to the electron
[17–24]. Based on the time delay ∆τ , Hartman [1] in-
troduced so-called transmission time τt, which implies
that the distance l traveled by a wave packet can be di-
vided into scattering region d and free-motion region l−d,
and that the time to traverse the full length l (arrival
time [30, 31]) equals the sum of the two partial times.
Although not rigorous [32, 33], this procedure is widely
applied in analyzing the times of photoemission from sur-
faces or strong-field ionization of atoms. Here, we ascribe
by convention the width d = na to an nML slab, where
a is the interlayer spacing. Then, τt = ∆τ + d/v0.

Let us consider an infinitely spectrally narrow wave
packet normally incident on a crystalline film located be-
tween zL and zR (outside this interval the electron po-
tential equals zero), see Fig. 1(b). The scattering wave
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FIG. 1. (a)–(c) Scattering configuration and a sketch of a relevant experiment. Excited (a), incident (b), reflected and
transmitted (c) wave packets are shown by orange shading. (d) Schematic equations of motion z(t) of the incident and
transmitted packets for positive (case 1) and negative (2 and 3) time delay ∆τ . Straight solid lines show the asymptotic free
motion, and dots symbolically indicate the region where z(t) is undefined. The transit time is defined as the extrapolation of
the t → ∞ line to the right border of the scatterer, z = zR. Time delay (1) is typical of transmission resonances, see Fig. 3.
Time advance with a positive transit time (2) is realized in the Hartman effect. Case 3 is a new finding of the present work.

function satisfies the Schrödinger equation ĤΨ = EΨ
with initial conditions implying the presence of the inci-
dent and reflected wave(s) in the left half-space, z < zL,
and transmitted wave(s) in the right half-space, z > zR:

Ψ =


eik0z +

∑
g
rg e

i[−kg(z−zL)+gr∥], z ≤ zL,∑
g
tg e

i[+kg(z−zR)+gr∥], z ≥ zR,
(1)

where r∥ is the surface parallel radius vector and g are
2D reciprocal lattice vectors. The incident wave vector is
k0 =

√
2mE/ℏ, and z-projections of the wave vectors of

the secondary beams, g ̸= 0, are kg =
√
2mE/ℏ2 − |g|2.

The scattering state Ψ is calculated with the ab initio em-
bedding method in terms of augmented plane waves [29],
see Appendix A. Equation (1) introduces the transmis-
sion and reflection coefficients: tg = |tg| exp(iξtg) and
rg = |rg| exp(iξrg). The scattering phase shift of the

transmitted wave η is related to the exit phase ξt0 as
η = ξt0 − dk0, where d = zR − zL. The Wigner time de-
lay ∆τ is the shift of the asymptotic z → ∞ equation of
motion relative to that of the free particle, see Fig. 1(d),
and it equals the energy derivative of the phase η [26–28]:
∆τ = ℏdη/dE ≡ η̇.
If the slab has a symmetry operation ŝ that swaps the

planes z = zL and z = zR then the following relation
between reflection and transmission coefficients holds:

k0 −
∑
|g|<k0

kg|tg + rŝg|2 = 0, (2)

where the sum runs over the propagating beams |g| < k0,
i.e., real kg. The propagating secondary beams emerge
at the energy Esb = ℏ2g2sb/2m, where gsb is the magni-
tude of the shortest nonzero g-vector. Below Esb, the
current conservation law combined with Eq. (2) leads to
the relation ξt0 − ξr0 = ±π/2, which is well known for 1D

scattering [34]. For several propagating beams it acquires
a more complicated form of a cosine sum rule

∑
|g|<k0

kg|tgrŝg| cos(ξtg − ξrŝg) = 0. (3)

An important identity relates the dwell time τ̃ [28]

τ̃ =
1

v0

zR∫
zL

|Ψ(r∥, z)|2 dz, (4)

to the Wigner time delay ∆τ in the 1D case [28, 35]:

τ̃ = ∆τ +
d

v0
+

Im r0
k0v0

= ∆τ + τfm − τsi. (5)

Here v0 = ℏk0/m is the free-space velocity, so τfm = d/v0
is the free particle transit time and τsi = ℏ Im r0/2E is
a self-interference delay [4]. In the 3D case the defini-
tion (4) of the dwell time must be modified to include
the probability density contained in the evanescent sec-
ondary beams in the whole space, see Eq. (B4)

τ̃3d ≡ τ̃ +
1

v0

∑
|g|>k0

Rg + Tg

2|kg|
, (6)

where Tg = |tg|2 and Rg = |rg|2 are the partial trans-
missivities and reflectivities, respectively. The additional
term is negligible well below Esb, and at Esb it diverges.
Everywhere below Esb, an analogue of Eq. (5) holds
τ̃3d = ∆τ + τfm − τsi, and the general formula valid at all
energies reads

τ̃3d =
1

v0

∑
|g|<k0

ℏkg
m

(Tgξ̇tg +Rgξ̇rg) +
Im r0
v0k0

. (7)

Equations (2) to (7) are derived in Appendix B.
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Figure 2(a) shows transmission spectra for 1 to 6ML
graphene and semi-infinite graphite. Clearly visible are
conducting and reflecting intervals, evolving respectively
into bulk bands and forbidden gaps of graphite. Each
of the two lowest bands hosts n − 1 spikes (T = 1 reso-
nances) for an nML slab. They originate from interlayer
scattering [37–39], hence are referred to as 1D bands. At
the resonances, the transit time sharply peaks, see Fig. 3,
similar to the resonant tunneling through a double bar-
rier [40]. At low energies the larger velocity at the nuclei
causes a faster propagation, as in the classical mechanics,
so ∆τ is on average negative, Fig. 2(c). In the upper 1D
band, the band structure effect outweighs the classical
acceleration leading to an overall positive slope of η(E).
The N-band around 30 eV is related to a scattering

resonance due to coupling of the in-plane and perpen-
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FIG. 2. (a) Transmission T (E) through 1 to 6ML graphene
and bulk graphite. T ranges from 0 to 1 in all the panels.
(b) Black lines are the AΓA band structure of graphite. Red
circles are the conducting complex band structure [36]: in the
bulk, Ψ is a sum of propagating and evanescent Bloch waves,
and size of the circle is proportional to the current carried by
the partial wave. Black lines not marked by red circles are
irrelevant for transmission. Red circles that do not mark any
black lines are evanescent waves. (c) Scattering phase shift
η(E) for 1 to 6ML slabs. Size of the symbol is proportional to
the transmission amplitude |t0| of the main beam, see Eq. (1).
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FIG. 3. Transit time through 1 to 6ML graphene slabs. Spec-
tra are shown up to Esb because Eq. (5) is used.

dicular motions [41, 42], and it behaves qualitatively dif-
ferently from the 1D bands: there are no T -resonances,
and the transit time is approximately proportional to the
thickness d. In the band gaps transmission is effected
by evanescent waves, so both the dwell time τ̃ and self-
interference time τsi [Eq. (5)] saturate with d, and so
does the transit time τt = ∆τ + τfm: in the gap center
τ∞t = 180 as in the lower and 190 as in the upper gap.
We have seen in Fig. 3 that the dwell time τ̃3d diverges

on approaching Esb leading to a divergence of the Wigner
time delay. Let us now focus on energies just above Esb.
There the simple relation ξt0 − ξr0 = ±π/2 does not hold,
and the general formula (7) should be used. We can write
ξt0 − ξr0 = γ(E) ± π/2, with γ(Esb) = 0, and it follows
from Eq. (3) that

k0|t0r0| sin(γ) =
∑

0<|g|<k0

kg|tgrŝg| cos(ξtg − ξrŝg). (8)

In the vicinity of Esb, owing to the steeply growing kg,

the energy derivative of γ diverges as 1/
√
(Esb − E)E.

However, unlike the case of E < Esb, the sign of the
divergent term may be different in different systems. This
divergence turns out to lead to negative time delay in
particular in graphene, h-BN, and a monolayer oxygen in
the geometry of ruthenium surface oxide [43], see Fig. 4.
Above the respective Esb energies the three monolayers

have similar shape of both T (E) and ∆τ(E) curves, with
∆τ(E) diverging toward −∞. This nontrivial speed-up
cannot be predicted from the general theory, so we have
validated its consistency by comparing ∆τ obtained as η̇0
with the value derived from the phase derivatives of the

propagating secondary beams ξ̇rg and ξ̇tg and the density
integral τ̃3d through Eq. (7). For all three systems the
discrepancies in ∆τ are negligible over the entire range
considered, see Fig. 6
In the language of the Hartman effect, i.e., if one as-

sumes that the wave packet can be ascribed a trajectory,
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unlimited negative time delay implies negative transit
time, which illustrates that τt has no physical meaning.
Nevertheless, for a sufficiently spectrally narrow wave
packet this effect can be measured as a substantial re-
duction of the arrival time, the essential novel aspect be-
ing that no stop band is involved, and consequently the
transmitted fraction of the current is orders of magni-
tude larger than in tunneling—above 50%, see Figs. 4(a)
and 4(c). A spectrally wide packet with energy around
Esb will be torn into two spatially separated ones with
comparable intensities.

The ∆τ -divergence due to the emergence of the sec-
ondary beams is a general phenomenon, with Esb depend-
ing solely on the surface Bravais lattice, so it is to be ex-
pected for any exfoliated material. Apart from that, the
atomic structure of a specific multilayer may bring about
additional strong features: One example is the broad ∆τ
maximum at 28 eV due to the N-resonance in graphene
and h-BN. Furthermore, the more complicated geome-
try of h-BN gives rise to a deep T (E) minimum at 8 eV
and a sharp resonance at 20 eV [manifested by a steep
drop of T (E)], see Fig. 4(a), both structures manifesting
a significant increase of ∆τ , see Fig. 4(b). The absence
of the N-resonance in oxygen monolayer, Fig. 4(c), is ex-
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FIG. 4. (a) Transmissivity T (E) of 1ML graphene [red dashed
line, same as the upper curve in Fig. 2(a)] compared to 1ML h-
BN (blue). (b) Wigner delay ∆τ for graphene (red) and h-BN
(blue). (c) T (E) for 1ML oxygen (hexagonal structure [43]).
(d) ∆τ for 1ML oxygen. Vertical bars indicate critical energies
Esb. Circles in the insets show fragments of the lattices of
graphene (red) and oxygen (black).

plained by its simple hexagonal geometry in contrast to
the honeycomb lattice of graphene and h-BN. However,
the oxygen monolayer manifests the same type of diver-
gence at Esb as the other materials. One may expect the
more complicated 2D structures, such as transition metal
dichalcogenids, to show more interesting features.
The general formula (8) proves the divergence of the

derivative of the phase difference between transmission
and reflection. We will now present a simple 2D model,

for which the divergence of the phase derivatives ξ̇t0
and ξ̇r0 themselves can be demonstrated analytically.
Consider an infinite chain of atoms along x̂ axis mod-
eled by a δ-function potential Ωδ(y) in the ŷ direc-

tion and a weak corrugation cos(gsbx) along x̂: Ĥ =
(p̂2x + p̂2y)/2m + 2(ℏ2/m)Ωδ(y) cos(gsbx). The cos(gsbx)
perturbation couples the motions along x̂ and ŷ and gives
rise to the secondary beams at Esb = ℏ2g2sb/2m.
By applying the Lippmann-Schwinger equation to the

Laue representation of the wave function for normal inci-
dence (along ŷ), Ψ(x, y) =

∑
g ϕg(y) exp(igx), we obtain

the central beam wave function in terms of the Green’s
function for a 1D free motion G1d

0 (y;ω) [44]:

ϕ0(y) = exp(iky)− 2iΩexp(ik|y|)
k(F−1gsb − 2F0 − F2gsb)

, (9)

where Fg ≡ ℏ2ΩG1d
0 (0; k2 − g2)/m, see Appendix C.

Equation (C9) yields the reflection and transmission am-
plitudes: r = −2iΩ/[k(F−1gsb − 2F0−F2gsb)] and t = 1+ r.

Around Esb, it can be proved that F−1gsb = −
√
g2sb − k2/Ω

for g2sb > k2 and F−1gsb = i
√

k2 − g2sb/Ω for g2sb < k2, see
Appendix C. The other two parameters Fg in Eq. (C9)

become F0 = −iΩ/gsb and F2gsb = −Ω/(gsb
√
3), so ∆τ

becomes

∆τ ≈ m

ℏβ
×


6g2sbΩ

2

13
(
Ω2 − β

√
3
)2 , E < Esb,

12
√
3g2sbΩ

4
(
Ω2 + β

)
13 [Ω4 + 3β (Ω2 + β)]

2 , E > Esb,

(10)

where β ≡ (2m/ℏ2)
√
Esb|E − Esb| yields the divergence

of the Wigner time delay, cf. Eq. (8).
To summarize, our study has revealed hitherto un-

known phenomena caused by the in-plane umklapp scat-
tering, which are especially conspicuous in monolayers:
the steep increase of the delay at the transmission min-
ima in h-BN and, most strikingly, the divergent delay
followed by divergent advance of the central beam due
to the emergence of the secondary beams observed in the
monolayers of graphene, h-BN, and oxygen. In thicker
multilayers, the lateral scattering damps the sharp T -
resonances and eliminates the related huge time delays.
The rapid energy variations of the time delay cause a

spatial reshaping of the wave packet, which can be em-
ployed to experimentally study the details of the acceler-
ation of the outgoing photoelectrons by a spatially inho-
mogeneous infrared laser field at the surface. This is an
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insufficiently studied question, both experimentally and
theoretically, and the usual assumption is to neglect the
spatial extent of the outgoing wave packet [17–24]. The
possibility to split the wave packet into two—separated
by a fraction of a femtosecond—and observe their acceler-
ation by the same probe pulse opens a way to clarify the
details of the streaking mechanism, which is instrumen-
tal for the interpretation of the measurements. Such a
possibility is offered by a thin overlayer in which the time
delay rapidly changes with energy due to a specific crys-
tal structure (as in h-BN) or due to the emergence of the
secondary beams, common to all crystalline films. The
advantage over the traditional Hartman effect is that the
in-plane scattering induced ∆τ resonances are not accom-
panied by a dramatic drop of the transmitted flux. In ad-
dition, owing to the minimal thickness of a monoatomic
overlayer, the streaking field is minimally disturbed. One
may argue that the phase time that underlies the present
study is an asymptotic value, and the extrapolation of
the z → ∞ equation of motion to the vicinity of the
scatterer is not rigorously justified [2, 32] (even though
this is quite common, see, e.g., Refs. [14, 15, 45] and an
analysis in Ref. [46]). Still, our numerical streaking ex-
periment [47] showed that the photoelectron escape time
extracted from streaking reflected all the band-structure
related features of the relevant phase time, and even the
absolute values were reasonably close. Thus, our present
results offer a promising starting point to study the wave-
packet speed-up unrelated to tunneling.

Apart from the practical applications, the discovered
properties of the ultrathin layers may be interesting from
the point of view of developing quantum-mechanical for-
malisms in which the motion of the quantum particle is
considered in terms of trajectories [48–50].
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Appendix A: Calculation of scattering states

The crystal potential is constructed within the local
density approximation; it includes both the Coulomb sin-
gularities at the nuclei and a realistic full-potential shape
everywhere between zL and zR. In the scattering region
an all-electron wave function Ψ is a linear combination of
the Bloch eigenfunctions of an auxiliary band structure
problem for a periodic supercell extending from −c/2 to
c/2, see Fig. 5. Then the wave function is Fourier ex-
panded to arrive at the Laue representation

Ψ(r∥, z) =
∑
g

ϕg(z) exp[ igr∥ ], (A1)

zL zR
_c/2 c/2

ρ(
z)

−16.5 16.5−19.8 19.8−3.17 3.170 9.51−9.51
z (a.u.)

FIG. 5. Probability density profile ρ(z) of the scattering wave
function for normal incidence on a 4ML graphene film at
18.24 eV kinetic energy, corresponding to a transmission res-
onance, see Fig. 6. Blue line is the total density and red line
is the g = 0 contribution |ϕ0(z)|2, see Eq. (A1). The cyan
shaded area shows the contribution from the g ̸= 0 Fourier
harmonics. The artificial supercell extends from −c/2 to c/2.
Black circles show the location of the four graphene planes.

so the density profile ρ(z) of the scattering state is ρ(z) =∑
g
|ϕg(z)|2. An example for the normal incidence on a

4ML graphene slab at E = 18.24 eV is shown in Fig. 5.
Some more details of the application of the method to
graphene monolayer and bilayer have been presented in
refs. [41, 51, 52].
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FIG. 6. (a) Total current T (E) through 4ML graphene (black
curve), current nonconservation δT (red shading), and sum
rule (3) (blue shading). (b) Delay ∆τ as the energy derivative
η̇ (black circles), from the analogue of Eq. (5), τ̃3d = ∆τ +
τfm − τsi, below Esb (red), and from the general formula (7)
above Esb (green). Size of the circle is proportional to |t0|.
Below Esb agreement between the two curves depends on the
phase relation ξt0 − ξr0 = ±π/2. (c) Dwell time (6) (black)
compared to the right hand side of Eq. (7) (red).

The variational method for scattering [29] is based

on minimizing the functional ∥(Ĥ − E)Ψ∥, so the solu-
tion (A1) satisfies the Schrödinger equation only with
certain accuracy. Identities (2)–(7) allow us to esti-
mate the computational uncertainty and verify that it
is much smaller than the physically relevant quantities.
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Figure 6(a) shows the total current spectrum

T (E) =
∑
|g|<k0

Tg(E)kg/k0 (A2)

together with the current nonconservation δT (E) defined
as the difference of the probability fluxes at zL and zR.
The parameter δT is a good indicator of the overall qual-
ity of the wave function: for 4MLs its average value over
the range of 40 eV is below 1%, and it sharply peaks to
exceed 5% in a few narrow intervals, accompanied by a
slight violation of the identities (3), (6), or (7).

Computationally, dwell time τ̃ is the most reliable
quantity, so below Esb the delay ∆τ can be obtained
without resorting to numerical differentiation. This is es-
pecially important when T0 drops below 10−6, whereby
its phase ξt0 becomes highly unreliable, as, e.g., between
22 and 27 eV in Fig. 6(b). The uncertainties are of simi-
lar magnitude for the 3, 5, and 6MLs, and they are much
smaller (practically negligible) for 1 and 2MLs. Thus,
the accuracy of ∆τ is sufficiently high to enable a de-
tailed analysis of scattering by multilayers.

Appendix B: Phases and dwell time in 3D case

According to Eq. (1) of the main text, the wave func-
tion for a wave incident from the left in the left half-space
reads

Ψ→(r∥, z) = exp ik0z +
∑
g

rg exp i[−kg(z − zL) + gr∥].

Also, it follows form Eq. (1) that for a symmetric crystal
the wave incident from the right in the left half-space is

Ψ←(r∥, z) =
∑
g

tg exp i[−kg(z − zL) + gr∥].

The superposition Ψl = Ψ→ + Ψ← carries zero current,
and in vacuum the condition Re

∫
Ψ∗l(−i∂Ψl/∂z) dr∥ = 0

results in the relation

k0[r0t
∗
0 + t0r

∗
0 ] +

∑
0<|g|<k0

kg|tg + rg|2 = 0, (B1)

where the sum is over the propagating secondary beams.
This leads to Eq. (5). Below Esb equation (B1) reduces to
Re (t0r

∗
0) = 0, which implies cos(ξt0−ξr0) = 0 or ξt0−ξr0 =

±π/2, as in the 1D case [34]. For several propagating
beams Eq. (B1) leads to Eq. (6).

Next we derive the expression for the dwell time in the
3D case. We follow the original derivation by Smith [28]:

From the Schrödinger equation ĤΨ = EΨ and its energy
derivative (Ĥ − E)Ψ̇ = Ψ we obtain

− ℏ2

2m
(Ψ∗∆Ψ̇− Ψ̇∆Ψ∗) = Ψ∗Ψ. (B2)

After integrating over r∥, the r∥ part of the Laplacian in

the left-hand side vanishes,
∑
g
(ϕ∗gϕ̇g−ϕ̇gϕ

∗
g)|g|2 = 0, and

in the Laue representation (A1) equation (B2) becomes

− ℏ2

2m

∑
g

d

dz
(ϕ∗gϕ̇

′
g − ϕ̇gϕ

′∗
g ) = ρ(z), (B3)

where the prime stands for the derivative d/dz and ρ(z)
is the density distribution profile. Integrating Eq. (B3)
from zL to zR we obtain

− ℏ2

2m

∑
g

(ϕ∗gϕ̇
′
g − ϕ̇gϕ

′∗
g )

∣∣∣∣∣
zR

zL

=

zR∫
zL

ρ(z) dz ≡ Q. (B4)

Let us express the boundary values in terms of the
notation of Eqs. (1) and (2)

left boundary: ϕ∗g(zL) = δ0g + r∗g,

ϕ̇g(zL) = ṙg,

ϕ̇′g(zL) = i
(
δ0gk̇0 − kgṙg − rgk̇g

)
,

ϕ′∗g (zL) = i
(
−δ0gk0 + r∗gk

∗
g

)
,

right boundary: ϕ∗g(zR) = t∗g,

ϕ̇g(zR) = ṫg,

ϕ̇′g(zR) = i
(
kg ṫg + tgk̇g

)
,

ϕ′∗g (zR) = −it∗gk
∗
g,

(B5)

where k∗g = kg for propagating beams and k∗g = −kg for evanescent beams. Then Eq. (B4) becomes

2m

ℏ2
Q = ik̇0 + 2k̇0Im r0 − i

∑
|g|<k0

2(ṙgr
∗
g + ṫgt

∗
g)kg + (Rg + Tg)k̇g − i

∑
|g|>k0

(Rg + Tg)k̇g, (B6)

where Rg = rgr
∗
g and Tg = tgt

∗
g are partial reflection and transmission probabilities. From the current conservation

law
d

dE

∑
|g|<k0

(rgr
∗
g + tgt

∗
g)kg = k̇0 it follows that

∑
|g|<k0

(ṙgr
∗
g + ṫgt

∗
g)kg + (Rg + Tg)k̇g = k̇0 −

∑
|g|<k0

(rgṙ
∗
g + tg ṫ

∗
g)kg,



7

which we substitute into the |g| < k0 sum of (B6) to obtain

2m

ℏ2
Q = 2k̇0Im r0 − i

∑
|g|<k0

(ṙgr
∗
g + ṫgt

∗
g − ṙ∗grg − ṫ∗gtg)kg − i

∑
|g|>k0

(Rg + Tg)k̇g. (B7)

Using the identity Im (ṙgr
∗
g + ṫgt

∗
g) = Rgξ̇rg + Tgξ̇tg and the derivatives of the wave vectors k̇g =

m

ℏ2kg
, we obtain

τ̃ =
Im r0
k0v0

+
ℏ
v0

∑
|g|<k0

(Rgξ̇rg + Tgξ̇tg)vg − 1

v0

∑
|g|>k0

Rg + Tg

2|kg|
, (B8)

where for the evanescent waves |kg| =
√

ℏ2|g|2/2m− E.
The |g| > k0 sum in Eq. (B8) is the integral probabil-
ity density stored in the evanescent tails of Ψ in both
half-spaces outside the region technically assigned to the

scatterer. Thus, it is natural to unite the last term in
Eq. (B8) with τ̃ and introduce τ̃3d, see Eq. (6), which
yields Eq. (7)

Appendix C: 2D Nearly-free-electron model analysis

We consider the Hamiltonian

Ĥ =
p̂2x + p̂2y
2m

+ 2
ℏ2

m
Ωδ(y) cos(gsbx). (C1)

The Lippmann–Schwinger equation for the wave function for a normal incidence (along ŷ) on the chain reads

Ψ(x, y) = exp iky +
ℏ2

m

∫
dx′G2d

0

(
x− x′, y; k2

)
2Ω cos(gsbx

′)Ψ(x′, 0), (C2)

where G2d
0 (x, y;ω) =

2m

ℏ2

∫∫
dqxdqy
4π2

exp(iqxx+ iqyy)

ω − q2x − q2y

is the Green’s function for a 2D free motion. Substituting the Laue representation (A1) in both sides of Eq. (C2)
yields

Ψ(x, y) = exp(iky)

+
ℏ2

m
Ω
∑
g

ϕg

{
exp[i(g + gsb)x]G

1d
0

[
y; k2 − (g + gsb)

2
]
+ exp[i (g − gsb)x]G

1d
0

[
y; k2 − (g − gsb)

2
]}

, (C3)

where ϕg ≡ ϕg(y = 0) and G1d
0 (y;ω) is the Green’s function for a free motion in one dimension [44],

G1d
0 (y, ω) =


− m

ℏ2q
exp−q|y|, ω < 0,

− im

ℏ2q
exp iq|y|, ω > 0,

(C4)

where q ≡
√

|ω|. It follows from Eq. (C4) that for y → ±∞, in the Laue representation (C3) of Ψ(x, y) one can retain
only propagating terms, i.e., those with the positive ω argument of G1d

0 . Then, around Esb, we have

Ψ(x, y) = eiky +
ℏ2

m
Ω
{
(ϕgsb + ϕ−gsb)G

1d
0 (y; k2) + [2ϕ0 cos(gsbx) + ϕ2gsbe

igsbx + ϕ−2gsbe
−igsbx]G1d

0 (y; ϵ)
}
,

where ϵ ≡ k2 − g2sb. The central beam scattering is given by the first term in the rectangular brackets.

ϕ0(y) = exp(iky)− iΩexp(ik|y|)
k

(ϕgsb + ϕ−gsb). (C5)
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Equating the coefficients of the Fourier harmonics
exp(igx) in Eq. (C3) we obtain

ϕg = δg0 + (ϕg−gsb + ϕg+gsb)Fg, (C6)

Fg ≡ ℏ2

m
ΩG1d

0

(
0; k2 − g2

)
. (C7)

If the potential is small compared with the kinetic en-
ergy Esb and oscillates sufficiently rapidly, Ω/gsb ≪ 1, a
nearly-free-electron approximation may be applied, i.e.,
only the shortest-g terms retained in the Laue represen-
tation: g = 0,±gsb,±2gsb. By truncating the chain of
equations (C6) at ϕ±2gsb we find

ϕgsb = ϕ−gsb ≈
1

F−1gsb − (2F0 + F2gsb)
. (C8)

Finally, we substitute ϕ±gsb into Eq. (C5) to obtain

ϕ0(y) = exp(iky)− 2iΩexp(ik|y|)
k(F−1gsb − 2F0 − F2gsb)

, (C9)

which is Eq. (9) of the main text. Equation (C9)
yields the reflection and transmission amplitudes: r =
−2iΩ/[k(F−1gsb − 2F0 −F2gsb)] and t = 1+ r. In the vicin-

ity of Esb it holds ϵ/g2sb ≪ 1, and we may set ϵ = 0 in all
terms except

F−1gsb =

{
−
√
|ϵ|/Ω, ϵ < 0,

i
√
ϵ/Ω, ϵ > 0.

(C10)

Then, in the limit k → gsb the coefficients Fg in Eq. (C9)

become F0 → −iΩ/gsb and F2gsb → −Ω/(gsb
√
3), and we

obtain expressions (10) for ∆τ , which demonstrate the
divergence of the Wigner time delay for ϵ → 0, i.e. for
E → Esb.
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