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Abstract

If η is a contact form on a manifold M such that the orbits of the Reeb vector field R

form a simple foliation F on M , then the presymplectic 2-form dη on M induces a sym-
plectic structure ω on the quotient manifold N = M/F. We call (M,η) a contactification

of the symplectic manifold (N,ω). First, we present an explicit geometric construction
of contactifications of some coadjoint orbits of connected Lie groups. Our construction
is a far going generalization of the well-known contactification of the complex projective
space CPn−1, being the unit sphere S2n−1 in C

n, and equipped with the restriction of the
Liouville 1-form on C

n. Second, we describe a constructive procedure of obtaining con-
tactification in the process of the Marsden-Weinstein-Meyer symplectic reduction, and
indicate geometric obstructions for the existence of compact contactifications. Third, we
show that contactifications provide a nice geometrical tool for a Lagrangian description
of Hamiltonian systems on compact symplectic manifolds (N,ω), on which symplectic
forms never admit a ‘vector potential’.
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1 Introduction

Nowadays, it is widely believed that the description of fundamental interactions has to be
formulated in terms of gauge theories. The most paradigmatic example is provided by electro-
dynamics. In general, the joint evolution equations of fields and sources gives rise to equations
which are essentially untractable when it comes to find explicit solutions. Many simplifying
assumptions are usually made to uncouple the evolution of fields and the evolution of particles.

To this aim, one introduces the notion of test particles, i.e., particles which move under
the influence of external fields while their motion does not contribute to the field itself. The
evolution of the inner degrees of freedom of test particles (say, spin, isospin, colour) is usually
described by a Hamiltonian vector field on a compact symplectic manifold. This means:
via a nondegenerate closed two form which is closed but not exact, however, the interaction
with external fields, usually minimal coupling, requires the existence of a ‘potential’ for the
symplectic structure.

Actually, there are many finite-dimensional interesting physical systems, which Hamilto-
nian evolution is described by means of symplectic structures which are closed but not exact
(charged particles in the field of magnetic monopoles, spinning particles, particles whose inner
structure is described by orbits of the coadjoint action of compact groups. Other instances of
this problem arise in the description of the Berry phase for mixed states, when the eigenvalues
of the density operator are pairwise rationally related among them.

For such systems it is not possible to provide a global Lagrangian description, as the
interaction with external fields requires the existence of a ‘vector potential’ for the symplectic
structure. In several specific cases, this has been achieved by replacing the compact symplectic
manifold with a compact covering, on which the pull-back of the closed two-form turns out
to be exact. For some cases, the problem was addressed by Balachandran and collaborators
[4, 5, 6] and afterwards, in the mathematics community, e.g., by Sternberg and Weinstein
[38, 39]. This is closely related to problems of geometric quantization (see, e.g., [7]), in which
the covering appears to be an S1- (equivalently, a Hermitian complex line bundle) or R-
principal bundle [9, 23], on which the lifted 2-form is invariant. Note, however, that there is
a mistake in the proof in [9] that requires its substantial modification (cf. [18, 23]).

In this paper, we would like to reconsider the problem of ‘unfolding’, i.e., how to con-
struct a compact ‘covering’ of a compact symplectic manifold on which the pull-back of the
two form will be exact, and to do this in the most economical way, i.e., adding only one
additional dimension. From the geometrical point of view, this amounts to a contactification
of a symplectic compact manifold which is a coadjoint orbit of a compact Lie group. Since
the unfolded 2-form is a presymplectic form being the differential of a contact 1-form, we
call this procedure a contactification of a symplectic manifold, which goes in the direction
opposite to symplectization (cf. [2]). Moreover, we describe a constructive way of obtaining
contactifications ‘on the fly’, when doing reductions of Hamiltonian systems. Note that con-
tactifications are not uniquely determined but the compact ones correspond to prequantization
(or S1-principal) bundles and are possible only for compact symplectic manifolds satisfying
the Dirac quantization condition.

The organization of the paper is the following. For the purposes of reduction procedures,
we start with an introduction to reductions of differential forms and basics on contact and
symplectic manifolds. A section devoted to the geometry of Quantum Mechanics in finite
dimensions is aimed to provide us an understanding of the set of quantum states as a convex
body in the space of Hermitian operators and the manifold of pure states (complex projective
space) as a coadjoint orbit of the unitary group. This leads to the standard examples of a
contactification for complex projective spaces.
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Further, we show, how to obtain coadjoint orbits in the process of Marsden-Weinstein-
Meyer symplectic reduction, and describe where contactifications are hidden in the reduction.
The corresponding strategy is much more clear in the case of compact (e.g., unitary) Lie
groups, whom we devote a separate section. Here, they appear obstructions for the existence
of a compact contactification, completely equivalent to the Dirac quantization conditions in
the theory of geometric quantization. In our approach, these obstructions have a simple
topological sense.

The corresponding formalism is made explicit for unitary groups. Finally, we realize our
main aim by constructing Lagrangians and the corresponding action functionals for Hamilto-
nian systems on compact symplectic manifolds by means of a contactification. It is illustrated
with an example related to a magnetic monopole. We will work in the smooth category and
all manifolds we consider are Hausdorff and paracompact.

2 Reductions of differential forms

Let us start with fixing some terminology and recalling some basic facts from differential
geometry.

Suppose D ⊂ TM is a distribution of rank r (distributions are always smooth and regular
in this paper) on a manifold M of dimension m. We say that a (local) vector field X on M
belongs to D (and write X ∈ D) if Xq ∈ Dq for all q ∈ M . The distribution D is involutive
if the Lie bracket [X,X ′] of any vector fields X,X ′ ∈ D also belongs to D. According to the
celebrated Frobenius Theorem, in this case integral submanifolds of D, i.e., maximal connected
immersed submanifolds N ⊂ M such that TN ⊂ D, have dimension r and form a smooth
foliation F(D) of M . For any point q ∈M , there is its open neighbourhood U equipped with
local coordinates (x1, . . . , xr, y1, . . . , ym−r) such that the leaves of F(D) ∩ U are defined by
y = const ∈ Rm−r.

The distribution D we will call simple if D is involutive and the corresponding foliation F(D)
of M is simple, i.e., there is a smooth manifold structure on the topological space M/D =
M/F(D) of the leaves of the foliation F such that the canonical projection pD : M → M/D
is a surjective submersion (a smooth fibration). In this case, the coordinates (yj) mentioned
above can be taken to be the pull-backs of some local coordinates (uj) around pD(q) ∈M/D),
yj = uj ◦ pD.

Definition 2.1. Let α be a k-form on a manifold M and v ∈ TM . For an involutive distribu-
tion D on M , the form α is D-invariant if £Xα = 0 for all X ∈ D. Let us denote with ivα the
(left) contraction of α with v (the symbol i we will need later to denote the imaginary root
of −1). The kernel of α, denoted ker(α), is the subset of those vectors v from TM such that
ivα = 0. The subset

χ(α) = ker(α) ∩ ker(dα) ⊂ TM

we call, in turn, the characteristic set of α. We call α regular if χ(α) is a (regular) distribution.
In this case, we call χ(α) the characteristic distribution of α. If the characteristic distribution
consists of zero-vectors, we call α nondegenerate.

Note that ker(α) is generally not a submanifold, nor a generalized (smooth) distribution (it
is not locally generated by smooth vector fields), and if α is a closed, then χ(α) = ker(α).
Moreover, simple but very useful observations in this context are the following.

Lemma 2.2. Let α be a k form on M and D be an involutive distribution on M . Then,

(a) If a vector field X belongs to χ(α), then £Xα = 0.
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(b) The k-form α is D-invariant if and only if D ⊂ χ(α).

(c) If α is regular, then χ(α) is an involutive distribution and α is χ(α)-invariant.

Proof. (a) In view of the ‘magic’ Cartan formula,

£Xα = diXα + iXdα = 0. (1)

(b) The (⇐) part follows immediately from (a).
To prove (⇒), let us notice that for any function f on M we have

£fXα = ifX dα + d (f iXα) = f£Xα + df ∧ iXα.

If X ∈ D, then fX ∈ D, so df ∧ iXα = 0 for all functions f and thus iXα = 0. But from (1)
we get also iXdα = 0.

(c) In view of (b), it is enough to show that χ(α) is involutive. Let X, Y be vector fields
belonging to χ(α) = ker(α) ∩ ker(dα). Then, according to the well-know identity

i[X,Y ] = £X ◦ iY − iY ◦£X ,

we get
i[X,Y ]α = £X iY α− iY (d iXα+ iXdα) = 0.

Replacing now α with dα in the left-had-side of the above identity, we get also i[X,Y ]dα = 0.

Corollary 2.3. If α is a differential k-form on M which is invariant with respect to a simple
distribution D ⊂ TM , then there is a unique k-form α/D on the manifold M/D such that
p∗
D
(α/D) = α. Moreover, in the case when α is regular and χ(α) is a simple distribution, the

k-form αred = α/χ(α) on Mred =M/χ(α) is nondegenerate.

Proof. Let us take y0 ∈ M/D and q ∈ M such that pD(q) = y0. Let (y
j) be local coordinates

around y0 in M/D. Denoting their pull-backs yj ◦ pD, with some abuse of notation, also yj,
we can pick-up xi so that (xi, yj) are local coordinates around q in M . In particular, ∂xi ∈ D.
Hence, according to Lemma 2.2, i∂

xi
α = 0 for all i, so there are no dxi in α. Consequently, we

can write α in the form α = gIdy
I , where I = (i1, . . . , im−r), is = 0, 1, are multi-indices, and

dyI = (dy1)i1 ∧ · · · ∧ (dym−r)im−r ,

with (dyj)0 = 1. We get further

0 = £∂
xi
α =

∂gI
∂xi

dyI .

Hence, the coefficients gI do not depend on variables (xi), gI = gI(y), so α can be written
with the use of coordinates (yj) only and therefore it can be treated as the pull-back of a
unique k-form α/D, which in coordinates (yj) looks formally exactly as α, α/D = gI(y)dy

I.
Of course, if D = χ(α), then the reduction kills degeneration and α/χ(α) is nondegenerate.

Definition 2.4. Let M be a manifold of dimension m.

(a) Regular k-forms on M with the characteristic foliation being simple we call simple, and
the foliation F(α) = F(χ(α)) of M we cal the characteristic foliation of α. If α is
simple, then the pair (Mred, αred) we call the regular reduction of (M,α).
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(b) A submanifold iN : N →M of a manifold M equipped with a k form α we call regular if
the restriction αN = i∗(α) of α to N is a regular form. If αN is simple, we speak about
a simple submanifold N of (M,α).

(c) A 2-form ω on M we call presymplectic of rank 2r it ω is closed and χ(ω) = ker(ω) is
of rank m− 2r. If ω is additionally nondegenerate, i.e., 2r = m, we call ω a symplectic
form. A manifold equipped with a (pre)symplectic form we call (pre)symplectic.

(d) A submanifold iN : N →֒ M of a symplectic manifold (M,ω) we call presymplectic if the
restriction ωN = ω

∣

∣

N
= i∗N (ω) of ω to N is regular, thus presymplectic. A presymplectic

manifolds (M,ω) equipped with a potential, i.e., a 1-form θ such that dθ = ω, we call
exact.

Note that the rank of a 2-form is even at every point. Above, we used the definition of a
presymplectic form as it was introduced by Souriau. Some authors consider presymplectic
forms simply as closed 2-forms, which is too weak for our purposes. Even in this case one
assumes in applications the regularity of ω.

With simple regular submanifolds N of (M,α) we can associate differential form reduction
which follows immediately from Corollary 2.3.

Theorem 2.5 (Regular reduction of differential forms). Let α be a k-form on a manifold M ,
and let iN : N →֒ M be simple submanifold of (M,α). Then the k-form αN = i∗N (α) on N
is simple and there is a nondegenerate k-form αNred = (αN)red on Nα

red = N/χ(αN ) such that
pα(N)∗(αNred) = αN , where pα(N) : N → Nα

red is the canonical surjective submersion.

The procedure of passing from (M,α) to (Nα
red, α

N
red) we call α-reduction of N . If α is sym-

plectic, the α-reduction is traditionally called a symplectic reduction (cf. [30]). In this case,
αN is a presymplectic form on N . For presymplectic forms we have the following.

Theorem 2.6 (Presymplectic Darboux Theorem). If ω is a presymplectic form of rank 2r on
a manifold M of dimension m, then around every point of M there are local coordinates

(p1, . . . , pr, q
1, . . . , qr, z1, . . . , zm−2r)

in which ω reads
ω = dpi ∧ dqi.

3 Contactifications of symplectic manifolds

Consider now a distribution C ⊂ TM being a field of hyperplanes on M , i.e., a distribution
with rank (m − 1). Such a distribution is, at least locally, the kernel of a nonvanishing 1-
form η on M , i.e., C = ker(η). Of course, the 1-form η is determined only up to conformal
equivalence. Denote the line bundle TM/C → M with LC and let τC : TM → LC be the
canonical projection. The map νC : C ×M C → LC which for vector fields X, Y on M , taking
values in C, reads νC(X, Y ) = τC([X, Y ]), is a well-defined skew-symmetric 2-form on C with
values in the line bundle LC . Indeed, if f :M → R is a function on M , then

νC (X, fY ) = τC([X, fY ]) = τC (f [X, Y ] +X(f)Y )

= fνC(X, Y ) +X(f)τC(Y ) = fνC(X, Y ) .

Definition 3.1. A hyperplane field C ⊂ TM we call a contact structure if the 2-form νC on C
is nondegenerate. Manifolds equipped with a contact structure we will call contact manifolds.
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Any nonvanishing (local) 1-form which determines a contact structure C we call a contact
form. If a globally defined contact form η is chosen, then the corresponding contact structure
C = ker(η) we call trivial or co-oriented. If such a contact form exists, we call the contact
structure co-orientable (trivializable).

Of course, all 1-forms fη, f 6= 0, i.e., forms conformally equivalent to a contact form η,
are also contact forms. In this paper we will deal only with trivial contact structures (M, η),
i.e., manifolds M equipped with a globally defined contact form η.

Remark 3.2. As integrability of a distribution is equivalent to its involutivity, the prop-
erty that the bracket [X, Y ] is nondegenerate on C is sometimes expressed as maximal non-
integrability.

Theorem 3.3 (Contact Darboux Theorem). Let η be a 1-form on a manifoldM of dimension
(2n+1). Then η is a contact form if and only if Ω = η∧(dη)n is a nonvanishing volume form.
In such a case, around every point of M there are local coordinates (z, pi, q

i), i = 1, . . . , n, in
which the contact form η reads

η = dz − pi dq
i. (2)

It is clear from the above theorem that contact forms are nondegenerate in the sense of
Definition 2.1. A sort of a converse of this statement is also true.

Proposition 3.4. Let η be a nondegenerate 1-form on a manifold M of dimension m. Then,

(a) the form η is a contact form if m is odd;

(b) the form ω = dη is a symplectic form if m is even.

In other words, manifolds equipped with a nondegenerate 1-form are either co-oriented contact
manifolds or exact symplectic manifolds, depending on the parity of the dimension of M .

Proof. (a) As m = 2r + 1, the rank of dη must be everywhere 2r. Indeed, being even this
rank is at most 2r. If at a point x ∈ M this rank is ≤ 2r − 2, then dim(ker(dη(x))) ≥ 3, so
the dimension of the intersection of ker(dη(x)) with ker(η(x)) is at least 2; a contradiction.
Since ker(dη) is 1-dimensional and trivially intersects ker(η), the 2-form dη is nondegenerate
on ker(η), thus η is a contact form.

(b) Suppose now that m = 2r. We should show that ker(dη) is trivial at all points. Indeed,
if ker(dη) is not trivial at a point x, then its dimension at x is at least 2. But the dimension
of ker(η(x)) is at least (m − 1), thus the intersection of these kernels is at least 1 at x; a
contradiction.

Corollary 3.5 (Contact reduction). If η is a 1-form on a manifold M and N is a simple
submanifold of (M, η), then the 1-form ηNred obtained by the η-reduction of N (Theorem 2.5)
is a contact form if the dimension of Nη

red is odd, and a symplectic potential, i.e., d(ηNred) is
symplectic, if this dimension is even.

The following is a particular case of the well-known Poisson-to-Jacobi reduction (see e.g. [25]).

Proposition 3.6 (Symplectic-to-contact reduction). Let (M,ω) be a symplectic manifold and
N be its closed submanifold in M of codimension 1. If X is a vector field defined in a neigh-
bourhood of N which is transversal to N and satisfies £Xω = ω, then the 1-form η on N
defined by

ηx(Y ) = ωx(X, Y ), where x ∈ N, Y ∈ TxN,

is a contact form on N .
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Proof. The 1-form η is clearly nonvanishing and

dη = d(iXω
∣

∣

N
) = (diXω)

∣

∣

N
= (£Xω)

∣

∣

N
= ω

∣

∣

N
.

Hence dη is of corank 1, so it suffices to show that

χ(η) = ker(η) ∩ ker(dη) = {0}.

But if Y0 ∈ χ(η), then ω(X, Y0) = 0 and ω(Y, Y0) = 0 for all vector fields Y on N . Hence,
Y0 ∈ ker(ω) = {0}.

Remark 3.7. Any contact form η on M determines uniquely a vector field R on M , called
the Reeb vector field, which is characterized by the equations

iRη = 1 and iRdη = 0.

For the contact form (2) we have R = ∂z.

It is obvious that any co-oriented contact manifold (M, η) of dimension (2n+1) is automati-
cally presymplectic with the exact presymplectic form dη of rank 2n. In this case the involutive
distribution ker(dη) is generated by the Reeb vector field R. The contact structures in con-
nection to physics and Hamiltonian mechanics became recently a subject of intensive studies
(see, e.g., [12, 13, 14, 15, 22, 23, 24]). For a purely geometric approach to contact Hamiltonian
mechanics which serves for general contact structures (not necessarily co-oriented) we refer to
[21].

Definition 3.8. If the distribution 〈R〉 = ker(dη) is simple, we call the contact manifold
(M, η) regular.

The following is obvious.

Proposition 3.9 (Contact-to-symplectic reduction). If (M, η) is a regular contact manifold,
then ω = dη/〈R〉 is a symplectic form on the reduced manifold Mred =M/〈R〉. Moreover, ω
is uniquely characterized as a 2-form on M such that p∗(ω) = dη, where p :M →Mred is the
canonical surjective submersion.

Definition 3.10. The procedure of passing from (M, η) to (Mred, ω) we call contact-to-
symplectic reduction, and the contact manifold (M, η) – a contactification of the symplectic
manifold (Mred, ω).

Example 3.11. It is easy to see that any exact symplectic manifold (N, ω), where ω = dθ,
admits a canonical contactification. We just put M = N × R and η(x, t) = dt + θ(x). It is
easy to see that the Reeb vector field is R = ∂t and dη(x, t) = ω(x). This construction was
called a contactification in [2, Appendix 4].

The situation is generally much more complicated for symplectic manifolds (N, ω) such that
ω is not exact. It is always the case if N is compact, so the canonical Fubini-Study symplectic
forms on the complex projective spaces CPn are never exact. Note also that removing, say, one
point from a contactification, we get a new contactification, that shows that contactifications
of a given symplectic manifold are never unique. On the other hand, we have the following.

Proposition 3.12. Every symplectic manifold (N, ω) admits a contactification.
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Proof. Consider a locally finite atlas {(Un, ϕn)}n∈N on N with contractible open subsets Un.
Let θn be a potential for ω on Un, dθm = ω

∣

∣

Un
, and equip Vn = Un × (n, n + 1) ⊂ N × R

with the contact form ηn = dt + θn, where t is the standard coordinate in R. The manifold
M = ∪nVn ⊂ N × R with the contact form η such that η

∣

∣

Vn
= ηn is a contactification of

(N, ω). Indeed, the Reeb vector field is ∂t on N ×R restricted to M , so (M, η) is regular and
M → Mred is the canonical projection p : N × R → N restricted to M . Hence Mred = N and
dη = p∗(ω).

The problem with the above contactification is that the contact manifold is non-connected,
so it is not actually ‘global’. Therefore, it makes sense to consider only connected contactifi-
cations of connected symplectic manifolds which makes the problem of existence of a contac-
tification really nontrivial. For instance, compact contactifications are quire rare, as in this
case the Reeb vector field is complete.

Definition 3.13. If the Reeb vector field R is a complete, we call the contact manifold (M, η)
complete. If R is the generator of a principal action of a Lie group G = U(1) or G = R on M ,
we call the contact manifold (M, η) principal.

Of course, any principal contact manifold is regular and complete. The main result in [23]
states the converse.

Theorem 3.14 ([23]). Any connected regular and complete contact manifold (M, η) is prin-
cipal. Moreover, if the structure group of the principal bundle p :M → N =Mred is U(1) and
2π~ is the minimal period of the flow of the Reeb vector field R, then the symplectic form ω
on N is Z~-integral, where Z~ = 2π~ · Z, i.e.,

[

ω/2π~
]

∈ H2(N,Z).

In the case of the R-principal bundle, in turn, the symplectic form ω is exact, ω = dθ for a
1-form θ, and (M ≃ N ×R, η) is the standard contactification of an exact symplectic manifold
like in Example 3.11.

We will explain closer the concept of Z~-integrality in Section 21.

Remark 3.15. If (M, η) is regular and compact contact manifold, then it is automatically
complete, the structure group is U(1), and we get the celebrated Boothby-Wang theorem [9]
as a particular example. Note, however, that the original proof in [9] contains a substantial
gap.

Corollary 3.16. Any compact contactification of a compact symplectic manifold is canonically
an U(1)-principal bundle with respect to an U(1)-action induced by the flow of the Reeb vector
field.

4 Geometry of Quantum Mechanics

The complex projective space CPn−1 consists of pure states on the Hilbert space Cn and is
a minimal coadjoint orbit of the unitary group U(n). The standard Hermitian product 〈x | y〉
on Cn is, by convention, C-linear with respect to y and anti-linear with respect to x. The
unitary group U(n) acts on Cn preserving this Hermitian product and consists of those complex
matrices U ∈ gl(n;C) which satisfy UU † = I, where U † is the Hermitian conjugate of U , i.e.

〈Ux | y〉 = 〈x | U †y〉.

8



The Lie algebra u(n) of U(n) is the real vector space of anti-Hermitian matrices T † = −T with
the commutator bracket [T, T ′] = TT ′−T ′T . In what follows, we will write simply U for U(n)
and u for u(n).

The geometric approach to Quantum Mechanics is based on the observation that the ‘real-
ification’ Cn

R
= R

n ⊕ iRn = R
2n of Cn is a Kähler manifold (R2n, g, ω), with a Riemannian

metric g and a symplectic form ω defined by

g(x, y) + i · ω(x, y) = 〈x | y〉.

In other words, g(x, y) = Re〈x | y〉 and ω(x, y) = Im〈x | y〉, where Re and Im denote the real
and the imaginary part of a complex number, respectively. The standard orthonormal basis
(ek) of C

n induces global coordinates (qk, pl), k, l = 1, . . . , n, on R2n by

〈ek | x〉 = (qk + i · pk)(x).

In these coordinates, the vector ∂qk represents ek and ∂pk represents i · ek. Hence, the Rieman-
nian tensor reads

g =
∑

k

(

dqk ⊗ dqk + dpk ⊗ dpk
)

and the symplectic form

ω =
∑

k

dqk ∧ dpk =
∑

k

(

dqk ⊗ dpk − dpk ⊗ dqk
)

.

The 1-form

θ =
1

2

∑

k

(

qkdpk − pkdq
k
)

(3)

we will call the Liouville 1-form. It is clearly a potential for ω, dθ = ω. The unitary group U

acts R-linearly on R2n ≃ Cn and this action is simultaneously an isometry and a symplecto-
morphism,

g(x, y) + i · ω(x, y) = 〈x | y〉 = 〈Ux |Uy〉 = g(Ux, Uy) + i · ω(Ux, Uy).

Moreover, the Liouville 1-form θ is U-invariant.

One important convention we want to introduce following [26] is that we will identify the
real vector space of Hermitian operators A = A† with the dual u∗ of the real Lie algebra u,
according to the pairing between Hermitian A ∈ u∗ and anti-Hermitian T ∈ u operators,

〈A, T 〉 =
i

2
· tr(AT ).

The multiplication by i establishes further vector space isomorphisms

u ∋ T 7→ iT ∈ u∗ , u∗ ∋ A 7→ −iA ∈ u, (4)

which identify the adjoint AdU(T ) = UTU † with the coadjoint

(Ad∗)U(A) = (AdU−1)∗(A) = UAU †

action of the group U. Under these isomorphisms, u∗ and u become equipped with the scalar
products

〈A,B〉u∗ =
1

2
tr(AB) 〈T, T ′〉u = −

1

2
tr(TT ′), (5)

9



respectively, and a Lie bracket
[A,B]u∗ = −i[A,B], (6)

where [A,B] = AB − BA is the commutator bracket. It is easy to see that the fundamental
vector field of the coadjoint action associated with iA ∈ u takes at µ ∈ u∗ the value −i[A, µ] =
[A, µ]u∗ . The scalar products (5), the bracket (6) and the commutator bracket in u are invariant
with respect to the coadjoint/adjoint action of the unitary group.

Remark 4.1. The set of quantum states can be defined as the subset QS in u∗ consisting of
those µ ∈ u∗ which are positive, 〈x |µx〉 ≥ 0, and have trace 1, tr(µ) = 1. It is invariant with
respect to the coadjoint U-action on u∗. The subset QS in u∗ is not a manifold if dimC(H) 6= 2,
but it is canonically stratified by submanifolds QSk, k = 1, . . . , dimC(H), of u∗, where QSk

consists of quantum states with rank k (see [26]). Quantum states of rank 1 we call pure, and
states of rank k mixed. Quantum states form a compact convex set in u∗ whose extremal points
are exactly pure states. In other words, any quantum state is a convex combination of pure
states. These convex combinations are called in physics quantum mixtures. Note additionally
that there is a finer stratification of QS by manifolds than the stratification by rank, namely
the stratification by coadjoint orbits. Two quantum states belong to the same coadjoint orbit
if and only if they have the same spectrum. For quantum states this spectrum consists of
non-negative reals.

The Lie algebra structure on u induces a linear Poisson tensor (Kostant-Kirillov-Souriau ten-
sor) Λ on u∗ inducing a Poisson bracket {·, ·}Λ, which on linear functions

FT (A) = 〈T,A〉 =
i

2
tr(TA),

with T ∈ u, takes the form
{FT , FT ′}Λ = F[T,T ′].

The Hamiltonian vector field XFT
for this Poisson structure reads

XFT
(µ) = −ad∗

T (µ) = [T, µ] = T ◦ µ− µ ◦ T,

so
{FT , FT ′}Λ = XFT

(FT ′) =
〈

T ′,−ad∗
T (µ)

〉

=
〈

µ, [T, T ′]
〉

.

It is well known that the characteristic distribution of this Poisson structure consists of coad-
joint orbits of U. The canonical symplectic structure ωO on the U-orbit O is called the Kostant-
Kirillov-Souriau structure (KKS structure in short).

Vectors tangent to the orbit O at µ are therefore vectors of the Hamiltonian vector fields
at µ, thus have the form ad∗

T (µ) = [µ, T ], where T ∈ u. Actually, we can identify TµO with
u/uµ, where uµ is the Lie subalgebra in u of those T for which ad∗

T (µ) = [µ, T ] = 0. This is
the Lie algebra of the subgroup Uµ of U being the isotropy subgroup of µ ∈ u∗ with respect to
the coadjoint action. Consequently, the symplectic form ωO can be defined via (this, in fact,
is valid for any Lie group)

ωO

µ

(

ad∗X(µ), ad
∗
Y (µ)

)

=
〈

µ, [X, Y ]
〉

. (7)

5 Contactifications of complex projective spaces

Let us go back to the symplectic U-action on R2n. It is easy to see that the map

J : Cn → u∗, J(x) = ρx = |x〉〈x|,

10



where we use the Dirac notation |x〉〈x|(y) = 〈x, y〉x, is an equivariant moment map for this
action. In particular, the momentum map image of the (2n− 1)-dimensional sphere S2n−1 =
{x ∈ Cn : ‖x‖ = 1} is the manifold

O =
{

|x〉〈x| : ‖x‖ = 1
}

of pure states. This is a coadjoint orbit, so it posses the KKS symplectic structure (7). Hence,
vectors tangent to the submanifold O in u∗ at ρx have the form

[T, ρx] = |x〉〈Tx|+ |Tx〉〈x|

for T ∈ u. Writing y = Tx, we get that these tangent vectors are of the form

Ax,y = |x〉〈y|+ |y〉〈x| ∈ u∗.

But T is anti-Hermitian, so y ∈ C
n cannot be arbitrary. Indeed,

0 = 〈Tx | x〉+ 〈x | Tx〉 = 2Re〈x | Tx〉 = 2g(x, y).

so y ∈ R
2n must be tangent to the unit sphere, y ∈ TxS

2n−1, and it is easy to see that every
vector tangent to O at ρx is of this form. But

TxJ(y) = |x〉〈y|+ |y〉〈x|,

so
J0 = J

∣

∣

S2n−1
: S2n−1 → O

is a surjective submersion (fibration). It is easy to see that the kernel of TxJ0 contains vectors
ix, so the kernel of TJ0 consists of vectors tangent to orbits of the subgroup

U(1) =
{

eit · I | t ∈ R
}

=
{

zI | z ∈ C, |z| = 1
}

of U. This shows that S2n−1 is a principal bundle over O with the structure group U(1) = S1,

thus O = S2n−1/S1. Since, in turn, S2n−1 =
(

Cn
)×
/R+, where the multiplicative group R+ of

positive reals acts freely on
(

C
n
)×

= C
n \ {0} by multiplication, we get finally that O is the

complex projective space CPn−1 of real dimension (2n− 2),

O = S2n−1/S1 =
(

(

C
n
)×
/R+

)

/S1 =
(

C
n
)×
/C× = CPn−1.

Here, the multiplicative group of non-zero complex numbers C× acts freely and properly on
Cn by the complex multiplication. Note that for n = 2 we get the celebrated Hopf fibration.
We will analyse closer this fiber bundle in Section 9.

We already know that O is canonically a symplectic manifold and the KKS symplectic form
ωO on O reads (7)

ωO

ρx
(Ax,y, Ax,y′) = ωO

ρx

(

[ρx, Tx,y], [ρx, Tx,y′]
)

=
〈

ρx, [Tx,y, Tx,y′]
〉

=
i

2
tr
(

ρx ◦ [Tx,y, Tx,y′]
)

. (8)

Here, Tx,y is any T ∈ u such that T (x) = y. But for ‖x‖ = 1 and 〈x, y〉 = 0 we have

tr
(

ρx ◦ [Tx,y, Tx,y′]
)

=
〈

x, [Tx,y, Tx,y′](x)
〉

= 〈Tx,y′(x) | Tx,y(x)〉 − 〈Tx,y(x) | Tx,y′(x)〉

= 〈y′ | y〉 − 〈y | y′〉 = 2iIm〈y′ | y〉.

This, combined with (8), yields

ωO

ρx

(

Ax,y, Ax,y′
)

= Im〈y | y′〉 = ω(y, y′).

11



Since Ax,y = (TxJ0)(y) for y ∈ TxS
2n−1, the above means that the KKS symplectic form

ωO on O is the symplectic reduction of the coisotropic submanifold S2n−1 ⊂ R
2n. In other

words, J∗
0 (ω

O) = ω0, where ω0 = ω
∣

∣

S2n−1
. Of course, ω0 = dθ0, where θ0 = θ

∣

∣

S2n−1
, and the

characteristic foliation of ω0 consists of the orbits of the U(1)-action. It is easy to see that the
generator X(x) = ix of this action satisfies iXθ0 = 1/2 and iXdθ0 = iXω0 = 0, so (S2n−1, θ0)
is a contactification of the coadjoint orbit (O, ωO), with the Reeb vector field R = 2X . This
way we get the following.

Theorem 5.1. The Liouville 1-form θ on C
n (see (3)) restricted to the unit sphere S2n−1 ⊂ C

n

is a contact form θ0 = θ
∣

∣

S2n−1
and the characteristic foliation of

ω0 = dθ0 = ω
∣

∣

S2n−1

consists of orbits of the canonical principal U(1)-action on the sphere. Moreover, S2n−1/U(1) =
CPn−1 and (S2n−1, θ0) is a contactification of CPn−1 equipped with its KKS-symplectic form

ωCPn−1

, i.e., dθ0 = π∗
(

ωCPn−1

)

, where

π : S2n−1 → S2n−1/U(1) = CPn−1

is the canonical projection.

6 Coadjoint orbits via Marsden-Weinstein reduction

In this section we will show that coadjoint orbits of a Lie group G can be obtained from the
Marsden-Weinstein-Meyer symplectic reduction of T∗G. This result is well known (see e.g.
[36, Theorem 6.2.2], but to make our presentation self-contained (and due to our needs in the
sequel) we will sketch a short proof here. All groups we consider are real Lie groups.

Let us assume initially for simplicity that G is connected. Our starting point is the well-
known observation that the tangent bundle TG is trivializable as a vector bundle. We have, in
principle, two canonical trivializations λ, ρ : TG→ G× g, associated with the left Lg(h) = gh
and the right Rg(h) = hg translations in G, respectively. Namely, for vg ∈ TgG, we have

λ(vg) =
(

g,TL−1
g (vg)

)

, ρ(vg) =
(

g,TR−1
g (vg)

)

. (9)

Here, of course, g denotes the Lie algebra of G. The ‘coordinates’ associated with the left
trivialization λ are sometimes called body coordinates, those associated with the right triv-
ialization ρ are called space coordinates. The corresponding left and right trivializations
λ̄, ρ̄ : T∗G→ G× g∗ of the cotangent bundle T∗G take the form

λ̄(αg) =
(

g, (TLg)
∗(αg)

)

, ρ̄(αg) =
(

g, (TRg)
∗(αg)

)

. (10)

The left action of G on itself by the left translations can be lifted canonically to the corre-
sponding actions of G on TG and T∗G,

L : G× TG→ TG , L(g, vh) = Lg(vh) = TLg(vh)

L̂ : G× T∗G→ T∗G , L̂(g, αh) = L̂g(αh) = (TLg−1)∗(αh).

In the space coordinates these actions look like

Lg(h, v) = (gh,Adg(v)) , L̂g(h, µ) = (gh,Ad∗g(µ)),

where we denoted Ad∗
g = (Adg−1)∗, so Ad∗ is a representation of G called the coadjoint

representation. In the body coordinates it reads

Lg(h, v) = (gh, v) , L̂g(h, µ) = (gh, µ),
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so the G action is free and proper. In what follows, we will work exclusively with the space
coordinates. A useful reference could be [1, Ch. 4.5] (see also [36, Ch. 6.2]), but we should
stress that, due to differences of conventions, some signs in [1, Ch. 4.5] are different. Of course,
all this is a question of convention which form we consider as the canonical symplectic form on
O, similarly to the choice of convention for the sign in the definition of the Hamiltonian vector
field, as well as deciding what is the canonical symplectic form ω on T∗G; e.g., Abraham-
Marsden [1]) take ω = −dθ. For us, in the space coordinates the Liouville 1-form θ and the
canonical symplectic form ω = dθ on T∗G read simply

θ(g,µ)(v, σ) = 〈µ, v〉 , (11)

ω(g,µ)

(

(v, σ), (v′, σ′)
)

= 〈σ, v′〉 − 〈σ′, v〉+ 〈µ, [v, v′]〉 , (12)

where
(v, σ), (v′, σ′) ∈ g× g∗

ρ
= TgG× g∗ = T(g,µ)(G× g∗)

ρ̄
= T(g,µ)T

∗G.

First, let us notice that

T L̂h

(

(g, µ), (v, σ)
)

=
(

(hg,Ad∗h(µ)), (Adh(v),Ad
∗
h(σ)

)

,

that implies that θ is G-invariant. Indeed,

L̂
∗

h(θ)(g,µ)(v, σ) = θ
L̂h(g,µ)

(T(g,µ)(v, σ)) = θ(hg,Ad∗

h(µ))
(Adh(v),Ad

∗
h(σ))

= 〈Ad∗
h(µ),Adh(v)〉 = 〈µ,Ad−1

h Adh(v)〉 = 〈µ, v〉 = θ(g,µ)(v, σ).

Since ω = dθ, the G-action on T∗G is Hamiltonian, the canonical Hamiltonian associated with
v ∈ g is Hv(g, µ) = 〈µ, v〉, and the canonical equivariant moment map in the space coordinates
reads simply

J : T∗G→ g∗ , J(g, µ) = µ,

while in the body coordinates it takes the form J(g, µ) = Ad∗
g µ. It is therefore clear that

every µ ∈ g∗ is a regular value of the moment map, so that we can use the standard Marsden-
Weinstein-Meyer symplectic reduction[32, 34] for every µ ∈ g∗.

According to the Marsden-Weinstein-Meyer theorem, on the submanifold

Nµ = J−1(µ) = G× {µ} ≃ G

of the cotangent bundle T∗G = G× g∗, the restriction of ω,

ω̂ = ω
∣

∣

Nµ
= i∗Nµ

(ω),

where iNµ
: Nµ →֒ T∗G is the canonical injection, is a presymplectic form, invariant with

respect to the restricted action of the isotropy subgroup Gµ = {g ∈ G : Ad∗g(µ) = µ}, which
clearly acts freely and properly on Nµ ≃ G. According to the Marsden-Weinstein-Meyer
theorem, the quotient manifold

Pµ = Nµ/Gµ ≃ G/Gµ

is a symplectic manifold with the symplectic form ωµ being the reduction of ω̂. The canonical
submersion

pµ : Nµ = G× {µ} → Pµ , pµ(g) = [g] = gGµ

induces the projection Tpµ : TNµ → TPµ,

Tpµ : TNµ ∋
(

(g, µ), (v, 0)
)

7→ ([g], [v]) ∈
(

(G/Gµ)× (g/gµ)
)

= TPµ,
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and the symplectic form ωµ on Pµ is uniquely determined by the equation p∗µ(ω
µ) = ω̂. Since

vectors tangent to Nµ at (g, µ) are of the form (v, 0) ∈ g× g∗, the restriction ω̂ = ωNµ
of ω to

the submanifold Nµ takes in the space coordinates the form (cf. (12))

ω̂(g,µ)

(

(v, 0), (v′, 0)
)

= 〈µ, [v, v′]〉 = −〈ad∗
v(µ), v

′〉.

Of course, the right-hand-side vanishes for all v′ ∈ g exactly when v belongs to

gµ = {v ∈ g | ad∗v = 0},

the Lie algebra of Gµ. Consequently, the reduced symplectic form reads

ωµ[g]([v], [v
′]) = 〈µ, [v, v′]〉.

There is a canonical diffeomorphism

Aµ : G/Gµ → O, Aµ([g]) = Ad∗
g(µ)

of G/Gµ onto the coadjoint orbit O ⊂ g∗ of µ. It is easy to see that Aµ is well defined and
we will show that this diffeomorphism identifies ωµ with the KKS-symplectic structure ωO on
the orbit. The tangent map TAµ : TPµ → TO in the space coordinates takes the form

TAµ([g], [v]) =
(

Ad∗
g(µ),Ad

∗
g

(

ad∗
v(µ)

)

)

.

But the Lie bracket on g is Adg-invariant, so

Ad∗
g ◦ ad

∗
v = ad∗

Adg(v) ◦ Ad
∗
g,

and therefore
TAµ([g], [v]) =

(

Ad∗
g(µ), ad

∗
Adg(v)

(

Ad∗
g(µ)

)

)

.

The pull-back of the canonical symplectic form ωO on the orbit O is therefore (cf. (7))

[A∗
µ(ω

O)][g]([v], [v
′]) = ωO

Ad∗g(µ)

(

ad∗
Adg(v)

(

Ad∗
g(µ)

)

, ad∗
Adg(v′)

(

Ad∗
g(µ)

)

)

=
〈

Ad∗
g(µ), [Adg(v),Adg(v

′)]
〉

=
〈

Ad∗
g(µ),Adg([v, v

′])
〉

= 〈µ, [v, v′]〉 = ωµ[g]([v], [v
′]).

We get therefore the following.

Theorem 6.1. The diffeomorphism Aµ : Pµ → O is a symplectomorphism of the symplectic
manifold (Pµ, ω

µ) onto (O, ωO).

Remark 6.2. It is easy to see that the coadjoint orbits of G are canonically symplectomorphic
with the coadjoint orbits of the Lie group G/H , where H is a closed Lie subgroup of the center
Z(G) of G. In particular, coadjoint orbits of U(n) can be identified with coadjoint orbits of
SU(n), and coadjoint orbits of

SU(n)/Z
(

SU(n))
)

= SU(n)/Zn.
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7 Contactification of coadjoint orbits

Let us consider again the submanifold Nµ = J−1(µ) in T∗G, which in the right trivialization
T∗G ≃ G× g∗ reads Nµ = G× {µ}, so we will often identify Nµ with G. In view of (11), the

restriction θ̂ = θ
∣

∣

Nµ
of the Liouville 1-form to Nµ in the space coordinates looks like

θ̂g(v, 0) = 〈µ, v〉,

so ker(θ̂)g ≃ ker(µ) for every g ∈ G. As we already know, the kernel of dθ̂ = ω̂ is gµ at every
point, so

χ(θ̂) = ker(θ̂) ∩ ker(dθ̂) = G× g0µ, (13)

where
g0µ = {v ∈ ker(µ) : ad∗

v(µ) = 0} = ker(µ) ∩ gµ.

Proposition 7.1. The subspace g0µ is a 1-codimensional ideal in the Lie algebra gµ, which
contains the derived ideal, [gµ, gµ] ⊂ g0µ.

Proof. We have
〈µ, [gµ, gµ]〉 = 〈ad∗gµ(µ), gµ〉 = 0,

so [gµ, gµ] ⊂ g0µ. To show that g0µ 6= gµ, consider the submanifold N̄µ = G × [µ]+ of T∗G ≃
G × g∗, where [µ]+ = {sµ : s > 0}. The restriction ω̄ = i∗

N̄µ
(ω) of the canonical symplectic

form ω on T∗G to the submanifold N̄µ looks like (see 12)

ω̄(g,sµ)

(

(v, aµ), (v′, a′µ)
)

= a〈µ, v′〉 − a′〈µ, v〉+ s〈µ, [v, v′]〉,

and it is easy to see that ker(ω̄(g,sµ)) = g0µ × {0}. Since the co-rank of the distribution ker(ω̄)
in TN̄µ, i.e.,

dim(g) + 1− dim(g0µ) = dim(Pµ) + dim(gµ) + 1− dim(g0µ)

is even and dim(Pµ) is even, g
0
µ must be of codimension 1 in gµ.

Denote with G0
µ the connected normal Lie subgroup in Gµ whose Lie algebra is g0µ. It follows

from (13) that the characteristic foliation of θ̂ consists of orbits of the subgroup G0
µ. Under

additional assumption that the subgroup G0
µ is closed in Gµ (equivalently, in G), the char-

acteristic foliation is simple and, according to Theorem 2.5, we can do the reduction of the
one form θ̂ by the characteristic foliation and obtain a nondegenerate 1-form η on the reduced
manifold

M = Nµ/G
0
µ ≃ G/G0

µ. (14)

Since the dimension of M is odd (see Proposition 7.1), the form η is a contact form (cf.
Corollary 3.5)) and reads

η[g]([v]) = 〈µ, v〉. (15)

Let G = Gµ/G
0
µ be the quotient Lie group. It is commutative and 1-dimensional. The Gµ-

action on Nµ induces a G-action on M = Nµ/G
0
µ. As θ̂ is Gµ invariant, the contact form η

is G-invariant and the orbits of G consist of the leaves of the kernel of dη, the latter being
the reduction of dθ̂ = ω̂. In particular, M/G ≃ O. Let Ge

µ be the connected component of
Gµ containing the identity element, so the connected 1-dimensional Lie group G

e = Ge
µ/G

0
µ is

either S1 or R. If v spans the Lie algebra g of Ge (thus G), then the 1-parameter subgroup
t 7→ exp(tv) of G acts on M as a 1-parameter group of diffeomorphisms with a generator v̂

lying in the kernel of dη and such that £v̂η = 0. It follows that v̂ is a multiple of the Reeb
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vector field R of η, v̂ = cR, c ∈ R. We can therefore assume that v is chosen in such a
way that v̂ = R. As the G

e-action on M is free and proper, the contact manifold (M, η) is
principal, so we have a the G

e-principal bundle p : M → M/Ge which defines a contact-to
symplectic reduction of (M, η) onto (Mred, ωred), where Mred = M/Ge and p∗(ωred) = dη.
Note, however, that Mred is the coadjoint orbit O of µ if and only if G is connected, G = G

e.
In general, (Mred, ωred) is a cover of (O, ωO), being a principal bundle over O with the discrete
group G/Ge as the structure group. We can sum up our observations as follows.

Theorem 7.2. If the connected normal Lie subgroup G0
µ of Gµ is a closed subgroup in Gµ,

then (M, η), where M = (G/G0
µ)×{µ} and η is the reduction by G0

µ of the restriction θ̂ of the
Liouville 1-form θ on T∗G to the submanifold G×{µ} (in the right trivialization), is a principal
contact manifold with the canonical action of the connected 1-dimensional Lie group G

e =
Ge
µ/G

0
µ. In particular, (M, η) is a contactification of the symplectic manifold (M/Ge, dη/Ge),

which can be canonically identified with a regular cover of the symplectic coadjoint orbit (O, ωO)
of µ ∈ g∗ – a principal bundle with respect to the discrete group G/Ge = Gµ/G

e
µ. If Gµ is

connected, then (M, η) is a contactification of the symplectic coadjoint orbit (O, ωO).

Note that, since the contact manifold (M, η) turned out to be regular and complete, the above
result fully agrees with [23, Theorem 5.1].

8 The case of a compact Lie group

Let us suppose now that G is compact and connected. It is well known (see, e.g., [37, Theorem
5.18]) that in this case the Lie algebra g is reductive, g = g′ ⊕ z, where the derived ideal
g′ = [g, g] is semisimple and z is the center of g. The commutator subgroup G′ = (G,G) is a
semisimple closed (thus compact) normal subgroup of G with the Lie algebra g′ [37, Theorem
5.21], and G = G′ ×T, where T is a torus being the identity component of the center Z(G) of
G [37, Theorem 5.22]. Moreover, in this case the exponential map exp : g → G is surjective
[37, Theorem 5.12], isotropy subgroups Gµ are connected, and the coadjoint orbits are simply
connected [10, 17] and compact. The canonical KKS symplectic form is in this case a part
of a canonical Kähler structure [10]. Actually, coadjoint orbits are in this case flag manifolds
understood as certain homogeneous manifolds, as studied already by Ehresmann [16]. Note
also that there is the canonical identification of adjoint and coadjoint orbits associated with
the Killing form, which is nondegenerate in this case. Since the center of G acts trivially on
g∗, we can reduce ourselves to the case when G (thus g) is is semisimple and compact (so
Z(G) is a finite Abelian subgroup).

We will now study the following question: when the Lie subgroup G0
µ in Gµ is closed?

Since Gµ is connected and closed in G, thus compact, this reduces to the question whether G0
µ

is closed in the compact and connected Lie group Gµ. As G
0
µ is 1-codimensional in Gµ, this is

equivalent to the question whether Gµ/G
0
µ ≃ S1 is a circle. The covector µ we can restrict to

gµ and view as an element of g∗µ.
In general terms, we can start with an arbitrary compact connected Lie group H , an

element µ ∈ h∗ such that h0 = ker(µ) contains h′ = [h, h], and ask under what conditions for µ
the quotient groupH/H0, whereH

0 = exp(h0), is the circle S1 interpreted as the multiplicative
group of complex numbers of modulus 1, z = eit, t ∈ R. The Lie algebra of S1 is therefore R

with the trivial Lie bracket and with the exponential map

exp : R → S1 ⊂ C, exp(t) = eit.

The kernel of this exponential map, exp−1(1), is the additive subgroup 2πZ of R. Of course,
the subgroup H0 = exp(V ) contains the commutator subgroup H ′ = (H,H) which is a closed
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normal subgroup (see e.g. [37, Theorem 5.25]). Consider the canonical projection

Φ : H → H/H0

which is a group homomorphism (ker(µ) is a Lie ideal in h). Of course, H0 is closed in H if
and only if H/H0 ≃ S1. In the latter case the Lie group homomorphism Φ corresponds to a
unique Lie algebroid homomorphism

ϕ : h → R ≃ h/h0 = Lie(S1)

which can be viewed as an element of h∗, so for us ϕ ∈ h∗. Continuous group morphisms into
S1, the latter viewed as the group of complex numbers of modulus 1, we call characters, so
ϕ ∈ h∗ is a generator of the nontrivial character Φ, i.e.,

Φ(exp(v)) = ei〈ϕ,v〉 (16)

for any v ∈ h. In particular, ϕ takes values in 2πZ on the kernel exp−1(e) of the exponential
map exp : h → H , where e is the unit of H . Since ker(ϕ) contains V , we have kerϕ = ker(µ),
so there is ~ > 0 such that µ = ~ϕ.

Conversely, if there exists ~ > 0 such that µ/~ = ϕ takes values in 2πZ on exp−1(e) and
ker(ϕ) = V contains h′, then the map

h ∋ v 7→ ei〈ϕ,v〉

takes values in S1 = U(1) ⊂ C and (16) defines properly a character Φ on H . The condition
(µ/~)(v) ∈ 2πZ is equivalent to µ(v) ∈ 2π~Z. The additive subgroup 2π~Z of R is sometimes
denoted Z~ and we will use this notation in the sequel. For H = Gµ we get the following.

Theorem 8.1. Let G be a compact and connected Lie group, and let µ ∈ g∗. The normal
subgroup G0

µ in Gµ corresponding to the Lie ideal g0µ = gµ ∩ ker(µ) in gµ is closed if and only
if there exists ~ > 0 such that µ takes Z~-values at points of exp−1(e).

Remark 8.2. There is another approach to the problem of closeness of H0. Suppose that
H/H0 = S1, As S1 is commutative, ker(Φ) clearly contains H ′, so it goes down to a group
homomorphism Φ̃ : H/H ′ → H/H0 = S1. But H/H ′ is a torus T, which can be identified
with the identity component of Z(H), and whose Lie algebra t is the center z of h, so our
question reduces to the question whether the image [H0] = H0/H ′ of H0 under the canonical
projection p : H → T = H/H ′ is a Lie subgroup of the torus T. Of course, the Lie algebra
[h0] = h0/h′ of the Lie subgroup [H0] in T is commutative and can be identified with the
center z of h. In this way we reduced our problem to the case of tori: when a linear subspace
V of the Lie algebra t of a torus T corresponds to a closed Lie subgroup of T? In other words,
when exp(V ) is closed in T?

It is well known that for tori the kernel Γ = ker(exp) = exp−1(e) of the exponential map
exp : t → T is a free and discrete subgroup of the additive group (t,+) which spans t. Note
that the exponential map is in this case a group homomorphism with respect to the additive
group structure on t. Consequently, T can be identified with t/Γ also as a group.

Conversely, any discrete subgroup Γ of the additive group (t,+) of a real n-dimensional
vector space t is free, with linearly independent free generators. If Γ spans t, we will say that
Γ is total in t. In this case, the quotient group t/Γ is an n-dimensional torus Tn whose (com-
mutative) Lie algebra can be identified with t. Lie subalgebras of t are just linear subspaces
V ⊂ t.

Proposition 8.3. Let us consider a torus T = t/Γ and let V be a linear subspace of t. The
following are equivalent:
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(a) The image exp(V ) ⊂ T of V under the exponential map exp : t → t/Γ = T is a closed
subgroup in T;

(b) The discrete subgroup Γ0 = V ∩ Γ of is free and total in V ;

(c) The image ρ(Γ) of Γ under the canonical projection ρ : t → t/V is a discrete and total
subgroup of the vector space t/V ;

(d) The subgroup
V + Γ = {v + γ : v ∈ V, γ ∈ Γ}

of (t,+) is closed.

Proof. (a) ⇒ (b) Since exp(V ) is a closed subgroup in a torus, it is a torus itself. Moreover,
exp(V ) = V/(V ∩ Γ), so Γ0 = V ∩ Γ is free and total in V .

(b) ⇒ (c) Let V ′ be a vector subspace of t which is complementary to V , so we have the
decomposition t = V ⊕ V ′. We can now identify t/V with V ′ and ρ with the canonical
projection t → V ′ associated with the decomposition. As Γ spans t, the subgroup ρ(Γ) is total
in V ′. We will show that ρ(Γ) is discrete. In the other case, there is a sequence of points γn
of Γ such that v′n = ρ(γn) 6= 0 but v′n = ρ(γn) → 0. Let x1, . . . , xk be free generators of Γ0.
They span V , so V = K + Γ0, where K is a compact subset of K defined by

K = {a1x1 + · · ·+ akxk ∈ V : |ai| ≤ 1}.

Hence, we can choose γn to be of the form vn+v
′
n, where vn ∈ K. Since K is compact, passing

to a subsequence, we can assume that vn → w ∈ K. Hence, γn → w. But Γ is closed and
discrete, so w ∈ Γ0 and γn = w for almost all n; a contradiction.

(c) ⇒ (d) The canonical projection ρ : t → t/V is a continuous surjection and ρ(Γ) is closed
in t/V , so

t \ (V + Γ) = ρ−1
(

(t/V ) \ ρ(Γ)
)

is open (here, \ denotes the setminus).

(d) ⇒ (a) The map exp : t → T = t/Γ is open and surjective, so exp(t\(V +Γ)) = T \exp(V )
is open.

Corollary 8.4. Let T = t/Γ be a torus and µ ∈ t∗. The Lie subgroup exp
(

ker(µ)
)

is closed
in T if and only if there exists ~ > 0 such that µ(Γ) ⊂ Z~. In particular, ϕ = µ/~ induces a
nontrivial character (16).

Proof. According to Proposition 8.3 (c), exp
(

ker(µ)
)

is closed in T if and only if ρ(Γ) is a
discrete and total subgroup of t/ ker(µ), where ρ : t → t/ ker(µ) is the canonical projection.
Since t/ ker(µ) is 1-dimensional, ρ(Γ) has a single free generator, say ρ(γ), for some γ ∈ Γ.
Denote ~ = µ(γ)/2π, so µ(Γ) ∈ Z~. Conversely, if µ(Γ) ⊂ Z~, then µ(ker(µ)+Γ) = µ(Γ) ⊂ Z~,
so ker(µ) + Γ is closed in t, thus exp(ker(µ)) is closed in view of Proposition 8.3 (d).

Now, for compact connected Lie groups G, we are able to make use of Theorem 7.2, since
we know when G0

µ is closed in Gµ. Combining Theorems 2.5, 7.2, and 8.1, we can provide a
canonical and explicit construction of coadjoint orbit contactifications for G.

Let G be a compact and connected Lie group, g be its Lie algebra, and exp : g → G be the
corresponding exponential map. Denote with θ the Liouville 1-form on T∗G, and with ω = dθ
the canonical symplectic form on T∗G. The cotangent lift of the left-regular action of G on
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itself is a canonical Hamiltonian action of G on the symplectic manifold (T∗G, ω), and the
corresponding canonical moment map J : T∗G→ g∗ is in the right trivialization T∗G ≃ G×g∗

just the projection on g∗. Let us consider the coadjoint orbit O of a certain µ ∈ g∗, equipped
with the canonical KKS symplectic form ωO.

Theorem 8.5. Denote with θ̂ and ω̂ = dθ̂ the restrictions of differential forms θ and ω = dθ,
respectively, to the submanifold Nµ = J−1(µ) of T∗G,

θ̂ = θ
∣

∣

Nµ
= i∗Nµ

(θ), ω̂ = ω
∣

∣

Nµ
= i∗Nµ

(ω)

where iNµ
: Nµ →֒ T∗G is the obvious immersion.

Then the 2-form ω̂ is simple (see Definition 2.4), and the corresponding regular reduction (see
Theorem 2.5) of (Nµ, ω̂), i.e., actually the Marsden-Weinstein-Meyer symplectic reduction,
gives a symplectic manifold (Pµ, ω

µ) which is canonically isomorphic to (O, ωO).
Moreover, if µ ∈ g∗ takes Z~-values on exp−1(e), for some ~ > 0 and exp : gµ → Gµ being

the exponential map, then θ̂ is also simple, and the corresponding regular reduction (Theorem
2.5) again) gives a principal contact manifold (M, η) with the structure group S1, which is
actually a contactification of (O, ωO).

Remark 8.6. In practice, to check the integrality condition for µ, it is convenient to consider
the torus T = Gµ/G

′
µ, then choose generators xj of the discrete subgroup Γ ⊂ t being the

kernel of the exponential map exp : t → T, and finally check whether there exists ~ > 0 such
that µ(xj) ∈ Z~ for all j. Here, µ ∈ t∗ is just µ if we understand t∗ as the annihilator Ann(g′µ)
of the Lie ideal g′µ ⊂ gµ,

t∗ =
(

gµ/g
′
µ

)∗
= Ann(g′µ) ⊂ g∗µ.

Let us look closer at the contact manifold (M, η) for µ(K) = Z~, where ~ > 0 and K is the
kernel of the exponential map exp : gµ → Gµ. Note that we have put equality, so ~ is the
positive generator of µ(K). Such µ we will call ~-integral. According to (14) and (15), we can
identify M with G/G0

µ, so

TM ≃ (G/G0
µ)× (g/g0µ) and η[g]([v]) = 〈µ, v〉.

The leaves of the characteristic foliation of dη are just represented by the orbits ofGµ/G
0
µ ≃ S1,

so the vectors of the corresponding Reeb vector field are of the form ([g], [v]), where g ∈ Gµ,
v ∈ gµ, and 〈µ, v〉 = 1. As µ(Γ) = Z~, the S

1-action on M induced by the Reeb vector
field is therefore an

(

R/(2π~Z)
)

-action rather than (R/Z)-action. This distinction, which is
not clearly stated in [9] but carefully explained in [23], is important, as it leads to different
contact forms. Of course, R/Z and T~ = R/Z~ are isomorphic Lie groups and they lead to
isomorphic contact manifolds, but not to isomorphic contact forms (isomorphic co-oriented
contact manifolds). This is because 2π~ represents the minimal period of the flow generated
by the Reeb vector field. Of course, if these periods are different, then the contact forms
cannot be isomorphic. In this sense, M is a T~-principal bundle in the terminology of [7, 11]
and (M,h) is a T~-principal contactification of (O, ωO).

It is well known (see, e.g., [9, 23]) that T~-principal contact manifolds (M, η) correspond
to Hermitian line bundles L over its contact-to-symplectic reductions (N, ω), where N =
M/ ker(dη) and ω is the reduction of dη. In this identification, η can be viewed as a connection
∇ in the line bundle L → N , and the symplectic form ω represents its curvature. In other
words, any T~-principal contact manifold (M, η) represents a prequantization of the symplectic
manifold (N, ω) in terms of the theory of Geometric Quantization (see e.g. [7, 11, 29]). The
Geometric Quantization was built as an alternative to Dirac’s quantization of commutation
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relations, which cannot be carried out completely, as shown in [19]. The fundamental result
of this theory is a Weil theorem stating that there exists a prequantization of a symplectic
manifold (N, ω), i.e., a Hermitian line bundle L → N equipped with a connection ∇ whose
curvature is represented by ω, if and only if the symplectic form is integral. More precisely,
~ > 0 is the minimal positive number such that the class [ω] of ω in the de Rham cohomology
group H2(N ;R) lies in the image of H2(N ;Z~) under the canonical homomorphism

H2(N ;Z~) → H2(N ;R).

Of course, in the actual geometric quantization, ~ is the Planck constant, but in the mathe-
matical theory ~ can be an arbitrary positive constant, exactly as we have treated it before.
We will speak therefore about ~-integrality.

Definition 8.7. Let ~ > 0. A symplectic form ω on N is ~-integral if ~ is the minimal positive
number such that integrating ω over any compact surface S (2-dimensional submanifold) we
get a number from Z~,

∫

S

ω ∈ Z~.

More about fiber bundles with S1-fibers you can find in [11, 28].

Corollary 8.8. Let G be a compact connected Lie group and µ ∈ g∗ such that µ(Γ) = Z~

(cf. Remark 8.6) for some ~ > 0, where Γ is the kernel of the exponential map for the torus
T = Gµ/G

′
µ, exp : t → T. Then the KKS symplectic form on O is ~-integral.

The above result is essentially well known [7, 27, 29] and the coadjoint orbits of Lie groups
have been studied in this context by many other authors (see, e.g., [20, 31, 35, 33]).

8.1 The case of unitary groups

In what follows, we will identify the real vector space of Hermitian operators A = A† on
Cn with the dual u∗ of the real Lie algebra u of anti-Hermitian operators, according to the
canonical pairing between Hermitian A ∈ u∗ and anti-Hermitian T ∈ u operators, set this time

〈A, T 〉 = i · tr(AT ). (17)

The multiplication by i establishes further vector space isomorphisms (4),

u∗ ∋ A 7→ −iA ∈ u,

which identifies the adjoint AdU(T ) = UTU † with the coadjoint

(Ad∗)U(A) = (AdU−1)∗(A) = UAU †

action of the unitary group U = U(n). Let us consider now µ ∈ u∗ of the form

µ =













λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 · · · 0 λk













,

where λj ∈ R are pairwise different reals, and λj is the diagonal matrix λjIdj of size dj > 0.

Of course,
∑

j dj = n. Since the coadjoint action of U ∈ U maps µ to UµU †, we have

U ∈ Uµ ⇔ Uµ = µU.
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Commuting with µ, such U must respect the eigenspaces of µ, so U ∈ Uµ must have the same
block-diagonal form as µ,

U =











U1 0 · · · 0
0 U2 · · · 0
...

. . .
...

0 · · · 0 Uk











, (18)

where Uj ∈ U(dj). Consequently, the Lie algebra uµ consists of block-diagonal matrices

T =











T1 0 · · · 0
0 T2 · · · 0
...

. . .
...

0 · · · 0 Tk











, (19)

where Tj are anti-Hermitian.

Remark 8.9. Since the derived (commutator) normal subgroup
(

U(n)′
)

=
(

U(n),U(n)
)

is
the group SU(n) of matrices U from U(n) satisfying det(U) = 1. The subgroup SU(n) is 1-
codimensional in U(n) and U(n)/SU(n) ≃ U(1) = S1 is just the circle U(1) ⊂ C. The canonical
projection of U(n) onto U(n)/SU(n) ≃ S1 looks in this identification like

det : U(n) → U(1), U 7→ det(U).

The Lie algebra su(n) of SU(n) consists of elements from u with trace 0.
All this implies that the commutator subgroup U′

µ of Uµ consists of matrices (18) such that
Uj ∈ SU(dj), and Uµ/U

′
µ ≃ Tk is the k-dimensional torus Tk = (S1)×k. The canonical

surjective homomorphism τ : Uµ → T
k = (S1)×k reads

τ(U) =
(

det(U1), . . . , det(Uk)
)

.

Since for any square matrix T we have det
(

eT
)

= etr(T ), the corresponding homomorphism
Dτ : uµ → R

k takes the form

Dτ(T ) =
(

tr(T1), . . . , tr(Tk)
)

, (20)

so the Lie algebra u′µ consists of matrices (19) such that Tj ∈ su(dj). Vanishing exactly on u′µ,
the map (20) induces an isomorphism

ρ : (uµ/u
′
µ) → R

k, ρ([T ]) =
(

tr(T1), . . . , tr(Tk)
)

.

where Rk is understood as the Lie algebra of the torus Tk.

As the exponential map exp : uµ → Uµ is clearly

exp(T ) =











exp(T1) 0 · · · 0
0 exp(T2) · · · 0
...

. . .
...

0 · · · 0 exp(Tk)











,

and det(eT ) = etr(T ), the composition (τ ◦ exp) : uµ → Tk reads

(τ ◦ exp)(T ) =
(

etr(T1), . . . , etr(Tk)
)

.
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It is clear now, that T is in the kernel of the above map if and only if tr(Tj) = −2πinj for
some n1, . . . , nk ∈ Z. According to (17),

〈µ, T 〉 = i
∑

j

(

λj · tr(Tj)
)

,

so µ takes values in Z~ on the kernel of τ ◦ exp if and only if

∑

j

(λj · nj) ∈ ~Z,

for any n1, . . . , nk ∈ Z. Of course, the latter means exactly that all λj ∈ ~Z. We get therefore
the following.

Theorem 8.10. Let A be a Hermitian n×n matrix, A ∈ u∗(n), and ~ > 0. Then the canonical
KKS symplectic form ωO (cf. (7)) on the U(n)-coadjoint orbit O through A is ~-integral if and
only if the eigenvalues of µ generate the subgroup ~Z in R. In other words, A has the diagonal
form

A = ~ ·













λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 · · · 0 λk













, (21)

for some λ1, . . . , λk ∈ Z, where λj is the diagonal matrix of the size dj and λj on the diagonal.

If A is a quantum state, then additionally λj ∈ N and

1

~
=
∑

j

(λj · dj).

Let us recall that in the above theorem we identify the space u∗(n) with the real vector space
of Hermitian operators on Cn via (17). For the formulation of the following corollary we use
Definition 2.4, Theorem 2.5, and the right trivializations (9),(10).

Corollary 8.11. Let A ∈ u∗(n) be as in (21), satisfying the conditions described in Theorem
8.10, and let N be the submanifold in T∗

(

U(n)
)

, which in the right trivialization reeds

N = U(n)× {A} ⊂ U(n)× u∗(n) ≃ T∗
(

U(n)
)

.

Then N is a simple submanifold of
(

T∗
(

U(n)
)

, θ
)

, where θ is the Liouville 1-form, and the

regular reduction η = θNred of the restriction θ̂ of θ to N is a contact form on the reduced
manifold M = N θ

red. This is actually the reduction by the natural action of the compact

connected Lie subgroup U 0
A(n) =

(

U(n)
)0

A
of U(n) consisting of unitary matrices of the form

exp(T ), where T is anti-Hermitian of the form (19) with

∑

j

(

λj · tr(Tj)
)

= 0,

so M ≃ U(n)/U0
A.

Moreover, the contact manifold (M, η) is T~-principal, i.e., the flow induced by the Reeb vec-
tor field is periodic with the minimal period 2π~ along each orbit and its contact-to-symplectic
reduction is canonically isomorphic to the symplectic manifold (O, ωO), the coadjoint orbit of
A ∈ u∗(n).
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The above corollary can be applied to constructing canonical contactifications of coadjoint
orbits of quantum states. It is clear that A ∈ u∗(n) satisfies the conditions of Theorem 8.10
for some ~ > 0 if and only if the subgroup

expA =
{

etiA
∣

∣ t ∈ R
}

(22)

of U(n) is compact (thus is a circle).

Corollary 8.12. If ρ is a quantum state (density matrix) in C
n such that expρ is compact,

then the coadjoint orbit of U(n) through ρ admits a canonical U(1)-principal (thus compact)
contactification.

Example 8.13. Consider the group U(3) and ρ ∈ u∗(3),

ρ =
1

6





1 0 0
0 2 0
0 0 3



 .

Clearly, A = ρ satisfies condition (22). The group Uρ(3) consists of matrices

U =





eiτ1 0 0
0 eiτ2 0
0 0 eiτ3



 , (23)

thus it is a maximal torus K in U(3), and U 0
ρ (3) is a 1-codimensional closed subgroup K0 in

this torus consisting of matrices (23) for which

τ1 + 2τ2 + 3τ3 = 0. (24)

Hence, the coadjoint orbit O through ρ is U(3)/K and its compactification M is U(3)/K0. Of
course, we can reduce ourselves to SU(3) and K̂ = K ∩ SU(3) which consists of matrices (23)
for which

τ1 + τ2 + τ3 = 0. (25)

Consequently, K̂0 = K0 ∩ SU(3) consists of matrices (23) satisfying both equations (24) and
(25). We have a 1-parameter solution

τ1 = a, τ2 = −a, τ3 = a,

So K̂0 is S1. Hence, M = SU(3)/S1 and

O = SU(3)/(S1 × S1) =M/S1.

Generally, all generic coadjoint orbits of U(n) (equivalently, SU(n)) are diffeomorphic to
U(n)/K, where K is a maximal torus in U(n) (equivalently, SU(n)/K̂), and are fiber bun-
dles over the complex projective space CPn−1 with fibers being generic orbits of U(n − 1)
(see the nice survey [8]). Of course, these orbits are generally not isomorphic as symplectic
manifolds. In our case O is a (nontrivial) fiber bundle over CP2 with the fiber CP1.

9 Lagrangians for compact Hamiltonian systems

There is considerable interest in studying Hamiltonian systems on symplectic manifolds (N, ω)
which are more general than the standard phase spaces N = T∗Q, or even Poisson manifolds.
Hamiltonian vector fields are defined for arbitrary HamiltonianH : N → M without problems.
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What causes problems is the Lagrangian picture for such systems, since a globally defined
action functional is difficult or impossible to find, even in the case when the physically identified
configuration space Q can be defined for N . The reason why one can do no better than get
local Lagrangian descriptions is that one is unable to find well-defined canonical coordinates
of the usual kind on the entire phase space. This in turn is bound to happen when, in the
language of differential geometry, the symplectic structure is given by a closed but non-exact
two-form. It has been found [3, 40] that in this situation, if the symplectic form obeys certain
prequantization conditions, then classically a global Lagrangian formulation can be achieved
on a suitable enlarged configuration space. This approach applies also to quantum mechanics.
In the context of our work, these are contactifications which can serve as enlarged phase spaces
for some symplectic manifolds, even in the compact case, where symplectic forms are never
exact.

Example 9.1 (Hopf fibration). In the context of a magnetic monopole, one considers (R3)× =
R3 \ {0} with the closed two-form

B = x · dy ∧ dz + y · dz ∧ dx+ z · dx ∧ dy,

representing the magnetic field of a magnetic monopole centered at the origin. This is the
standard volume form volS2 on the unit sphere S2 ⊂ (R3)×, so

∫

S2

B = 4π,

thus B is not exact. In the spherical coordinates,

x = sin(ϑ) cos(ϕ), y = sin(ϑ) sin(ϕ), z = cos(ϑ),

where ϑ ∈ [0, π], ϕ ∈ [0, 2π], we have

ωS2 = sin(ϑ)dϑ ∧ dϕ.

The KKS symplectic form ωS
2

on S2 = CP1 regarded as a coadjoint orbit of U(2) a contacti-
fication S3 ⊂ C2, with the contact form θ0 being the restriction of the Liouville 1-form

θ =
1

2

2
∑

k=1

(

qkdpk − pkdq
k
)

on C
2 to S3, where zk = qk + i · pk, k = 1, 2. Moreover, S3 is canonically an U(1)-principal

bundle over S2 with the projection τ : S3 → S3/U(1) = S2. In fact, τ : S3 → S2 is an
example of a nontrivial principal bundle with the typical fiber S1, called the Hopf fibration.
The pullback τ ∗(ωS

2

) is exact and τ ∗(ωS
2

) = dθ0.

To describe the projection π : S3 → S2 explicitly, consider the map

p : C2 → C× R, p(α, ν) =
(

αν̄, |α|2 − |ν|2
)

,

where C ∋ ν 7→ ν̄ ∈ C is the complex conjugation. Interpreting C as R2, we can think that
p : R4 → R

3. Note that if |α|2 + |ν|2 = 1, then

|αν̄|2 +
(

|α|2 − |ν|2
)2

= 1,

so p maps the unit sphere S3 in C2 = R4 into the unit sphere S2 in C× R = R3. Moreover,
τ = p

∣

∣

S3
: S3 → S2 is surjective and maps (α, ν) ∈ S3 and (α′, ν ′) ∈ S3 to the same point if
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and only if (α′, ν ′) = (λα, λν) for some λ ∈ C, |λ| = 1. Consequently, fibers of this projections
are circles S1 ≃ U(1) = {z ∈ C : |z| = 1}, being the orbits of the U(1)-action. One can also
interpret S3 ⊂ C2, consisting of (α, ν) ∈ C2 such that |α|2 + |ν|2 = 1, as the group SU(2) via
the identification

S3 ∋ (α, ν) ֌

[

α −ν̄
ν ᾱ

]

∈ SU(2) .

In this identification, S2 is the quotient SU(2)/U(1), where U(1) is the subgroup of diagonal
elements,

[

α 0
0 ᾱ

]

,

|α|2 = 1. One can also use the direct parametrization of the three-sphere in C2 by the Euler
angles,

z1 = e−
i
2

(

ψ+ϕ
)

cos(ϑ/2),

z2 = e−
i
2

(

ψ−ϕ
)

sin(ϑ/2) ,

where (θ, ϕ) are spherical coordinates on S2 and ψ ∈ [0, 4π). Hence, the two form ω0 = dθ0
on S3, being the restriction of

ω = −
i

2

(

dz̄1 ∧ dz1 + dz̄2 ∧ dz2

)

to S3, projects onto

−
i

2

(

d
(

e
i
2
ϕ cos(ϑ/2)

)

∧ d
(

e−
i
2
ϕ cos(ϑ/2)

)

)

−i
(

d
(

e−
i
2
ϕ sin(ϑ/2)

)

∧ d
(

e
i
2
ϕ sin(ϑ/2)

)

)

=
1

2
sin(ϑ/2) cos(ϑ/2)dϑ ∧ dϕ =

1

4
volS2 .

Let us go now to the Hamiltonian mechanics on symplectic manifolds admitting a contac-
tification, like the two dimensional sphere above. Suppose that (M, η) is a contactification
of a symplectic manifold (N, ω) and τ : M → N = M/F is the corresponding surjective
submersion, where F is the simple foliation by trajectories of the Reeb vector field R. Let
H : N → R be a Hamiltonian function and XH the corresponding Hamiltonian vector field,
iXH

ω = −dH . For paths γ : [t0, t1] → M we define the action functional

Φ[γ] =

∫ t1

t0

Ĥ
(

γ(t)
)

dt−

∫

γ

η =

∫ t1

t0

(

Ĥ
(

γ(t)
)

−
〈

η
(

γ(t)
)

, γ̇(t)
〉

)

dt , (26)

where Ĥ = H ◦ τ is the pullback of H . For a variation γ+ εdγ such that dγ(t0) = dγ(t1) = 0,
we have

d

dε

∣

∣

∣

ε=0
Φ[γ + εδγ] (27)

=

∫ t1

t0

(

d

dε

∣

∣

∣

ε=0

(

Ĥ
(

γ(t) + εδγ(t)
)

−
〈

η
(

γ(t) + εδγ(t)
)

, γ̇(t) + ε(δγ)�(t)
〉

)

)

dt

=

∫ t1

t0

(

〈

dĤ
(

γ(t)
)

, δγ(t)
〉

+ dη
(

γ(t)
)(

γ̇(t), δγ(t)
)

)

dt .
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To see the latter equality, let us write in local coordinates (yi) on M ,

d

dε

∣

∣

∣

ε=0

(

〈

η
(

γ + εδγ
)

, γ̇ + ε(δγ)�
〉

)

=
∂ηi
∂yj
(

γ
)

(δγ)jγ̇i + ηi
(

γ
)d(δγ)i

dt
.

But
∫ t1

t0

(

ηi
(

γ
)d(δγ)i

dt

)

dt =
(

ηi
(

γ
)

(δγ)i
)
∣

∣

∣

t1

t0

−

∫ t1

t0

( ∂ηi
∂yj
(

γ
)

γ̇j(δγ)i
)

.

The first summand on the right side is zero, so

∫ t1

t0

(

d

dε

∣

∣

∣

ε=0

(

〈

η
(

γ + εδγ
)

, γ̇ + ε(δγ)�
〉

)

)

dt =

∫ t1

t0

(

( ∂ηi
∂yj

−
∂ηi
∂yj

)

(

γ
)

(δγ)jγ̇i

)

dt

=

∫ t1

t0

(

dη
(

γ(t)
)(

δγ(t), γ̇(t)
)

)

dt.

Since δγ in (27) is arbitrary, we get from (27) the Euler-Lagrange equation

iγ̇ dη + dĤ = 0. (28)

The above equation does not determine a solution uniquely, even if an initial condition is
fixed. This is because dη has a kernel, whose characteristic foliation consist of trajectories of
the Reeb vector field. However, the equation projected on N is exactly the Hamilton equation
with the Hamiltonian H . In other words, projection of solutions of (28) are trajectories of the
Hamiltonian vector field XH . To sum up, we formulate the following.

Theorem 9.2. Let (M, η) be a contactification of a symplectic manifold (N, ω) and τ :M → N
be the corresponding fibration. For every Hamiltonian H : N → R, denote with Ĥ its pullback,
Ĥ = H ◦ τ . Then every stationary point γ : (t0, t1) →M of the action functional (26) projects
via τ onto a trajectory of the Hamiltonian vector field XH on N .

Example 9.3. Let H(x, y, z) = (z+1)/4 be a Hamiltonian on S2. In the notation of Example
9.1 and Theorem 5.1, the pullback Ĥ = H ◦ τ on S3 reads

Ĥ(z1, z2) =
(

|z1|
2 − |z2|

2 + 1
)

/4 = |z1|
2/2 =

(q1)2 + (p1)
2

2
.

The stationary points γ : [t0, t1] → S3 of the action functional

Φ[γ] =

∫ t1

t0

Ĥ
(

γ(t)
)

dt−

∫

γ

η =

∫ t1

t0

(

q1(t)
)2

+
(

p1(t)
)2

2
dt

−
1

2

∫ t1

t0

(

q1(t)ṗ1(t)− ṗ1(t)q̇
1(t) + q2(t)ṗ2(t)− ṗ2(t)q̇

2(t)
)

dt

satisfy the equation (28), i.e., there is a function a : [t0, t1] → R such that

〈

q̇1(t)∂q1 + ṗ1(t)∂p1 + q̇2(t)∂q2 + ṗ2(t)∂p2 ,
(

dq1 ∧ dp1 + dq2 ∧ dp2
)

0

〉

+q1(t)dq1 + p1(t)dp1 +
a(t)

2
d
(

(q1)2 + (p1)
2 + (q2)2 + (p2)

2
)

= 0 ,

where
(

dq1 ∧ dp1 + dq2 ∧ dp2
)

0
is the restriction of the 2-form ω = dq1 ∧ dp1 + dq2 ∧ dp2 on

C2 to S3. It follows that there is a function a : [t0, t1] → R

q̇2(t) = −a(t)p2, ṗ2(t) = a(t)q2, ṗ1(t) =
(

1 + a(t)
)

q1(t), q̇1(t) = −
(

1 + a(t)
)

p1(t).
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Hence,

γ(t) =
(

e−i
(

t+A(t)
)

z1, e
iA(t)z2

)

,

where Ȧ(t) = a(t). The projected curve γ(t) = τ
(

γ(t)
)

in R3 reads

γ(t) =
(

cos(t)x0 + sin(t)y0, cos(t)y0 − sin(t)x0, z0

)

.

These are exactly the trajectories of the Hamiltonian vector field XH on S2 with respect
to the symplectic form 1

4
volS2 . These are the trajectories of the Hamiltonian vector field

XH0
= y∂x − x∂y for H0 = 4H = z + 1 with respect to volS2 = ωS

2

/4. Indeed,

iXH0
B = iy∂x−x∂y

(

x ·dy∧dz+y ·dz∧dx+z ·dx∧dy
)

= −(x2+y2+z2)dz+z(xdx+ydy+zdz).

But xdx+ ydy + zdz vanishes on S2, so

iXH0
volS2 = −dz.

10 Conclusions and outlook

We have studied some questions related to the concept of a contactification of a symplectic
manifold, together with a geometric construction of contactifications of coadjoint orbits of
Lie groups. This construction is based on methods of the Marsden-Weinstein-Meyer sym-
plectic reduction. However, there are obstacles to carrying out such a construction, having
a clear topological interpretation. These obstructions are equivalent to the celebrated Dirac
quantization conditions in the case of coadjoint orbits of compact groups.

We have also shown that contactifications provide a nice geometrical tool for a Lagrangian
description of Hamiltonian systems, even if the symplectic form is not exact (does not possess
a ‘vector potential’). A nice example related to the magnetic monopole, and geometrically to
the Hopf fibration, is provided.

We should admit, however, that one fundamental problem remains open, namely the question
of existence of a (connected) contactification of compact symplectic manifolds. The point is
that contactifications can be a priori awkward, weird, and topologically very complicated, as
every open submanifold of a contact manifold is contact. Thus, our challenge for the future
work is to prove the following conjecture.

Conjecture 10.1. A compact symplectic manifold (N, ω) admits a connected contactification
if and only if it satisfies the Dirac quantization condition

[

ω/2π~
]

∈ H2(N,Z)

for some ~ > 0.

Of course, applications of the described ‘lagrangianization’ to particular, physically interesting
Hamiltonian systems is another important task for the forthcoming work.
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