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Abstract

We develop, and implement in a Finite Volume environment, a density-based approach for
the Euler equations written in conservative form using density, momentum, and total energy as
variables. Under simplifying assumptions, these equations are used to describe non-hydrostatic
atmospheric flow. The well-balancing of the approach is ensured by a local hydrostatic recon-
struction updated in runtime during the simulation to keep the numerical error under control. To
approximate the solution of the Riemann problem, we consider four methods: Roe-Pike, HLLC,
AUSM+-up and HLLC-AUSM. We assess our density-based approach and compare the accuracy
of these four approximated Riemann solvers using two two classical benchmarks, namely the
smooth rising thermal bubble and the density current.

1 Introduction

It is common practice to divide numerical methods for the solution of the Euler equations into
two main categories: density-based and pressure-based. Both techniques compute the velocity field
from the momentum equation, however they differ in the practical use of the continuity equation. In
density-based approaches, the continuity equation is used to obtain the density field and the pressure
field is computed from the equation of state. On the other hand, in pressure-based approaches, the
pressure field is computed from a pressure correction equation (called Poisson pressure equation),
which is obtained by manipulating continuity and momentum equations. See, e.g., [24].

Traditionally, pressure-based solvers have been designed and mostly used for incompressible and
weakly compressible flows, while density-based methods were originally developed for high-speed
compressible flows. We are interested in the numerical simulation of non-hydrostatic mesoscale
atmospheric flows, which are governed by the mildly compressible Euler equations. Hence, in our
first attempt to design an efficient solver for these equations, we have chosen a pressure-based
approach [8, 7, 3, 12, 9]. This solver is part of GEA (Geophysical and Environmental Applications)
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[4], a Finite Volume-based open-source package specifically designed for the quick assessment of
new computational approaches for the simulation of atmospheric and ocean flows. Despite the
fact that atmospheric flows are mildly compressible, the vast majority of the software packages for
weather prediction adopts density-based approaches. So, although our pressure-based solver yields
accurate results when compared to data in the literature, we present here a density-based solver,
which is also going to be featured in GEA.

Density-based approaches typically employ a Riemann solver for the numerical approximation
of the flux function. For many practical applications, it is extremely expensive to solve the exact
Riemann problem as it is a fully non-linear system of equations [10]. Thus, approximate Riemann
solvers were developed to capture the main features of the Riemann problem solution at a reduced
computational cost. See, e.g., [28, 29, 32, 19, 20, 13] and references therein. In this paper, we
compare the results given by four approximate Riemann solvers: Roe-Pike [29], HLLC [32], AUSM+-
up [21, 20] and HLLC-AUSM [21, 20, 15]. Since we are interested in nearly hydrostatic flows, these
approximated Riemann solvers are employed within a well-balanced scheme, i.e., a scheme that
preserves discrete equilibria, inspired from [17, 2].

We test our well-balanced density-based solver against numerical data available in the literature
for two classical benchmarks for mesoscale atmospheric flow: the smooth rising thermal bubble
[26, 27] and the density current [1, 31]. We show that when one uses a relatively coarse grid,
there are noticeable differences in the solutions given by the different methods to approximate
the flux function, however such differences become less evident as the mesh is refined. In [5],
the authors state that there are no discernible differences in the results obtained with different
Riemann solvers when using a Spectral Element method or a Discontinuous Galerkin method for
the same benchmarks. However, they present only results with a given mesh, presumably the finest
considered. Since the level of mesh refinement is typically a compromise between desired accuracy
and required computational time with the available computational resources, it is important to
show how the solution changes when different Riemann solvers are adopted so that one can make
an informed decision on what Riemann solver to use for a given mesh. We found that, unless
the mesh is very fine, the Roe-Pike and HLLC methods give over-diffusive solutions. Both the
AUSM+-up and the HLLC-AUSM methods are less dissipative and thus allow for the use of coarser
meshes. In particular, the HLLC-AUSM method is the one that gives the best comparison with
the data available in the literature, even with coarser meshes.

The rest of the paper is organized as follows. Sec. 2 presents the model, i.e., the mildly in-
compressible Euler equations. Sec. 3 and 4 discuss the space and time discretization, respectively.
Numerical results are shown in Sec. 5, while some concluding remarks are reported in Sec. 6.

2 Problem definition

We consider the dynamics of dry atmosphere in a fixed spatial domain Ω. Let ρ be the air density,
u = (u, v, w) the wind velocity, p the fluid pressure and e the total energy density. Moreover, let cv
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be the specific heat capacity at constant volume, T the absolute temperature, g the gravitational
constant, and z the vertical coordinate. We write the total energy density as the sum of three
contributions:

e = U +K +Φ, U = cvT, K =
|u|2

2
, Φ = gz, (1)

where U is the internal energy density, K is the kinetic energy density, and Φ is the gravitational
energy density. The compressible Euler equations state the conservation of mass, momentum and
energy in Ω over a time interval of interest (0, tf ]:

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× (0, tf ], (2)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p+ ρgk̂ = 0 in Ω× (0, tf ], (3)

∂(ρe)

∂t
+∇ · (ρeu) +∇ · (pu) = 0 in Ω× (0, tf ], (4)

where k̂ is the unit vector aligned with the vertical axis z. Let γ =
cp
cv
, where cp is the specific heat

capacity at constant pressure. System (2)–(4) is closed by a thermodynamics equation of state for
p which, based on the assumption that dry air behaves like an ideal gas, is given by

p = ρU (γ − 1) = ρcvT (γ − 1) . (5)

For numerical stability, we add an artificial diffusion term to the momentum and energy equa-
tions:

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p+ ρgk̂− µa∆u = 0 in Ω× (0, tf ], (6)

∂(ρe)

∂t
+∇ · (ρue) +∇ · (pu)− cp

µa

Pr
∆T = 0 in Ω× (0, tf ], (7)

where µa is a constant (artificial) diffusivity coefficient and Pr is the Prandtl number. We note
that the choice to have µa constant in space and time is for convenience. More sophisticated LES
models can be used (see, e.g., [3, 23]) without affecting the findings in this article.

We are interested in nearly hydrostatic flows, i.e., flows originating by a small perturbation of
the hydrostatic balance condition characterized by pressure p0 and density ρ0 such that:

∇p0 + ρ0gk̂ = 0 (8)

Thus, we split pressure and density into mean hydrostatic value and fluctuation over the mean:

p(x, t) = p0(z) + p′(x, t), (9)

ρ(x, t) = ρ0(z) + ρ′(x, t), (10)
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where x = (x, y, z) is a point in the computational domain. Details on the importance of this
splitting can be found in, e.g., [14].

For the purpose of rewriting eq. (2), (6) and (7) in compact vector form, let q = (ρ, ρu, ρe) be
the solution vector. We define the numerical flux

F(q) =

 ρu
ρu⊗ u+ pI
(ρe+ p)u

 , (11)

where I is the identity matrix, and source term

S(q) =

 0

−ρgk̂
0

 . (12)

Finally, we introduce diffusion vector Γ =
(
0,−µa,−cp

µa

Pr

)
and tensor

D =

0 0 0
0 u 0
0 0 T

 . (13)

Then, we rewrite eq. (2), (6) and (7) as:

∂q

∂t
+∇ · F(q)− Γ∆D(q) = S(q). (14)

A quantity of interest for atmospheric problems is the potential temperature:

θ =
T

π
, π =

(
p

pg

) R
cp

, (15)

where pg = 105 Pa is the atmospheric pressure at the ground and R is the specific gas constant
of dry air. Similarly to the pressure and density, we split θ into mean hydrostatic value θ0 and
fluctuation over the mean θ′:

θ(x, t) = θ0(z) + θ′(x, t).

3 Space Discretization

For the space discretization, we adopt the finite volume approach. We partition the domain Ω into
cells or control volumes Ωi, with i = 1, ..., Nc, where Nc is the total number of cells in the mesh.
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Let Aj = Ajn̂j be the surface vector of each face of the control volume, with n̂j the unit normal
vector and with j = 1, . . . ,M .

Let us start with the hydrostatic balance. Following the framework introduced in [2, 17], we
determine the local hydrostatic reconstructions within each control volume Ωi in order to obtain a
well-balanced approximation. By combining eq. (5), (8) and (15), we obtain the following equation:

∂ρ0
∂z

= −

 ρ0g(
R
pg

)γ + γργ0

(
∂θ0
∂z

)
θγ−1

 1

γργ−1
0 θγ0

. (16)

To have the local hydrostatic reconstruction within each control volume Ωi, we integrate eq. (16)
over the interval [zi −∆zi/2, zi +∆zi/2], where zi is the vertical coordinate of the cell center of Ωi

and ∆zi is the local vertical mesh size, using the condition ρ0(z = zi) = ρ0(zi), which is cell average
density. Notice that, alternatively, ρ0(zi) could be computed by a global hydrostatic reconstruction
used for entire vertical columns in case the mesh is structure vertically (as is usually the case). See,
e.g., [16, 30].

The approach adopted to solve eq. (16) could heavely impact the robustness of the numerical
method [2, 17]. Since we focus on nearly hydrostatic flows with uniform background potential
temperature, we can analytically integrate eq. (16) to obtain:

ρ0,i(z) =

(
ρ0(zi)

γ−1 − P
γ − 1

γ
g(z − zi)

) 1
γ−1

in [zi −∆zi/2, zi +∆zi/2], (17)

where

P =
p0(zi)

ρ0(zi)

γ

. (18)

Note that ρ0,i(z) denotes the hydrostatic reconstruction of density within the control volume Ωi.
Eq. (18) is equivalent to:

p0,i(z) = Pρ0,i(z)
γ in [zi −∆zi/2, zi +∆zi/2]. (19)

The integral form of eq. (14) on each volume Ωi is given by:∫
Ωi

∂q

∂t
dΩ+

∫
Ωi

∇ · FdΩ− Γ

∫
Ωi

∆DdΩ =

∫
Ωi

SdΩ.

By applying the Gauss-divergence theorem, the equation above becomes:∫
Ωi

∂q

∂t
dΩ+

∫
∂Ωi

F · dA− Γ

∫
∂Ωi

∇D · dA =

∫
Ωi

SdΩ. (20)

The discretization of the diffusion term in (20), i.e., the third term at the left hand side, gives:
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∫
∂Ωi

∇D · dA ≈
∑
j

∇Dj ·Aj , (21)

where ∇Dj is the gradient of D at face j. On a structured, orthogonal mesh (see Fig. 1), a second
order approximation of ∇Dj is given by subtracting the value of D at the centroid of cell Ωi from
the value of D at the centroid of Ωi+1 and dividing by the magnitude of the distance vector dj

connecting the two cell centroids:

∇Dj ·Aj =
Di+1 −Di

|dj |
|Aj |. (22)

For non-structured, non-orthogonal meshes, one has to add an explicit non-orthogonal correction
to the right-hand side of (22) in order to preserve second order accuracy. See [6] for details.

Ωi Ωi+1

Di Aj Di+1

|dj |

Figure 1: Close-up view of two orthogonal control volumes.

For the discretization of the source term in eq. (20), i.e., the term at the right hand side, we
follow [2]. Let

S0(q) =

 0

−ρ0gk̂
0

 , S̃0(q) =

 0
p0
0

 . (23)

Using (8) and then applying the Gauss-divergence theorem, we can write:∫
Ωi

SdΩ ≈
∫
Ωi

S0dΩ = −
∫
∂Ωi

S̃0 · dA. ≈ −
∑
j

S̃0,j ·Aj , (24)

where S̃0,j is the value of S̃0 at face j which is computed by using eq. (19).
The discretization of the flux term in (20), i.e., the second term at the left hand side, requires

more attention. Hence, we treat it in a dedicated subsection.
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3.1 Treatment of the flux term

The discretization of the flux term in (20) gives:∫
∂Ωi

F · dA ≈
∑
j

fjAj , (25)

where fj = Fj · n̂j denotes the numerical flux through face j of Ωi. We choose to denote fj as
a vector, although for the first component of Fj in (11), i.e., ρu, the dot product with n̂j gives
a scalar, and similarly for the third component of Fj . In the case of incompressible flows, the
evaluation of fj requires only interpolation from neighbouring cells. However, for compressible
flows, fluid properties are not only transported by the flow, but also by propagation of waves [11].
Thus, the numerical flux is obtained from the solution of a Riemann problem at the cell interfaces

fj = F(qL,j ,qR,j), (26)

where F is the adopted Riemann solver and qL,j and qR,j the left and right state at face j. See
Fig. 2, where qi and qi+1 are the average solution vector in control volumes Ωi and Ωi+1. Next,
we describe how to compute qL,j and qR,j to have an equilibrium preserving reconstruction within
Ωi.

qi

n̂j

qL,j

qR,j

qi+1

Ωi Ωi+1

Figure 2: Close-up view of two non-orthogonal control volumes.

Recall splitting (9) and (10) for density and pressure. In each cell Ωi, these splittings become:

pi(x, t) = p0,i(z) + p′i(x, t), (27)

ρi(x, t) = ρ0,i(z) + ρ′i(x, t), (28)

with p0,i(z) given in (19) and ρ0,i(z) in (17). The perturbation is reconstructed with a standard
piece-wise linear approximation. For the sake of clarity, we present this reconstruction in 1D.
Extension to higher dimensions is not complicated, but notation can become cumbersome. In Ωi,
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we have:

p′i(x, t) = p′i(xi, t) + L(p′i)(x− xi), (29)

ρ′i(x, t) = ρ′i(xi, t) + L(ρ′i)(x− xi), (30)

where

L(p′i) = L (Di−1(p
′),Di+1(p

′)), (31)

L(ρ′i) = L (Di−1(ρ
′),Di+1(p

′)), (32)

are the slopes of the pressure and density perturbation with the application of a proper limiter L .
We adopt a monotonized central limiter [18]. Moreover, following [17, 2] we set

Di−1(p
′) =

p′i(xi)− p′i(xi−1)

xi − xi−1
, p′i(xi, t) = pi(xi, t)− p0,i(zi), (33)

Di−1(ρ
′) =

ρ′i(xi)− ρ′i(xi−1)

xi − xi−1
, ρ′i(xi, t) = ρ(xi, t)− ρ0,i(zi). (34)

A standard piece-wise linear reconstruction is also applied to the velocity u. We omit the
formulas for u, since from the formulas above for the reconstruction of a scalar fluctuation one can
easily write down the formula for each velocity component. Once ui is computed in every Ωi, one
uses eq. (5) to compute temperature Ti and eq. (1) to compute the total energy density ei.

Finally, we can write the interface solution vectors qL,j and qR,j in 1D:

qL,j = q(xi +∆xi/2), qR,j = q(xi+1 −∆xi+1/2).

Now that we have qL,j and qR,j , eq. (26) is completed with the choice of Riemann solver F .
Several options are available in the literature for the computation of fj (26). See, e.g., [28, 29, 32,
19, 20, 13]. In this paper, we will compare the results given by four approaches: Roe-Pike [29],
HLLC [32], AUSM+-up [21, 20] and HLLC-AUSM [21, 20, 15]. These methods are briefly explained
in the subsections below.

For simplicity of notation, from now on we will drop the j index from qL,j and qR,j , i.e., we
will use qL and qR with the understanding that we are referring to face j in cell Ωi. Similarly, we
will drop the j index from n̂j .

3.1.1 The Roe-Pike method

Perhaps, the best known of all approximate Riemann solvers is the one due to Roe [28]. The
Roe-Pike method represents an improvement over the classical Roe method. See [29] for details.
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In the Roe-Pike method, one first computes the Roe average between left and the right state
values:

ρ̃ =
√
ρLρR, ũ = (ũ, ṽ, w̃) =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

,

h̃ =

√
ρLhL +

√
ρRhR√

ρL +
√
ρR

, ã =

√
(γ − 1)(h̃−K),

where h = U + p/ρ+K is the total enthalpy and ã is a modified speed of sound.
Then, one sets

α̃1 =
1

2ã2
(pL − pR − ρ̃ã(uL − uR)), α̃2 = (ρL − ρR)−

pL − pR
ã2

,

α̃3 = ρ̃(vL − vR), α̃4 = ρ̃(wL − wR), α̃5 =
1

2ã2
(pL − pR + ρ̃ã(uL − uR)),

and
λ̃1 = ũ− ã, λ̃2 = λ̃3 = λ̃4 = ũ, λ̃5 = ũ+ ã. (35)

With ã = (ã, 0, 0), we define

r̃1 =

 1
ũ− ã

h̃− ũã

 , r̃2 =

 1
ũ
K

 , r̃3 =

 0
e2
ṽ

 , r̃4 =

 0
e3
w̃

 , r̃5 =

 1
ũ+ ã

h̃+ ũã

 , (36)

where e2 and e3 are the second and third column of the identity matrix of size 3.
At this point, we have all the ingredients to compute the numerical flux:

fj =
1

2
(f (qL) + f (qR))−

1

2

5∑
k=1

α̃k|λ̃k|r̃k, (37)

where

f (qL) =

 ρLuL · n̂
ρLuL ⊗ uL · n̂+ pLn̂
(ρLeL + pL)uL · n̂

 , f (qR) =

 ρRuR · n̂
ρRuR ⊗ uR · n̂+ pRn̂
(ρReR + pR)uR · n̂

 . (38)

3.1.2 The Harten–Lax–van Leer contact method

The Harten–Lax–van Leer contact (HLLC) method is an improvement to the classical Harten–Lax–van
Leer Riemann (HLL) solver to solve systems with three or more characteristic fields. It was in-
troduced to avoid the excessive numerical dissipation of HLL for intermediate characteristic fields.
We consider a version of HLLC for the time-dependent Euler equations presented in [32].
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The definition of fj in this method requires the left and right wave speed:

SL = uL · n̂− aL, SR = uR · n̂− aR, (39)

and the so-called middle wave speed S∗ defined as:

S∗ =
(pR − pL) + ρLuL · n̂(SL − uL · n̂)− ρRuR · n̂(SR − uR · n̂)

ρL(SL − uL · n̂)− ρR(SR − uR · n̂)
. (40)

In eq. (39), aL and aR are the left and right speed of sound:

aL =

√
γ
pL
ρL

, aR =

√
γ
pR
ρR

. (41)

The numerical flux is computed as:

fj =


f(qL) if SL ≥ 0,
f(q∗

L) if S∗ ≥ 0 ≥ SL,
f(q∗

R) if SR ≥ 0 ≥ S∗,
f(qR) if SR ≤ 0,

(42)

where f(qL) and f(qR) are given by eq. (38) and

f(q∗
α) =

1

SL − S∗

 (Sα − uα · n̂)ρα
(Sα − uα · n̂)ραuα + (p∗ − pα)
(Sα − uα · n̂)ραeα + (p∗ − pα)S

∗

 , with α = R,L. (43)

In (43), p∗ is given by
p∗ = ρR(uR · n̂− SR)(uR · n̂− S∗) + pR. (44)

3.1.3 The AUSM+-up method

The AUSM+-up is an extension of the original advection upstream splitting method (AUSM) aimed
at improving the accuracy in applications involving for low Mach number flows [20, 19].

The numerical flux fj is computed as follows:

fj =
ṁ+ |ṁ|

2
ΦL +

ṁ− |ṁ|
2

ΦR + p̃N, (45)

with

ΦL =

 1
uL

hL

 , ΦR =

 1
uR

hR

 , N =

0
n̂
0

 .
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In eq. (45) ṁ is the mass flow rate and p̃ is the so-called interface pressure [20, 19]. Below, we
explain how to compute these two quantities.

Let us start with p̃. Let ML and MR be the normal left and right Mach number

ML =
uL · n̂
a1/2

, MR =
uR · n̂
a1/2

, a1/2 =
aR + aL

2
, (46)

where aL and aR are defined in (41). Then, p̃ is given by

p̃ = P+
1 (ML)pL + P−

1 (MR)pR + pu, (47)

where P±
1 (·) is a polynomial defined as [19]:

P±
1 (M) =


1
MM±

1 if |M | ≥ 1,

M±
2

[
(±2−M)∓ 3MM∓

2

]
otherwise,

(48)

with

M±
1 =

1

2
(M ± |M |), M±

2 = ±1

4
(M ± 1)2. (49)

In eq. (47), pu is a diffusion term introduced to damp the pressure oscillations generated in the
limit M → 0. See [20] for details.

To compute the mass flow rate ṁ, we need to define

M̃ = P+
2(ML) + P−

2(MR) +Mp, (50)

where P±
2 (·) is a polynomial defined as:

P±
2 (M) =

{
M±

1 if |M | ≥ 1,

M±
2 (1∓M∓

2 ) otherwise.
(51)

Just like pu in (47), Mp in (50) is a diffusion term. See [20] for details. Finally, ṁ is given by

ṁ =

{
a1/2M̃ρL if M̃ > 0,

a1/2M̃ρR otherwise.
(52)

3.1.4 The HLLC-AUSM method

The HLLC-AUSM method [20, 15] combines the solution of the HLLC and AUSM approximate
Riemann solvers to create an extension of the HLLC method suited for low Mach number flows.

The numerical flux fj is computed as follows:
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fj =
ṁ+ |ṁ|

2
Φ′

L +
ṁ− |ṁ|

2
Φ′

R + p̃N, (53)

where

Φ′
L = ΦL +


0
0

SL (p∗ − pL)

ρL (SL − uL · n̂)

 , Φ′
R = ΦR +


0
0

SR (p∗ − pR)

ρR (SR − uR · n̂)

 .

Then the mass flow rate ṁ is given by:

ṁ =

{
ρLuL · n̂+ SL (ρ∗L − ρL) if S∗ > 0,

ρRuR · n̂+ SR (ρ∗R − ρR) otherwise,
(54)

where

ρ∗α =
Sα − uα · n̂
Sα − S∗ ρα, α = R,L. (55)

4 Time discretization

While space discretization of problem (14) is rather involved, time discretization is rather simple.
This is the reason why we chose to present space discretization first.

Let us start by noting that we can conveniently rewrite the space-discrete version of system
(20) as:

∂qi

∂t
= Li(q), (56)

with
Li(q) = −

∑
j

S̃0,j + Γ
∑
j

∇Dj −
∑
j

fjAj .

To discretize (56) in time, we consider a time step ∆t ∈ R+. Let tn = n∆t with n = 0, 1, . . . , NT

and tf = NT∆t. We denote with fn be the approximation of generic variable f at time tn.
We adopt a fully explicit fourth-order Runge-Kutta scheme [25] that applied to eq. (56) reads:

find qn+1
i such that

qn+1
i = qn

i +
∆t

6
(K1 + 2K2 + 2K3 +K4) , (57)

where

K1 = Li(t
n,qn), K2 = Li(t

n +
∆t

2
,qn +∆t

K1

2
),

K3 = Li(t
n +

∆t

2
,qn +∆t

K2

2
), K4 = Li(t

n +∆t,qn +∆tK3).

12



We chose this scheme because it introduces little numerical dissipation. Lower order methods, like,
e.g., BDF2, would lead to over-diffusion. We note that this is not the case for a pressure-based
solver. See, e.g., [8] for numerical results obtained with a pressure-based solver and BDF1 that do
not display over-diffusion.

Remark 1 In Sec. 3, we have described how one could build a well-balanced scheme in theory.
However, in order to mitigate the numerical error [17, 2], the local hydrostatic profiles, ρ0,i(z) and
p0,i(z), defined in (17), (19) and used in (24), (27)-(28), (33)-(34) are updated at each time step:
they become p0,i(z, t

n) and ρ0,i(z, t
n) computed from (17), (19) where ρ0(zi) is replaced by the cell

average density at the current time instant ρ0(zi, t
n). Notice that p′i(xi, t

n) = ρ′i(xi, t
n) = 0, i.e.,

the equilibrium reconstructions equal the total cell averages [17].

5 Numerical Results

The goal of this section is to compare the accuracy of the different methods for the computation of
the numerical flux presented in Sec. 3.1. For this, we consider two classical benchmarks: the smooth
rising thermal bubble [26, 27] and the density current [1, 31]. Both tests involve a perturbation
of a neutrally stratified atmosphere with uniform background potential temperature over a flat
terrain. Therefore, before reporting the results for the two benchmarks, in Sec. 5.1 we show that
an unperturbed stratified atmosphere with uniform background potential temperature over a flat
terrain remains unchanged up to a certain tolerance. This is important for illustrating the well-
balanced property of our solver. Then, our results for the smooth rising thermal bubble benchmark
are presented in Sec. 5.2, while Sec. 5.3 reports the results for the density current test.

We would like to point out that neither the rising bubble nor the density current benchmark
has an exact solution. Hence, one can only have a relative comparison with other numerical data
available in the literature.

All the simulations in this section have been carried out with GEA [4].

5.1 Hydrostatic atmosphere

We consider an initial resting atmosphere over a flat terrain. A well-balanced scheme is expected
to maintain the atmosphere still for a long time interval with a reasonable accuracy. The compu-
tational domain in the xz-plane is Ω = [0, 16000] m× [0, 800] m2. In this domain, the hydrostatic
atmosphere, initially at rest, is free to evolve until t = 25 days [2, 8, 23]. We impose a no-flux
boundary condition at all the boundaries. The initial potential temperature is θ0 = 300 K.

We consider a uniform mesh with mesh size h = ∆x = ∆z = 250 m [2, 8] and we set the time
step to ∆t = 0.1 s. Fig. 3 shows the time evolution of the maximal vertical velocity wmax. We see
that in the “worst” case (HLLC-AUSM method) wmax does not exceed 1e− 9 m/s over the 25 day
period. All the other methods keep the value of wmax even lower.
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Figure 3: Hydrostatic atmosphere: time evolution of the maximal vertical velocity wmax for all the
methods for the computation of the numerical flux under consideration.

We conclude that all methods to compute the numerical flux considered in this paper preserve
the hydrostatic equilibrium with reasonably good accuracy.

5.2 Smooth rising thermal bubble

For this benchmark, the computational domain in the xz-plane is Ω = [0, 1000]× [0, 1000] m2 and
the time interval of interest is (0, 600] s. The initial potential temperature profile is

θ0 = 300 +
0.5

2

[
1 + cos

(
πr

rc

)]
if r ≤ rc = 250 m, θ0 = 300 otherwise, (58)

where r =
√

(x− xc)2 + (z − zc)2, (xc, zc) = (5000, 2000) m is the radius of the circular perturba-
tion. The local (i.e., in each cell) initial density is given by eq. (17). The initial velocity field is
zero everywhere. The initial total energy is given by:

e0 = U0 +Φ (59)

where Φ = gz and U0 = cvT
0, with T 0 that can be computed from θ0 in (58). No-flux boundary

conditions are imposed on all walls.
We consider two meshes with uniform resolution: h = ∆x = ∆z = 2.5, 5 m. We set ∆t = 0.05 s.

Furthermore, following [7] in (6)-(7) we set µa = 0.15 m2/s and Pr = 1. We compare our numerical
results with the results reported in [27, 7]. The results in [27] are obtained with a density-based
approach developed from a Godunov-type scheme, similar to the approach used in this paper, but
Discontinuous Galerkin and Spectral Elements methods are used for space discretization. For this
reason, we considered also the results from [7], which were obtained with a different approach (i.e.,
pressure-based) but with the same space discretization method (i.e., a Finite Volume method in
GEA [4]).
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Roe-Pike HLLC

AUSM+-up HLLC-AUSM

Figure 4: Rising thermal bubble: perturbation of the potential temperature computed at t = 600
s with mesh h = 2.5 m and the Roe-Pike (top left), HLLC (top right), AUSM+-up (bottom letft),
and HLLC-AUSM (bottom right) methods.

Fig. 4 shows the potential temperature perturbation computed at t = 600 s with mesh h = 2.5
m and all the methods for the computation of numerical flux in Sec. 3.1. We notice no visible
difference in the solutions given by the different methods. Moreover, we have very good qualitative
agreement with the results in [27, 7]. For an easier comparison with the results in [27, 7], Fig.
5 depicts the profile of the potential temperature perturbation along z = 700 m at t = 600 s.
The reference values from [27, 7] correspond to mesh size h = 5 m, while we show the results for
h = 2.5, 5 m. We see that all the curves are rather close to each other, with the following minor
exceptions: around the maxima for both h = 2.5, 5 m and around x = 300 and x = 700 for h = 5
m. In addition, our approach does not exhibit the same oscillations, supposedly numerical, around
x = 200 and x = 800 as in [27].

For a more quantitative comparison, Table 1 reports the maximum and the minimum value of
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h = 2.5 m h = 5 m

Figure 5: Rising thermal bubble: profile of the potential temperature perturbation along z = 700
m at t = 600 s given by the different methods to compute the numerical flux with mesh h = 2.5 m
(left) and mesh h = 5 m (right). Reference 1 is taken from [27], while Reference 2 is from [7].

the velocity components. Overall, the best agreement with the data from [27, 7] is for the values
given by the HLLC-AUSM method. The AUSM+-up scheme is slightly more dissipative, while the
ROE-Pike and HLLC methods dissipate even more.

Method h (m) umin (m/s) umax (m/s) wmin (m/s) wmax (m/s)

Ref. [27] 5 -2.16 2.16 -1.97 2.75

Roe-Pike 5 -1.65 1.65 -1.60 2.47
Roe-Pike 2.5 -1.80 1.80 -1.68 2.50
HLLC 5 -1.62 1.62 -1.60 2.46
HLLC 2.5 -1.80 1.80 -1.68 2.50

AUSM+-up 5 -1.75 1.75 -1.65 2.50
AUSM+-up 2.5 -1.87 1.87 -1.70 2.50
HLLC-AUSM 5 -1.85 1.85 -1.69 2.48
HLLC-AUSM 2.5 -1.92 1.92 -1.71 2.51

Table 1: Rising thermal bubble: maximum and minimum values of the horizontal component u
and vertical component w of the velocity at t = 600 s.
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5.3 Density current

The computational domain of this benchmark is Ω = [0, 25600]× [0, 6400] m2 in the xz-plane and
the time interval of interest is (0, 900] s. The initial potential temperature profile is

θ0 = 300− 15

2
[1 + cos(πr)] if r ≤ 1, θ0 = 300 otherwise, (60)

where r =

√(
x−xc
xr

)2
+
(
z−zc
zr

)2
, with (xr, zr) = (4000, 2000) m and (xc, zc) = (0, 3000) m. The

local initial density field is given by eq. (17). The initial velocity field is zero everywhere. The
initial total energy is given by eq. (59). No-flux boundary conditions are imposed on all walls.

We consider four meshes with uniform resolution: h = ∆x = ∆z = 200, 100, 50, 25 m. We set
∆t = 0.05 s. Furthermore, in (6)-(7) we set µa = 75 m2/s and Pr = 1 as done in [8, 31, 1].

Fig. 6 illustrates the perturbation of potential temperature θ′ at t = 900 s computed with all
the meshes and all the methods for the computation of the numerical flux in Sec. 3.1. With the
finest mesh (h = 25 m), all the methods are able to capture a clear three-rotor structure, which
is in good agreement with the results reported in the literature for the same resolution. See, e.g.,
[1, 5, 8, 22, 23, 31]. With mesh h = 50 m, the three-rotor structure is still well captured by
the AUSM+-up and HLLC-AUSM methods, while the Roe-Pike and HLLC methods dampen the
smallest recirculation. With mesh h = 100 m, the smallest recirculation is significantly damped by
the AUSM+-up and HLLC-AUSM methods too. With the same mesh, the Roe-Pike and HLLC
solutions have the main rotor and a prolonged recirculation resulting from the merging of the
smaller rotors. Finally, we see that mesh h = 200 m is too coarse and no method is able to provide
an accurate solution. From now on, we will consider only meshes h = 25, 50 m.

Fig. 7 compares the potential temperature perturbation along z = 1200 m at t = 900 s computed
with meshes h = 50, 25 m and the data in [5], which refer to resolution 25 m. We recall that the
data in [5] are obtained with a spectral element method and a discontinuous Galerkin method.
For this benchmark, these two methods give results so close that the corresponding curves appear
superimposed. For this reason, we label them just as Reference in Fig. 7. Let us first comment on
the results in Fig. 7 obtained for mesh h = 50 m (left panel). With the HLLC-AUSM method, we
get results that are in good agreement with the reference values, with the exception of the negative
peaks associated with the two larger rotors. The same mismatch at these negative peaks is observed
also for the AUSM+-up method, which additionally gives a smaller (in absolute value) negative peak
for the smallest recirculation. The curves related to the HLLC and Roe-Pike methods, which are
almost superimposed, show larger differences at the negative peaks and are off phase with respect
to the Reference. Looking at the results for mesh h = 25 m (right panel in Fig. 7), we see that the
curves obtained with the different methods are almost superimposed. With the exception of the
amplitude of the negative peaks, they are in very good agreement with the reference values. This
is remarkable if we consider that the results in [5] are obtained with high-order methods, while we
use a second order accurate finite volume method.
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Roe-Pike HLLC AUSM+-up HLLC-AUSM

h = 200 m

h = 100 m

h = 50 m

h = 25 m

h = 200 m

h = 100 m

h = 50 m

h = 25 m

h = 200 m

h = 100 m

h = 50 m

h = 25 m

h = 200 m

h = 100 m

h = 50 m

h = 25 m

Figure 6: Density current: potential temperature fluctuation θ′ given by all the numerical methods
for the flux computation at t = 900 s with meshes h = 25 m (first row), h = 50 m (second row),
h = 100 m (third row), h = 200 m (fourth row).

h = 50 m h = 25 m

Figure 7: Density current: potential temperature perturbation θ′ along z = 1200 m at t = 900 s
given by all the methods for the computation of the numerical flux with mesh h = 50 m (left) and
h = 25 m (right). The Reference data are taken from [5] and refer to resolution 25 m.

The front location for this benchmark is defined as the location on the ground where θ′ = −1
K. Table 2 reports the front location at t = 900 s computed with meshes h = 25, 50 m. In the table,
we report also the range of mesh sizes (from 25 m to 200 m) and front locations obtained with
14 different methodologies in [31]. We observe that in all the cases our results fall well within the
values reported in [31]. Additionally, we note that the front locations obtained with mesh h = 25
m are all within 20 m of each other, in a domain that is 25.6 Km long. This increases to 65 m with
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mesh h = 50 m, which is still pretty good given the size of the domain.

Method Resolution [m] Front Location [m]

Roe-Pike 50 14724

Roe-Pike 25 14780

HLLC 50 14720

HLLC 25 14780

AUSM+-up 50 14885

AUSM+-up 25 14790

HLLC-AUSM 50 14765

HLLC-AUSM 25 14800

Ref. [31] (25, 200) (14533,17070)

Table 2: Density current: front location at t = 900 s obtained with the different methods and
meshes h = 50, 25 m. For reference [31], we reported the range of mesh sizes and front location
values obtained with different methods.

6 Concluding remarks

We developed, and implemented in a Finite Volume environment, a well-balanced density-based
solver for the numerical simulation of non-hydrostatic atmospheric flows. To approximate the
solution of the Riemann problem, we considered four methods: Roe-Pike, HLLC, AUSM+-up, and
HLLC-AUSM. We assessed our density-based approach and compared the accuracy of these four
methods through two well-known benchmarks: the smooth rising thermal bubble and the density
current.

We found that the solutions given by the different approximated Riemann solvers differ notice-
ably when using coarser meshes. Specifically, unless the mesh is very fine, the Roe-Pike and HLLC
methods give over-diffusive solutions, while both the AUSM+-up and the HLLC-AUSM methods
are less dissipative and thus allow for the use of coarser meshes. In particular, the HLLC-AUSM
method is the one that gives the best comparison with the data available in the literature, even
with coarser meshes. The differences in the solutions given by the approximated Riemann solvers
become less evident as the mesh gets refined.

Aknowledgements

We acknowledge the support provided by PRIN “FaReX - Full and Reduced order modelling of
coupled systems: focus on non-matching methods and automatic learning” project, PNRR NGE iN-
EST “Interconnected Nord-Est Innovation Ecosystem” project, INdAM-GNCS 2019–2020 projects

19



and PON “Research and Innovation on Green related issues” FSE REACT-EU 2021 project. This
work was also partially supported by the U.S. National Science Foundation through Grant No.
DMS-1953535 (PI A. Quaini).

References

[1] N. Ahmad and J. Lindeman. Euler solutions using flux-based wave decomposition. Interna-
tional Journal for Numerical Methods in Fluids, 54:47–72, 2007.

[2] N. Botta, R. Klein, S. Langenberg, and S. Lutzenkirchen. Well balanced finite volume methods
for nearly hydrostatic flows. Journal of Computational Physics, 196:539–565, 2004.

[3] N. Clinco, M. Girfoglio, A. Quaini, and G. Rozza. Filter stabilization for the mildly compress-
ible Euler equations with application to atmosphere dynamics simulations. Computers and
Fluids, 266:106057, 2023.

[4] GEA - Geophysical and Environmental Applications. https://github.com/

GEA-Geophysical-and-Environmental-Apps/GEA.

[5] F. X. Giraldo and M. Restelli. A study of spectral element and discontinuous Galerkin methods
for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation
sets and test cases. Journal of Computational Physics, 227:3849–3877, 2008.

[6] M. Girfoglio, A. Quaini, and G. Rozza. A Finite Volume approximation of the Navier-Stokes
equations with nonlinear filtering stabilization. Computers & Fluids, 187:27–45, 2019.

[7] M. Girfoglio, A. Quaini, and G. Rozza. GEA: A New Finite Volume-Based Open Source Code
for the Numerical Simulation of Atmospheric and Ocean Flows. In E. Franck, J. Fuhrmann,
V. Michel-Dansac, and L. Navoret, editors, Finite Volumes for Complex Applications X—
Volume 2, Hyperbolic and Related Problems, pages 151–159, Cham, 2023. Springer Nature
Switzerland.

[8] M. Girfoglio, A. Quaini, and G. Rozza. Validation of an OpenFOAM®-based solver for
the Euler equations with benchmarks for mesoscale atmospheric modeling. AIP Advances,
13(5):055024, 2023.

[9] M. Girfoglio, A. Quaini, and G. Rozza. A comparative computational study of different
formulations of the compressible Euler equations for mesoscale atmospheric flows in a finite
volume framework. Preprint: https://arxiv.org/abs/2402.18136, 2024.

[10] S. K. Godunov and I. Bohachevsky. Finite difference method for numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(89)(3):271–
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