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HILBERT SERIES OF REPRESENTATIONS OF CATEGORIES OF
G-SETS

PHILIP TOSTESON

ABSTRACT. Let G be a finite group. A contravariant functor from the category of finite
free G-sets to vector spaces has an associated Hilbert series, which records the underlying
sequence of G™ representations, n € N. We prove that this Hilbert series is rational with
denominator given by linear polynomials with coefficients in the field generated by the
character table of G.

1. INTRODUCTION

Recently, it has been observed that many naturally occurring sequences of group rep-
resentations arising in algebra and topology admit extra structure: they assemble into a
representation of category of a combinatorial nature [1, 2]. This has motivated the study of
the representation theory of combinatorial categories, with a view towards determining the
consequences of this additional structure. In this paper we will consider the particular case
of the category of finite G-sets.

Let G be a finite group and let FSg be the category of finite free G-sets and surjections
between them. (Our results will also apply to the category of all maps). Let k be an
algebraically closed field of characteristic p (including the case p = 0). An (FS¢g)°? module
(or representation) is a functor M : (FSg)®® — Vecy. From M, we obtain a sequence of
G™ representations M, := M([n] x G) for n € N, by evaluating M on the free G set on [n]
elements. Our motivating question is:

e Which sequences of G™ representations can arise in this way?

Actually, in this generality, any sequence is possible. But when M is finitely generated
(see Definition 3.1), there are strong restrictions on the possible sequence of representations.
In this paper, we constrain the possible Hilbert series underlying a finitely generated (FS¢)°P
module, answering a question of Sam—Snowden.

1.1. Hilbert series and main result. Following Sam—-Snowden [3, §6.4] we define a Hilbert
series that determines the class of M,, as a G" representation in the (rationalized) Grothendieck
group. (Equivalently, determines the Brauer character of M).

We let G be the set of simple representations of G. We let R(G) be the Grothendieck

group of G tensored with C. Given S € G we write zg € R(G) for the class S so that

additively R(G) has a basis {xs}gcq. Then R(G") = R(G)*" = C{zs}y .

There is a projection map

m: R(G™) = R(G)®" — Sym™(R(G)),
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where we take Sym" be defined by S,, coinvariants. Sam—Snowden defined the enhanced
Hilbert series of M to be the element

Hy =Y w([M,)) € [[Sym"(R(G)) = C[[zs | S € G]].

Example 1.1. The free FS;°® module on a generator in degree one has (kG"),en as its
underlying sequence of representations. Its Hilbert series is

n

1
[kG"| = dim(Ps) =
Z G Z lm S 1-— ZSEG‘ dim(Ps)xs

neN Se@

where Pg is the minimal projective cover of S.

Example 1.2. The trivial FSs module has (ktrivn)neN as its underlying sequence of repre-
sentations. Its Hilbert series is
rh, = ——
Z triv 1 _ Itrlv

neN
where triv denotes the trivial representation.

To state our main result, we introduce some notation. We fix an embedding from the
roots of unity of k to C, and write ¢g for the Brauer character of S and &g for the Brauer
character of the minimal projective cover of S. Given a p-regular conjugacy class ¢ of G, let

Le |G\ ZSEG Ds(c)ws

Theorem 1.3. Let M be a subquotient of an FSg module generated in degree < d. Then
Hyy is rational with denominator a product of degree 1 polynomials of the form

1- 5 AL,
4

where the sum is over p-reqular conjugacy classes ¢ of G, and a. € N, a. < |G|d.

Both Example 1.1 and 1.2 are generated in degree 1. These have denominator 1 — |G|z,
and 1 — ) . respectively.

Remark 1.4. Sam-Snowden [3] proved that H),; was rational with denominator of the form:
1+ ) 4bszs for bg algebraic integers in the field Q({x) where N is the exponent of G' (or
more generally the smallest number such that G is N-good). They asked whether it was
possible to improve this class of denominators, in particular by replacing Q((y) by the field
generated by the Brauer character table of G. Theorem 1.3 answers this question in the
affirmative, and further restricts the form of the denominators. O

1.2. Proof Strategy. We prove Theorem 1.3 using the results of our previous paper [4] on
FS° modules. A finitely generated (FSs)°P module restricts to a finitely generated FS°P
module, along the functor X — G x X. In [4], for every FS°® module M and d € N
we constructed a sort of Koszul complex Ky(M). Further we proved that if M is finitely
generated then, many of the iterated Koszul complexes

Kd1 O"'OKdT<M)

have vanishing cohomology. Because the Hilbert series of Ky(M) is related to the Hilbert
series of M in a predictable way, this vanishing implies that the Hilbert series Hj; satisfies
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nontrivial relations. In terms of an associated exponential generating function FE);, these
relations take the form of a system of linear differential equations. We diagonalize and solve
this system of differential equations. Because Ej; lies in the space of solutions, we obtain
the form of E); and consequently Hjy,.

1.3. Notation.

e [n] denotes the set {1,2,...,n}.

e [ is an algebraically closed field of characteristic p > 0, C is the complex numbers

e (5 is a finite group, we will also write G for the category with one object with auto-
morphism group G

e (3 is the set of isomorphism classes of simple k representations.

e F'S denotes the category of finite free GG sets and surjections

e | 1,G" denotes the category with objects natural numbers n € N, and automorphism
group G".

e Given a category C, we write Rep(C) for the category of functors C — Vecy, from C
to the category of k vector spaces.

® g is the Brauer character of a simple module S and ®g is the Brauer character of
its projective cover.

e R(G) is the Grothendieck group of G tensored with C, for a G representation [M]
denotes its class in R(G). If S is a simple representation, we write g = [5].

e tr(g,—) : R(G) — C is the Brauer trace, for g € G a p-regular element.

2. VARIANTS OF HILBERT SERIES AND DIFFERENTIAL EQUATIONS

There are two other generating functions which record the same data as Hy;. We define
the exponential generating function Ey; € Cl[zs | S € G]] by

g = 3 D,

n!
neN

so that E); is obtained from H),; by applying the transform
xs
g
H ZS is)!

Similarly we can define Hy; by applying the transform [] s = g %
For these Hilbert series, we will establish the following version of Theorem 1.3. Given
a p-regular conjugacy class ¢ of G, let z, := ‘G| ZSGG Dg(c)xg

Theorem 2.1. Let M be a subquotient of an (FSg)°® module generated in degree < d. Then
(1) Ey is a linear combination of products of the form [[.(x.)" exp(a.z.), for re,a. € N

and a. < d|G].
(2) Hyy is rational, with denominator a product of polynomials of the form
c| Ps(c
P.o(t)=J[(1-a %xs)

sed
fora e N, a <d|G|.
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We note that Theorem 1.3 and part (2) of Theorem 2.1 are immediate consequences of
part (1), and the fact that the transform z" — nlz™ of formal power series acts by

" exp(jz) — d) 1
xp(jx —
Py de ) 1—jx

which is proportional to ﬁ

To establish Theorem 1.3 we will show that E),; satisfies a system of differential equa-
tions. Given a p-regular element g € G, we let d, denote the differential operator

89 = Z@s(g)ﬁg
sed
Note that 9, only depends on the conjugacy class of g.
Theorem 2.2. Let M be an (FS¢)° module that is a subquotient of one generated in degree

d. Then there exists anr € N such that Ey; satisfies the differential equation ( "Ev =0
for every p-reqular g € G.

o)

Assuming Theorem 2.2 we now prove part (1) of Theorem 1.3. Given a p-regular
conjugacy class ¢, we have

|| 1 ifgec
Oy(we) = €] Z ps(9)Ps(c) = {0 otherwise
by the orthogonality relations between simple and projective Brauer characters. In sin-
gle variable power series, we have that the solution space of Hj‘fo'(@x — a)" is spanned by
z'exp(ax) for a < d|G| and i < r, a,i € N. From the orthogonality relation, we obtain
that the solution space of differential equations of Theorem 2.2 is precisely the span of the
functions in part (1) of Theorem 1.3.

3. FS° MODULES AND KOSZUL COMPLEXES

In this section we recall the Koszul complexes introduced in [4] and use them to establish
Theorem 2.2.

Given an FS°? module, M, and d € N,d > 1 there is an associated Koszul complex
Kq(M) of FS°P modules [4, §3.2]. We let X¥*M be the FS°P module defined by X*M(X) :=
M ([k] U X). Then the complex K4(M) takes the form

d
2

YN -1 y8(8) L. R pesdk) S MEED!

where s(d, k) is the unsigned Stirling number of the first kind which is the coefficient of z*
in T[4 (1 + dx).

We will not fully describe the differentials of K;(M) here; for our purposes, it suffices
to know the following. Given a surjection f : [k] - [k — 1] there is an associated a map of
FS° modules f*: X*"'M — ¥*M given by

(fuidx)”: M([k—1]UuX) — M([k] U X).

The differentials of the complex of K4(M) are linear combinations of maps of this form.
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We may iterate the construction of K,, by taking the total complex. The following
theorem asserts that for a finitely generated FS°P module, the result of this iteration is often
exact. Before stating it, we recall the definition of finite generation for FS4°" modules.

Definition 3.1. An FS;°? module M is finitely generated in degree < d if one of the
following equivalent conditions holds.

(1) There are elements z; € M([n1] X G),...,z, € M([n,] x G) with n; < d such that
every FS°P submodule containing x4, ..., x, is equal to M.

(2) There is a surjection of FS5° modules @;_, Prs, »n, — M wheren; < d. and Pgg,,
is the principal projective FS5°P module defined by Pgg,, »,(X) := kFSq(X, [n] X G)

Theorem 3.2. [4, Theorem 1.2] Let M be an FS°P module which is a subquotient of one
that is finitely generated in degree < d. Then there exists r € N such that K, | (M) is exact.

3.1. Restricting (FS¢)°® modules. We write i for the embedding of FS into FSg given
by i([n]) = [n] x G. There is a restriction functor i* : Rep(FSs°) — Rep(FS°P).

There is a functor G~ : FS°® — Set given by [n] — G™. If M is an FSs°" module,
there is a natural action G~ x i*M — *M given by the action of multiplication
G" x M([n] x G) — M([n] x G).
From this construction, we obtain the following.

Proposition 3.3. The category of FSg°® modules is equivalent to the category of FSP
modules equipped with an action the FS°P group G~ by natural transformations.

Proof. This is a straightforward consequence of the fact that every map of G-sets [n] x G —
[m] x G factors uniquely as multiplication by G™ followed by a map of the form f x id where
f:[m] — [n]. O

Furthermore, we have that finitely generated FS5° modules restrict to finitely gener-
ated FS°P modules.

Proposition 3.4. Let M be an FSg°° module. If M is a subquotient of a module generated
in degree < d, then i*M 1is of a subquotient of one generated in degree < |G|d.

Proof. We write Pggor(n) for the principal FS5°? module generated in degree n. An FS4°P
module is The theorem follows from the identity i*Pgg,or, = Prsor, g, and passing to
quotients. O

Given an FS;° module, we have that K,(i* M) carries the structure of a G x FS5°P
module, where G acts on

SFEM(X) = M([k] x GUX x G)

by the constant action on [k] x G and G¥ acts on ¥¥i* M (X) by the action of GX on X x G.
(The differentials of K, preserve this structure because the maps f* : S¥4%*M — SFi* M
associated above to a surjection f: [k] - [k — 1] do).
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3.2. Proof of Theorem 2.2. Forgetting the differentials, the restriction of K4(M) to G X
U,G™ only depends on the restriction of M to U,G™. Since functor M — K (M) is exact
we obtain an associated operator

Kq: [[R(GM = [ R(G) @ R(G™)*"
neN neN

which takes [M] to the class of [K4;(M)]. (The class of a finite complex C, is defined to be
S (=1)C;) = >°,(—1)"H;(Cy)). Further, pairing with the trace operator tr(g, —) : R(G) —
C and conjugating by the isomorphism

r/nl: [ R(G" = Cllas|S € ]

given by projecting and dividing by n! we obtain an operator
tr(g, Ky) : Cllzs|S € G]] = Cl[zs|S € G].

Similiarly there is an operator tr(g, %) : Cllzs | S € G] — Cl[[zs | S € G] for k € N
associated to the functor ¥* : Rep(FSg°) — Rep(FSgP) and we have that tr(g, %) =
tr(g, £)°

Proposition 3.5. There is an identity of operators tr(g, Kg) = H;l;(l] (0y — 7).
Proof. In homological degree i, Kd(M ) = 2@ M| where s(d,4) is Stirling number defined

to be the coefficient of 2 in H "o (z + 7). We have that tr(g, ¥*) = tr(g, £)°*, so it suffices
to prove that tr(g,X) = 0,. We have that

1
tr(g, X)zs, ... x5, = (fl m(tr(g, % Z TSpy @+ & xsa(m))
O'ESm

_1 Z 9050(1) x0(2 Lo(m)-

0ESm
Here 7 denotes the projection R(G)®" — Sym"(R(G)). This agrees with the action of
2 sec s(9)0s. O

Given the calculation of Proposition 3.5 , Theorem 2.2 is an immediate consequence of
the following.

Proposition 3.6. If M is an FSg module which is a subquotient of one generated in degree
d, exists an r such that Kgig ,(Enm) = 0.

Proof. Apply Proposition 3.4, and Theorem 3.2. Because the homology of Kd|G‘ (i M)
vanishes, it follows that the class Kgis , (En) = 0.

4. FURTHER EXAMPLES AND COMPUTATIONS

In this section, we include some additional examples of Hilbert series of FS4°° modules.
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Example 4.1. Let W be a projective representation of G. Then there is a FS5°P represen-
tation Qu with Qu (X) = Homg (W, kFing(X, G)). Then

c|x
Z| ||g| exp(|Glz.)

and

Z lc|xw (c) 1
Gl 1—|Glz.’

where xy denotes the Brauer character of W and the sum is over p-regular conjugacy classes

of GG.

There is a Day convolution tensor product ® on the category of FS5° modules defined
by
(M®N)(X)= P M(A)®N(B).
X=AUB
Then Eyon = EyEn. Combined with the previous example, for any p-regular conjugacy
class ¢ and any d € N we may construct an FS;° modules L generated in degree d such
that exp(d|G|z.) appears in the expansion of E} with nonzero coefficient.

Example 4.2. Let M be a finitely generated FS°? module. Then M pulls back to a finitely
generated (FSg)° module along the map p : FSg — FS defined by p(X) = X/G. The
enhanced Hilbert series of p* M is given by substituting zy,, into the ordinary Hilbert series
of M, hence H,-y; has denominator of the form [ _, (1 — azyiy ).

Finally, we record Proposition 4.3 we have that x5 = ) _¢g(c)x. or more generally that
(M] =" tr(e, M)z..

Proposition 4.3. Let g be p-regular element of G. Then
1 ifge
tr(g, z) = { if g c'

0  otherwise.

Proof. This follows from the orthogonality relations between the Brauer characters of simple
and projective modules

G
Z(I)S SOS = |C‘1( |)|5gh

Sed
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