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EXPONENTIAL LOCALIZATION FOR EIGENSECTIONS

OF THE BOCHNER-SCHRÖDINGER OPERATOR

YURI A. KORDYUKOV

Abstract. We study asymptotic spectral properties of the Bochner-
Schrödinger operator Hp = 1

p
∆Lp

⊗E + V on high tensor powers of a

Hermitian line bundle L twisted by a Hermitian vector bundle E on a
Riemannian manifold X of bounded geometry under assumption that
the curvature form of L is non-degenerate. At an arbitrary point x0 of
X the operator Hp can be approximated by a model operator H

(x0),
which is a Schrödinger operator with constant magnetic field. For large
p, the spectrum of Hp asymptotically coincides, up to order p−1/4, with

the union of the spectra of the model operators H(x0) over X. We show
that, if the union of the spectra of H

(x0) over the complement of a
compact subset of X has a gap, then the spectrum of Hp in the gap is
discrete and the corresponding eigensections decay exponentially away
the compact subset.

1. Introduction

1.1. The setting. Let (X, g) be a smooth Riemannian manifold of dimen-
sion d without boundary, (L, hL) a Hermitian line bundle on X with a Her-
mitian connection ∇L and (E, hE) a Hermitian vector bundle of rank r on
X with a Hermitian connection ∇E. We suppose that (X, g) is a manifold
of bounded geometry and L and E have bounded geometry. This means
that the curvatures RTX , RL and RE of the Levi-Civita connection ∇TX ,
connections ∇L and ∇E, respectively, and their derivatives of any order are
uniformly bounded on X in the norm induced by g, hL and hE , and the
injectivity radius rX of (X, g) is positive.

For any p ∈ N, let Lp := L⊗p be the pth tensor power of L and let

∇Lp⊗E : C∞(X,Lp ⊗ E) → C∞(X,T ∗X ⊗ Lp ⊗ E)

be the Hermitian connection on Lp ⊗ E induced by ∇L and ∇E. Consider
the induced Bochner Laplacian ∆Lp⊗E acting on C∞(X,Lp ⊗ E) by

(1.1) ∆Lp⊗E =
(
∇Lp⊗E

)∗∇Lp⊗E ,

where
(
∇Lp⊗E

)∗
: C∞(X,T ∗X ⊗ Lp ⊗ E) → C∞(X,Lp ⊗ E) is the formal

adjoint of ∇Lp⊗E. Let V ∈ C∞(X,End(E)) be a self-adjoint endomorphism
of E. We assume that V and its derivatives of any order are uniformly
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2 Y. A. KORDYUKOV

bounded on X in the norm induced by g and hE . We study the Bochner-
Schrödinger operator Hp acting on C∞(X,Lp ⊗ E) by

Hp =
1

p
∆Lp⊗E + V.

The operator Hp is self-adjoint in the Hilbert space L2(X,Lp ⊗ E) with
domain H2(X,Lp ⊗ E), the second Sobolev space, see [16, 19]. We denote
by σ(Hp) its spectrum in L2(X,Lp ⊗E).

Consider the real-valued closed 2-form B (the magnetic field) given by

(1.2) B = iRL.

We assume that B is non-degenerate. Thus, X is a symplectic manifold. In
particular, its dimension is even, d = 2n, n ∈ N.

For x ∈ X, let Bx : TxX → TxX be the skew-adjoint operator such that

Bx(u, v) = g(Bxu, v), u, v ∈ TxX.

The operator |Bx| := (B∗
xBx)

1/2 : TxX → TxX is a positive self-adjoint
operator. We assume that it is uniformly positive on X:

(1.3) b0 := inf
x∈X

|Bx| > 0.

1.2. Main results. For an arbitrary x0 ∈ X, the model operator at x0 is a

second order differential operator H(x0)
p , acting on C∞(Tx0X,Ex0), which is

obtained from the operator Hp by freezing coefficients at x0. This operator
was introduced by Demailly [4, 5].

Consider the trivial Hermitian line bundle L0 over Tx0X and the trivial
Hermitian vector bundle E0 over Tx0X with the fiber Ex0 . We introduce
the connection

(1.4) ∇(x0)
p = d− ipθ(x0),

acting on C∞(Tx0X,L
p
0 ⊗ E0) ∼= C∞(Tx0X,Ex0), with the connection one-

form θ(x0) ∈ Ω1(Tx0X) given by

(1.5) θ(x0)
v (w) =

1

2
Bx0(v,w), v ∈ Tx0X, w ∈ Tv(Tx0X) ∼= Tx0X.

The curvature of ∇(x0)
p is constant: dθ(x0) = Bx0 . Denote by ∆

(x0)
p the asso-

ciated Bochner Laplacian. The model operatorH(x0)
p acting on C∞(Tx0X,Ex0)

is defined as

(1.6) H(x0)
p =

1

p
∆(x0)

p + V (x0).

Since Bx0 is skew-adjoint, its eigenvalues have the form ±iaj(x0), j =
1, . . . , n, with aj(x0) > 0. By (1.3), aj(x0) ≥ b0 > 0 for any x0 ∈ X and
j = 1, . . . , n. Denote by Vµ(x0), µ = 1, . . . , r, the eigenvalues of V (x0). It is
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well-known that the spectrum of H(x0)
p is independent of p and consists of

eigenvalues of infinite multiplicity:

(1.7) σ(H(x0)
p ) = Σx0 :=

{
Λk,µ(x0) : k ∈ Z

n
+, µ = 1, . . . , r

}
,

where, for k = (k1, · · · , kn) ∈ Z
n
+, µ = 1, . . . , r and x0 ∈ X,

(1.8) Λk,µ(x0) =

n∑

j=1

(2kj + 1)aj(x0) + Vµ(x0).

In particular, the lowest eigenvalue of H(x0)
p is

Λ0(x0) :=

n∑

j=1

aj(x0) + min
µ
Vµ(x0).

Let Σ be the union of the spectra of the model operators:

(1.9) Σ =
⋃

x∈X
Σx =

{
Λk,µ(x) : k ∈ Z

n
+, µ = 1, . . . , r, x ∈ X

}
.

Theorem 1.1 ([17]). For any K > 0, there exists c > 0 such that for any

p ∈ N the spectrum of Hp in the interval [0,K] is contained in the cp−1/4-

neighborhood of Σ.

When X is compact, a stronger result, with p−1/2 instead of p−1/4 was
proved by L. Charles [2]. This estimate seems to be optimal.

For an interval [a, b], let K[a,b] be the closed subset of X given by

K[a,b] = {x ∈ X : Σx ∩ [a, b] 6= ∅}.
In other words, x ∈ K[a,b] iff Λk,µ(x) ∈ [a, b] for some k ∈ Z

n
+ and µ =

1, . . . , rank(E).
By [18, Theorem 1.5] (see also [2, Theorem 1.3]), if x0 6∈ K[a,b], then the

Schwartz kernel of the spectral projection E[a,b] of the operatorHp associated
with [a, b] satisfies

(1.10)
∣∣E[a,b](x0, x0)

∣∣ = O(p−∞), p→ ∞.

By this theorem, if x0 6∈ K[a,b], then, for any sequence {up ∈ C∞(X,Lp ⊗
E), p ∈ N} of eigenfunctions of Hp with the corresponding eigenvalues λp in
[a, b] for any p ∈ N, we have

|up(x0)| = O(p−∞), p→ ∞.

In other words, the essential support of the sequence {up, p ∈ N} is contained
in K[a,b].

The main results of the paper are the following two theorems.

Theorem 1.2. Assume that, for an interval [a, b] ⊂ R, the set K[a,b] is

compact. Then there exists ǫ > 0 such that for any p ∈ N the spectrum of

Hp in [a+ ǫp−1/4, b− ǫp−1/4] is discrete.
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As in Theorem 1.1, the order p−1/4 doesn’t seem to be optimal and,
probably, can be improved.

Theorem 1.3. Under the assumptions of Theorem 1.2, for any [a1, b1] ⊂
(a, b), there exist p0 ∈ N and C, c > 0 such that, for any up ∈ C∞(X,Lp ⊗
E) ∩ L2(X,Lp ⊗E) such that

Hpup = λpup

with p > p0 and λp ∈ [a1, b1], we have
∫

Ω
e2c

√
pd(x,K[a,b])|up(x)|2dx ≤ C‖up‖2.

1.3. Discussion. Our study is partly motivated by the spectral theory of
magnetic Schrödinger operators with magnetic walls. The magnetic wall is
usually modeled by the magnetic field, whose intensity has a fast transition
along a hypersurface (an interface). A typical example was introduced by
Iwatsuka in [15]. Iwatsuka model is given by the magnetic field in R

2 having
positive bounded intensity b(x1, x2) = b(x2) that converges to two distinct
constants b± as x2 → ±∞. The extreme version of this model is the magnetic
field with intensity b− > 0 for x2 < 0 and b+ > b− for x2 > 0, with
b+ − b− large enough. Since [15], there is an extensive literature devoted to
the study of this class of models and its generalizations (see, for instance,
[1, 6, 7, 9, 20] and references therein). Closely related models are magnetic
quantum Hall systems described by the magnetic Schrödinger operator with
Dirichlet boundary conditions in a compact domain of the Euclidean space
(this can be treated as a hard wall, or as an infinite electric potential outside
of the domain; see, for instance, [3, 10, 11] and references therein).

The analysis of such models distinguishes between edge and bulk behavior
for the states associated with the Hamiltonian. We are interested in the edge
states. These states are localized near the interface and generate a current
along the interface, classically described by the so-called snake orbits, first
introduced in [22]. The edge states exist as soon as the energy lies strictly
in a gap of the set of the Landau levels. If the interface is compact, this
part of the spectrum is discrete.

The existence of the edge states was proved in [3] for a constant mag-
netic field in a half-plane, in [10] for a constant magnetic field in some
domains in the Euclidean plane with Dirichlet boundary conditions and in
[6, 7] for Iwatsuka models. In [11], the authors studied the edge states
for the magnetic Schrödinger operator with Dirichlet boundary conditions
in a simply-connected domain with compact boundary. In [12], the study
of the edge states obtained for Iwatsuka models extended to the case of a
general regular curve. Here the localization and propagation properties of
the edge states are investigated. This study was significantly improved in
[8], where the authors consider the Robin Laplacian on a smooth bounded
two-dimensional domain in the presence of a constant magnetic field and
obtain a uniform description of the spectrum located between the Landau
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levels in the semiclassical limit. In particular, they established exponential
localization near the boundary of the corresponding edge states, which was
not considered in [11, 12].

In our paper, we address the question of exponential localization in a
very general setting of the Bochner-Schrödinger operator on a manifold of
bounded geometry. In the above notation, one can consider the set K[a,b]

as an interface. Unlike [12], the transition of the magnetic field along the
interface is not fast (we hope to discuss this case elsewhere), but the mag-
netic field is not constant. Instead of the set of Landau levels associated
with limiting values of the intensity of the magnetic field at infinity as in
the Iwatsuka model, we are dealing with the set of local Landau levels Σx

assigned to each point x of the manifold. Our choice of the interface en-
sures that the set of local Landau levels in the bulk has a gap (a, b). From
this point of view, we prove that if the interface K[a,b] is compact, then the
spectrum of the operator in [a, b] is discrete, and the corresponding eigen-
sections are edge states. Moreover, they are exponentially localized away
the interface K[a,b].

Asymptotic localization of eigenfunctions of the magnetic Schrödinger
operator associated with eigenvalues below the bottom of the essential spec-
trum usually follows from Agmon type estimates. But when we consider
eigenvalues in gaps of the essential spectrum, such a method doesn’t work.
Instead, we use some weighted norm estimates for the operator. This is a
slight modification of the method used in [17, 18] (see also the references
therein) to prove exponential localization away the diagonal for Schwartz
kernels of various functions of the Bochner-Schrödinger operator and in [8] to
prove exponential localization of the boundary states of the Robin magnetic
Laplacian away the boundary, where weighted estimates for the resolvent
have been used.

The paper is organized as follows. In Section 2, we prove Theorem 1.2.
In Section 3, we prove Theorem 1.3.

2. Discreteness of the spectrum

This section is devoted to the proof of Theorem 1.2.

2.1. Lower bound for the norm. The following proposition plays a cru-
cial role both in the proof of Theorem 1.2 and in the proof of Theorem
1.3.

Proposition 2.1. Let [a, b] ⊂ R be a bounded interval and

Ω[a,b] := X \ K[a,b] = {x ∈ X : Σx ∩ [a, b] = ∅}.
Then there exist C > 0 and p0 ∈ N such that, for any λ ∈ (a, b), for any

p > p0 and for any u ∈ C∞(X,Lp ⊗ E) compactly supported in Ω[a,b], we

have

‖(Hp − λ)u‖ ≥ (d(λ,Σ)− Cp−1/4)‖u‖,
where d(λ,Σ) stands for the distance from λ to Σ.
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Remark 1. In case Ω[a,b] = X, we get a new proof of Theorem 1.1.

The proof of Proposition 2.1 will be given in Section 2.3. First, we com-
plete the proof of Theorem 1.2.

2.2. Proof of Theorem 1.2. Theorem 1.2 follows immediately from Propo-
sition 2.1 and the following manifold version of [21, Lemma 2.1].

Let (E , hE ) be a Hermitian vector bundle on X with a Hermitian connec-
tion∇E . We suppose that E has bounded geometry. Let V ∈ C∞

b (X,End(E))
be a self-adjoint endomorphism. Consider the Bochner-Schrödinger operator
H acting on C∞(X, E) by

H = ∆E + V.

Lemma 2.2. Let λ ∈ R. Suppose that there exist δ > 0 and a compact

subset K ⊂ X such that

(2.1) ‖(H − λ)u‖ ≥ δ‖u‖
for any u ∈ H2(X, E) supported in X \K. Then λ 6∈ σess(H).

Proof. On the contrary, assume that λ ∈ σess(H). Then there exists is an
orthonormal sequence (un)n∈N in L2(X, E) such that un ∈ H2(X, E) for any
n ∈ N and

(2.2) ‖(H − λ)un‖ → 0, n→ ∞.

There exists a sequence χm ∈ C∞
c (X) such that 0 ≤ χm(x) ≤ 1 for any

x ∈ X, χm ≡ 1 in a neighborhood of K and

|dχm(x)| ≤ c

m
, |∆χm(x)| < c

m2
, x ∈ X,

where c > 0 is independent of m. Such a sequence can be easily constructed,

using a “smoothed distance” function d̃ ∈ C∞(X × X) (see, for instance,
[16, Proposition 4,1]), satisfying the following conditions:

(1) there is a constant r > 0 such that
∣∣d̃(x, y)− d(x, y)

∣∣ < γ, x, y ∈ X,

where d stands for the distance function on (X, g);
(2) for any k > 0, there exists Ck > 0 such that, for any multi-index β

with |β| = k, ∣∣∂βx d̃(x, y)
∣∣ < Ck, x, y ∈ X,

where the derivatives are taken with respect to normal coordinates defined
by the exponential map at x.

Now we assume that K is contained in some open ball B(x0, r) ⊂ X of
radius r > 0 centered at x0 ∈ X. Take a function χ ∈ C∞

c (R) such that
0 ≤ χ(t) ≤ 1 for any t ∈ R, χ(t) = 1 if |t| ≤ r + γ and put

χm(x) = χ

(
1

m
d̃(x, x0)

)
, x ∈ X.

It is easy to check that the sequence (χm)m∈N satisfies the desired conditions.
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Since
[H,χm] = −2dχm · ∇E +∆χm,

we get

‖[H,χm]un‖ ≤ c

m
‖∇Eun‖+

c

m2
‖un‖.

We can estimate ‖∇Eun‖ in the following way:

‖∇Eun‖2 = (∆Eun, un) = ((H − λ)un, un) + ((λ− V )un, un)

≤ ‖(H − λ)un‖2 + C‖un‖2,
and, therefore,

‖∇Eun‖ ≤ ‖(H − λ)un‖+ C‖un‖.
This gives the estimate

(2.3) ‖[H,χm]un‖ ≤ C

m
(‖(H − λ)un‖+ ‖un‖).

From the equality

(H − λ)(1 − χm)un = (1− χm)(H − λ)un − [H,χm]un,

we infer that

‖(H − λ)(1− χm)un‖ ≤ C(‖(H − λ)un‖+
1

m
‖un‖).

On the other hand, since 1− χm is supported in X \K, by assumption, we
have

‖(H − λ)(1 − χm)un‖ ≥ δ‖(1 − χm)un‖.
By (2.2), we conclude that for any ǫ > 0 there exist m and N such that for
any n > N ,

(2.4) ‖(1− χm)un‖ < ǫ.

Since
(H − λ)(χmun) = χm(H − λ)un + [H,χm]un,

by (2.2) and (2.3), the sequence (H − λ)(χmun)n∈N is bounded in L2(X, E),
By ellipticity of H, it follows that the sequence (χmun)n∈N is bounded in

H2(D, E), where D ⊂ X is a regular bounded domain, which contains the
support of χm. Passing to a subsequence, we may assume that (χmun)n∈N
converges to some v ∈ L2(X, E). By (2.4), for any n > N , ‖χmun‖ ≥
‖un‖ − ‖(1− χm)un‖ > 1− ǫ. and, therefore, ‖v‖ ≥ 1− ǫ.

On the other hand, we have

‖v‖2 = lim
n→∞

〈χmun, χmun+1〉
= lim

n→∞
〈un − (1− χm)un, un+1 − (1− χm)un+1〉

= lim
n→∞

(−〈(1− χm)un, un+1〉 − 〈un, (1 − χm)un+1〉

+ 〈(1− χm)un, (1− χm)un+1〉) < 2ǫ+ ǫ2.

We get a contradiction if we choose ǫ > 0 small enough. �
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The rest of this section is devoted to the proof of Proposition 2.1. We
will use some constructions introduced in [17], and, therefore, we will briefly
remind them, referring the interested reader to [17] for more details.

2.3. Approximation by the model operator. We construct an approx-

imation of the operator Hp by the model operator H(x0)
p in a sufficiently

small neighborhood of an arbitrary point x0.
First, we consider some special coordinates near x0. We choose an or-

thonormal base {ej : j = 1, . . . , 2n} in Tx0X such that

(2.5) Bx0e2k−1 = ak(x0)e2k, Bx0e2k = −ak(x0)e2k−1, k = 1, . . . , n.

Then, for any x0 ∈ X, there exists a coordinate chart κx0 : B(0, c) ⊂ R
2n

∼=→
Ux0 = κx0(B(0, c)) ⊂ X defined on the ball B(0, c) of radius c centered in
the origin in R

2n with some c > 0, independent of x0, such that

(2.6) κx0(0) = x0, (Dκx0)0(ej) = ej , j = 1, . . . , 2n,

and κ
∗
x0
B is a constant 2-form on B(0, c) given by

(2.7) (κ∗
x0
B)Z =

n∑

k=1

ak(x0)dZ2k−1 ∧ dZ2k Z ∈ B(0, c).

Here, by abuse of notation, we use the same notation {ej : j = 1, . . . , 2n}
for the standard base in R

2n.
Moreover, for every k ≥ 0, there exists Ck > 0 such that, for any two

charts κxα : B(0, c) ⊂ R
2n

∼=→ Uxα ⊂ X and κxβ
: B(0, c) ⊂ R

2n
∼=→ Uxβ

⊂ X

with Uα∩Uβ 6= ∅, the map κ
−1
xα

◦κxβ
: κ−1

xβ
(Uxα∩Uxβ

) ⊂ R
2n → R

2n satisfies

the following condition: for any multiindex a with |a| ≤ k

(2.8) ‖∂a(κ−1
xα

◦ κxβ
)(x)‖ ≤ Ck, x ∈ κ

−1
xβ

(Uxα ∩ Uxβ
) ⊂ R

2n.

The construction of κx0 is essentially the proof of the Darboux Lemma
based on the well-known Moser argument. We refer the reader to [17, Ap-
pendix] for more details.

It is easy to see that there exists a trivialization of the Hermitian line
bundle L over Ux0 :

τLx0
: Ux0 × C

∼=→ L
∣∣
Ux0

,

such that the connection one-form of ∇L in this trivialization coincides with
the one-form θ(x0) given by (1.5). We also assume that there exists a trivi-
alization of the Hermitian bundle E over Ux0 :

τEx0
: Ux0 × Ex0

∼=→ E
∣∣
Ux0

,

These trivializations induce a trivialization of Lp ⊗ E over Ux0 :

τx0,p = (τLx0
)p ⊗ τEx0

: Ux0 × Ex0

∼=→ Lp ⊗ E
∣∣
Ux0

.

For any x ∈ Ux0 , we will write τx0,p(x) : Ex0 → L
p
x ⊗ Ex for the associated

linear map in the fibers.
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Let gx0 = κ
∗
x0
g be the Riemannian metric on B(0, c) induced by the

Riemannian metric g on X. We introduce a map

T ∗
x0,p : C

∞(X,Lp ⊗ E) → C∞(B(0, c), Ex0),

defined for u ∈ C∞(X,Lp ⊗ E) by

(2.9) T ∗
x0,pu(Z) = |gx0(Z)|1/4τ−1

x0,p(κx0(Z))[u(κx0(Z))], Z ∈ B(0, c).

Consider the differential operator H
(x0)
p = T ∗

x0,p ◦Hp ◦ (T ∗
x0,p)

−1 acting on
C∞(B(0, c), Ex0). It can be written as

H(x0)
p = |gx0(Z)|1/4τ∗x0,p ◦Hp ◦ (τ∗x0,p)

−1|gx0(Z)|−1/4.

Using the standard formula for the Bochner Laplacian in local coordinates,
one can write

(2.10) τ∗x0,p ◦Hp ◦ (τ∗x0,p)
−1

= −1

p

2n∑

ℓ,m=1

gℓmx0
∇Lp⊗E

eℓ
∇Lp⊗E

em +
1

p

2n∑

ℓ=1

Γℓ∇Lp⊗E
eℓ

+ Vx0 ,

where {ej} is the standard base in R
2n, gℓmx0

is the inverse of the ma-

trix of gx0 , Vx0 = τE∗
x0

◦ V ◦ (τE∗
x0

)−1 ∈ C∞(B(0, c),End(Ex0)) and Γℓ ∈
C∞(B(0, c)), ℓ = 1, . . . , 2n, are some functions. If we denote by ΓE ∈
C∞(T (B(0, c)),End(Ex0)) the connection one-form for the connection ∇E,
we can write

∇Lp⊗E
v = ∇(x0)

p,v + ΓE(v), v ∈ T (B(0, c)) = B(0, c)× R
2n.

where the connection ∇(x0)
p is given by (1.4).

Then we have

|gx0 |1/4∇Lp⊗E
v |gx0 |−1/4 = ∇(x0)

p,v + ΓE(v) − 1

4
v(ln |gx0 |).

It follows that

(2.11) H(x0)
p = −1

p

2n∑

ℓ,m=1

gℓmx0
∇(x0)

p,eℓ
∇(x0)

p,em +
1

p

2n∑

ℓ=1

Fℓ,x0∇(x0)
p,eℓ

+ Vx0 +
1

p
Gx0

with some Fℓ,x0 , Gx0 ∈ C∞(B(0, c),End(Ex0)), uniformly bounded on x0.
By (2.11), it follows that

(2.12) H(x0)
p −H(x0)

p = −1

p

2n∑

ℓ,m=1

(gℓmx0
− δℓm)∇(x0)

p,eℓ
∇(x0)

p,em

+
1

p

2n∑

ℓ=1

Fℓ,x0∇(x0)
p,eℓ

+ Vx0 − Vx0(0) +
1

p
Gx0 .

By (2.6), we have gℓmx0
(Z) = δℓm, ℓ,m = 1, . . . , 2n.
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2.4. Norm estimates. We recall some norm estimates for the model op-
erator proved in [17, Section 2.3]. We will denote by ‖ · ‖ the L2-norm in

C∞
c (Tx0X,Ex0). We recall that ∇(x0)

p stands for the connection on the triv-

ial line bundle Lp
0 ⊗ E0 given by (1.4) and ∆

(x0)
p for the Bochner Laplacian

on C∞
c (Tx0X,L

p
0 ⊗E0) ∼= C∞

c (Tx0X,Ex0) associated with this connection.

Denote by R
(x0)
p (λ) :=

(
H(x0)

p − λ
)−1

, λ 6∈ Σx0 , the resolvent of the

operator H(x0)
p . It satisfies the estimate

(2.13)
∥∥∥R(x0)

p (λ)
∥∥∥ ≤ d(λ,Σx0)

−1, λ 6∈ Σx0 ,

where ‖·‖ denotes the operator norm for the L2-norms and d(λ,Σx0) denotes
the distance from λ to Σx0 . Moreover, for any K > 0, there exist C1 > 0
and C2 > 0 such that for any λ 6∈ Σx0 , |λ| < K,

∥∥∥∥
1√
p
∇(x0)

p R(x0)
p (λ)

∥∥∥∥ ≤ C1d(λ,Σx0)
−1,

2n∑

k,ℓ=1

∥∥∥∥
1

p
∇(x0)

p,ek
∇(x0)

p,eℓ
R(x0)

p (λ)

∥∥∥∥ ≤ C2d(λ,Σx0)
−1,

where {ej : j = 1, . . . , 2n} stands for the fixed orthonormal base in Tx0X.
As consequences, we have for any u ∈ C∞

c (Tx0X,Ex0)

(2.14) ‖u‖ ≤ d(λ,Σx0)
−1

∥∥∥
(
H(x0)

p − λ
)
u
∥∥∥ , λ 6∈ Σx0 .

(2.15)

∥∥∥∥
1√
p
∇(x0)

p u

∥∥∥∥

≤ C1d(λ,Σx0)
−1

∥∥∥
(
H(x0)

p − λ
)
u
∥∥∥ , λ 6∈ Σx0 , |λ| < K.

(2.16)

2n∑

k,ℓ=1

∥∥∥∥
1

p
∇(x0)

p,ek
∇(x0)

p,eℓ
u

∥∥∥∥

≤ C2d(λ,Σx0)
−1

∥∥∥
(
H(x0)

p − λ
)
u
∥∥∥ , λ 6∈ Σx0 , |λ| < K.

2.5. Special covers. Finally, we need some special covers by coordinates
charts. For each p ∈ N, we consider the restrictions of the coordinates charts
κx0 to the ball B(0, p−1/4). One can choose an at most countable collection
of coordinate charts

κα,p := κxα,p

∣∣∣B(0,p−1/4) : B(0, p−1/4) → Uα,p := κα,p(B(0, p−1/4)) ⊂ X,

with 1 ≤ α ≤ Ip, Ip ∈ N∪{∞}, which cover Ω and for the cardinality of the
set Ip,α = {1 ≤ β ≤ Ip : Uα,p ∩ Uβ,p 6= ∅}, we have

#Ip,α ≤ K0, 1 ≤ α ≤ Ip,
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with the constant K0 independent of p. For simplicity of notation, we will
often omit p, writing κα, Uα etc.

Choose a family of smooth functions {ϕα = ϕα,p : R2n → [0; 1], 1 ≤ α ≤
Ip} supported on the ball B(0, p−1/4), which gives a partition of unity on X
subordinate to {Uα}:

Ip∑

α=1

(ϕα ◦ κ−1
α )2 ≡ 1 on Ω,

and satisfies the condition: for any γ ∈ Z
2n
+ , there exists Cγ > 0 such that

|∂γϕα(Z)| < Cγp
(1/4)|γ|, Z ∈ R

2n, 1 ≤ α ≤ Ip.

For every 1 ≤ α ≤ Ip, we denote by gα the induced Riemannian metric

gxα on B(0, p−1/4). We will use notation

T ∗
α = T ∗

α,p : C
∞(X,Lp ⊗ E) → C∞(B(0, p−1/4), Exα)

for the composition of the map T ∗
xα,p defined by (2.9) with the restriction

map C∞(B(0, c), Exα) → C∞(B(0, p−1/4), Exα).
We have

(2.17) ‖T ∗
αu‖2L2(B(0,p−1/4),Exα)

= ‖u‖2L2(Uα,Lp⊗E).

2.6. Proof of Proposition 2.1. Let [a, b] ⊂ R and Ω ⊂ X be an open
domain such that for any x ∈ Ω, Σx ∩ [a, b] = ∅. Let u ∈ C∞(X,Lp ⊗E) be
compactly supported in Ω and λ ∈ (a, b). We apply the standard localization
formula

(2.18) ‖(Hp−λ)u‖2 =

Ip∑

α=1

(
‖(Hp−λ)[(ϕα ◦κ−1

α )u]‖2−‖[Hp, ϕα ◦κ−1
α ]u‖2

)
.

Since u is compactly supported in Ω, we may assume that α belongs to
the set Ip,Ω = {α ∈ Ip : Uα,p ∩ Ω 6= ∅}. Generally speaking, for α ∈ Ip,Ω,
xα may not belong to Ω. We only know that d(xα,Ω) < p−1/4. Therefore,
there exists δ > 0 such that for any α ∈ Ip,Ω, we have

(2.19) Σxα ∩ [a− δp−1/4, b+ δp−1/4] = ∅.

For the first term in the right-hand side of (2.18), we get

‖(Hp − λ)[(ϕα ◦ κ−1
α )u]‖2 = ‖(H(xα)

p − λ)[ϕαT
∗
αu]‖2.

Since ϕα is supported on the ball B(0, p−1/4), we have

|gℓmα (Z)− δℓm| ≤ Cp−1/4, |Vα(Z)− Vα(0)| ≤ Cp−1/4,
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on the support of ϕα and therefore from (2.12) we get
∥∥∥(H(xα)

p −H(xα)
p )ϕαT

∗
αu

∥∥∥
L2(R2n,Exα)

≤C1p
−1/4

2n∑

ℓ,m=1

∥∥∥∥
1

p
∇(xα)

p,eℓ
∇(xα)

p,emϕαT
∗
αu

∥∥∥∥
L2(R2n,Exα)

+ C2p
−1/2

2n∑

ℓ=1

∥∥∥∥
1√
p
∇(xα)

p,eℓ
ϕαT

∗
αu

∥∥∥∥
L2(R2n,Exα)

+ C3p
−1/4 ‖ϕαT

∗
αu‖L2(R2n,Exα) .

Using (2.14), (2.15) and (2.16), for λ ∈ (a+ δp−1/4, b− δp−1/4), we have
∥∥∥(H(xα)

p −H(xα)
p )ϕαT

∗
αu

∥∥∥
L2(R2n,Exα)

≤ Cp−1/4d(λ,Σxα)
−1

∥∥∥
(
H(xα)

p − λ
)
ϕαT

∗
αu

∥∥∥
L2(R2n,Exα)

.

Using the last estimate and (2.14), we infer that

‖(H(xα)
p − λ)[ϕαT

∗
αu]‖L2(R2n,Exα)

≥
∥∥∥(H(xα)

p − λ)[ϕαT
∗
αu]

∥∥∥
L2(R2n,Exα)

−
∥∥∥(H(xα)

p −H(xα)
p )ϕαT

∗
αu

∥∥∥
L2(R2n,Exα)

≥(1− Cp−1/4d(λ,Σxα)
−1)‖(H(xα)

p − λ)[ϕαT
∗
αu]‖L2(R2n,Exα)

≥(d(λ,Σxα)− Cp−1/4)‖ϕαT
∗
αu‖L2(R2n,Exα)

.

Thus, for the first term in the right-hand side of (2.18), we get

(2.20) ‖(Hp − λ)[(ϕα ◦ κ−1
α )u]‖ ≥ (d(λ,Σxα)− Cp−1/4)‖(ϕα ◦ κ−1

α )u‖.
For the second term in the right-hand side of (2.18), we write

‖[Hp, ϕα ◦ κ−1
α ]u‖2 = ‖[H(xα)

p , ϕα]T
∗
αu‖2

Using (2.11), we compute the commutator [H
(xα)
p , ϕα]:

[H(xα)
p , ϕα] = −1

p

2n∑

ℓ,m=1

(2gℓmα eℓϕα∇(x0)
p,em + gℓmα eℓemϕα) +

1

p

2n∑

ℓ=1

Fℓ,αeℓϕα.

Since |∇ϕα| < Cp1/4, |∇2ϕα| < Cp1/2, we get

‖[H(xα)
p , ϕα]T

∗
αu‖L2(R2n,Exα) ≤

1

p

2n∑

ℓ,m=1

‖eℓϕα∇(xα)
p,emT

∗
αu‖L2(B(0,p−1/4),Exα)

+
1√
p
‖T ∗

αu‖L2(B(0,p−1/4),Exα).
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Using that (∇(xα)
p,em)

∗ = −∇(xα)
p,em and [∇(xα)

p,em, (eℓϕα)
2] = 2eℓϕαeℓemϕα, we

proceed as follows:

‖eℓϕα∇(xα)
p,emT

∗
αu‖2L2(B(0,p−1/4),Exα)

=(eℓϕα∇(xα)
p,emT

∗
αu, eℓϕα∇(xα)

p,emT
∗
αu)L2(B(0,p−1/4),Exα)

=− (∇(xα)
p,em(eℓϕα)

2∇(xα)
p,emT

∗
αu, T

∗
αu)L2(B(0,p−1/4),Exα)

=− ((eℓϕα)
2(∇(xα)

p,em)
2T ∗

αu, T
∗
αu)L2(B(0,p−1/4),Exα)

− 2(eℓϕαeℓemϕα∇(xα)
p,emT

∗
αu, T

∗
αu)L2(B(0,p−1/4),Exα)

For the first term, using the fact that |∇ϕα| < Cp1/4 and the equality

−
2n∑

m=1

(∇(xα)
p,em)

2 = ∆(xα) = p(H(xα)
p − V (xα)),

we get

2n∑

ℓ,m=1

((eℓϕα)
2(∇(xα)

p,em)
2T ∗

αu, T
∗
αu)L2(B(0,p−1/4),Exα)

=p
2n∑

ℓ=1

((eℓϕα)
2(H(xα)

p − V (xα))T
∗
αu, T

∗
αu)L2(B(0,p−1/4),Exα)

≤Cp3/2(‖(H(xα)
p − λ)T ∗

αu‖2L2(B(0,p−1/4),Exα)
+ ‖T ∗

αu‖2L2(B(0,p−1/4),Exα)
).

For the second term, using that |∇ϕα| < Cp1/4, |∇2ϕα| < Cp1/2, we get

∣∣∣∣∣∣

2n∑

ℓ,m=1

(2eℓϕαeℓemϕα∇(xα)
p,emT

∗
αu, T

∗
αu)L2(B(0,p−1/4),Exα)

∣∣∣∣∣∣

≤Cp1/2
2n∑

ℓ,m=1

‖eℓϕα∇(xα)
p,emT

∗
αu‖L2(B(0,p−1/4),Exα)‖T ∗

αu‖L2(B(0,p−1/4),Exα)

≤C(p−1/2
2n∑

ℓ,m=1

‖eℓϕα∇(xα)
p,emT

∗
αu‖2L2(B(0,p−1/4),Exα)

+ p3/2‖T ∗
αu‖2L2(B(0,p−1/4),Exα)

).

We conclude that

(1− Cp−1/2)

2n∑

ℓ,m=1

‖eℓϕα∇(xα)
p,emT

∗
αu‖2L2(B(0,p−1/4),Exα)

≤ Cp3/2(‖(H(xα)
p − λ)T ∗

αu‖2L2(B(0,p−1/4),Exα)
+ ‖T ∗

αu‖2L2(B(0,p−1/4),Exα)
),
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and, if p is large enough,

2n∑

ℓ,m=1

‖eℓϕα∇(xα)
p,emT

∗
αu‖L2(B(0,p−1/4),Exα)

≤ Cp3/4(‖(H(xα)
p − λ)T ∗

αu‖L2(B(0,p−1/4),Exα) + ‖T ∗
αu‖L2(B(0,p−1/4),Exα)).

It follows that

‖[H(xα)
p , ϕα]T

∗
αu‖L2(R2n,Exα)

≤ Cp−1/4(‖(H(xα)
p − λ)T ∗

αu‖L2(B(0,p−1/4),Exα) + ‖T ∗
αu‖L2(B(0,p−1/4),Exα)),

and

(2.21) ‖[Hp, ϕα ◦ κ−1
α ]u‖L2(R2n,Exα)

≤ Cp−1/4(‖(Hp − λ)[(ϕα ◦ κ−1
α )u]‖+ ‖(ϕα ◦ κ−1

α )u‖).

Combining (2.20) and (2.21), from (2.18), assuming d(λ,Σ) > Cp−1/4, we
get

‖(Hp − λ)u‖2 =
∑

α∈Ip,Ω

(
‖(Hp − λ)[(ϕα ◦ κ−1

α )u]‖2 − ‖[Hp, ϕα ◦ κ−1
α ]u‖2

)

≥
∑

α∈Ip,Ω

(
(1− C1p

−1/2)‖(Hp − λ)[(ϕα ◦ κ−1
α )u]‖2

− C2p
−1/2‖(ϕα ◦ κ−1

α )u‖2
)

≥
∑

α∈Ip,Ω

(
(d(λ,Σxα)−Cp−1/4)2 −C3p

−1/2)‖(ϕα ◦ κ−1
α )u‖2

≥
(
(d(λ,Σ)− Cp−1/4)2 − C3p

−1/2)‖u‖2.
If C3 ≤ 0, this completes the proof of Proposition 2.1. If C3 > 0, we

complete the proof as follows:

‖(Hp − λ)u‖2

≥
(
d(λ,Σ)− (C + C

1/2
3 )p−1/4

)(
d(λ,Σ)− (C − C

1/2
3 )p−1/4

)
‖u‖2

≥
(
d(λ,Σ)− (C + C

1/2
3 )p−1/4

)2‖u‖2

assuming d(λ,Σ) > (C + C
1/2
3 )p−1/4.

3. Eigensection estimates

This section is devoted to the proof of Theorem 1.3. The proof of Theorem
1.3 is obtained by a slight modification of the proof [8, Proposition 2.1].
Instead of resolvent estimates, we use norm estimates for the operator given
by Proposition 2.1.
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3.1. Weight functions. We will use some weight functions. As shown in
[16, Proposition 4.1] (see also [19, Section 3.1]), for any p ∈ N, there exists
a function Φp ∈ C∞(X), satisfying the following conditions:

(1) we have

(3.1) |Φp(x)− d(x,K[a,b])| <
1√
p
, x ∈ X, p ∈ N;

(2) for any k > 0, there exists Ck > 0 such that

(3.2)

(
1√
p

)k−1 ∣∣∣∇kΦp(x)
∣∣∣ < Ck, x ∈ X, p ∈ N.

Define a family of differential operators on C∞(X,Lp ⊗E) by

Hp,τ := eτ
√
pΦpHpe

−τ
√
pΦp , p ∈ N, τ ∈ R.(3.3)

An easy computation gives that

(3.4) Hp,τ = Hp +
τ√
p
Ap + τ2Bp,

where

(3.5) Ap = −2dΦp · ∇Lp⊗E +∆Φp, Bp = −|dΦp|2.
Here, for u ∈ C∞(X,Lp⊗E), dΦp ·∇Lp⊗Eu ∈ C∞(X,Lp⊗E) stands for the
pointwise inner product of dΦp ∈ C∞(X,T ∗X) and ∇Lp⊗Eu ∈ C∞(X,Lp ⊗
E ⊗ T ∗X) determined by the Riemannian metric.

3.2. Proof of Theorem 1.3. Suppose that up ∈ C∞(X,Lp⊗E)∩L2(X,Lp⊗
E) is such that

Hpup = λpup

with some p ∈ N and λp ∈ [a1, b1] ⊂ (a, b). Then, for vp = eτ
√
pΦpup, we

have

(3.6) Hp,τvp = λpvp.

Choose an arbitrary a2 and b2 such that a1 > a2 > a and b1 < b2 < b.
Let

Ω1 = Ω[a2,b2] = {x ∈ X : Σx ∩ [a2, b2] = ∅}.
This is an open subset of X, which contains Ω̄ = Ω[a,b]. Moreover, since B
and V are C∞-bounded, there exists ǫ > 0 such that Ω1,2ǫ := {x ∈ Ω1 :
d(x, ∂Ω1) > 2ǫ} contains Ω̄.

Now let φp ∈ C∞
b (X) be supported in Ω1, φp ≡ 1 on Ω1,ǫp−1/2 and

|∇φp| < C1p
1/2, |∇2φp| < C2p.

Then
Hp,τ (φpvp) = λpφpvp + [Hp,τ , φp]vp.

By Proposition 2.1, there exist C0 > 0 and p0 ∈ N, such that for any p > p0,
we have

(3.7) ‖(Hp − λp)φpvp‖ ≥ C0‖φpvp‖.
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Lemma 3.1. For any τ > 0 small enough, there exists C0 > 0, such that

for any p > p0, we have

(3.8) ‖(Hp,τ − λp)φpvp‖ ≥ C0‖φpvp‖.
Proof. We can write

(3.9) ‖(Hp,τ − λp)φpvp‖ ≥ ‖(Hp − λp)φpvp‖ − ‖(Hp,τ −Hp)φpvp‖.
By (3.4) and (3.5), we have

Hp;τ −Hp =
τ√
p
(−2dΦp · ∇Lp⊗E +∆Φp)− τ2|dΦp|2.

Using (3.2), we get

(3.10) ‖(Hp;τ−Hp)φpvp‖ ≤ C1
τ√
p
‖∇Lp⊗Eφpvp‖+C2τ‖φpvp‖+C3τ

2‖φpvp‖.

To estimate the first term in the right hand side of (3.10), we proceed as
follows:

‖∇Lp⊗Eφpvp‖2 =((∇Lp⊗E)∗∇Lp⊗Evp, vp) = (p(Hp − V )φpvp, φpvp)

=(p(Hp − λp)φpvp, φpvp) + p((λp − V )φpvp, φpvp)

≤p‖(Hp − λp)φpvp‖‖φpvp‖+ Cp‖φpvp‖2

≤ǫ2p‖(Hp − λp)φpvp‖2 + (C + ǫ−2)p‖φpvp‖2

with an arbitrary ǫ > 0 to be chosen later, which gives an estimate

1√
p
‖∇Lp⊗Eφpvp‖ ≤ ǫ‖(Hp − λp)φpvp‖+ (C + ǫ−1)‖φpvp‖.

Using this estimate, from (3.10), we get

‖(Hp;τ −Hp)φpvp‖
≤ C1τǫ‖(Hp − λp)φpvp‖+ (C2 + C3ǫ

−1)τ‖φpvp‖+ C4τ
2‖φpvp‖.

We choose ǫ such that C1τǫ =
1
2 :

‖(Hp;τ −Hp)φpvp‖ ≤ 1

2
‖(Hp − λp)φpvp‖+ C5τ‖φpvp‖+ C6τ

2‖φpvp‖.

Using (3.7), from this estimate and (3.9), we get

‖(Hp,τ − λp)φpvp‖ ≥ 1

2
‖(Hp − λp)φpvp‖ −C5τ‖φpvp‖ −C6τ

2‖φpvp‖

≥ 1

2
C0‖φpvp‖ − C5τ‖φpvp‖ − C6τ

2‖φpvp‖.

Taking τ small enough, we complete the proof. �

Let us fix τ as in Lemma 3.1. By (3.6), we have

(3.11) (Hp,τ − λp)φpvp = [Hp,τ , φp]vp.
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By (3.4) and (3.5), we compute

(3.12) [Hp,τ , φp] =
1

p
(−2dφp · ∇Lp⊗E +∆φp)−

2τ√
p
dΦp · dφp.

Since dφp and ∆φp are supported in Ω1 \ Ω1,ǫp−1/2 , we have

(3.13) ‖dφpvp‖ ≤ Cp1/2‖ψpvp‖, ‖∆φp vp‖ ≤ Cp‖ψpvp‖,
where ψp ∈ C∞

b (X) is supported inX\Ω1,2ǫp−1/2 and ψp ≡ 1 onX\Ω1,ǫp−1/2 ,

in particular on suppdφp ⊂ Ω1 \Ω1,ǫp−1/2 .

Therefore, by (3.12) and (3.13), we get

(3.14) ‖[Hp,τ , φp]vp‖ ≤ 2

p
‖dφp · ∇Lp⊗Evp‖+ C2‖ψpvp‖.

Now we need an estimate for ‖dφp · ∇Lp⊗Evp‖, which is given by the
following lemma.

Lemma 3.2. We have

‖dφp · ∇Lp⊗Evp‖ ≤ Cp‖ψpvp‖.
The proof of this lemma will be given in Section 3.3. First, we complete

the proof of Theorem 1.3.
By (3.14) and Lemma 3.2, we infer that

‖[Hp,τ , φp]vp‖ ≤ C1‖ψpvp‖.
From this estimate, taking into account (3.7) and (3.12), we get

‖φpvp‖ ≤ C1‖ψpvp‖.
Now we proceed as follows:

∫

Ω
e2τ

√
pΦp(x)|up(x)|2dx ≤

∫

1,Ω
ǫp−1/2

e2τ
√
pΦp(x)|up(x)|2dx

= ‖vp‖2L2(Ω
1,ǫp−1/2 )

≤ ‖φpvp‖2 ≤ C2
1‖ψpvp‖2 = C2

1‖ψpvp‖2L2(X\Ω
1,2ǫp−1/2 )

≤ C2
1‖vp‖2L2(X\Ω

1,2ǫp−1/2 )
= C2

1

∫

X\Ω
1,2ǫp−1/2

e2τ
√
pΦp(x)|up(x)|2dx ≤ C2

1 ,

since Φp = 0 on X \Ω1,2ǫp−1/2 ⊂ X \Ω, that completes the proof of Theorem
1.3.

3.3. Proof of Lemma 3.2. As in Section 2.3, we choose an at most count-
able collection of coordinate charts (with p = 1)

κα := κxα

∣∣
B(0,c) : B(0, c) → Uα := κα(B(0, c)) ⊂ X,

with 1 ≤ α ≤ I, I ∈ N ∪ {∞}, which cover Ω and for the cardinality of the
set Iα = {1 ≤ β ≤ I : Uα ∩ Uβ 6= ∅}, we have

(3.15) #Iα ≤ K0, 1 ≤ α ≤ I.
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Choose a family of smooth functions {ϕα : R
2n → [0; 1], 1 ≤ α ≤ I}

supported on the ball B(0, c), which gives a partition of unity subordinate
to {Uα}:

I∑

α=1

(ϕα ◦ κ−1
α )2 ≡ 1 on Ω,

and satisfies the condition: for any γ ∈ Z
2n
+ , there exists Cγ > 0 such that

(3.16) |∂γϕα(Z)| < Cγ , Z ∈ R
2n, 1 ≤ α ≤ I.

Recall the localization formula

‖Pu‖2 =

I∑

α=1

‖P [(ϕα ◦ κ−1
α )u]‖2 −

I∑

α=1

‖[P,ϕα ◦ κ−1
α ]u‖2,

which gives

(3.17) ‖dφp · ∇Lp⊗Evp‖2 ≤
I∑

α=1

‖dφp · ∇Lp⊗E [(ϕα ◦ κ−1
α )vp]‖2.

For any α, 1 ≤ α ≤ I, choose a local orthonormal frame (e
(α)
1 , . . . , e

(α)
2n ) in

TX defined on Uα, which is C∞-bounded in α. For simplicity of notation,
we denote u = (ϕα ◦ κ−1

α )vp ∈ C∞
c (Uα) and will omit α, writing ej instead

of e
(α)
j . We get

dφp · ∇Lp⊗Eu =

2n∑

j=1

ejφp∇Lp⊗E
ej u =

2n∑

j=1

∇Lp⊗E
ej [(ejφp)u]−

2n∑

j=1

(ejejφp)u

and, therefore, by (3.13), we have

(3.18)

‖dφp · ∇Lp⊗Eu‖2 ≤C1

2n∑

j=1

‖∇Lp⊗E
ej [(ejφp)u]‖2 + C2p

2‖ψpu‖2

≤C1

2n∑

j,k=1

‖∇Lp⊗E
ek

[(ejφp)u]‖2 + C2p
2‖ψpu‖2

=C1

2n∑

j=1

‖∇Lp⊗E [(ejφp)u]‖2 + C2p
2‖ψpu‖2.

By (3.16), all the constants here and below can be taken to be independent
of α.

Now we apply the formula

‖P (χu)‖2 = ℜ(Pu, Pχ2u) + ‖[P, χ]u‖2.
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For any j = 1, 2, . . . , 2n, using the fact that [∇Lp⊗E
ek

, ejφp] = ekejφp and
(3.13), we get

‖∇Lp⊗E [(ejφp)u]‖2 =
2n∑

k=1

‖∇Lp⊗E
ek

[(ejφp)u]‖2

=
2n∑

k=1

ℜ(∇Lp⊗E
ek

u,∇Lp⊗E
ek

[(ejφp)
2u]) + ‖(ekejφp)u‖2

≤
2n∑

k=1

ℜ((∇Lp⊗E
ek

)∗∇Lp⊗E
ek

u, (ejφp)
2u) + C3p

2‖ψpu‖2.

The operator Hp can be written as

Hp =
1

p
(
2n∑

k=1

(∇Lp⊗E
ek

)∗∇Lp⊗E
ek

−∇Lp⊗E∑2n
k=1 ∇ek

ek
) + V.

Therefore, we proceed as follows:

(3.19) ‖∇Lp⊗E [(ejφp)u]‖2

≤ pℜ(Hpu, (ejφp)
2u) +Cℜ(∇Lp⊗E∑2n

k=1 ∇ek
ek
u, (ejφp)

2u) + C3p
2‖ψpu‖2.

By (3.4) and (3.5), we have

(Hpu, (ejφp)
2u) =

= ((Hp,τ +
τ√
p
(2dΦp · ∇Lp⊗E −∆Φp) + τ2|dΦp|2)u, (ejφp)2u).

Therefore, for the first term in the right hand side of (3.19), we get

(3.20) |ℜ(Hpu, (ejφp)
2u)| ≤ |(Hp,τu, (ejφp)

2u)|

+
C1√
p
(dΦp · ∇Lp⊗Eu, (ejφp)

2u) + C2p‖ψpu‖2.

For the first term in the right hand side of (3.20), we recall that u =
(ϕα ◦ κ−1

α )vp and use (3.6):

(3.21) (Hp,τu, (ejφp)
2u) = (Hp,τ (ϕα ◦ κ−1

α )vp, (ejφp)
2u)

= λp‖(ejφp)u‖2 + ([Hp,τ , ϕα ◦ κ−1
α ]vp, (ejφp)

2u)

≤ ([Hp,τ , ϕα ◦ κ−1
α ]vp, (ejφp)

2u) + Cp‖ψpu‖2.
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Using the formula for the commutator [Hp,τ , ϕα ◦ κ−1
α ] (cf. (3.12)), we get

([Hp,τ , ϕα ◦ κ−1
α ]vp, (ejφp)

2u)

=
1

p
((−2d(ϕα ◦ κ−1

α ) · ∇Lp⊗E +∆(ϕα ◦ κ−1
α ))vp, (ejφp)

2u)

− 2τ√
p
(dΦp · d(ϕα ◦ κ−1

α )vp, (ejφp)
2u).

By (3.13), it follows that

(3.22) |([Hp,τ , ϕα ◦ κ−1
α ]vp, (ejφp)

2u)|

≤ 2

p
|(d(ϕα ◦ κ−1

α ) · ∇Lp⊗Evp, (ejφp)
2u)|+ C

√
p‖ψpvp‖L2(Uα)‖ψpu‖.

Here ψpvp is not supported in Uα, but, since d(ϕα ◦κ−1
α ) is supported in Uα,

we can put the integration over Uα.
For the first term in the right hand side of (3.22), we proceed as follows:

(d(ϕα ◦ κ−1
α ) · ∇Lp⊗Evp, (ejφp)

2u)

=

2n∑

k=1

(ek(ϕα ◦ κ−1
α )∇Lp⊗E

ek
vp, (ejφp)

2u)

=

2n∑

k=1

(ek(ϕα ◦ κ−1
α )(ejφp)∇Lp⊗E

ek
vp, (ejφp)u)

=

2n∑

k=1

(ek(ϕα ◦ κ−1
α )(ejφp)vp, (∇Lp⊗E

ek
)∗[(ejφp)u])

−
2n∑

k=1

(ek[(ek(ϕα ◦ κ−1
α )(ejφp)]vp, (ejφp)u).

Now we use the fact that (∇Lp⊗E
ek

)∗ = −∇Lp⊗E
ek

+ ck,p, where ck,p is an
endomorphism of Lp ⊗E over Uα such that |ck,p| = O(p) and conclude that

|(d(ϕα ◦ κ−1
α ) · ∇Lp⊗Evp, (ejφp)

2u)|
≤ Cp1/2‖ψpu‖‖∇Lp⊗E[(ejφp)u]) + C1p

2‖ψpvp‖L2(Uα)‖ψpu‖.

Plugging this estimate into (3.22), we get

(3.23) |([Hp,τ , ϕα ◦ κ−1
α ]vp, (ejφp)

2u)|

≤ C√
p
‖ψpu‖‖∇Lp⊗E [(ejφp)u]) + Cp‖ψpvp‖L2(Uα)‖ψpu‖.
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Combining (3.21) and (3.23), we get an estimate for the first term in the
right hand side of (3.20),

(3.24) |(Hp,τu, (ejφp)
2u)|

≤ C√
p
‖ψpu‖‖∇Lp⊗E[(ejφp)u]‖+ Cp‖ψpvp‖L2(Uα)‖ψpu‖.

For the second term in the right hand side of (3.20), we proceed as follows:

(dΦp · ∇Lp⊗Eu, (ejφp)
2u) = ((ejφp)

2n∑

k=1

ekΦp∇Lp⊗E
ek

u, (ejφp)u)

= (

2n∑

k=1

ekΦp∇Lp⊗E
ek

[(ejφp)u], (ejφp)u)− (

2n∑

k=1

ekΦp(ekejφp)u, (ejφp)u).

Therefore, we get

(3.25) |(dΦp · ∇Lp⊗Eu, (ejφp)
2u)|

≤ C1p
1/2‖∇Lp⊗E[(ejφp)u]‖‖ψpu‖+ C2p

3/2‖ψpu‖2.
Plugging (3.24) and (3.25) into (3.20), we get an estimate for the first term
in the right hand side of (3.19)

(3.26) |ℜ(Hpu, (ejφp)
2u)|

≤ C1‖∇Lp⊗E(ejφp)u‖‖ψpu‖+ C2p‖ψpvp‖L2(Uα)‖ψpu‖.
For the second term in the right hand side of (3.19), we write

(∇Lp⊗E∑
k ∇ek

ek
u, (ejφp)

2u) = ((ejφp)∇Lp⊗E∑
k ∇ek

ek
u, (ejφp)u)

= (∇Lp⊗E∑
k ∇ek

ek
[(ejφp)u], (ejφp)u) + ((

∑

k

∇ekek)ejφp)u, (ejφp)u),

that gives an estimate

(3.27) |ℜ(∇Lp⊗E∑
k ∇ek

ek
u, (ejφp)

2u)|

≤ C1p
1/2‖∇Lp⊗E[(ejφp)u]‖‖ψpu‖+ C2p

3/2‖ψpu‖2.
Plugging (3.26) and (3.27) into (3.19), we get an estimate

‖∇Lp⊗E[(ejφp)u]‖2 ≤ C1p‖∇Lp⊗E[(ejφp)u]‖‖ψpu‖+C2p
2‖ψpvp‖L2(Uα)‖ψpu‖.

Now we proceed as follows:

‖∇Lp⊗E [(ejφp)u]‖2 ≤C1

2
(ǫ−1p2‖ψpu‖2 + ǫ‖∇Lp⊗E [(ejφp)u]‖2)

+ C2p
2‖ψpvp‖L2(Uα)‖ψpu‖.

Taking C1
2 ǫ <

1
2 and using the fact that ‖ψpu‖ ≤ ‖ψpvp‖L2(Uα), we infer that

‖∇Lp⊗E [(ejφp)u]‖ ≤ Cp‖ψpvp‖L2(Uα).
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Now we use (3.18) and recall that u = (ϕα ◦ κ−1
α )vp. We get

‖dφp · ∇Lp⊗E[(ϕα ◦ κ−1
α )vp]‖ ≤ Cp‖ψpvp‖L2(Uα).

By (3.17), it follows that

‖dφp · ∇Lp⊗Evp‖2 ≤ C2p2
I∑

α=1

‖ψpvp‖2L2(Uα)
.

By (3.15), we have the estimate

I∑

α=1

‖ψpvp‖2L2(Uα)
≤ K0‖ψpvp‖2,

which completes the proof of Lemma 3.2.
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1169–1197

[7] Dombrowski, N., Hislop, P.D., Soccorsi, E. Edge currents and eigenvalue estimates
for magnetic barrier Schrödinger operators. Asymp. Anal. 89:3–4 (2014), 331–363

[8] Fahs, R., Le Treust, L., Raymond, N., Vu Ngoc, S. Boundary states of the Robin
magnetic Laplacian, preprint arXiv:2308.16817.

[9] Fournais, S., Helffer, B., Kachmar, A., Raymond, N. Effective operators on an at-
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[10] Fröhlich, J., Graf, G. M., Walcher, J.: On the extended nature of edge states of

quantum Hall Hamiltonians. Ann. Henri Poincaré 1 (2000), 405–442
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