
Structural Parameters for Dense Temporal Graphs
Jessica Enright #

School of Computing Science, University of Glasgow, UK

Samuel D. Hand #

School of Computing Science, University of Glasgow, UK

Laura Larios-Jones #

School of Computing Science, University of Glasgow, UK

Kitty Meeks #

School of Computing Science, University of Glasgow, UK

Abstract
Temporal graphs provide a useful model for many real-world networks. Unfortunately the majority
of algorithmic problems we might consider on such graphs are intractable. There has been recent
progress in defining structural parameters which describe tractable cases by simultaneously restricting
the underlying structure and the times at which edges appear in the graph. These all rely on the
temporal graph being sparse in some sense. We introduce temporal analogues of three increasingly
restrictive static graph parameters – cliquewidth, modular-width and neighbourhood diversity –
which take small values for highly structured temporal graphs, even if a large number of edges
are active at each timestep. The computational problems solvable efficiently when the temporal
cliquewidth of the input graph is bounded form a subset of those solvable efficiently when the
temporal modular-width is bounded, which is in turn a subset of problems efficiently solvable when
the temporal neighbourhood diversity is bounded. By considering specific temporal graph problems,
we demonstrate that (up to standard complexity theoretic assumptions) these inclusions are strict.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis; Theory of computation → Fixed parameter tractability

Keywords and phrases Graph algorithms, Parameterized Algorithms, Temporal Graphs

Funding Jessica Enright: Supported by EPSRC grant EP/T004878/1.
Samuel D. Hand: Supported by an EPSRC doctoral training account.
Kitty Meeks: Supported by EPSRC grants EP/T004878/1 and EP/V032305/1.

1 Introduction

Temporal graphs, in which the set of active edges changes over time, are a useful formalism
for modelling numerous real-world phenomena, from social networks in which friendships
evolve over time to transport networks in which a particular connection is only available on
particular days and times. This has inspired a large volume of research into the algorithmic
aspects of such graphs in recent years [8, 26, 34], but unfortunately in many cases even
problems which admit polynomial-time algorithms on static graphs become intractable in
the temporal setting.

This has motivated the study of computational problems on restricted classes of temporal
graphs, with mixed success: in a few cases, restricting the structure of the underlying static
graph (e.g. to be a path or a tree) is effective, but numerous natural temporal problems
remain intractable even when the underlying graph is very strongly restricted (e.g. when it
is required to be a path [33] or a star [2]). Recently, several promising new parameters have
been introduced that simultaneously restrict properties of the static underlying graph and
the times at which edges are active in the graph; these include several analogues of treewidth
for temporal graphs [18, 30], the temporal feedback edge/connection number [23], the timed
vertex feedback number [7] and the (vertex-)interval-membership-width of the temporal

ar
X

iv
:2

40
4.

19
45

3v
1

 [
cs

.D
M

]
 3

0
A

pr
 2

02
4

mailto:jessica.enright@glasgow.ac.uk
mailto:s.hand.1@research.gla.ac.uk
mailto:Laura.Larios-Jones@glasgow.ac.uk
mailto:kitty.meeks@glasgow.ac.uk

2 Structural Parameters for Dense Temporal Graphs

graph [6]. However, all of these new temporal parameters are only small for temporal graphs
that are, in some sense, sparse: none of them can be bounded on a temporal graph which
has a superlinear (in the number of vertices) number of active edges at every timestep.

In this paper, we attempt to fill this gap in the toolbox of parameters for temporal graphs
by introducing three new parameters which can take small values on temporal graphs which
are dense but are sufficiently highly structured. Specifically, we define natural temporal
analogues of cliquewidth, modular-width and neighbourhood diversity, all of which have
proved highly effective in the design of efficient algorithms for static graphs.

Importantly, the neighbourhood diversity of a static graph upper bounds its modular-
width, which upper bounds its cliquewidth. Both cliquewidth (introduced by Courcelle et al.
[13]) and modular-width (introduced by Gajarský et al. [19], using the long-standing notion
of modular decompositions [20]) can be defined in terms of width measures over composition
trees allowing particular operations. Cliquewidth constructions have greater flexibility due
to the fact we are allowed to use an additional “relabelling” operation; this makes it possible,
for example, to build long induced paths, which cannot exist in graphs of small modular
width. Courcelle et al. [11] show that any graph property expressible in monadic second
order is solvable in linear time for graphs of bounded cliquewidth. Gajarský et al. [19] provide
examples of problems (Hamilton Path and Colouring) that are hard with respect to
cliquewidth but tractable with respect to the more restrictive parameter modular-width.
Neighbourhood diversity is a highly restrictive parameter, introduced by Lampis [28], which
requires that large sets of vertices have identical neighbourhoods. Cordasco [9] demonstrated
that Equitable Colouring is hard with respect to modular-width but tractable with
respect to neighbourhood diversity.

These three static parameters are the inspiration for our temporal parameters. Informally,
our new parameters are defined as follows:

A temporal graph has temporal neighbourhood diversity (TND) at most k if its vertices can
be partitioned into at most k classes such that each class induces either an independent
set or a clique in which all edges are active at exactly the same times, and two vertices in
the same class have exactly the same neighbours outside the class at each timestep.
Temporal modular-width (TMW) is a generalisation of TND: a temporal graph has TMW
at most k if its vertices can be partitioned into modules such that two vertices in same
module must have the exactly the same neighbours outside the class at each timestep,
but now each module need only be a temporal graph which itself has TMW at most k,
rather than a clique or independent set.
Like the static version, temporal cliquewidth (TCW) is defined to be the minimum number
of labels needed to construct a temporal graph using four operations (create a vertex
with a new label; take a disjoint union of two graphs; add all edges between vertices of
two specified labels; relabel all occurrences of one label to another); the difference from
the static case is that when adding edges between two sets of vertices these edges must
all be active at exactly the same times.

We note that in every case we will recover the corresponding static parameter if all edges
are active at the same times. It is immediate that the TND of a temporal graph is an upper
bound on its TMW, and it is straightforward to show (see Section 3) that the TMW is an
upper bound on the TCW. Thus, the most general algorithmic result we hope to obtain is to
show that a problem is tractable when the TCW of the input temporal graph is bounded, but
we expect to be able to show tractability for more problems as we impose stronger restictions
on the input by bounding respectively the TMW and the TND.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 3

Temporal ∆ Clique StarExp(4)

Temporal cliquewidth

Temporal modular-width

Temporal neighbourhood diversity

Temporal
Graph Burning

Figure 1 A diagram of our parameters and the problems we show to be tractable with respect to
each. A problem is in a rectangle if it is tractable with respect to the parameter it is labelled with.
Assuming P≠NP, each problem is in the rectangle for the most general of the three parameters for
which it is tractable.

To illustrate the value of considering this hierarchy of parameters, we provide examples of
problems which can be solved efficiently when each of our three new parameters is bounded,
but which (in the case of TND and TMW) remain intractable when we restrict only the next
most restrictive parameter, as illustrated in Figure 1. Specifically, we prove that:

Temporal Clique is solvable in linear time when a temporal cliquewidth decomposition
of constant width is given (see Section 2).
StarExp(4) (the problem of deciding whether there is a closed temporal walk visiting all
vertices in a star when each edge is active at no more than four times) remains NP-hard
on graphs with TCW at most three, but is solvable in polynomial time when the TMW
of the input graph is bounded by a constant; in fact we provide an fpt-algorithm with
respect to TMW (see Section 3).
Graph Burning is NP-hard on temporal graphs with constant TMW, but is solvable in
polynomial time when the TND of the input graph is bounded by a constant; again this
is an fpt-algorithm with respect to TND (see Section 4).

We also (in Section 4) provide an fpt-algorithm to solve SingMinReachDelete paramet-
erised by TND (when the number of appearances of each edge is bounded), in order to
illustrate additional techniques that may be used when working with this new temporal
parameter. We conjecture that SingMinReachDelete is another example of a problem
that is tractable with respect to TND but intractable when only the TMW is restricted.

The remainder of the paper is organised as follows. We conclude this section by introducing
some key notation and definitions used throughout the paper. The following three sections
are devoted to TCW, TMW and TND respectively, with each section containing the formal
definition of a parameter as well as results about problems which can be solved efficiently
when that parameter is bounded.

1.1 Notation and definitions
We use a number of standard notations for temporal graphs and related notions. A temporal
graph G = (G, λ) consists of an underlying static graph G↓ = G, and a time-labeling function
λ ∶ E → 2N, assigning to each edge a set of timesteps at which it is active. We refer to a
pair (e, t) consisting of an edge e ∈ E(G) and time t ∈ λ(e) as a time-edge. The set of all
time-edges of a temporal graph is denoted by ε(G) and the lifetime Λ of a temporal graph
refers to the final time at which any edge is active, i.e. Λ =max{max λ(e) ∶ e ∈ E(G)}. The
snapshot Gt of a temporal graph G at time t is the static graph G = (V, Et) where E is the
set of edges active at time t.

4 Structural Parameters for Dense Temporal Graphs

A temporal path on the temporal graph G = (G, λ) is a sequence of time, edge pairs
(e1, t1), ..., (eℓ, tℓ), such that e1, ..., eℓ is path on G, and ti ∈ λ(ei) for every i ∈ [ℓ], and
t1, ..., tℓ is a strictly increasing sequence of times. Given a temporal path (e1, t1), ..., (eℓ, tℓ)
we refer to the time t1 as its departure time, and tℓ as its arrival time.

We refer the reader to [15] for background on parameterised complexity.

2 Tractability with respect to Temporal Cliquewidth

In this section we give the formal definition of the first of our new parameters, temporal
cliquewidth, and demonstrate that the problem of finding a temporal clique admits an
fpt-algorithm parameterised by temporal cliquewidth. Before defining temporal cliquewidth,
we start by recalling the definition of cliquewidth in the static setting, as introduced by
Courcelle and Olariu [14].

▶ Definition 1 (Cliquewidth). The cliquewidth of a static graph G = (V, E) is the number of
labels required to construct G using only the following operations:

1. Creating a new vertex with label i.
2. Taking the disjoint union of two labeled graphs.
3. Adding edges to join all vertices labeled i to all vertices labeled j, where i ≠ j.
4. Renaming label i to label j.

We refer to an algorithm which constructs a graph G using the above operations as a
cliquewidth construction of G.

Computing the cliquewidth of a graph is NP-hard [17], although there exists a polynomial-time
algorithm to recognise graphs of cliquewidth at most three [10].

Translating this definition into the temporal setting, and preserving the idea that vertices
with the same label should be indistinguishable when we add edges – which imposes additional
restrictions on the times at which new edges are active – we obtain our definition of temporal
cliquewidth.

▶ Definition 2 (Temporal Cliquewidth). The temporal cliquewidth of a temporal graph
G = (G, λ) is the number of labels required to construct G using only the following operations:

1. Creating a new vertex with label i.
2. Taking the disjoint union of two labeled graphs.
3. Adding edges to join all vertices labeled i to all vertices labeled j, where i ≠ j, such that

all the added edges are active at the same set of times T .
4. Renaming label i to label j.

We refer to an algorithm which constructs a temporal graph G using the above operations as
a temporal cliquewidth construction of G.

We note that, if temporal graph G has bounded temporal cliquewidth k, then the underlying
graph G↓ of G has cliquewidth at most k. The construction of the underlying graph is found
by adding a static edge (if one does not already exist) whenever a time-edge is added in the
construction of the temporal graph. In addition, the snapshot of G at any time t, Gt also has
cliquewidth at most k. This follows from a similar argument. If we have a temporal graph
where the edges all appear at the same times, the cliquewidth of the underlying graph is
the same as the temporal cliquewidth and the cliquewidth of any snapshots where edges are

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 5

active.It follows immediately that it is NP-hard to compute temporal cliquewidth, as the
NP-hard problem of computing the cliquewidth of a static graph is a special case.

The remainder of this section is devoted to proving that the problem Temporal ∆
Clique is in FPT parameterised by the temporal cliquewidth of the input graph. This
problem was introduced by Viard et al. [37] and asks, in an interval of times, whether there
is a set of at least h vertices such that there is an appearance of an edge between every pair
of vertices in every sub-interval of ∆ times. Hermelin et al. [25] investigate the variant of
this problem where the interval in question is the entire lifetime of the temporal graph. More
formally, it asks if there exists a set V ′ of cardinality at least h such that for each pair of
distinct vertices u, v ∈ V ′ and each time 0 ≤ i ≤ Λ−∆ where Λ is the lifetime of G, there exists
a time-edge at time t′ ∈ [i, ∆ + i].

Hermelin et al. note that this is the case if and only if there is a set of vertices of size
at least k such that they form a clique on the static graph consisting of edges that appear
in every interval of ∆ timesteps. They name this static graph a ∆-association graph. It is
more formally defined as G = (V, ⋂Λ(G)−∆+1

i=1 ⋃i+∆−1
j=i Ej) where Ej is the set of edges active

at time j. This reformulates the problem as follows.

Temporal ∆ Clique

Input: A temporal graph G = (V, E, λ) and two integers ∆ and h where ∆ ≤ T (G).
Output: Is there a set V ′ ⊆ V of vertices such that ∣V ′∣ ≥ h and V ′ is a clique in the
∆-association graph G of G?

Note that a temporal graph G with integers ∆ and h is a yes-instance of Temporal ∆
Clique if and only if its ∆-association graph G and h are a yes-instance of Clique.

▶ Proposition 3. If a temporal graph G has temporal cliquewidth k, then the ∆-association
graph G of G has cliquewidth at most k.

Proof. Given a temporal cliquewidth construction of G, we find a cliquewidth construction
of its ∆-association graph G using the same number of labels. Suppose that, under such a
construction of G, there is a set of time-edges added between vertices with labels i and j,
i ≠ j where at least one of these edges appears in the association graph G and at least one
edge does not. That is, in the subgraph of G induced by the vertices with labels i and j

at this point in the construction neither form an independent set nor a complete bipartite
graph. Label the edges which are in this subgraph E1 and those which are not E2. Then, for
each edge e2 in E2, there must be a time t such that all edges in E1 appear at a time t′ in
[t, t +∆] and e2 does not.

We claim that the endpoints of edges in E1 are labelled i and j before both endpoints of
edges in E2. Let e1 be an edge in E1 with such an appearance t′ in G. Then the addition of
the time-edge (e1, t′) must occur before the endpoints of e1 and e2 are labelled i and j. Else,
e2 must also be active at t′ and thus there is a time in [t, t +∆] at which e2 appears. This
contradicts our earlier assertion. Therefore, the endpoints of edges E1 are labelled i and j

before each endpoint of edges in E2 is labelled the same.
Hence, the edges in G can be added at the point in the construction where the endpoints

of the edges in E1 have the same labels and those in E2 do not. This implies that we can
construct G as in Definition 1 with at most k labels if G can be constructed with k labels. ◀

Gurski [22, Theorem 4.4] shows that Clique is solvable in linear time in graphs of bounded
cliquewidth if its construction is given. This gives us the following result.

6 Structural Parameters for Dense Temporal Graphs

▶ Theorem 4. Given a cliquewidth construction of the ∆-association graph of a temporal
graph G, Temporal ∆ Clique can be solved in linear time.

3 Tractability with respect to Temporal Modular-width

We now introduce a more restrictive parameter, temporal modular-width, and show (in
Section 3.1) that there exist problems which are efficiently solvable when this parameter is
bounded even though they remain intractable on temporal graphs with constant temporal
cliquewidth.

We begin with the formal definition of the parameter. Again, we start by recalling the
definition of the corresponding static parameter on which our definition is based.

▶ Definition 5 (Modular-width, Section 2.5 [19]). Suppose a static graph G can be constructed
by the algebraic expression A which uses the following operations:

1. Creating an isolated vertex.
2. Taking the disjoint union of two graphs.
3. Taking the complete join of two graphs. That is, for graphs G1 = (V1, E1) and G2 =
(V2, E2), V (G1 ⊗G2) = V (G1) ∪V (G2) and E(G1 ⊗G2) = E(G1) ∪E(G2) ∪ {(v, w) ∶ v ∈
V (G1) and w ∈ V (G2)}.

4. The substitution of graphs G1, . . . , Gn into a graph G′ with vertices v1, . . . , vn. This
gives the graph G′(G1, . . . , Gn) with vertex set ⋃1≤i≤n V (Gi) and edge set ⋃1≤i≤n E(Gi) ∪
{(v, w) ∶ v ∈ V (Gi), w ∈ V (Gj), and (vi, vj) ∈ E(G′)}.

The width of an expression A is the maximum number of operands in an occurrence of the
operation 4 in A. The modular-width of G, written MW (G), is this minimum width of an
expression A which constructs G.

We refer to the graphs G1, . . . , Gn which we substitute into G′ as modules. It is known that
for any graph G an algebraic expression of modular-width MW (G) can be be found in linear
time [36]. Observe that operations 2 and 3 are special cases of operation 4.We note that the
modular-width of a graph can be computed in linear time [31, 36].

We now define our temporal analogue of this parameter. For simplicity we do not explicitly
include the disjoint union and complete join operations, noting that once again these are
special cases of the substitution operation.

▶ Definition 6 (Temporal Modular-width). Suppose a temporal graph G can be constructed by
the algebraic expression A which uses the following operations:

1. Creating an isolated vertex.
2. The substitution of temporal graphs G1, . . . ,Gn into a temporal graph G′ with vertices

v1, . . . , vn. This gives the graph G′(G1, . . . ,Gn) with vertex set ⋃1≤i≤n V (Gi) and time-edge
set ⋃1≤i≤n ε(Gi) ∪ {(vw, t) ∶ v ∈ V (Gi), w ∈ V (Gj), and (vivj , t) ∈ ε(G′)}.

The width of an expression A is the maximum number of operands in an occurrence of the
operation 2 in A. The temporal modular-width of G is this minimum width of an expression
A which constructs G.

As for temporal cliquewidth, we observe that the temporal modular-width of a temporal
graph is equal to the modular-width of the underlying graph if all edges have the same
temporal assignment. It follows that, as in the static case, the temporal modular-width
bounds the length of the longest induced path in the underlying graph.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 7

We now argue that, as claimed, bounding the temporal modular-width of a temporal
graph is a strictly stronger restriction than bounding the temporal cliquewidth.

▶ Theorem 7. For any temporal graph G = (G, λ), the temporal cliquewidth is upper bounded
by the temporal modular-width.

Proof. Assuming that G has temporal modular-width at most k, we induct on the maximal
temporal modular decomposition tree for G to produce a temporal cliquewidth construction
of G using at most k labels. This is achieved by inductively producing a temporal cliquewidth
construction corresponding to each child of the root node in the temporal modular decom-
position tree, and then relabeling and combining these constructions to produce an overall
expression for G.

Any tree of depth one consists of only a single vertex and thus has temporal cliquewidth
1 ≤ k.

Now, given a tree of depth d, consider the substitution G′(G1, ...,Gn) at the root node of
the tree. Note that n ≤ k as G has temporal modular-width at most k. Then each child Gi

has a decomposition tree of depth at most d − 1, and therefore by induction has cliquewidth
at most k. Therefore it is possible to find an expression Ai for every child Gi using the
operations of Definition 2, such that at most k labels are used. and furthermore in which
every vertex in the resulting graph is relabeled to i. The graph G can then be constructed
by relabeling every vertex in each Ai to i, and then taking a disjoint union, before adding
edges active at times λ({vi, vj}) between all vertices labeled i and all vertices labeled j for
every {vi, vj} ∈ E(G), where G′ = (G, λ). ◀

We go on to show that the unique maximal temporal modular decomposition, and
therefore the width, can be computed in polynomial time. Habib and Paul [24] describe a
simple algorithm for finding the modular decomposition of a static graph. This operates by
finding and repeatedly adding splitters to a candidate module. We use a similar method to
find the temporal modular decomposition. We begin by defining key concepts.

▶ Definition 8 (Splitter [24]). Given a set of vertices S, a vertex x is said to be a splitter
for S if there exist vertices u, v ∈ S such that x is adjacent to exactly one of u and v.

▶ Definition 9 (Static Module [24]). A set of vertices M is a static module of the graph G,
if and only if for every vertex x ∉M , x is not a splitter for M .

▶ Definition 10 (Temporal Module). A set of vertices M is a temporal module of (G, λ)
if and only if for every timestep t ∈ [Λ] and vertex x ∉M , x is not a splitter for M in the
snapshot graph (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}).

We now obtain a relationship between temporal modules and modules in the static graphs
corresponding to each snapshot.

▶ Lemma 11. M is a temporal module of (G, λ) if and only if for every timestep t ∈ [Λ], M

is a module of the snapshot graph (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}).

Proof. If M is a temporal module of (G, λ), then for any timestep t there are no splitters of
M in (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}), and thus M is a module of (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}).

Conversely, if for every timestep t, M is a module of (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}), it
must have no splitters in (V (G),{e ∈ E(G) ∶ t ∈ λ(e)}), and thus is a temporal module of
(G, λ). ◀

8 Structural Parameters for Dense Temporal Graphs

We further demonstrate that, as in the static case, the set of maximal modules for a
temporal graph is unique.

▶ Lemma 12. The set of maximal temporal modules M for the temporal graph (G, λ) is
unique and partitions V (G).
Proof. Assume that such a set does not partition V (G), that is ⋃M = V (G) but there
exists Mi, Mj ∈ M such that Mi ∩Mj ≠ ∅. By the previous lemma, we have that Mi and
Mj are modules in every snapshot of (G, λ), and hence Mi ∪Mj is also a module in every
snapshot of (G, λ) and is therefore a temporal module, but Mi ∪Mj ⊃Mi, contradicting the
maximality.

Now assume that such a set is not unique, that is there exists a set of maximal temporal
modules P with P ≠ M. Now let Pi ∈ P be a module such that Pi ∉ M, and consider a
vertex v ∈ Pi. As M partitions V (G), there exists some module Mj ∈ M such that v ∈Mj .
Then Pi ∪ Mj is a module in every snapshot, and therefore a temporal module, but this
contradicts the maximality of M and P. ◀

A simple way to compute this unique maximal modular decomposition is then provided
by the following observation.

▶ Observation 13. Let S be a subset of the vertices of a temporal graph (G, λ). If S has a
splitter x in any snapshot of (G, λ), then any module of (G, λ) containing S also contains x.

Given a set M of modules, repeatedly test if a non-trivial module containing a pair
M1, M2 ∈ P exists, by considering M1 ∪M2 as a candidate module, and repeatedly adding
any splitters from the remaining modules in M. If a trivial module is obtained the pair is
discounted, and otherwise the set of modules is updated with the newly found non-trivial
module. We find the maximal modular decomposition by initialising the set of modules to
all the singleton trivial modules, that is {{v} ∶ v ∈ V (G)}.
▶ Theorem 14. We can find the maximal temporal modular decomposition in time O(n4Λ),
where n is the number of vertices in the temporal graph.

Proof. The above algorithm begins with a set of n modules, and repeatedly considers pairs
from this set. After each iteration the size of the list will either be reduced by one, or a
pair will be discounted, thus the process must terminate after O(n2) iterations. On each
iteration each remaining module is checked to see if it splits the current candidate module
on any timestep, which is possible in O((n +m)Λ) = O(n2Λ), giving an overall runtime of
O(n4Λ). ◀

3.1 Star Exploration
In this section we consider the following problem, demonstrating that it remains NP-hard
even on temporal graphs with temporal cliquewidth at most three, but that it is solvable
in constant time on graphs with bounded temporal modular-width. This problem was first
introduced by Akrida et al. [2].

StarExp(4)

Input: A temporal star (Sn, λ) where ∣λ(e)∣ ≤ 4 for every edge e in the star Sn.
Output: Is there a strict temporal walk, starting and finishing at the centre of the star,
which visits every vertex of Sn?

We begin with a simple observation about the temporal cliquewidth of temporal graphs
whose underlying graph is a star.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 9

▶ Lemma 15. A temporal star Sn has temporal cliquewidth at most 3.

Proof. Our proof is constructive. The temporal cliquewidth construction is as follows.

1. Order the leaves of the star l1, . . . , ln arbitrarily.
2. Introduce the central vertex c with label L1.
3. Introduce the vertex l1 with label L2 and add all time-edges between l1 and c.
4. For all remaining leaves li ∈ l2, . . . , ln:

a. Introduce li with label L3 and all time-edges between c and li.
b. Relabel li with label L2.

From this construction, we see that it requires at most 3 labels to construct a temporal
star. ◀

StarExp(τ) is known to be NP-hard even for constant τ [2, 6]. Then, by Lemma 15,
StarExp(τ) is an example of a problem which is NP-hard on graphs of bounded temporal
cliquewidth. We now show that StarExp(τ) is tractable on graphs of bounded temporal
modular-width. We begin with the following lemma.

▶ Lemma 16. If a temporal star Sn has temporal modular-width at most k, the leaves of Sn

can be partitioned into k − 1 subsets such that, if u and v are in the same subset and c is the
central vertex in the star, the edges uc and cv are active at the same times.

Proof. We claim that the graph into which the final substitution is made in the maximal
temporal modular decomposition is a star with at most k − 1 leaves. Else, the graph
constructed would either not be a star or not have temporal modular-width at most k. We
begin by showing that, for this substitution, the central vertex c is the only vertex in its
module. Suppose otherwise; following the substitution any other vertex in this module has a
neighbour which is not c. This contradicts that Sn is a star.

In addition, we have that the other modules are independent sets, otherwise we would
again have that two leaves are adjacent. Therefore, there are no edges in the graph before
this final substitution is made. Since all edges between any two modules in a substitution
are assigned the same time, all leaves in the same module must be adjacent to the central
vertex by edges active at the same time. Thus, we have k − 1 subsets such that, if u and v

are in the same subset, the edges uc and cv are active at the same times. ◀

▶ Lemma 17. If there are strictly more than τ/2 leaves of Sn whose incident edges are active
at the same times, we have a no-instance of StarExp(τ).

Proof. By definition of the problem StarExp(τ), each edge in the star is active at most
τ times. Therefore, if there are ⌊τ/2⌋ + 1 vertices u1, . . . , u⌊τ/2⌋+1 such that λ(u1c) = ⋅ ⋅ ⋅ =
λ(u⌊τ/2⌋+1c) where c is the central vertex in the star, there is no temporal walk which starts at
c and visits all of u1, . . . , u⌊τ/2⌋+1. To see this, note that visiting a leaf and returning requires
the use of two distinct time-edges. Therefore, a walk visiting any ⌊τ/2⌋ + 1 leaves which
departs from and returns to c must consist of at least τ + 1 distinct time-edges. This is not
possible if these vertices have incident edges are active at the same times and ∣λ(uc)∣ ≤ τ . ◀

▶ Theorem 18. StarExp(τ) is solvable in (kτ)!(kτ)O(1) time when the temporal modular-
width of the graph is at most k.

10 Structural Parameters for Dense Temporal Graphs

Proof. Given that the temporal modular-width of the graph is at most k, we check whether
the number of leaves is more than (k−1)⌊τ/2⌋. If the number of leaves is at least (k−1)⌊τ/2⌋+1
then, by the pigeon-hole principle and Lemma 16, there must be at least ⌊τ/2⌋ + 1 leaves
whose edges to the central vertex are active at exactly the same times. In this case, by
Lemma 17, we conclude that we have a no-instance of StarExp(τ).

Else, we have at most (k − 1)⌊τ/2⌋ < kτ leaves. Note that, given an ordering of leaves
to visit, we can check whether such a walk is valid in time polynomial in k and τ : we need
only check for each leaf in order whether there are two appearances of its incident edge
following the time-edges used to visit the previous leaf (and if so, greedily use the first two
such appearances). Since there are fewer than (kτ)! possible orderings of the leaves, we can
check each possibility in turn in time (kτ)!(kτ)O(1). ◀

4 Tractability with respect to Temporal Neighbourhood Diversity

We now turn our attention to our final parameter, temporal neighbourhood diversity, which
is the most restrictive and hence allows for the most problems to be solved efficiently. In
Section 4.1 we demonstrate that Temporal Graph Burning is solvable in polynomial
time when the temporal neighbourhood diversity is bounded by a constant (in fact we give
an fpt-algorithm with respect to this parameterisation), even though the problem remains
NP-hard when restricted to temporal graphs with constant temporal modular-width. To
illustrate further techniques that may be used to design efficient algorithms on graphs of
bounded temporal neighbourhood diversity, in Section 4.2 we also give an fpt-algorithm for
the problem SingMinReachDelete with a single source vertex.

We begin with the formal definition of temporal neighbourhood diversity. Once again,
the definition is modelled on that for static graphs, which was first introduced by Lampis
[28] and adpated by Ganian [21] to describe uncoloured graphs. In a static graph, we define
the neighbourhood N(v) of a vertex v as the set of vertices which share an edge with v.

▶ Definition 19 (Type, Definition 2.2 [21]). Two vertices v, v′ have the same type if and
only if N(v) ∖ {v′} = N(v′) ∖ {v}.

▶ Definition 20 (Neighbourhood Diversity, Definition 2 [28]). A graph G = (V, E) has neigh-
bourhood diversity at most k if and only if there exists a partition of V (G) into at most
w sets where all sets have the same type. We refer to this partition as a neighbourhood
partition.

We note that the neighbourhood diversity of a graph can be computed in linear time [28].
We now define the analogous temporal parameter, where we require that the edges

between sets are all active at the same times.

▶ Definition 21 (Temporal Neighbourhood). The temporal neighbourhood of a vertex v in a
temporal graph (G, λ) is the set TN(v) of vertex time pairs (w, t) where (w, t) ∈ TN(V) if
and only if vw ∈ E(G) and t ∈ λ(vw).

▶ Definition 22 (Temporal Type). Two vertices u, v have the same temporal type if and
only if {(w, t) ∈ TN(v) ∶ w ≠ v} = {(w, t) ∈ TN(v′) ∶ w ≠ u}.

▶ Definition 23 (Temporal Neighbourhood Diversity). A graph G has temporal neighbourhood
diversity at most k if and only if there exists a partition of V (G) into at most k sets where
all sets have the same temporal type. We refer to this partition as a temporal neighbourhood
partition.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 11

It is immediate from this definition that, when all edges are assigned the same times, the
temporal neighbourhood diversity of the graph is the same as the neighbourhood diversity
of the underlying graph. We now argue that, as in the static case, the subgraph induced
by any class must form a clique or independent set; moreover, in the temporal setting, this
must be true at every timestep.

▶ Lemma 24. At any snapshot Gt of G, the subgraph induced by the vertices in a class X of
a temporal neighbourhood partition of G either forms an independent set or a clique.

Proof. Let u and v be vertices in X a class of a temporal neighbourhood partition of G.
Suppose the time-edge (uv, t) exists in G, then for any other vertex w in X, the time-edges
(wu, t) and (wv, t) must exist. Thus, the vertices in X form a clique at time t.

Similarly, suppose the time-edge (uv, t) does not exist in G. Then, for any other w ∈X,
the time-edges (wu, t) and (wv, t) cannot exist. Otherwise, w has a different temporal
neighbourhood to v and u respectively. Therefore, the vertices in X must form an independent
set at time t. ◀

As stated, temporal neighbourhood diversity is the most restrictive parameter in our
hierarchy. We observe that for any temporal graph G the temporal modular-width is upper
bounded by the temporal neighbourhood diversity. Each class in the temporal neighbourhood
partition forms a module, and it follows from Lemma 24 that each of these modules can
be constructed by repeatedly subsituting into a complete graph or independent set of two
vertices.

Finally, we argue that we can compute the temporal neighbourhood diversity efficiently.

▶ Proposition 25. The temporal neighbourhood diversity of a temporal graph (G, λ) can be
calculated in O(Λn3) time.

Proof. Observe that we can check time O(nΛ) whether two vertices are in the same class of
a maximal temporal neighbourhood partition. There are at most O(n2) pairs of vertices to
compare. Therefore, dividing vertices of a temporal graph into these equivalence classes can
be done in O(Λn3) time. ◀

4.1 Temporal Graph Burning
In this section we define Temporal Graph Burning, a temporal analogue of the static
Graph Burning problem first proposed by Bonato et al.[5]. Static Graph Burning is
NP-hard on general graphs [4], was recently shown to be in FPT parameterised by static
modular width [27]. In contrast, we prove that Temporal Graph Burning remains
NP-hard on graphs with constant temporal modular-width. This difference arises from the
fact that, in the static setting, the length of a longest induced path in the graph (which is
upper bounded by the modular-width) gives an upper bound on the time taken to burn the
graph. In the temporal setting, on the other hand, the times assigned to edges mean that
even graphs with small diameter may take many steps to burn. In contrast, we show that
Temporal Graph Burning can be solved in time O(n5Λk!4k) on temporal graphs with n

vertices, lifetime Λ and temporal neighbourhood diversity k.
The Temporal Graph Burning problem asks how quickly a fire can be spread over

the vertices of a temporal graph in the following discrete time process, where a fire is placed
at a vertex of a graph on each timestep.

1. At time t = 0 a fire is placed at a chosen vertex. All other vertices are unburnt.

12 Structural Parameters for Dense Temporal Graphs

2. At all times t ≥ 1, the fire spreads, burning all vertices u adjacent to an already burning
vertex v where the edge between u and v is active at time t. Then, another fire is placed
at a chosen vertex.

3. This process ends once all vertices are burning.

We refer to a sequence of vertices at which fires are placed as a strategy.

▶ Definition 26 (Burning Strategy). A burning strategy for a temporal graph (G, λ) is a
sequence of vertices S = s1, s2, ..., sℓ such that si ∈ V (G) for all i ≤ ℓ, and on each timestep i

a fire is placed at si.

For convenience, we allow for strategies that place fires at already burning vertices,
although it is worth noting that such moves may be omitted. If every vertex in the graph is
burning after a strategy is played, we say that strategy is successful.

▶ Definition 27 (Successful Burning Strategy). A burning strategy S = s1, s2, ..., sℓ for a
temporal graph (G, λ) is successful if every vertex in G is burning on timestep ℓ when the
moves from S are played.

The decision problem asks how many timesteps it takes to burn a given temporal graph.

Temporal Graph Burning

Input: A temporal graph (G, λ) and an integer h.
Output: Does there exist a successful burning strategy for (G, λ) of length less than or
equal to h?

This problem is in NP, with a strategy providing a certificate. Given a strategy it can
be checked in polynomial time if it is successful and of length less than or equal to h by
simulating temporal graph burning on the input graph.

We show that Temporal Graph Burning is NP-hard even on graphs of bounded
temporal modular-width. This is achieved by reducing from (3, 2B)-SAT, an NP-hard
variant of the Boolean satisfiability problem in which each variable appears exactly twice
both positively and negatively [3], defined formally as follows.

(3, 2B)-SAT

Input: A pair (B, C) where B is a set of Boolean variables, and C = C1 ∧ ... ∧Cm is a
set of clauses over B in CNF, each containing 3 literals C1

j ∨ C2
j ∨ C3

j , such that each
variable appears exactly twice negatively and exactly twice positively.
Output: Is there a truth assignment to the variables such all of the clauses in C are
satisfied?

Our reduction produces a graph where each edge is active on exactly one timestep, and
furthermore every connected component has a bounded temporal neighbourhood diversity,
and hence the graph overall has bounded temporal modular-width.

▶ Theorem 28. Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.

Proof. We reduce from (3, 2B)-SAT. As such we begin by describing how to construct
an instance ((G, λ), h) of Temporal Graph Burning, given an instance (B, C) of (3,
2B)-SAT with C = C1 ∧ ⋅ ⋅ ⋅ ∧ Cm, and ∣B∣ = n. We then go on to show that (B, C) is a
yes-instance of (3, 2B)-SAT if and only if ((G, λ), h) is a yes-instance of Temporal Graph
Burning.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 13

Figure 2 The connected component corresponding to the literal xi, where xi is the 1st literal in
clause cj , and the second literal in clause cj′ .

To construct ((G, λ), h), begin by setting h = 2n+ 3m+ 1. Now let the vertex set of G be
given by the union of the following sets:

the set of literal vertices: {xi,¬xi ∶ i ∈ [n]},
the set of clause vertices: {c1

j , c2
j , c3

j ∶ j ∈ [m]},
the set of appearance vertices: {ui,j , wi,j ∶ xi or ¬xi appears in Cj},
the set of leaf vertices: {yi,d,¬yi,d ∶ i ∈ [n], d ∈ [h+1]}∪{z1

j,d, z2
j,d, z3

j,d ∶ j ∈ [m], d ∈ [h+1]}.

We represent the set of time-edges as a set of pairs of edges and a single timestep, such
that if ({u, v}, t) is a time-edge then {u, v} ∈ E(G) and λ({u, v}) = {t}. This set is then
given by the union of the following sets:

{({xi, yi,d}, 2i + 1), ({¬xi,¬yi,d}, 2i + 1) ∶ i ∈ [n], d ∈ [h + 1]},
{({c1

j , z1
j,d}, 2n+3j+1), ({c2

j , z2
j,d}, 2n+3j+1), ({c3

j , z3
j,d}, 2n+3j+1) ∶ j ∈ [m], d ∈ [h+1]},

{({xi, ui,j}, 2i), ({ui,j , wi,j}, h), ({wi,j , cℓ
j}, 2n + 3j) ∶ xi is the ℓth literal in Cj},

{({¬xi, ui,j}, 2i), ({ui,j , wi,j}, h), ({wi,j , cℓ
j}, 2n + 3j) ∶ ¬xi is the ℓth literal in Cj}.

Note that this graph consists of 2n connected components, each corresponding to a literal
xi or ¬xi. Each of these connected components contain exactly two clause vertices, as every
variable appears exactly twice positively and exactly twice negatively. We denote by Hi, and
¬Hi the connected components containing x and ¬xi respectively. One of these connected
components can be seen in Figure 2.

In order to show that it is possible to burn this graph in h timesteps if and only if there
is a satisfying truth assignment for (B, C), we first state the following claims, whose proofs
are omitted due to space constraints.

▷ Claim 29. In order to burn (G, λ) in h or fewer timesteps, for each pair of literal vertices
xi and ¬xi, a fire must be placed at or adjacent to one on timestep 2i − 1, and at the other
on timestep 2i.

Proof. Begin by observing that in order for (G, λ) to burn in h or fewer timesteps, every
literal vertex xi or ¬xi must be burning by the end of timestep 2i, as every literal vertex
has h + 1 adjacent leaves with edges active at timestep 2i + 1. Observe that the fire can only
spread to a literal vertex xi or ¬xi by the end of timestep 2i if it originates at one of the
two adjacent non-leaf vertices ui,j and ui,j′ . As a result, for each literal vertex xi or ¬xi a
fire must either be placed at the literal vertex by the end of timestep 2i, or at one of the
vertices ui,j and ui,j′ by the end of timestep 2i − 1. We now continue by induction on the
variable index i. For the base case it follows immediately that a fire must be placed at x1 on
timestep 1 or 2, or the adjacent vertex u1,j on timestep 1. The same is true of the vertex
¬x1. Therefore on timestep 1 a fire must be placed at or adjacent to one of these vertices,

14 Structural Parameters for Dense Temporal Graphs

and on timestep 2 a fire must be placed at the other vertex. For the inductive step assume
that the claim is true for all literal vertices xa and ¬xa with a < i. Then, on timestep 2i − 1,
there must be no fires already placed either at or adjacent to xi or ¬xi. Then, a fire must be
placed at xi on timestep 2i − 1 or 2i, or at the adjacent vertex ui,j on timestep 2i. Again,
the same is true of vertex ¬xi, and therefore a fire must be placed at one of these vertices on
timestep 2i, and at or adjacent to the other on timestep 2i − 1. ◀

▷ Claim 30. In order to burn (G, λ) in h or fewer timesteps, for each triple of clause vertices
c1

j , c2
j , c3

j there must exist a permutation π of {1, 2, 3}, such that a fire is placed at or adjacent
to c

π(1)
j on timestep 2n + 3j − 2, at or adjacent to c

π(2)
1 on timestep 2n + 3j − 1, and at c

π(3)
1

on timestep 2n + 3j.

Proof. Begin by observing that in order for (G, λ) to burn in h or fewer timesteps, every
clause vertex cℓ

j must be burning by the end of timestep 2n + 3j, as every clause vertex has
k + 1 adjacent leaves with edges active at timestep 2n+ 3j + 1. Observe that the fire can only
spread to a clause vertex cℓ

j by the end of timestep 2n + 3j if it originates at the adjacent
non-leaf vertex wi,j . As a result, for every clause vertex cℓ

j a fire must either be placed
at the clause vertex by the end of timestep 2n + 3j, or at wi,j before the end of timestep
2n + 3j − 1. We now continue by induction on the clause index j. For the base case we see
from Claim 29 that no fire can be placed at either c1

1 or wi,1 prior to timestep 2n + 1, and it
therefore follows that a fire must be placed at c1

j on one of the timesteps 2n + 1, 2n + 2, or
2n + 3, or the adjacent vertex wi,1 on timesteps 2n + 1 or 2n + 2. The same is true of the
two other clause vertices c2

1 and c3
1. Therefore there must exist a permutation π of {1, 2, 3},

such that a fire is placed at or adjacent to c
π(1)
1 on timestep 2n + 1, at or adjacent to c

π(2)
1

on timestep 2n + 2, and at c
π(3)
1 on timestep 2n + 3. For the inductive step assume that the

claim is true for all clause vertices c1
a, c2

a, c3
a with a < j. Then on timestep 2n + 3j − 2, there

must be no fires already placed either at or adjacent to c1
j . Then, a fire must be placed

at c1
j on one of the timesteps 2n + 3j, 2n + 3j − 1, 2n + 3j − 2, or at the adjacent vertex wi,j

on one of the timesteps 2n + 3j − 1, 2n + 3j − 2. The same is true of the vertices c2
j and c3

j ,
and therefore there must exist a permutation π of {1, 2, 3}, such that a fire is placed at or
adjacent to c

π(1)
j on timestep 2n + 3j − 2, at or adjacent to c

π(2)
1 on timestep 2n + 3j − 1, and

at c
π(3)
1 on timestep 2n + 3j. ◀

▷ Claim 31. Suppose that there is a successful strategy for (G, λ) of length at most h, and
consider the connected component Hi or ¬Hi at which a fire is placed on timestep 2i. Let cℓ

j

be a clause vertex in this connected compoment. Then a fire must be placed at or adjacent
to cℓ

j prior to timestep 2n + 3j.

Proof. If a fire is placed in Hi or ¬Hi on timestep 2i, then it must be placed at the
corresponding literal vertex xi or ¬xi by Claim 29. The fire cannot spread to the adjacent
non-leaf vertex ui,j from the literal vertex, as the edge between ui,j and the literal vertex is
only active at time 2i. Thus, the fire must spread to ui,j from wi,j . And, by Claim 30, a
fire is either placed at cℓ

j or at wi,j . This fire cannot be placed at cℓ
j on timestep 2n + 3j, as

otherwise it would not reach wi,j . In every other case the fire is placed prior to timestep
2n + 3j as required. ◀

We are now ready to prove the correctness of our reduction, and begin by showing that if
((G, λ), h) is a yes-instance, then so is (B, C).

Assume that ((G, λ), h) is a yes-instance, and consider a strategy that burns the graph
in h or fewer timesteps. We then assign a value to each variable xi according to when the

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 15

strategy places fires in the connected components Hi or ¬Hi. If on timestep 2i − 1 a fire is
placed in Hi, then xi is assigned true, otherwise, if a fire is placed in ¬Hi then xi is assigned
false. Now consider any clause Cj ∈ C, and see that by Claim 30 one of the corresponding
vertices c1

j , c2
j , or c3

j must have a fire placed at it on timestep 2n + 3j. Then, by Claim 31,
this vertex must be in the connected component in which a fire was placed on timestep 2i− 1.
This literal is therefore assigned true, and thus the clause is satisfied, as required.

Now assume that (B, C) is a yes-instance, and consider a satisfying assignment of the
variables in B. We now describe a burning strategy for (G, λ), and show that it burns
the graph in h or fewer timesteps. We place fires such that a fire is placed at the vertex
corresponding to the truthful literal in {xi,¬xi} on timestep 2i − 1, and a fire is placed at
the vertex corresponding to the falseful literal in {xi,¬xi} on timestep 2i. As we have a
satisfying assignment, each clause Cj = C1

j ∨C2
j ∨C3

j must contain a literal Cℓ
j that evaluates

to true, and we place a fire at the corresponding clause vertex cℓ
j on timestep 2n + 3j. Fires

are placed at the other two clause vertices {c1
j , c2

j , c3
j} ∖ {cℓ

j} on timesteps 2n + 3j − 2 and
2n + 3j − 1. In this strategy, every literal vertex xi or ¬xi is burnt by the end of timestep 2i,
and therefore all literal leaves yi,d burn by the end of timestep h. Every clause vertex cℓ

j is
burnt by the end of timestep 2n + 3j, and therefore all clause leaves zℓ

j,d burn by the end
of timestep h. Finally, if a vertex pair ui,j and wi,j belongs to a connected component Hi

or ¬Hi in which a fire is placed on timestep 2i − 1, the fire spreads from the literal vertex
to ui,j on timestep 2i, and then from ui,j on timestep h. Otherwise, the vertex pair must
be on a path with a clause vertex at which a fire is placed by timestep 2n + 3j − 1, then
the fire spreads from the clause vertex to wi,j on timestep 2n + 3j, and from wi,j to ui,j on
timestep h. Thus, in either case, both of these vertices will burn by the end of timestep h as
required. ◀

We now show that Temporal Graph Burning is solvable efficiently when the temporal
neighbourhood diversity of the input graph is bounded. Throughout we assume that the
lifetime Λ of the input temporal graph is at most the number of vertices n, as it is possible
to burn any temporal graph in n timesteps by placing a fire at every vertex in turn.

We begin by defining notation for the burning set of vertices on a given timestep when a
strategy is played.

▶ Definition 32 (Burning Set). Given a strategy S the burning set Bt(S) at timestep t is
the set of vertices immediately after a fire is placed on timestep t when S is played.

We now prove a lemma that shows that if for two strategies S and R and some timestep
t1 we have Bt1(S) ⊆ Bt1(R), then we are able to use an initial segment from strategy R and
find remaining moves from times t1 + 1 onwards to obtain a strategy that will burn the graph
at least as fast as S.

Thus throughout, in order to show that the existence of a strategy that burns the graph
at least as fast as another, we need argue only about the existence of such a timestep t and
the first t moves made by the strategies.

▶ Lemma 33. Let S be a successful strategy for (G, λ). Suppose that there is some timestep
t1 < ∣S∣ and strategy R with ∣R∣ = ∣S∣ such that Bt1(S) ⊆ Bt1(R) and on every timestep after
t1, R places a fire at the same vertex as S. Then R is also successful.

Proof. We prove by induction on t2 − t1 that for any timestep t2 ≥ t1 we have that Bt2(S) ⊆
Bt2(R).

Our base case is given, as R is defined such that Bt1(S) ⊆ Bt1(R). We now assume that
Bt(S) ⊆ Bt(R), for some t1 ≤ t < ∣S∣, and show that Bt+1(S) ⊆ Bt+1(R).

16 Structural Parameters for Dense Temporal Graphs

Now let v ∈ Bt+1(S). If v ∈ Bt(S) then v ∈ Bt(R) and therefore v ∈ Bt+1(R).
Otherwise if v ∉ Bt(S) then either the fire spreads to v on timestep t+1 when S is played,

or S places a fire at v on timestep t + 1.
In the former case v is temporally adjacent to a vertex in u in Bt(S) on timestep t + 1.

It must be the case that u is also in Bt(R), and therefore the fire will spread to v on t + 1
when R is played if v has not already burnt.

In the latter case either v is burning before R places a fire a on timestep t + 1 when R is
played, or rt+1 = sh+1 = v.

Therefore Bt+1(S) ⊆ Bt+1(R). We then have that V (G) = B∣S∣(S) ⊆ B∣S∣(R), and
therefore R is successful. ◀

We now show that we can delay placing a fire at a vertex belonging to a class in which
the fire is already burning, without causing a large effect on the set of vertices that will burn
at each timestep.

▶ Lemma 34. Let (G, λ) be a temporal graph with temporal neighbourhood partition (Xi)i∈I .
Now let S be a strategy that burns this graph, and let u be a vertex at which S places a fire
on a timestep t1, and Xi be the class to which this vertex belongs. Let S′ be a strategy which
plays as follows until t2, for any timestep t2 > t1:

s′t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

st if t < t1

st+1 if t1 ≤ t < t2

u if t = t2

Providing there exists a vertex w ∈Xi which is burning before the end of timestep t1 when
S′ is played, we have that Bt2(S) ⊆ Bt2(S′).

Proof. We will show that for any vertex x ∈ Bt2(S) we have that x ∈ Bt2(S′).
Consider the case where x is a vertex at which S places a fire. If x ≠ u then S′ will place

a fire at x on the same timestep or earlier than S, and thus x ∈ Bt2(S). Otherwise, if x = u

then S′ places a fire at it on timestep t2, and again x ∈ Bt2(S).
Now, consider the case where S does not place a fire at x. It must then burn because the

fire spreads to it. Note, as x ∈ Bt2(S), there must exist a temporal path that traverses the
vertices y1, ..., yh such that yh = x, and y1 is a vertex at which S places a fire prior to the
departure time tα, and the arrival time tβ is less than or equal to t2. Let P be the shortest
such path.

If y1 ≠ u then x = yh will still burn before the end of timestep tβ ≤ t2 when S′ is played,
as S′ will also place a fire at y1 prior to timestep tα. Thus x ∈ Bt2(S′).

Otherwise if y1 = u then u is temporally adjacent to y2 on timestep tα > t1. As w, u ∈Xi,
w is also temporally adjacent to y2 on this timestep, and there is also a temporal path
P ′ = w, y2, ..., yh starting at time tα > t1, and identical to P in all but the first vertex.
Therefore in this case when S′ is played x = yh will burn before the end of timestep t, as w

burns by the end of timestep t1 < tα when S′ is played. Thus, again, x ∈ Bt2(S′). ◀

We go on to show that any time we place a fire at a vertex, we may instead place a fire
at another unburnt vertex in the same class, if such a vertex exists, and obtain a strategy
that burns the graph in the same time.

▶ Lemma 35. Let (G, λ) be a temporal graph with temporal neighbourhood partition (Xi)i∈I .

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 17

Let S and S′ both be strategies with ∣S′∣ = ∣S∣, such that on every timestep, S and S′ both
place fires in the same class, that is, for any i ≤ min(∣S∣, ∣S′∣) we have that {si, s′i} ⊆ Xj.
Furthermore, S′ places a fire at an already burning vertex on a timestep i if and only if S

also places a fire at an already burning vertex on timestep i.
S is successful if and only if S′ is.

Proof. We show that on each timestep t, the number of burning vertices in each class from
the temporal neighbourhood partition is the same when S and S′ are played. We continue
by induction on the timestep.

On the first timestep only s1 is burning when S is played, and only s′1 is burning when
S′ is played. By the definitions of S and S′ these two vertices are both in the same class in
the temporal neighbourhood partition.

Then, assume that on any timestep t the number of burning vertices in each class from
the temporal neighbourhood partition is the same when S and S′ are played. Now given any
class Xi from the temporal neighbourhood partition, let bi be the number of vertices burning
in Xi at the end of timestep t+ 1 when S is played. The number of vertices burning in Xi at
the end of timestep t + 1 when S′ is played is then the number of vertices that were burning
on timestep t, plus the number of vertices to which the fire spreads, plus one if a fire was
placed in Xi by S′ on timestep t + 1. All of the vertices in Xi will be burning by the end of
timestep t + 1 if the fire spreads to any vertex v ∈Xi, as any burning vertex u adjacent to v

on t + 1 is also adjacent to all other vertices in Xi. Furthermore, such a vertex u ∈Xj exists
if and only if there is a burning vertex in Xj when S is played, as the number of vertices
burning in Xj at the end of timestep t is the same when both S and S′ are played. Then, all
of the vertices of Xi are burning on timestep t + 1 when S is played if and only if all of the
vertices of Xi are burning on timestep t + 1 when S′ is played. Furthermore, S′ places a fire
in Xi if and only if S does also. Therefore on timestep t + 1 either the number of burning
vertices in Xi does not change when either S or S′ is played, increases by one when each
strategy is played, or all of the vertices are burning when S or S′ is played. ◀

We now show that we can reorder any successful burning strategy S, so that initially one
fire is placed in every placement class for S. This reordering gives a new strategy which is
still successful.

▶ Definition 36 (Placement Classes). The placement classes for a strategy S denoted C(S)
is the set of classes from the temporal neighbourhood partition in which S places fires.

▶ Lemma 37. Given a temporal graph (G, λ), let S be any successful strategy. There is then
a successful strategy S′ with ∣S′∣ = ∣S∣, and C(S′) = C(S), such that the first ∣C(S)∣ burns are
in distinct equivalence classes in the temporal neighbourhood partition.

Proof. Assume that (G, λ) is a counterexample. Then let S be successful strategy minimal
in the timestep tc, such that at the end of timestep tc there is a fire placed in every class
in C(S). Now, let u ∈Xi be a vertex at which S places a fire on timestep t1 ≤ ∣C(S)∣, such
that a fire has already been placed at a vertex w ∈Xi prior to t1.

Consider the strategy S′ which makes moves as follows:

s′t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

st if t < t1 or t > tc

st+1 if t1 ≤ t < tc

u if t = tc

By Lemma 34, we have that Btc(S) ⊆ Btc(S′). Then, by Lemma 33, S′ burns (G, λ) in
the same or less time as S. This contradicts the assumption that S was minimal in the number

18 Structural Parameters for Dense Temporal Graphs

of moves played until a fire is placed in every class in C(S), so no such counterexample
(G, λ) can exist. ◀

Finally we show that, given a strategy S that places fires only in distinct classes for
the first ∣C(S)∣ moves, we can arbitrarily reorder all subsequent moves made after timestep
∣C(S)∣.

▶ Lemma 38. Let (G, λ) be a temporal graph, and S a successful strategy such that the
first ∣C(S)∣ fires placed by S are placed in distinct classes from the temporal neighbourhood
partition. Let f ∶ [∣C(S)∣ + 1, ∣S∣] → [∣C(S)∣ + 1, ∣S∣] be any bijection.

Then the strategy S′ given by

s′t =
⎧⎪⎪⎨⎪⎪⎩

st if t ≤ ∣C(S)∣
sf(t) otherwise

is successful, and burns the graph in the same or less time as S.

Proof. Let (G, λ), along with a strategy S and bijection f be a counterexample.
Then let R be a successful strategy with ∣R∣ ≤ ∣S∣, C(R) = C(S), and rt = st for all

t ≤ ∣C(S)∣. Furthermore, assume that R is the strategy minimal in the timestep t2 such that
for every timestep t ≥ t2 rt = sf(t). (Note that it is possible that t2 = ∣R ∣ + 1, and there is no
terminal sub-sequence on which R agrees with the permutation of S.) Let t1 be the timestep
on which R places a fire at sf(t2−1) = s′t2−1.

Now let R′ be the strategy that makes moves as follows:

r′t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rt if t < t1 or t ≥ t2

rt+1 if t1 ≤ t < t2 − 1
sf(t2−1) if t = t2 − 1

Then, as R′ places a fire at a vertex in every class in C(S) prior to timestep t1, by
Lemma 34 we have that Bt2−1(R′) ⊆ Bt2−1(R). Then, by Lemma 33, R′ burns (G, λ) in the
same or less time as R. This contradicts the assumption that R was minimal in the timestep
t2, so no such counterexample (G, λ), strategy S, and bijection f can exist. ◀

We now present an algorithm for Temporal Graph Burning, and show that this
algorithm is an fpt-algorithm with respect to temporal neighbourhood diversity.

Algorithm 1 TND Graph Burning Algorithm

Input: A temporal graph G, and an integer k.
Output: True if and only if there exists a successful burning strategy of length at most h.

1: Compute the temporal neighbourhood partition Θ of (G, λ).
2: for all possible subsets A ⊆ Θ do
3: for all possible orderings of A do
4: for all possible subsets B ⊆ A do
5: Compute a strategy that first places a fire in order in every class from A, and

then places fires at every unburnt vertex in B in any order.
6: if this strategy is successful and consists of k or fewer moves then
7: return true.
8: If no such strategy is found, return false.

We now prove correctness of this algorithm, using the following lemmas.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 19

▶ Lemma 39. The TND Graph Burning Algorithm returns true for a temporal graph
(G, λ) and integer h if and only if there exists a strategy S that burns the graph in h or fewer
timesteps.

Proof. If there exists a strategy that burns (G, λ) in h or fewer timesteps then by Lemma 37
and Lemma 35 there exists a strategy S that first places a fire at an arbitrary vertex from
every class in C(S). The remaining moves must then place fires at every other vertex of any
class to which the fire will not spread before the graph is burnt. These classes must be some
subset of the classes from C(S), and from Lemma 38 we know that these can be made in
any order, and therefore in particular in the order described in the algorithm.

The algorithm exhaustively checks every such strategy, and thus will return true if any
strategy exists that burns (G, λ) in h or fewer moves, and false otherwise. ◀

This allows us to obtain fixed parameter tractability, as bounding the temporal neigh-
bourhood diversity bounds the number of such strategies that we have to check.

▶ Theorem 40. Temporal Graph Burning is solvable in time O(n5Λk!4k), where n is the
size of the input temporal graph G, Λ the lifetime, and k the temporal neighbourhood diversity.
If the temporal neighbourhood partition is given, we obtain a runtime of O(n2Λk!4k).

Proof. The TND Graph Burning Algorithm solves Temporal Graph Burning. It begins
by computing the temporal neighbourhood partition, which we know from Proposition 25
that we can do in time O(n3). Furthermore there are 2k subsets A of the classes in the
temporal neighbourhood partition Θ, and then at most k! possible orderings of any subset A,
and at most and at most 2k sets B. We then simulate temporal graph burning on the graph,
which is possible in O(n2Λ) time giving us an overall running time of O(n5Λk!4k), where n

is the size of the input graph, and Λ the lifetime. If the decomposition is given, we instead
obtain a runtime of O(n2Λk!4k), as we may drop the O(n3) factor needed to compute it. ◀

4.2 Minimum Reachability Edge Deletion
Here we give another problem which is tractable with respect to temporal neighbourhood
diversity. Given a specified source vertex, we seek a minimum set of edge appearances that
can be deleted to limit the number of vertices reachable from that source.

We say a vertex v is temporally reachable from a vertex u in G if there exists a temporal
path from u to v. We say a vertex v is temporally reachable from a set S if there is a vertex
in S from which v is temporally reachable. The reachability set reach(v) of a vertex v is the
set of vertices temporally reachable from v. We can now give the formal problem definition;
this is a special case of the problem MinReachDelete studied by Molter et al. [35] in
which multiple sources are allowed.

Singleton Minimum Temporal Reachability Edge Deletion (SingMinReachDelete)

Input: A temporal graph G = (G, λ), a vertex vs ∈ V (G) and positive integer r.
Output: What is the cardinality of the smallest set of time-edges E such that the vertex
vs has temporal reachability at most r after their deletion from G?

SingMinReachDelete was shown by Enright et al. [16] to be NP-hard (and W[1]-hard
parameterised by the maximum number of vertices that are allowed to be reached following
deletion) even when the lifetime of the input temporal graph is 2 and every edge is active at
exactly one timestep. While the result of [16] is for a version of the problem when the source

20 Structural Parameters for Dense Temporal Graphs

set S is the entire vertex set, it is clear from the construction that hardness also holds with
a single source vertex.

We show that this problem is in FPT when parameterised by temporal neighbourhood
diversity and the temporality of the input graph τ(G), which was defined by Mertzios et al.
[32] to be the maximum number of times an edge appears. When the temporal graph in
question is clear from context, we just refer to τ . We note that it remains open whether
the problem belongs to FPT parameterised by temporal neighbourhood diversity alone, or
indeed parameterised by temporal modular width or temporal cliquewidth; the techniques
we use here do not extend naturally to these less restrictive settings.

We now give a formal statement of our result.

▶ Theorem 41. SingMinReachDelete is solvable in time g(k, τ) logO(1) r +Λn3, where g

is a computable function. If a temporal neighbourhood decomposition is given, we can solve
the problem in time g(k, τ) logO(1) r.

This uses a result by Lokshtanov [29] which gives an FPT algorithm for the following problem.

Integer Quadratic Programming

Input: A n × n integer matrix Q, an m ×m matrix B and an m-dimensional vector b.
Parameter: n + α where α is the maximum absolute value of any entry in B or Q.
Output: Find a vector x ∈ Zn which minimises xT Qx, subject to Bx ≤ b.

Their result is as follows.

▶ Theorem 42 (Theorem 1, [29]). There exists an algorithm that, given an instance of
Integer Quadratic Programming, runs in time f(n, α)LO(1) (for some computable
function f), and outputs a vector x ∈ Zn. Here L is the total number of bits required to
encode the input integer quadratic program. If the input IQP has a feasible solution then x is
feasible, and if the input to the IQP is not unbounded, then x is an optimal solution.

Let G be the temporal graph in the input of SingMinReachDelete. We denote by
Gs the temporal neighbourhood partition graph of G. This is a temporal graph where the
classes of the temporal neighbourhood partition form the vertex set. We refer to nodes of Gs

and vertices of G to differentiate between the two. An edge exists at time t between nodes A

and B in Gs if and only if there exist edges in G at time t between (all) vertices in A and (all)
vertices in B. Note that, given two vertices of the same temporal type, their reachability
sets must consist of the same vertices except for the vertices themselves; as a result, the
reachability sets of vertices in a given class all have the same cardinality. Moreover, all
vertices of the same type are first reached from the source at the same time (where we say a
vertex is “first reached” at time t if the final time-edge in an earliest-arriving temporal path
from the source is at time t).

Our strategy for solving SingMinReachDelete is as follows. We partition each class
according to the time at which the vertices are first reached after the deletion of time-edges,
and consider all possibilities for which of these subclasses are non-empty. Given a function ϕ

telling us which subclasses are non-empty, we argue that we can determine efficiently whether
there is indeed a deletion such that precisely these subclasses are non-empty, and if so
compute exactly the pairs of subclasses between which we must delete time-edges to achieve
this. For a fixed ϕ, we then encode the problem as an instance of Integer Quadratic
Programming, where the variables are the sizes of the subclasses and the objective function
seeks to minimise the number of time-edges we must delete.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 21

From now on we denote by At the subclass of vertices in class A that are first reached
at time t following the deletion of time-edges, with an additional subclass A∞ consisting of
those vertices in A not temporally reachable from the source.

We begin by making some assertions about these subclasses.

▶ Lemma 43. For each class A in the temporal neighbourhood partition, the number of
indices t such that At can be non-empty following a deletion is at most τ ⋅ k where k is the
temporal neighbourhood diversity of G.

Proof. It suffices to show that there are at most τ(k − 1) possibilities for the earliest arrival
time at any given vertex, since the set of possible earliest arrival times will be the same for all
vertices in the same class; we then have one additional subclass for the “unreached” subclass.

Suppose that v is first reached from the source at time t in G∖E, for some set of time-edges
E. Then there is a temporal path from the source to v whose last time-edge is at time t,
so in particular we know that there is an edge incident with v in G that is active at time t.
The number of distinct times at which there is an edge incident with any vertex is at most
τ(k − 1), since there can be at most τ distinct times at which edges to each other class are
active, giving the result. ◀

In total, therefore, we need to consider at most k2τ subclasses. Let ϕ(xA
i) be a function

on this set of subclasses which maps xA
i to empty to indicate that Ai should be empty, and to

non-empty otherwise. We now make some observations about which deletions of time-edges
can reduce the cardinality of the temporal reachability set of the source.

▶ Lemma 44. If both endpoints u, v of an edge uv are reached from the source by time t2,
deletion of any appearances at or after time t2 will not change the reachability set of the
source. Further, if neither u nor v is reached by time t1 from the source, deletion of any
appearances at or before t1 cannot change the reachability set of the source.

Proof. Suppose there is a vertex u reachable from the source by a path using the edge e

at time t1 as described. This contradicts the assumption that neither endpoint is reached
before time t1 from the source. Therefore there is no temporal path from the source using e

at time t1. Hence deletion of this appearance cannot affect reachability of the source.
Now consider a vertex w reachable from the source by a path p which uses an edge uv at

time t2 where t2 is as described in the lemma statement. Suppose without loss of generality
that, in p, the edge is traversed from u to v at time t2. Deletion of the appearance (uv, t2)
does not change the reachability of w from the source as we can reach b from the source
by another path p′ at a time strictly before t2. Therefore, we can still reach w from the
source without using the edge uv at time t2, and deletion of (uv, t2) does not change the
reachability set of the source. ◀

▶ Corollary 45. An optimal deletion will never include the deletion of a time-edge with both
endpoints in the same subclass.

▶ Lemma 46. Let G′ be the temporal graph obtained from making an optimal deletion of
time-edges in G. Fix v to be any vertex, and A to be any class of the temporal neighbourhood
partition of G′ which is reached by the source before v is reached. Then, in any snapshot of
G′, v is either adjacent to all vertices in A or none of them.

Proof. Suppose for contradiction that, after an optimal deletion, the number of edges between
v and A at time t is ∣E(v, A, t)∣, where 0 < ∣E(v, A)∣ < ∣A∣. That is, it is neither complete nor
empty.

22 Structural Parameters for Dense Temporal Graphs

Let w and w′ be vertices in A such that the time-edge (vw′, t) is deleted and (vw, t) is
not after an optimal deletion. Then, since all of the vertices in A are reached at a time before
t by the source, reinstating the time-edge (vw′, t) does not increase the reachability of the
source. Thus, the deletion is not optimal; a contradiction. Hence, in an optimal deletion,
the edges at some time t are either complete or empty between a vertex and every subclass
reached before its own. ◀

▶ Lemma 47. Let G′ be the temporal graph obtained from making an optimal deletion of
time-edges in G, and let Ai and Bj be two subclasses. In each snapshot of G′, the graph is
either complete or empty between Ai and Bj. Therefore, all vertices in the same subclass
have the same temporal neighbourhood in G′.

Proof. Suppose for a contradiction that there is a time t at which the graph between Ai and
Bj is neither complete nor empty. Let i and j be the respective times at which Ai and Bj

are first reached in G′. Denote by E the set of edges deleted between Ai and Bj at time t

under this deletion. Without loss of generality, assume j ≥ i. If t ≤ i or t ≥ j, then by Lemma
44, the edges between Ai and Bj at time t are not deleted in an optimal deletion.

Therefore, we can assume that i < t < j. If there is at least one edge remaining between
Ai and Bj then at least one vertex in Bj must first be reached from the source at time t < j

by a path traversing an edge from a vertex in Ai to a vertex in Bj at time t. This contradicts
our assumption that the vertices in Bj are first reached at time j. ◀

The previous three lemmas describe which deletions are useful for reducing the reachability of
the source and achieving some assignment ϕ. We now specify the time needed to determine
whether a given assignment ϕ is feasible and, if so, find the unique minimal set of times at
which we must delete edges between each pair of subclasses in order to realise ϕ.

▶ Lemma 48. Given an assignment ϕ of subclasses to empty and non-empty, we can check
in time O(k5τ3) whether it is possible to delete time-edges from G so that, for each subclass
A and index t, At is empty if and only if ϕ(xA

i) = empty. If such a deletion is possible, the
algorithm outputs the unique minimal set of times at which we must delete edges between
each pair of subclasses in order to realise ϕ.

Proof. Given ϕ, we create a temporal graph H consisting of a node for each subclass of
G. Two nodes of H are adjacent at time t if and only if the corresponding classes of G are
adjacent at time t. Note that if two nodes of H are subclasses of the same class, they are
adjacent at time t if and only if there exist edges at that time in that class. Each node of
H is labelled with the time at which it is first reached from the source. In the case of an
“unreached” subclass, this time label is ∞. In the algorithm where we check whether an
assignment ϕ is valid, we will refer to the nodes as pairs (a, t) where a is the name of the
node and t is the time at which it is first reached. By Lemma 43, there are at most k2τ

nodes in H.
Recall that ϕ is a function which takes each subclass to either an empty or non-empty

marker. We check whether an assignment ϕ is possible by a variation of breadth-first search
(BFS) on the graph H. We begin by finding the subgraph induced by removing any of the
subclasses which are empty under ϕ from H. Call this graph H′. If the resulting graph is
disconnected and there is a node with time t ≠ ∞ in a different connected component to the
source, we reject.

We keep track of two values for each node a in H; ta
target and ta

first. We initialise ta
first with

the value ∞ for all nodes a in H′ and set ta
target to be the time at which vertices in node a

should be first reached by the source, as prescribed by ϕ. The value ta
first will be the earliest

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 23

time of arrival from the source once the algorithm finishes. Therefore we accept if, for all
nodes a, ta

target = ta
first when the algorithm has finished executing. We initialise an empty

set E of edges which we will mark as deleted. We begin by adding the node containing the
source to the queue. After dequeuing a node a, for each of its neighbours b, we check if the
edge ab is labelled with a time t after ta

first and before tb
first. For all t after ta

first such that,
(ab, t) is in H′, (ab, t) is not in E, and t is before tb

target, we add (ab, t) to E. Then we are
left with two cases, either there is no time t∗ such that ab is active at time t∗ where t∗ is
after ta

first and before tb
first, or such a time exists. If the former is true, we simply consider

the next node in the queue. Else, t∗ must be equal to or after tb
target. Let t∗ be the earliest

time after ta
first such that ab is active. Then, we update tb

first to t∗ and add b to the queue.
The algorithm terminates when the queue is empty.

We note that a node can be added to the queue at most as many times at which it could
be reached from the source. This is τ(k − 1) times. Furthermore, the operations done when
considering a dequeued node take linear time in the number of nodes. By Lemma 43, there
are at most k2τ nodes in H. Therefore, the algorithm runs in O(k5τ3) time.

Once the algorithm terminates, ta
first is the earliest time of arrival of a path from the source

to the node a given the deletions made. We make a deletion if and only if otherwise there is a
temporal path from the source that arrives at a node a before ta

target. Therefore, ta
target = ta

first
for all nodes a (and the algorithm accepts) if and only if there is a set of deletions E such
that the earliest time of arrival at a node in H is as prescribed by ϕ. Observe that (ab, t) is
added to E only if all edges at time t between the subclasses corresponding to a and b must
be deleted in order to realise ϕ. Therefore E describes the minimal set of times at which we
must delete edges between each pair of subclasses. ◀

We can now transform our edge deletion problem given some ϕ into an instance of IQP
and use the algorithm of Theorem 42 to solve it efficiently.

▶ Lemma 49. Given a fixed, feasible ϕ we can find in time f(k, τ) logO(1) r the cardinalities
of the subclasses which minimise the number of deleted edges such that the source reaches r

vertices.

Proof. Given a ϕ, we can express the division of vertices among non-empty subclasses such
that at most r vertices are temporally reachable from the source and the minimum number of
deletions are made as an instance of Integer Quadratic Programming. We arbitrarily
order the subclasses. Then, the vector of variables is x = (x1, . . . , xℓ)T , where the ith variable
is the number of vertices in the ith subclass. For a given assignment ϕ, we can find the
minimum deletion between the subclasses such that the assignment holds by Lemma 48.
Then, the matrix Qϕ is a ℓ × ℓ triangular matrix where there is a y in position qi,j if we
have determined that there are exactly y timesteps at which we must delete all time-edges
between subclass i and subclass j to match the assignments of ϕ. Therefore, xT Qx gives the
number of edges we need to delete. We write xA,t for the entry of x corresponding to the
subclass of A that is first reached from the source at time t.

We employ the following linear constraints

∀A, t, xA,t ≥ 0

∑
t≠∞

xA,t ≤ r (1)

∀A,∑
t

xA,t = ∣A∣. (2)

The constraints ensure that every xA,t is non-negative and

24 Structural Parameters for Dense Temporal Graphs

1. reach(vs) ≤ r, and
2. the sum of cardinalities of the subclasses of A is the cardinality of A.

We can express these conditions in the form Bx = b, where B is a (2ℓ + 1 + (k2τ)) × ℓ matrix
and b is a (2ℓ + 1 + (k2τ))-dimensional vector. Note that the largest absolute value in Qϕ

is at most τ and the largest absolute value in B is 1. The number of variables ℓ is at most
k2τ . It therefore follows from Theorem 42 that we can solve this instance of IQP in time
f(k, τ) logO(1) r. ◀

We now give the proof of Theorem 41.

Proof. We solve SingMinReachDelete as follows. For the input temporal graph G, we
find the temporal neighbourhood partition graph. This can be found in time O(Λn3) by
Proposition 25. We make a subclass for each time a class in the partition could be reached
from the source, with an additional subclass for vertices in this class which are not temporally
reachable from the source following a deletion; by Lemma 43, there are at most k2τ subclasses.
For each possible assignment ϕ of subclasses to empty/non-empty, we find the sets of time-
edges between two subclasses which must be deleted by Lemma 48; there are at most 2k2τ

possible functions ϕ to consider. Given the sets of time-edges we must delete and a function
ϕ, we then apply Lemma 49 to find the number of vertices in each subset such that the
number of vertices reached from the source is at most r and the number of time-edges deleted
is minimised. ◀

5 Conclusion and Open Questions

We have described three temporal parameters that form a hierarchy mirroring the one formed
by their static analogues, and that can all be small when the temporal graph is dense at
every timestep. We provide examples of problems demonstrating that there is a separation
between the classes of problems admitting efficient algorithms when each of the parameters
is bounded. As is the case for the corresponding static parameters, we expect that there will
be many problems for which these temporal parameters give fixed-parameter tractability,
and suggest exploration of temporal extensions of static problems for which there are known
fpt-algorithms as future work. From a practical perspective, it would also be interesting to
investigate the values of these new parameters on dense real-world temporal networks.

One of the most celebrated results involving static cliquewidth is a metatheorem due
to Courcelle et al. [11] which guarantees the existence of a linear-time algorithm for any
problem expressible in a suitable fragment of logic (MSO1) on graphs of bounded cliquewidth.
It is a natural question whether an analogous metatheorem exists for temporal cliquewidth.
A promising approach might be to encode a temporal graph as an arbitrary relational
structure (as has been done for a temporal version of treewidth [18]). A major challenge
here, however, is that to the best of our knowledge there is no single notion of cliquewidth
for relational structures: several alternatives have been introduced [1, 12], but none has all
of the desirable properties. Moreover, we believe that any encoding of a temporal graph of
bounded temporal cliquewidth as a relational structure that preserves all the information in
the original is unlikely to have bounded width for any cliquewidth-style measure unless we
also bound the lifetime of the temporal graph. Nevertheless, this general direction merits
further investigation, and there is potential for a useful metatheorem even if it is necessary
to further restrict the fragment of logic considered or the structure of the temporal graph.

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 25

References
1 Hans Adler and Isolde Adler. A note on clique-width and tree-width for structures. CoRR,

abs/0806.0103, 2008. URL: http://arxiv.org/abs/0806.0103, arXiv:0806.0103.
2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos Raptopoulos. The

temporal explorer who returns to the base. Journal of Computer and System Sciences,
120:179–193, September 2021. URL: https://www.sciencedirect.com/science/article/
pii/S0022000021000386, doi:10.1016/j.jcss.2021.04.001.

3 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electron. Colloquium Comput. Complex., TR03-049,
2003. URL: https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html,
arXiv:TR03-049.

4 Stéphane Bessy, Anthony Bonato, Jeannette C. M. Janssen, Dieter Rautenbach, and Elham
Roshanbin. Burning a graph is hard. Discret. Appl. Math., 232:73–87, 2017. URL: https:
//doi.org/10.1016/j.dam.2017.07.016, doi:10.1016/J.DAM.2017.07.016.

5 Anthony Bonato, Jeannette C. M. Janssen, and Elham Roshanbin. Burning a graph as a
model of social contagion. In Anthony Bonato, Fan Chung Graham, and Pawel Pralat, editors,
Algorithms and Models for the Web Graph - 11th International Workshop, WAW 2014, Beijing,
China, December 17-18, 2014, Proceedings, volume 8882 of Lecture Notes in Computer Science,
pages 13–22. Springer, 2014. doi:10.1007/978-3-319-13123-8_2.

6 Benjamin Merlin Bumpus and Kitty Meeks. Edge Exploration of Temporal Graphs. Algorith-
mica, 85(3):688–716, March 2023. doi:10.1007/s00453-022-01018-7.

7 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
Temporal Paths Under Waiting Time Constraints. Algorithmica, 83(9):2754–2802, September
2021. doi:10.1007/s00453-021-00831-w.

8 Arnaud Casteigts, Kitty Meeks, George B. Mertzios, and Rolf Niedermeier. Tem-
poral Graphs: Structure, Algorithms, Applications (Dagstuhl Seminar 21171). DROPS-
IDN/v2/document/10.4230/DagRep.11.3.16, 2021. Publisher: Schloss-Dagstuhl - Leibniz
Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
DagRep.11.3.16, doi:10.4230/DagRep.11.3.16.

9 Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno. Iterated Type Partitions. In Leszek
Gąsieniec, Ralf Klasing, and Tomasz Radzik, editors, Combinatorial Algorithms, Lecture
Notes in Computer Science, pages 195–210, Cham, 2020. Springer International Publishing.
doi:10.1007/978-3-030-48966-3_15.

10 Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. Polynomial-
time recognition of clique-width ≤3 graphs. Discrete Applied Mathematics, 160(6):834–865, April
2012. URL: https://www.sciencedirect.com/science/article/pii/S0166218X11001144,
doi:10.1016/j.dam.2011.03.020.

11 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization Problems
on Graphs of Bounded Clique-Width. Theory of Computing Systems, 33(2):125–150, April
2000. doi:10.1007/s002249910009.

12 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Lo-
gic: A Language-Theoretic Approach. Cambridge University Press, 1 edition, June 2012.
URL: https://www.cambridge.org/core/product/identifier/9780511977619/type/book,
doi:10.1017/CBO9780511977619.

13 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph
grammars. Journal of Computer and System Sciences, 46(2):218–270, April 1993. URL:
https://www.sciencedirect.com/science/article/pii/002200009390004G, doi:10.1016/
0022-0000(93)90004-G.

14 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, April 2000. URL: https://www.sciencedirect.com/
science/article/pii/S0166218X99001845, doi:10.1016/S0166-218X(99)00184-5.

http://arxiv.org/abs/0806.0103
http://arxiv.org/abs/0806.0103
https://www.sciencedirect.com/science/article/pii/S0022000021000386
https://www.sciencedirect.com/science/article/pii/S0022000021000386
https://doi.org/10.1016/j.jcss.2021.04.001
https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html
http://arxiv.org/abs/TR03-049
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/J.DAM.2017.07.016
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/s00453-022-01018-7
https://doi.org/10.1007/s00453-021-00831-w
https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.3.16
https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.3.16
https://doi.org/10.4230/DagRep.11.3.16
https://doi.org/10.1007/978-3-030-48966-3_15
https://www.sciencedirect.com/science/article/pii/S0166218X11001144
https://doi.org/10.1016/j.dam.2011.03.020
https://doi.org/10.1007/s002249910009
https://www.cambridge.org/core/product/identifier/9780511977619/type/book
https://doi.org/10.1017/CBO9780511977619
https://www.sciencedirect.com/science/article/pii/002200009390004G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://www.sciencedirect.com/science/article/pii/S0166218X99001845
https://www.sciencedirect.com/science/article/pii/S0166218X99001845
https://doi.org/10.1016/S0166-218X(99)00184-5

26 Structural Parameters for Dense Temporal Graphs

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilip-
czuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer International
Publishing, Cham, 2015. URL: http://link.springer.com/10.1007/978-3-319-21275-3,
doi:10.1007/978-3-319-21275-3.

16 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to
restrict the size of an epidemic in temporal networks. Journal of Computer and System Sciences,
119:60–77, August 2021. URL: https://www.sciencedirect.com/science/article/pii/
S0022000021000155, doi:10.1016/j.jcss.2021.01.007.

17 Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-Width is
NP-Complete. SIAM Journal on Discrete Mathematics, 23(2):909–939, January 2009. URL:
http://epubs.siam.org/doi/10.1137/070687256, doi:10.1137/070687256.

18 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
As Time Goes By: Reflections on Treewidth for Temporal Graphs. In Fedor V. Fomin,
Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms:
Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, Lecture
Notes in Computer Science, pages 49–77. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-42071-0_6.

19 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized Algorithms for
Modular-Width. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation, Lecture Notes in Computer Science, pages 163–176, Cham, 2013. Springer
International Publishing. doi:10.1007/978-3-319-03898-8_15.

20 T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum
Hungarica, 18(1):25–66, March 1967. doi:10.1007/BF02020961.

21 Robert Ganian. Using Neighborhood Diversity to Solve Hard Problems, January 2012.
arXiv:1201.3091 [cs]. URL: http://arxiv.org/abs/1201.3091, doi:10.48550/arXiv.1201.
3091.

22 Frank Gurski. A comparison of two approaches for polynomial time algorithms computing basic
graph parameters, June 2008. arXiv:0806.4073 [cs]. URL: http://arxiv.org/abs/0806.4073,
doi:10.48550/arXiv.0806.4073.

23 Roman Haag, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Feedback edge sets in
temporal graphs. Discrete Applied Mathematics, 307:65–78, January 2022. URL: https://www.
sciencedirect.com/science/article/pii/S0166218X21004066, doi:10.1016/j.dam.2021.
09.029.

24 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decompos-
ition. Comput. Sci. Rev., 4(1):41–59, 2010. URL: https://doi.org/10.1016/j.cosrev.2010.
01.001, doi:10.1016/J.COSREV.2010.01.001.

25 Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Rolf Niedermeier. Temporal in-
terval cliques and independent sets. Theoretical Computer Science, 961:113885, June
2023. URL: https://www.sciencedirect.com/science/article/pii/S0304397523001986,
doi:10.1016/j.tcs.2023.113885.

26 Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97–125, October
2012. URL: https://www.sciencedirect.com/science/article/pii/S0370157312000841,
doi:10.1016/j.physrep.2012.03.001.

27 Yasuaki Kobayashi and Yota Otachi. Parameterized complexity of graph burning. Al-
gorithmica, 84(8):2379–2393, 2022. URL: https://doi.org/10.1007/s00453-022-00962-8,
doi:10.1007/S00453-022-00962-8.

28 Michael Lampis. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica,
64(1):19–37, September 2012. doi:10.1007/s00453-011-9554-x.

29 Daniel Lokshtanov. Parameterized Integer Quadratic Programming: Variables and Coefficients,
April 2017. arXiv:1511.00310 [cs]. URL: http://arxiv.org/abs/1511.00310, doi:10.48550/
arXiv.1511.00310.

http://link.springer.com/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://www.sciencedirect.com/science/article/pii/S0022000021000155
https://www.sciencedirect.com/science/article/pii/S0022000021000155
https://doi.org/10.1016/j.jcss.2021.01.007
http://epubs.siam.org/doi/10.1137/070687256
https://doi.org/10.1137/070687256
https://doi.org/10.1007/978-3-030-42071-0_6
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/BF02020961
http://arxiv.org/abs/1201.3091
https://doi.org/10.48550/arXiv.1201.3091
https://doi.org/10.48550/arXiv.1201.3091
http://arxiv.org/abs/0806.4073
https://doi.org/10.48550/arXiv.0806.4073
https://www.sciencedirect.com/science/article/pii/S0166218X21004066
https://www.sciencedirect.com/science/article/pii/S0166218X21004066
https://doi.org/10.1016/j.dam.2021.09.029
https://doi.org/10.1016/j.dam.2021.09.029
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1016/J.COSREV.2010.01.001
https://www.sciencedirect.com/science/article/pii/S0304397523001986
https://doi.org/10.1016/j.tcs.2023.113885
https://www.sciencedirect.com/science/article/pii/S0370157312000841
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1007/s00453-022-00962-8
https://doi.org/10.1007/S00453-022-00962-8
https://doi.org/10.1007/s00453-011-9554-x
http://arxiv.org/abs/1511.00310
https://doi.org/10.48550/arXiv.1511.00310
https://doi.org/10.48550/arXiv.1511.00310

J. Enright, S. D. Hand, L. Larios-Jones, and K. Meeks 27

30 Bernard Mans and Luke Mathieson. On the treewidth of dynamic graphs. Theoretical
Computer Science, 554:217–228, October 2014. URL: https://www.sciencedirect.com/
science/article/pii/S0304397514000164, doi:10.1016/j.tcs.2013.12.024.

31 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1):189–241, April 1999. URL: https://www.sciencedirect.com/
science/article/pii/S0012365X98003197, doi:10.1016/S0012-365X(98)00319-7.

32 George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal Network Optimization
Subject to Connectivity Constraints. Algorithmica, 81(4):1416–1449, April 2019. doi:10.
1007/s00453-018-0478-6.

33 George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. Journal of Computer and System Sciences,
137:1–19, November 2023. URL: https://www.sciencedirect.com/science/article/pii/
S0022000023000466, doi:10.1016/j.jcss.2023.04.005.

34 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016. ISBN: 1542-7951 Publisher: Taylor & Francis.

35 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal Reachability Minimization:
Delaying vs. Deleting. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2021), volume 202 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 76:1–76:15, Dagstuhl, Ger-
many, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/14516, doi:10.4230/LIPIcs.MFCS.2021.76.

36 Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler Linear-Time
Modular Decomposition Via Recursive Factorizing Permutations. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, Lecture Notes in Computer Science, pages
634–645, Berlin, Heidelberg, 2008. Springer. doi:10.1007/978-3-540-70575-8_52.

37 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in link
streams. Theoretical Computer Science, 609:245–252, January 2016. URL: https://www.
sciencedirect.com/science/article/pii/S0304397515008701, doi:10.1016/j.tcs.2015.
09.030.

https://www.sciencedirect.com/science/article/pii/S0304397514000164
https://www.sciencedirect.com/science/article/pii/S0304397514000164
https://doi.org/10.1016/j.tcs.2013.12.024
https://www.sciencedirect.com/science/article/pii/S0012365X98003197
https://www.sciencedirect.com/science/article/pii/S0012365X98003197
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/s00453-018-0478-6
https://www.sciencedirect.com/science/article/pii/S0022000023000466
https://www.sciencedirect.com/science/article/pii/S0022000023000466
https://doi.org/10.1016/j.jcss.2023.04.005
https://drops.dagstuhl.de/opus/volltexte/2021/14516
https://drops.dagstuhl.de/opus/volltexte/2021/14516
https://doi.org/10.4230/LIPIcs.MFCS.2021.76
https://doi.org/10.1007/978-3-540-70575-8_52
https://www.sciencedirect.com/science/article/pii/S0304397515008701
https://www.sciencedirect.com/science/article/pii/S0304397515008701
https://doi.org/10.1016/j.tcs.2015.09.030
https://doi.org/10.1016/j.tcs.2015.09.030

	1 Introduction
	1.1 Notation and definitions

	2 Tractability with respect to Temporal Cliquewidth
	3 Tractability with respect to Temporal Modular-width
	3.1 Star Exploration

	4 Tractability with respect to Temporal Neighbourhood Diversity
	4.1 Temporal Graph Burning
	4.2 Minimum Reachability Edge Deletion

	5 Conclusion and Open Questions

