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ABSTRACT 

In this work, we have proposed a data-driven screening framework combining the interpretable 

machine learning with high-throughput calculations to identify a series of metal oxides that exhibit both 

high-temperature tolerance and high power factors. Aiming at the problem of weak generalization ability 

of small data with power factors at high temperatures, we employ symbolic regression for feature creation 

which enhances the robustness of the model while preserving the physical meaning of features. 33 candidate 

metal oxides are finally targeted for high-temperature thermoelectric applications from a pool of 48,694 

compounds in the Materials Project database. The Boltzmann transport theory is utilized to perform 

electrical transport properties calculations at 1,000 K. The relaxation time is approximated by employing 

constant electron-phonon coupling based on the deformation potential theory. Considering band degeneracy, 

the electron group velocity is obtained using the momentum matrix element method, yielding 28 materials 

with power factors greater than 50 μWcm-1K-2. The high-throughput framework we proposed is 

instrumental in the selection of metal oxides for high-temperature thermoelectric applications. Furthermore, 

our data-driven analysis and transport calculation suggest that metal oxides rich in elements such as cerium 

(Ce), tin (Sn), and lead (Pb) tend to exhibit high power factors at high temperatures.  

                                                   
* Corresponding author: shenghong.ju@sjtu.edu.cn. 
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1. INTRODUCTION 

The capture and recovery of waste heat is an end-of-pipe solution for enhancing energy efficiency. 

Selecting thermoelectric (TE) materials to convert heat into electricity is the most direct approach to 

implementing this solution[1-3]. Given that waste heat is often abundant in industrial processes, automobile 

exhaust, and other medium to high temperature environments exceeding 400K, more stringent requirements 

are placed on the design of TE materials[4, 5]. For instance, conventional TE materials containing elements 

such as Tellurium (Te) and Antimony (Sb) may face the risk of oxidation when exposed to high-temperature 

air[6]. Typically, half-Heusler alloys[7-10], skutterudites[7, 10, 11], and Zintl[7, 9, 11] compounds are 

suitable for mid-temperature applications ranging from 400K to 900K. Furthermore, rare earth 

chalcogenides[12], borides[12] and metal oxides[13-17] (including oxide perovskites[18, 19]) can be 

applied at a high temperature around 1000K[5]. From a commercial perspective, the elemental abundance 

and production cost of TE materials are also important[4]. Metal oxides are a preferred choice for 

commercial applications in high-temperature TEs due to their resistance to oxidation, cost-effectiveness, 

and ease of large-scale synthesis[20]. 

The TE properties are assessed by the figure of merit, ZT = S2Tσ/(κe+κL). Here, S represents the 

Seebeck coefficient, σ denotes the electrical conductivity, κe and κL refer to the electronic and lattice thermal 

conductivity respectively, and T signifies the absolute temperature. Notably, S2σ, also known as the power 

factor (PF), serves as a comprehensive indicator of the electrical transport properties. Nevertheless, the 

maximal optimization of ZT remains a challenge due to the interplay among transport parameters. Therefore, 

metal oxides offer the following advantages as candidates: Firstly, they have a wide range of electronic, 

chemical and mechanical properties that are favorable for screening[13, 17]. Secondly, by employing 

nanostructure engineering[21-23], metal oxides can achieve high carrier concentration, high PF and low 

thermal conductivity properties through the control of electrons and phonons. These effective doping 

mechanisms further enhance the TE properties of metal oxides[4, 13, 14, 24]. 

High-throughput (HTP) screening has become an emerging tool for finding promising TE materials. 

Zhu et al.[25] predicted the high TE performance of triangular and quadrilateral XYZ2 compounds by 

screening over 9000 materials from the Materials Project (MP)[26] database using PF calculations. 

Similarly, Ricci and Chen et al.[27, 28] evaluated the electrical transport properties of nearly 48,000 

compounds from the MP database using the constant relaxation time approximation (CRTA). Wang et al.[29] 

investigated thousands of compounds in the AFLOW repository and analyzed the characteristics of 
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materials with high PFs. Carrete et al.[30] screened 75 nanograined compounds from AFLOW and 

estimated their ZT via the constant mean free path approximation (CMFPA). However, both the CRTA and 

CMFPA treatments neglect the material dependence of charge carrier scatterings, thus raising doubts about 

their accuracy. Electron-phonon scattering serves as a crucial mechanism for measuring TE properties, 

particularly at high temperatures. Accurate predictions of the electronic relaxation time can be obtained 

through ab initio calculations of electron-phonon coupling[31], but this method is extremely time-

consuming and not conducive to HTP calculations. Recently, electrical transport calculations based on 

deformation potential (DP) theory[32] have been used in HTP work, where the electron-phonon coupling 

strength is evaluated by (EDP)2/Y, with EDP denoting the DP constant and Y representing Young’s modulus. 

Jia et al.[33] identified 50 promising TE materials among 243 chalcogenides using this constant electron-

phonon coupling approximation (CEPCA) through DP theory. Xi et al.[34] listed a series of novel high-

performance TE chalcogenides through CEPCA applied in HTP workflow based on the Materials 

Informatics Platform (MIP). Jin et al.[35] screened more than 600 potential TE compounds through CEPCA 

in the MIP. CEPCA can be perceived as a method compatible with HTP, taking into consideration material 

dependence without imposing excessive computational demand. Currently, HTP screening of metal oxide 

for high-temperature TE application scenarios (especially around 1000 K) has not been reported. The 

challenge resides in assessing material stability under high-temperature conditions. Furthermore, the lack 

of scale-consistent data regarding high-temperature TE properties hinders the execution of virtual screening, 

even though machine learning (ML) can be applied to small data[36, 37]. 

Herein, we designed an HTP framework that combines interpretable ML for virtual screening and 

DFT-based electrical transport calculations via CEPCA. Through this framework, we identified a series of 

metal oxides with potentially high PFs in high-temperature waste heat recovery. Melting points[38] are 

crucial for applications in high-temperature scenarios. We evaluated the high-temperature tolerance 

properties by accessing the melting point prediction model[38], which combined the Graph Neural Network 

(GNN) and residual neural network (ResNet) architectures. Due to the limited availability of ZT data at 

high temperatures (approximately 1000K), we chose PF as a screening target[15]. To begin with, we 

collected a small dataset of PFs for 67 metal-like crystal materials containing metal oxides at different 

temperatures from 500K to 1000K. To address the issue of overfitting in ML models trained on small 

datasets, we proposed a feature creation technique based on symbolic regression[39-41] (SR) in addition to 

the original descriptor down-selection[40]. This technique generated training features that exhibit a larger 

correlation with the PFs, thereby enhancing the robustness of the trained models. We validated the 
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effectiveness of the technique from two perspectives: model training performance and feature contribution 

of Shapley Additive exPlanations[42] (SHAP). The results demonstrated that SR has the advantages of 

strong targeting and high interpretability in feature creation. We employed three PF prediction models and 

the melting point prediction model to conduct virtual screening on 48,694 metal oxides in the MP database. 

Metal oxides containing elements Cerium (Ce) or Tin (Sn) tend to have high PFs in high-temperature 

scenarios according to the data-driven analysis. The PFs of 33 target materials within the ML model 

intersection were calculated by Boltzmann transport theory using CEPCA. In contrast to the previous HTP 

work[35] that approximated the Young's modulus with bulk modulus, here we calculated the Young's 

modulus directly. Then we use the deep core states of the atoms[43, 44] as reference energy levels to fit the 

resulting DPs under different strains. From the results, 28 metal oxides exhibit PFs exceeding 50 μWcm-

1K-2 at 1000K. Finally, we analyze the influence of different metal elements in various metal oxides on 

high-temperature TE. Overall, our proposed HTP framework facilitates the screening of metal oxides in 

high-temperature TE applications. 

2. COMPUTATIUONAL METHODS 

2.1 Electrical Transport Properties Calculation based on DP theory 

All calculations were conducted using the Vienna ab initio Simulation Package (VASP) with the 

projector augmented wave (PAW) method, which is based on density functional theory (DFT)[45, 46]. The 

Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)[47] was employed as the 

exchange-correlation functional in the underlying calculations related to the structure and elastic constants. 

All the self-consistent calculations were performed using a plane-wave energy cutoff of 600 eV and an 

energy convergence criterion of 10−6 eV. All the atomic positions were fully relaxed until the calculated 

Hellmann−Feynman force on each atom was less than 10−2 eV/Å. The electronic structures and transport 

properties were calculated using the Strongly Constrained and Appropriately Normed (SCAN) semilocal 

density functional[48], and the Hubbard-U correction with Dudarev’s approach was applied. This approach 

has demonstrated its effectiveness in other TE materials and the setup of Hubbard U values referenced the 

work done by Yao et al[49]. 

Electrical transport properties were calculated based on the Boltzmann transport theory[50]. The 

electrical conductivity σ, Seebeck coefficient S, and electronic thermal conductivity κe were expressed as: 
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Here, n k   is the band energy corresponding to band index n   and reciprocal coordinate k  , n k  

and nv k  are, respectively, the electronic relaxation time and group velocity. μ, T, V, f , and e are the 

Fermi level, the absolute temperature, the volume of unit cell, the Fermi-Dirac distribution, and the electron 

charge, respectively. 

The relaxation time was treated by the constant electron-phonon coupling approximation (CEPCA) 

based on the DP method[32]. Specifically, the scattering from long-wave LA phonons can be described and 

evaluated by calculating the two parameters of DP and Young’s modulus. Elastic constant matrices for all 

materials were calculated via the stress-strain relationship and Young's modulus was obtained by the Voigt-

Reuss-Hill (VRH) theory[51]. In this work, the deformation potentials for the VBM and CBM were 

considered separately, which were fitted in a strain range of ±0.3, with an interval of 0.1. The reference 

level for the DP calculations was the deep core states of the atoms, and the R-squared accuracy of all linear 

fits is greater than 0.9. The DP calculation details can be found in Supplementary Note 7. The relaxation 

time n k  is calculated using the following formula: 
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where 
DPE  is the deformation potential of the band edge, Y is the Young’s modulus, and ( )'n m  −

k k  

adopts the form of Gaussian function. 

Considering the band degeneracy, the electron group velocity was treated by the momentum matrix 

method[52-54]. The electron group velocity[55] corresponding to energy μ is calculated as shown below: 
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It should be noted that ve represents the average of the anisotropic electron group velocitiy vkx, vky, and 

vkz. The relaxation time calculations via CEPCA and the electron group velocity solution are conducted 

using TransOpt 2.0[53] software. The details of electrical transport properties calculation can be found in 

Supplementary Table S8. 

2.2 Data Collection and Feature Preparation for Power Factors 

PF data for 67 metal-like (including metal oxides) materials with non-zero band gaps were collected. 

The total 402 PFs data were obtained from 500K to 1000K by CRTA with a constant scattering time of 10-

14 s, following a unified DFT computational standard[56]. PF data for ML can be downloaded from the 

https://github.com/SJTU-MI/HTPS4HTTEMOs. For the initial descriptors, a series of material features in 

the MP database[26] were accessed through the pymatgen API[57]. Then we processed the features and 

obtained 20 descriptors that encompass the crystal structure, computational information, and fundamental 

properties. The 290 compositional descriptors were calculated through Xenonpy[58] software. The 

temperature corresponding to PF was also considered as an input descriptor. A total of 311 descriptors were 

collected, and detailed information can be found in Supplementary Note 2. 

2.3 Feature Engineering via Symbolic Regression 

The SR formula-building strategy[39, 40] was taken into our feature creation process and implemented 

in gplearn[59] software. Considering that the genetic optimization of SR is not suitable for large dimensions, 

18 descriptors after the descriptor down-selection were utilized as input variables (see Supplementary Table 

S4). SR was performed on all PF data using Pearson, Spearman, and Distance coefficients as fitness 

functions, to obtain three new sets of descriptors that exhibited higher correlations. Further, the grid search 

strategy with the hyperparameters and metrics as listed in Table 1 was applied to determine the 

mathematical formulas. We listed 12 formulas at the Pareto front that were identified by the bivariate 

density distribution approach. More information about SR can be found in Supplementary Note 4. 

  

https://github.com/SJTU-MI/HTPS4HTTEMOs
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Table 1: Setup of hyperparameters in gplearn software for SR 

Parameter Value Combination 

Generations 300 1 

Population size in every generation 5000 1 

Probability of crossover (pc) [0.30, 0.85], (step = 0.05) 

477 
Probability of subtree mutation (ps) [(1-pc)/3, (1-pc)/2] (step = 0.01) 

Probability of hoist mutation (ph) [(1-pc)/3, (1-pc)/2] (step = 0.01) 

Probability of point mutation (pp) 1-pc-ps-ph 

Function set {+, −, ×, ÷, √𝑥, ln𝑥, |𝑥|, −𝑥, 1/𝑥} 1 

Parsimony coefficient auto 1 

Metric Pearson, Spearman, Distance Cor. 3 

Stopping criteria 0.90 1 

Random_state 0, 1, 2 3 

Init_depth [2, 6], [4, 8], [6, 10] 3 

2.4 Construction and Analysis of ML Models 

The ML models of Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Multi-Layer 

Perceptron (MLP) were implemented by using Scikit-learn[60]. The training set and test set were randomly 

divided in a 9:1 ratio. Hyperparameter optimization was conducted using the Bayesian Optimization 

package[61], which is a global optimization tool, to achieve a high prediction accuracy (R2). The Gaussian 

process and acquisition function were initially trained with 20 random pairs of parameters, and the ideal 

parameters for each ML model were determined after 200 optimization iterations. 

To explain the association of the descriptors created by SR with PF, the SHAP[42] toolkit was used to 

assess the feature importance based on the RF model. The SHAP analysis is a method based on game-

theoretic Shapley values to interpret the contribution of features for ML predictions. 

2.5 Screening from Melting Point Prediction Models 

Melting points were utilized to exclude metal oxides that are not stable under high-temperature 

operating conditions. Our high-throughput requirements were met by a melting point model[38] trained 

using a database of around 10,000 compounds developed by Hong et al. The melting point model was 

accessed using an API to predict the melting temperature of over two thousand candidate materials. Metal 

oxides with melting points greater than 1200K were retained. To enable HTP prediction, we wrote a script 

that retrieves and processes material information from the MP database, generating a JSON file as output. 

This JSON file can be used to input melting point models and obtain results via API commands. The script 

is available from the https://github.com/SJTU-MI/HTPS4HTTEMOs.  

https://github.com/SJTU-MI/HTPS4HTTEMOs
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3. RESULTS AND DISCUSSION 

3.1 Screening of High-temperature TE Metal Oxides 

 

Fig. 1. Data-driven virtual screening and analysis for high-temperature TE metal oxides. (a) HTP virtual 

screening framework for metal oxides. (b) Multi-model ensemble screening results for top 100 materials 

with PF ranking at 1000K. (c) Statistical Analysis for normalized PF vs. melting point of 1227 high-

temperature TE candidate metal oxides shown via scatter plot. 

Fig. 1a illustrates the HTP screening process conducted in this work. The details are as follows: (1) 

We retrieved a total of 48,694 binary to quaternary metal oxides from the MP database as screening 

candidates, excluding materials containing highly radioactive metal elements. (2) Subsequently, we 

removed crystal structures with weak symmetry such as triclinic and monoclinic[62], leaving 22,714. (3) 

Considering the band gap correction for final HTP calculations, we retained 7762 candidates with band 

gaps (as obtained from GGA-based DFT in the MP database) ranging from 0.1 to 2.5 eV. (4) Then we 

limited our study to thermodynamically stable compounds with energy above the convex hull less than 0.01 

eV per atom, thus, the number of compounds was reduced to 2147. (5) To meet the requirement of high-

temperature (around 1000K) applications for TE materials, we utilized the melting points prediction 

model[38] to screen 1227 metal oxides with melting temperatures above 1200K, considering prediction 
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errors and fluctuations in operating temperature. (6) Finally, we predicted the PFs of 1227 materials using 

the three machine learning models previously trained on a small dataset (to be detailed later) and obtained 

the intersection of the top 100 candidate sets ranked by each model as the final screening result. 

Multi-model ensemble screening is a comprehensive strategy to enhance the accuracy of selection[63]. 

Fig. 1b presents the top 100 candidate rankings predicted by three different machine learning models at a 

temperature of 1000K, with a total of 33 materials lying at the intersection of all three models’ predictions. 

Given that this intersection is derived from the predictions of three independent ML models, the tightness 

of the intersection indirectly indicates the strong generalization capability of our screening models, even 

when trained on small data. The intersection between the XGBoost and RF models is larger than their 

respective intersections with the MLP model. This is because both XGBoost and RF models have evolved 

from tree-based theories[64-66], and their hierarchical tree-like learning strategies lead to more similar 

prediction outcomes. Similarly, we also conducted ensemble screening at a temperature of 900K, as shown 

in Supplementary Fig. S1. The intersection and union of the models were nearly identical to those at 1000K, 

with only very few materials differing. For instance, the quantity of materials in the central intersection at 

900K matches that at 1000K. However, there is a difference in one material between the two sets, as shown 

in Supplementary Table S1. Such subtle differences arise because all three models incorporate temperature 

contributions, which allow for considering the TE responses of various materials at different temperatures. 

Additionally, given that the presence of different metal elements can significantly influence the 

properties of metal oxides, we conducted a statistical analysis on the collection of 1227 compounds 

incorporating the melting points model and three PFs model from a data-driven perspective. Fig. 1c displays 

the overall distribution of different metal elements in the screening targets for metal oxides, where the 

center of the scatter points represents the average melting point and normalized PF for all compounds 

containing the corresponding element, and the size of the scatter points indicates the number of materials 

in the selection results. Supplementary Fig. S2 comprehensively shows the prediction of different materials 

by each element under the selection models. Compounds in the collection containing elements such as Zr, 

Ce, Hf, Eu, etc., tend to have higher melting points. From the perspective of elemental categories, these 

elements possess high-energy d and f orbital electron subshells, which leads to stronger bonding with 

oxygen ions and thus results in high melting point characteristics[67]. In terms of PF, oxides containing 

elements such as Ce, Ag, Tl, Ca rank higher. However, due to the complex coupling mechanisms in TE 

performance, further transport calculations are needed for analysis. Additionally, the scatter points for 

elements like Ba, Mn, Sr are quite large, indicating their high prevalence in the oxide collection, and thus 
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increasing their probability as one of the elemental combinations in candidate materials. Overall, metal 

oxides containing Ce and Sn are preferred choices for high-temperature TE materials. Firstly, these 

compounds are more likely to exhibit high PF in high-temperature applications. Secondly, they have an 

advantage in terms of the number of candidates within the screening set. 

3.2 Feature Engineering and ML Model Training for Power Factors 

 

Fig. 2. Feature creation via SR and ML Model Training for PFs. (a) Pareto front from Pearson Cor. fitness 

vs. complexity of SR formulas shown via density plot. (b) and (c) are heat maps of the new descriptors for 

Pearson (blue part), Spearman (green part), and Distance (orange part) correlations. (d) Accuracy of RF 

model based on SR descriptors, where training R2 is 0.98 and test R2 is 0.96. (e) Accuracy of ML models at 

different feature engineering processes, including initial (INI), mathematical correlation (COR) coefficients 

filtering, and feature creation via SR stages. And, an additional PCA approach was applied to compare. 

Metal oxides have a broader definition compared to previous HTP work of TE materials in fixed 

structures or systems. Different metal elements form compounds with oxygen and exhibit various crystal 

structures, resulting in a wide range of metal oxides. Here, we focus on screening binary to quaternary metal 

oxides. This is because the increase in the number of metal elements is accompanied by the emergence of 

the high entropy effect[68], which is not conducive to digging out some potential laws in our work. We 

limited the metal elements to between the second to sixth groups of the periodic table, as shown in 

Supplementary Fig. S2. We collected 402 PFs data for 67 crystal materials containing the aforementioned 

metal elements in the temperature range of 500K to 1000K. 
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Feature engineering for metal oxide PF data involves four main steps: collecting initial features, 

removing features with low variance, filtering features through three correlation coefficients[40], and 

creating better features via symbolic regression. The initial descriptors consist of 20 descriptors obtained 

from the MP database[26] and followed by post-processing, 290 compositional descriptors calculated 

through Xenonpy[58, 69] software, and the temperature descriptor for PF calculation, totaling 311. Further 

details can be found in Supplementary Note 2. We removed descriptors with a variance less than 0.01, as 

these descriptors are unsuitable for fitting machine learning models[40]. In the end, 297 descriptors were 

retained. In the field of materials informatics, there has been great interest in mathematical correlations 

between descriptors and material properties. To assess the linear, monotonic, and nonlinear relationships, 

we developed an evaluation system based on Pearson, Spearman, and Distance correlations. As illustrated 

in Supplementary Fig. S3, we have delineated the probability distribution of three correlation coefficients 

for different descriptors to the PF. The Pearson correlations (PC) predominantly fall within the ±0.2 range, 

while the Spearman correlations (SC) are generally confined within ±0.3. Additionally, the Distance 

correlations (DC) are universally below 0.35. This evidences a tepid correlation between descriptors and 

the PF, primarily due to the excessive redundancy in the metal oxide small data. This redundancy is 

attributable to the fact that the same material, despite varying temperatures, continues to be characterized 

by a consistent set of recorded descriptors such as elemental composition and crystal structure. However, 

the considerable redundancy within the dataset substantially impairs the robustness of predictive models in 

small data[36]. To address this, we implemented a weight assignment mechanism[40], as documented in 

our prior work, for the subsequent phase of descriptor selection. In this study, equal weight was given to 

the three correlation assessments, with selection thresholds set at 0.166, 0.276, and 0.302, respectively, 

which are also marked out in Supplementary Fig. S3. A total of 35 descriptors met one of the correlation 

selection criteria, while 18 descriptors satisfied at least two of these conditions. The detailed descriptors, 

optimized across various stages of low-variance and correlation-based selection, are documented in 

Supplementary Note 3. The employment of these two methods ensures the preservation of the intrinsic 

meaning of our original descriptors throughout the dimensionality reduction process, facilitating the 

exploration of relationships inherent in the raw data, as opposed to methodologies like Principal Component 

Analysis[70] (PCA). Moreover, the correlation-based selection has highlighted descriptors that are directly 

and indirectly related to PF, such as electronic orbital matrices and electronegativity. However, these 

descriptors are derived from elemental composition rather than directly calculated from physical processes, 

like the sparse matrix in electronic orbitals does not promote a strong correlation with electrical transport 
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properties. 

After completing the feature selection, the robustness of the ML models could not be effectively 

improved, as evidenced by the comparison of descriptor sets in Fig. 2e. The primary reason is the persistent 

lack of features strongly correlated with the PF. To tackle this issue, we employed a reverse mind by 

utilizing symbolic regression (SR)[39] to feature creation rather than conventional feature interpretation. 

SR has traditionally been used to formulate explanations for different descriptors in ML models. However, 

our focus is on creating formulaic descriptors that exhibit stronger correlations with the PF through SR. In 

contrast to explanations, the difference lies in the configuration of the objective function: the former starts 

with fitting the target attribute, whereas the latter sets the loss function to reflect the correlation fitness. We 

conducted a grid search for hyperparameter optimization in SR on all PF data and the 18 retained features, 

with the detailed hyperparameter settings provided in Table 1. Feature creation was carried out based on 

three correlations, and the Pareto front[40, 71, 72] was identified using the bivariate density distribution 

method (as shown in Fig. 2a), resulting in a total of 12 formulaic descriptors. As can be seen from Fig. 2b-

c, the 12 descriptors generated through SR show significant improvement across all three correlations. Here, 

considering the breadth of data coverage and to prevent feature collinearity, we selected three descriptors, 

PC2, SC4, and DC1, for inclusion in the subsequent training of the ML models. Details related to SR can 

be found in Supplementary Note 4. 

Fig. 2d presents the results of the RF[64, 65] model trained with the SR set. This set comprises 18 

descriptors after correlation-based filtering and 3 new descriptors created by SR. The accuracy R2 of the 

training and test sets are 0.98 and 0.96. To verify the scalability of the new descriptors, we deployed 

XGBoost[66] and MLP[73] models for training (see Supplementary Note 5). The XGBoost model 

demonstrated training R2 of 0.99 and test R2 of 0.96, while the MLP model showed R2 of 0.99 and 0.97, 

respectively. The performance of ML models with different descriptor sets, evaluated by R2, is shown in 

Fig. 2e (with RMSE presented in Supplementary Fig. S9). Overall, all three models trained with the SR set 

basically exhibited higher accuracy than other descriptor combinations, and the boxplot distribution 

indicates that the SR descriptors significantly enhanced the models’ robustness, reducing overfitting. This 

validates the effectiveness of feature creation via SR and underscores the potential of SR descriptors in 

various ML model applications. Furthermore, due to the formulaic creation, the inherent meaning 

represented by the data has not been altered. This is beneficial for our subsequent analysis of the data from 

a physical perspective.  
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3.3 Physical Insights from the Interpretable ML Model 

 

Fig. 3. Analysis of feature importance using SHAP on RF model trained by SR descriptors set. (a) Mean 

absolute SHAP values for 21 descriptors. (b) Represent the SHAP values of each descriptor related to the 

PF data in a beeswarm plot. (c) and (d) SHAP values of DC1 and PC2 in a dependence plot. 

Fig. 3 summarizes the feature contributions to the RF model trained on the SR sets using SHAP. The 

SHAP approach attempts to resolve the unexplainable black-box challenge of ML models by calculating 

the marginal contribution of features to the model output. Fig. 3a shows the importance and ranking of 

features based on the mean absolute SHAP values. Among them, SC4 and DC1 are identified as the top two 

features, representing the features created based on monotonicity and nonlinearity, respectively. In addition, 

the feature importance ranking based on impurity carried out from the tree model (see Supplementary Fig. 

S11) is similar to the above results. This further demonstrates the effectiveness of SR in feature creation 

compared to previous machine learning modeling efforts. Fig. 3b lists the distribution of SHAP values for 

the top ten ranked features, where the color of data points in the beeswarm plot indicates the magnitude of 

the feature values. Overall, the SHAP values for higher-ranked features have a broader distribution, but the 
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relationship between SHAP values and feature values is not simply linear, particularly for features with 

lower rankings. This is due to the complex nonlinear interactions among features affecting the PF or the 

excessive localization of discrete features, as shown in Supplementary Fig. S12. 

Herein, we discuss the feature dependence of descriptors SC4 and DC1 through the SHAP analysis. 

The reason is that they rank top two and still retain the original meaning of the data. The distribution range 

of SHAP values in SC4 is significantly larger compared to other features (Fig. 3b), suggesting that SC4 has 

the greatest predictive impact on the PF. From Fig. 3c, it can be observed that the standardized values of 

SC4 are negatively correlated with the SHAP values, indicating that as SC4 increases, the predicted value 

of the PF tends to decrease. Conversely, DC1 exhibits a generally positive correlation trend in its SHAP 

values distribution (Fig. 3d). The SHAP impacts of these two descriptors are consistent with the correlation 

analysis (see Supplementary Table S6). 

Compared to other descriptors, the SHAP value distributions of SC4 and DC1, created by SR, are more 

uniform and less concentrated, with fewer nonlinear interactions on model output. Reflected in the sub-

features of the SR formulas (see Supplementary Table S6), this provides physical causality references for 

our selection of elements or materials. For SC4, elements with a greater number of unfilled electrons tend 

to have a higher PF[74], as an increase in the number of unfilled electrons typically indicates more carriers, 

which usually leads to higher electrical conductivity. The d orbitals in transition metals and f orbitals in 

lanthanide series are more likely to have unfilled electrons, making them potential TE metal oxides[17]. 

Regarding DC1, compounds with higher electron affinity and larger lattice constants are more favorable 

for enhancing the prediction of PF. Electron affinity, in simple terms, refers to the ability of an atom to 

attract and accept electrons, which is related to electrical transport, although this influence is complex[75]. 

Moreover, the lattice constant, as a parameter describing the distance between atoms, is also intricately 

linked to the calculation of electrical transport[76]. We observed the sub-features of lattice constant and 

temperature that coexist in both SC4 and DC1. These sub-features consistently demonstrate the same trend 

under different formulas, highlighting the reliability and consistency in SR. Overall, SR can establish a 

stronger response relationship with the PF by the formulaic combination of features that have physical 

associations but are discrete in data, such as electronic orbital descriptors.  
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3.4 HTP Electrical Transport Calculations Based on Deformation Potential 

Considering that the screening results at 1000K and 900K were nearly identical, we combined them 

to identify a total of 34 candidate materials with high-temperature resistance. Due to the presence of 

transition metals and lanthanide elements in these materials, the strong correlation interactions on the d and 

f orbitals cannot be overlooked. Hence, we implemented the DFT energy correction and got the adjusted 

band gap[77, 78]. Additionally, considering the optimal band gap range for TE materials at high 

temperatures[79], materials with excessively large band gaps (greater than 3.5 eV) were excluded. We 

conducted HTP DFT calculations on the electrical transport properties at 1000K for the 33 suitable materials 

(comprising 28 non-magnetic systems and 5 magnetic systems) based on the Boltzmann transport theory[50, 

80]. 

Taking computational convenience into account, previous researchers like Jin et al.[35] used the bulk 

modulus as a substitute for Young’s modulus to evaluate the strength of electron-phonon coupling. However, 

Young’s modulus, as per formula Y = 9BG/(3B+G), is influenced not only by the bulk modulus B but also 

by the shear modulus G, which in turn affects the calculation of the electron-phonon coupling constant. We 

calculated the elastic constant matrices of all materials based on the stress-strain relationship and obtained 

Young’s modulus. Building upon this, we incorporated a strain range gradient of ±0.3 to further calculate 

the band structures of the materials and obtain the values for the Valence Band Maximum (VBM) and 

Conduction Band Minimum (CBM). During the calculation, the reference energy levels for P-type and N-

type were taken from the 1s energy levels of the atoms that contribute significantly to the corresponding 

VBM and CBM, which are the core energy levels[43, 44]. All deformation potentials have an R-squared 

value greater than 0.9 for linear fitting, and the related fitting details can be found in Supplementary Fig. 

S13. Furthermore, in Supplementary Fig. S14, we compared the deformation potentials obtained using the 

bare eigenvalues of the electronic structures for some compounds from the MatHub-3d database[35]. The 

deformation potentials from both methods are distributed near the equal-value diagonals, demonstrating the 

viability of our approach. Fig. 4a shows the distribution of deformation potentials at the VBM and CBM 

for the candidate materials. As shown, the range of deformation potentials at the VBM is between -6 and 

4.3 eV, which is more concentrated and slightly narrower than that at the CBM (-7.4 to 7.8 eV). There are 

no deformation potentials at the CBM with an absolute value less than 1. Overall, the distribution of 

deformation potentials is centered around the value of 0 but is not symmetrically distributed, with both 

types of deformation potentials showing a non-smooth gradient descent into negative values, particularly 
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at the VBM. Detailed information on Young’s modulus and deformation potentials of the materials can be 

referred to in Supplementary Table S8. 

The constant relaxation time approximation overlooks the material dependency of relaxation time, 

however, electron-phonon scattering is a crucial mechanism in the evaluation of TE material performance, 

especially at high temperatures. We used the DP theory[32] to calculate the electron-phonon coupling 

constant and effectively estimate the relaxation time under the constant electron-phonon coupling 

approximation. As shown in Supplementary Fig. S15, we compared the electrical transport calculations 

under the constant relaxation time approximation and the constant electron-phonon coupling approximation 

using Cu2O as an example[35, 81]. Accurate estimation of relaxation time is beneficial for high-throughput 

calculations in assessing TE material performance. Similarly, given that band degeneracy[82] exists in most 

of the computational candidate systems (the details of band structure can be referred to Supplementary Note 

9), the use of the momentum matrix element method[52] to calculate electron group velocities can 

effectively avoid inaccuracies in solving band gradients at band degeneracy points. Fig. 4b presents the 

maximum PF in relation to hole (electron) concentration at 1000K under P-type and N-type doping for each 

material. In total, 28 materials exhibited a PF exceeding 50 μWcm-1K-2, with 21 materials meeting the 

criteria under P-type doping and 17 under N-type, and 10 materials exceeded the 50 μWcm-1K-2 threshold 

for both P-type and N-type. The results verify the reliability of our high-throughput screening of metal 

oxides from a computational standpoint. Fig. 4b also lists the top 5 materials with the highest PF under P-

type and N-type doping (PFs greater than 400 μWcm-1K-2). It can be seen that in P-type, each material 

contains the element Ce, and in N-type, there are two materials containing the element Sn, consistent with 

our previous analysis from a data-driven perspective. Most materials contain elements Ba and Sr, which is 

inseparable from the high occupancy rate mentioned earlier. From the analysis of band structures and 

density of states (see Supplementary Note 9), Ba and Sr are not the main contributing atoms at the VBM 

and CBM. As alkaline earth metals, they exhibit a very stable +2 oxidation state compared to transition 

metals and lanthanides. However, regarding the influence of elements, we still need to analyze and interpret 

from a computational perspective rather than making qualitative judgments. 
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Fig. 4. Electrical transport calculation and analysis based on deformation potential (DP) theory. (a) DP 

distribution of 33 candidate materials at VBM and CBM. (b) Calculated maximum PF values in P-type and 

N-type. (c) PF and electron-phonon coupling strength evaluated by (EDP)2/Y in P-type and N-type, the 

abscissa of the sub-figure is DP. (d) Statistical performance of PF for different metal elements in P-type and 

N-type. 

The sub-figure in Fig. 4c shows the relationship between the PFs and deformation potentials (DPs) of 

33 materials at 1000K for both P-type and N-type. It can be observed that the closer the DP is to zero, the 

higher the likelihood of a high PF. This is due to the small absolute value of DP leading to a smaller (EDP)
2/Y, 

which often can be simply equated to the strength of electron-phonon coupling, subsequently resulting in a 

larger relaxation time and affecting the PF. Therefore, the DP and Young’s modulus, both of which depend 

on the material, influence the PF. As can be seen in Fig. 4c, there is a clear negative correlation between 

electron-phonon coupling strength and PF. Materials with a high PF always have a smaller (EDP)2/Y. Thus, 

a small deformation potential and a large Young’s modulus can serve as preliminary criteria for the high-

throughput screening of TE materials in the future. The estimation of the strength of electron-phonon 

coupling is just one factor that affects the relaxation time. The band structure of the material itself also 
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influences the relaxation time and electron group velocity, contributing to electrical transport, while the 

interactions between different atoms constitute a complex process. 

We performed a mean statistical analysis based on the composition of metal elements for the electrical 

transport calculation results of the 33 candidate materials. The statistical subjects were metal elements that 

appeared more than three times, and the statistical content focused on the average transport properties of 

all materials containing those elements. Considering the reliability of the statistical analysis, we averaged 

the electrical transport performance within a ±0.1 eV energy range around the energy level corresponding 

to the maximum PFs for both P-type and N-type materials. As shown in Fig. 4d, we present the statistical 

mean of the P-type and N-type PFs corresponding to different elements, with the elements being ordered 

according to their position in the periodic table. More statistical details of transport calculation can be found 

in Supplementary Note 10. The alkaline earth metal elements Sr and Ba appeared 23 times in the candidate 

group, but they are not the key elements that determine the TE performance (as mentioned earlier). Mn and 

Ce, which are transition metals and lanthanides, respectively, have a greater impact in P-type than in N-

type, especially Ce. Element Ce has a larger PF, which is inseparable from its greater electron group velocity 

in P-type compared to Mn. On the contrary, Sn and Pb, as post-transition metals, exhibit a phenomenon 

where the N-type PF is greater than the P-type. This is related to their typically large relaxation time and 

group velocity in N-type, resulting in a larger sigma. Therefore, metal oxides applied to high-temperature 

TE can tend to choose Ce, Sn and Pb as constituent elements. For example, the candidate material 

Ba2CePbO6 has potential P-type and N-type TE transport properties, with the maximum PF being 504.1 

μWcm-1K-2 for P-type and 703.1 μWcm-1K-2 for N-type. 

4. CONCLUSION 

In this work, we have developed a material HTP screening framework that combines the interpretable 

ML models with HTP DFT calculations to select metal oxides for high-temperature TE materials. During 

the process, the construction of the PF ML model was severely overfitted due to the influence of a small 

dataset. We employed SR for feature creation, which enhanced the robustness of the model and was 

significantly superior to traditional descriptor combinations. The results demonstrate that SR has strong 

objectives and high interpretability advantages in feature creation. Ultimately, we integrated the PF 

prediction model with the melting point prediction model to conduct a virtual screening of 48,694 metal 

oxides in the Materials Project database. Leveraging the electrical transport calculations based on the 

deformation potential theory, the PFs at 1000K were evaluated for 33 high-temperature-resistant metal 
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oxides, as selected by the ML model. Furthermore, our combined data-driven analysis and transport 

calculations indicate that metal oxides rich in elements such as cerium (Ce), tin (Sn), and lead (Pb) tend to 

exhibit high PFs at high temperatures. In conclusion, the HTP framework we have proposed facilitates the 

selection and discovery of metal oxides suitable for high-temperature TE applications. The compounds 

identified could potentially be high-temperature TE candidate materials, meriting further investigation. 
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Supplementary Note 1. Screening of high-temperature thermoelectric (TE) metal oxides 

We have positioned the compounds with differences under varying temperature sets in Table 

S1 at the final spots of the table. Figure S2 presents the detailed predictions of the machine learning 

model in the form of a periodic table, listing the metal elements that are selectable in our work. The 

horizontal axis in the periodic table represents the predicted melting point, while the vertical axis 

represents the normalized power factor (PF) across different machine learning (ML) models. 

 
Figure S1: Multi-model screening for top 100 materials with PF ranking at 900K. 
 

Table S1: The compounds MPID list of screening at 1000K and 900K 
Compounds MPID list at 1000K Compounds MPID list at 900K 

mp-1178513 mp-1206536 mp-1214389 mp-1178513 mp-1206536 mp-1214389 
mp-1227843 mp-1228392 mp-15743 mp-1227843 mp-1228392 mp-15743 
mp-16033 mp-18971 mp-19009 mp-16033 mp-18971 mp-19009 
mp-20098 mp-20194 mp-20489 mp-20098 mp-20194 mp-20489 
mp-20882 mp-2097 mp-22203 mp-20882 mp-2097 mp-22203 
mp-22230 mp-22428 mp-23091 mp-22230 mp-22428 mp-23091 
mp-2898 mp-3163 mp-3187 mp-2898 mp-3163 mp-3187 
mp-3316 mp-361 mp-4359 mp-3316 mp-361 mp-4359 
mp-4900 mp-545603 mp-546152 mp-4900 mp-545603 mp-546152 
mp-554354 mp-561553 mp-5966 mp-554354 mp-561553 mp-5966 
mp-9297 mp-9298 mp-1106089 mp-9297 mp-9298 mp-20546 
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Supplementary Note 2. List of descriptor collection 

311 descriptors were collected, including the temperature descriptor of power factors (PFs), 20 

crystal structure and property descriptors obtained from the Materials Project (MP) database API 

using pymatgen[1] package (refer to Table S2), and 290 element-compositional descriptors obtained 

through XenonPy[2] package. These 290 descriptors were calculated from 58 element-level 

property data (refer to Table S3) using five calculation methods, including weighted average (Ave), 

weighted sum (Sum), weighted variance (Var), max-pooling (Max), min-pooling (Min), and the 

details could be found at https://xenonpy.readthedocs.io/en/latest/features.html. 

Table S2: The list of 20 crystal structure and property descriptors from MP database 
Descriptor Name 

spacegroup volume volume_per_atom 
a b c 
alpha beta gamma 
band_gap e_above_hull e_above_hull_per_atom 
efermi energy energy_per_atom 
density final_energy_per_atom formation_energy_per_atom 
nelements nsites  

 
Table S3: The list of 58 element-level property data from XenonPy 

Element-level Property Name 
atomic_number first_ion_en num_unfilled 
atomic_radius fusion_enthalpy num_valance 
atomic_radius_rahm gs_bandgap num_d_unfilled 
atomic_volume gs_energy num_d_valence 
atomic_weight gs_est_bcc_latcnt num_f_unfilled 
boiling_point gs_est_fcc_latcnt num_f_valence 
bulk_modulus gs_mag_moment num_p_unfilled 
c6_gb gs_volume_per num_p_valence 
covalent_radius_cordero hhi_p num_s_unfilled 
covalent_radius_pyykko hhi_r num_s_valence 
covalent_radius_pyykko_double heat_capacity_mass period 
covalent_radius_pyykko_triple heat_capacity_molar specific_heat 
covalent_radius_slater icsd_volume thermal_conductivity 
density evaporation_heat vdw_radius 
dipole_polarizability heat_of_formation vdw_radius_alvarez 
electron_negativity lattice_constant vdw_radius_mm3 
electron_affinity mendeleev_number vdw_radius_uff 
en_allen melting_point sound_velocity 
en_ghosh molar_volume Polarizability 
en_pauling   

 



Supplementary Note 3. Process of filtering descriptors 

Descriptors were filtered in two stages: Removing descriptors with low variance, the 297 

reserved descriptors are called VarCond. Set. Then filtering was based on different correlation 

coefficient conditions, with one condition are met referred to as CorCond.1 Set and two referred to 

as CorCond.2 Set, as shown in Figure S3. The 18 descriptors from the CorCond.2 Set will be used 

for feature creation through Symbolic Regression[3, 4] (SR). The detailed information about these 

descriptors is presented in Table S4. 

 
Figure S3: Process and analysis of filtering descriptors. (a) The distribution of Pearson correlation 
in the initial set of descriptors, and the red line represent the values of the filtering criterion. (b) 
Heatmaps of Pearson correlation for different sets. (c) and (d), (e) and (f) are the same as (a) and 
(b), but represent Spearman and Distance correlations, respectively. 



 
 

Table S4: The list of 18 descriptors from CorCond.2 Set 
No. Name Description SR Variable 
1 T Temperature of power factors x0 
2 Density Density of materials from MP API x1 
3 Av.enallen Ave value of Allen’s scale of electronegativity (en_allen) x2 
4 Av.vdwrad Ave value of Van der Waals radius (vdw_radius) x3 
5 Su.unf Sum value of Total unfilled electron (num_unfilled) x4 
6 Va.boilp Var value of Boiling temperature (boiling_point) x5 

7 Va.hhip 
Var value of Herfindahl−Hirschman Index (HHI) 
production values (hhi_p) 

x6 

8 Va.unf Var value of Total unfilled electron (num_unfilled) x7 
9 Va.punf Var value of Unfilled electron in p shell (num_p_unfilled) x8 
10 Va.sunf Var value of Unfilled electron in s shell (num_s_unfilled) x9 
11 Va.sval Var value of Valance electron in s shell (num_s_valence) x10 

12 Ma.hhip 
Max value of Herfindahl−Hirschman Index (HHI) 
production values (hhi_p) 

x11 

13 Ma.unf Max value of Total unfilled electron (num_unfilled) x12 
14 Ma.punf Max value of Unfilled electron in p shell (num_p_unfilled) x13 
15 Ma.sunf Max value of Unfilled electron in s shell (num_s_unfilled) x14 
16 Mi.elecaff Min value of Electron affinity (electron_affinity) x15 

17 Mi.lattc 
Min value of Physical dimension of unit cells in a crystal 
lattice (lattice_constant) 

x16 

18 Mi.sval Min value of Valance electron in s shell (num_s_valence) x17 
 

 
 



Supplementary Note 4. Symbolic regression for feature creation 

The mathematical formulae were acquired and selected using an efficient stepwise strategy with SR 

based on genetic programming (GPSR) as implemented in the gplearn[5] code. Pearson, Spearman, and 

Distance correlations were used as evaluation metrics of training fitness to generate new descriptors, and 

the grid search strategy with the hyperparameters listed in Supplementary Table S5 was applied in GPSR. 

For the feature creation with different correlations, we employed symbolic regression (SR) with 4293 

hyperparameter combinations to identify new features with stronger correlations to the PF data. As 

illustrated in Figure S4a, the scatter plots represent the distribution of Pearson correlation fitness versus 

formula complexity (formula length) across different hyperparameter combinations. Generally, the 

greater the complexity of the formula, the higher the correlation fitness, as shown in Figure S4b. However, 

these formulas are usually lengthy, which is not conducive to computation and analysis. Only formulas 

that have high fitness and low complexity are considered suitable. We further selected formulas with a 

fitness greater than 0.7 and complexity less than 20, and we applied the same selection criteria to 

Spearman and Distance correlations (as shown in Figure S5 and Figure S6). Additionally, we counted 

the selection frequency of original descriptors in the formulas generated by SR (as shown in Figure S4c). 

Discrete descriptors, such as temperature and electron occupancy, were frequently extracted for 

combinations of formulas. This facilitated the integration of discrete features into more continuous new 

descriptors, thereby benefiting the training of machine learning (ML) models. From the Pareto frontier, 

we selected 12 formulas corresponding to the correlations (as shown in Figure S4d), with the details of 

these formulas listed in Table S6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5: Setup of hyperparameters in gplearn software for SR 
Parameter Value Combination 
Generations 300 1 

Population size in every generation 5000 1 
Probability of crossover (pc) [0.30, 0.85], (step = 0.05) 

477 
Probability of subtree mutation (ps) [(1-pc)/3, (1-pc)/2] (step = 0.01) 
Probability of hoist mutation (ph) [(1-pc)/3, (1-pc)/2] (step = 0.01) 
Probability of point mutation (pp) 1-pc-ps-ph 

Function set {+, −, ×, ÷, √𝑥, ln𝑥, |𝑥|, −𝑥, 1/𝑥} 1 
Parsimony coefficient auto 1 

Metric Pearson, Spearman, Distance Cor. 3 
Stopping criteria 0.90 1 
Random_state 0, 1, 2 3 

Init_depth [2, 6], [4, 8], [6, 10] 3 
 

 
Figure S4: Symbolic regression process analysis and formula selection with Pearson correlation (PC). 
(a) Mathematical formula complexity versus PC fitness. (b) Statistics of formulas with PC fitness not 
less than 0.7 by complexity. (c) Frequency of original feature occurrence in mathematical formulas. (d) 
Pareto front of PC fitness versus complexity. 
 
 
 



 
Figure S5: Symbolic regression process analysis and formula selection with Spearman correlation (SC). 
(a) Mathematical formula complexity versus SC fitness. (b) Statistics of formulas with SC fitness not 
less than 0.7 by complexity. (c) Frequency of original feature occurrence in mathematical formulas. (d) 
Pareto front of SC fitness versus complexity. 

 
Figure S6: Symbolic regression process analysis and formula selection with Distance correlation (DC). 
(a) Mathematical formula complexity versus DC fitness. (b) Statistics of formulas with DC fitness not 
less than 0.7 by complexity. (c) Frequency of original feature occurrence in mathematical formulas. (d) 
Pareto front of DC fitness versus complexity. 



Table S6: The 12 mathematical formulas at the Pareto front in Figure S4d, S5d and S6d 

Formula Format 
Comple-

xity 
PC 

value 
SC 

value 
DC 

value 

PC1  11 -0.863  -0.531  0.593  

PC2  13 -0.883  -0.347  0.546  

PC3  16 0.899  0.476  0.558  

PC4 
 

19 -0.771  -0.498  0.543  

SC1  10 0.125  0.704  0.434  

SC2  11 0.246  0.706  0.542  

SC3  12 0.327  0.729  0.664  

SC4  14 -0.225  -0.737  0.648  

DC1  12 0.513  0.720  0.719  

DC2  14 0.404  0.699  0.706  

DC3  17 0.375  0.768  0.731  

DC4  18 -0.424  -0.721  0.782  
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Supplementary Note 5. Construction of different ML models 

The training effects of various descriptor combinations, including INI, COR, SR, and PCA, on 

ML models were explored in this section. The INI descriptor set comprised 311 generated initial 

descriptors. The COR descriptor set consisted of 18 descriptors filtered by feature selection, referred 

to as the CorCond.2 Set in Supplementary Note 2. Considering the breadth of data coverage and to 

prevent feature collinearity, we selected three descriptors, PC2, SC4, and DC1 (see Table S6), for 

inclusion in the subsequent training of the ML models. The SR set comprised 18 COR descriptors 

and 3 new descriptors created by symbolic regression. Additionally, the extra principal component 

analysis (PCA) technique with 99.9% variance was used to compare. 

 

Figure S7: Correlation heatmap for the SR sets. (a) The PC (blue part) and SC (green part) heatmap. 
(c) The DC (orange part) heatmap 
 

 
Figure S8: Construction of different ML models. (a) Performance of the Extreme Gradient Boosting 
(XGBoost) model based on SR descriptors, where training R2 is 0.98 and test R2 is 0.96. (b) 
Performance of the Multi-Layer Perceptron (MLP) model based on SR descriptors, where training 
R2 is 0.99 and test R2 is 0.97. 



 

 
Figure S9: RMSE of ML models at different feature engineering processes, including initial (INI), 
mathematical correlation (COR) coefficients filtering, and feature creation via SR stages. And, an 
additional PCA approach was applied to compare. 
 

 
Figure S10: Relationship between the number of principal components and cumulative variance 

 
Table S7: The correlation between the PCA descriptor set and PF 

Formula PC value SC value DC value 
PCA1 0.030  0.003  0.144  
PCA2 -0.159  -0.324  0.341  
PCA3 0.128  0.141  0.211  
PCA4 0.051  0.023  0.147  
PCA5 -0.022  -0.011  0.208  

Here, the PCA with 5 principal components of 99.9% variance was performed. Although the 

data underwent dimensionality reduction, they still remained unsuitable for training ML models due 

to low data correlation issues. 

 



Supplementary Note 6. SHAP analysis of the feature importance 

We rank the feature importance based on the impurity of Random Forest (RF) model (as 

shown in Figure S11), and the results are similar to the SHAP analysis mentioned in the main text. 

Both analysis methods indicate that descriptors created through SR are more valuable for machine 

learning models. We present the dependence plot the original descriptors and the descriptors created 

by SR, shown in Figure S12. It can be seen that the discretization of the original descriptors is very 

common, while the SR features exhibit better continuity. 

 
Figure S11: Feature importance based on the impurity of Random Forest (RF) model. 

 



 

Figure S12: SHAP values of each descriptor in a dependence plot. 
 
 
 
 
 



Supplementary Note 7. Calculation and comparison of deformation potentials (DPs) 

As shown in Figure S13, we perform linear fitting of the DP under different strains, with fitting 

accuracy greater than 0.9. Additionally, we compare the deformation potentials obtained using the 

bare eigenvalues of the electronic structures for some compounds from the MatHub-3d database[6] 

(Figure S14). 

 

 
Figure S13: The linear fitting of DPs at VBM and CBM. (a) DP fitting of Ba2CePbO6 (mp-1228392). 
(b) DP fitting of BaSnO3 (mp-1178513). (c) DP fitting of BaCeO3 (mp-3187). 
 



 

 

Figure S14: Comparison of deformation potentials with the bare eigenvalues method. 
 
 
 
 



Supplementary Note 8. Comparison of electrical transport calculations by CRTA and CEPCA 

we compared the electrical transport calculations under the constant relaxation time 

approximation (CRTA) and the constant electron-phonon coupling approximation (CEPCA) using 

Cu2O as an example. As shown in Figure S15, the work related to Ref1[7] employed hybrid density 

functional theory to calculate the electrical transport properties of Cu2O. However, due to the use of 

the CRTA, it overestimated the electrical conductivity, which is closely related to relaxation time, 

resulting in an inflated PF. We also conducted calculations (using the PBE-GGA functional) on 

Cu2O within CRTA, and our results were similar to Ref1. The work related to Ref2[6] (fitting DP 

using eigenvalues, replacing Young’s modulus with bulk modulus) applied the CEPCA based on the 

DP theory, which eliminates the influence of relaxation time compared to CRTA. We used CEPCA 

to perform calculations on Cu2O, and our results (fitting DP with the core energy level as a reference 

level, calculating Young’s modulus directly) were consistent with Ref2. 

 

Figure S15: Comparison of electrical transport calculations. (a) Electrical transport calculations by 
CRTA. (b) Electrical transport calculations by CEPCA. 

 
 
 
 
 
 
 
 
 



Supplementary Note 9. Band structures and density of states of materials 

 
1. CeO2 (mp-20194) 2. Ba2InSbO6 (mp-1206536) 

  
  
  

3. Ba2BiSbO6 (mp-545603) 4. Cu2O (mp-361) 

  
  
  

5. BaSnO3 (mp-3163) 6. BaPb3O4 (mp-1214389) 

  
 
 
 
 



 
 
 

7. BaCeO3 (mp-4900) 8. Ba2CePbO6 (mp-1228392) 

  
  
  

9. Ba2BiSbO6 (mp-23091) 10. Sm2TeO2 (mp-16033) 

  
  
  

11. Ba2PbO4 (mp-20098) 12. SnO (mp-2097) 

  
 
 
 
 



 
 
 

13. SmBi2ClO4 (mp-546152) 14. Ca(AuO2)2 (mp-2898) 

  
  
  

15. Ba(AuO2)2 (mp-9297) 16. Sr(AuO2)2 (mp-9298) 

  
  
  

17. BaSnO3 (mp-1178513) 18. BaPbO3 (mp-22230) 

  
 
 
 
 



 
 
 

19. BaCeO3 (mp-3316) 20. Sr2PdO3 (mp-4359) 

  
  
  

21. SrPbO3 (mp-20489) 22. SrCeO3 (mp-22428) 

  
  
  

23. BaCeO3 (mp-3187) 24. Sr2CeO4 (mp-15743) 

  
 
 
 
 



 
 
 

25. Cd2SnO4 (mp-5966) 26. Ba2InGaO5 (mp-1106089) 

  
  
  

27. Ba2In2O5 (mp-20546) 28. BaSr(PbO3)2 (mp-1227843) 

  
  

 
29. Mn(RhO2)2 (mp-554354) 

 

 

 
 
  
 



30. NiO (mp-19009) 

 

 

31. Ba4CeMn3O12 (mp-561553) 

 

 

32. Mn(PtO2)3 (mp-18971) 

 

 

33. SmMnO3 (mp-22203) 

 

 



Supplementary Note 10. Statistical performance of electrical transport properties for different 

metal elements in P-type and N-type 

we present the statistical mean performance of electrical transport properties for different metal 

elements in P-type and N-type, with the elements being ordered according to their position in the 

periodic table. 

 

 
Figure S16: Statistical mean performance of electrical transport properties for different metal 
elements in P-type and N-type. (a) Statistics of electronic relaxation time. (b) Statistics of electron 
group velocity. (c) Statistics of sigma. (d) Statistics of Seebeck coefficient. 
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