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EXPONENTIAL LOCALIZATION FOR EIGENSECTIONS
OF THE BOCHNER-SCHRODINGER OPERATOR

YURI A. KORDYUKOV

ABSTRACT. We study asymptotic spectral properties of the Bochner-
Schrédinger operator H, = %ALF@E + V on high tensor powers of a
Hermitian line bundle L twisted by a Hermitian vector bundle £ on a
Riemannian manifold X of bounded geometry under assumption that
the curvature form of L is non-degenerate. At an arbitrary point xo of
X the operator H, can be approximated by a model operator ’H(ZO),
which is a Schrédinger operator with constant magnetic field. For large
p, the spectrum of H, asymptotically coincides, up to order p71/47 with
the union of the spectra of the model operators H(®0) over X. We show
that, if the union of the spectra of H(*®) over the complement of a
compact subset of X has a gap, then the spectrum of H, in the gap is
discrete and the corresponding eigensections decay exponentially away
the compact subset.

1. INTRODUCTION

1.1. The setting. Let (X, g) be a smooth Riemannian manifold of dimen-
sion d without boundary, (L, h") a Hermitian line bundle on X with a Her-
mitian connection VX and (E, h*) a Hermitian vector bundle of rank r on
X with a Hermitian connection V. We suppose that (X, g) is a manifold
of bounded geometry and L and F have bounded geometry. This means
that the curvatures R7X, RY and R¥ of the Levi-Civita connection V7,
connections V¥ and V¥, respectively, and their derivatives of any order are
uniformly bounded on X in the norm induced by g, h and h¥, and the
injectivity radius rx of (X, g) is positive.
For any p € N, let LP := L®P be the pth tensor power of L and let

VEOE . 0%(X, [P ® F) » C®(X, T*X ® L’ ® E)

be the Hermitian connection on LP ® E induced by V¥ and V. Consider
the induced Bochner Laplacian A¥"®F acting on C®(X, LP ® E) by

(1.1) ALRE — (ylrel)y gLk

where (VI'®F)" . C(X,T*X @ LP ® E) — C®(X,LP ® E) is the formal
adjoint of VE®F Let V € C*°(X,End(F)) be a self-adjoint endomorphism
of E. We assume that V and its derivatives of any order are uniformly
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bounded on X in the norm induced by ¢ and h¥. We study the Bochner-
Schrodinger operator Hy acting on C*°(X, LP @ E) by

1
Hp: —ALP@E—FV
p

The operator H, is self-adjoint in the Hilbert space L?(X,LP ® E) with
domain H?(X,LP ® E), the second Sobolev space, see [16] 19]. We denote
by o(H,) its spectrum in L*(X, LP ® E).

Consider the real-valued closed 2-form B (the magnetic field) given by

(1.2) B =iRL.

We assume that B is non-degenerate. Thus, X is a symplectic manifold. In
particular, its dimension is even, d = 2n, n € N.
For z € X, let B, : T, X — T, X be the skew-adjoint operator such that

B.(u,v) = g(Byu,v), wu,veT,X.

The operator |B,| := (B:B,)"/? : T,X — T,X is a positive self-adjoint
operator. We assume that it is uniformly positive on X:

(1.3) b :== mlg)f( |Bz| > 0.

1.2. Main results. For an arbitrary o € X, the model operator at zg is a
second order differential operator H}(}wo), acting on C*°(T, X, E,,), which is
obtained from the operator H), by freezing coefficients at xg. This operator
was introduced by Demailly [4] [5].

Consider the trivial Hermitian line bundle Ly over T,,X and the trivial
Hermitian vector bundle Ey over T, X with the fiber E,,. We introduce
the connection

1.4 v(#0) = g — jph(*o)
p

acting on C*°(Ty, X, Lf ® Ey) = C°(T,, X, Ey,), with the connection one-
form (o) € QY(T,, X) given by

1
(1'5) ei(}mo)(w) - §Bmo ('Uyw)’ v E TmoXy w e Tv(TmoX) = Ton'

The curvature of VI(,mO) is constant: df(*0) = B, . Denote by AS”O) the asso-

ciated Bochner Laplacian. The model operator ”H;E,mo) acting on C*°(T,, X, Ey,)

is defined as

1
(1.6) H(w0) = EAI(,“) + V(o).

D
Since By, is skew-adjoint, its eigenvalues have the form ia;(xg),j =
1,...,n, with a;(z9) > 0. By [@3)), a;(xz¢) > by > 0 for any 2y € X and
j=1,...,n. Denote by V,(z¢),p = 1,...,r, the eigenvalues of V(z). It is
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well-known that the spectrum of %éxo) is independent of p and consists of

eigenvalues of infinite multiplicity:
(1.7) (M) =5 == {Axp(mo) t k€2l p=1,...,1},
where, for k = (ki,--- ,k,) € Z, p=1,...,7 and z9 € X,

n

(1.8) Asepu(wo) =Y (2k; + Daj(xo) + V(o).

j=1
In particular, the lowest eigenvalue of ’H,(,gco) is

Ao(zg) = Z aj(zo) + mgn V(o).
j=1

Let ¥ be the union of the spectra of the model operators:
(1.9) Y= % ={Akpule) tkeZlu=1,....rzeX}.
rzeX

Theorem 1.1 ([I7]). For any K > 0, there exists ¢ > 0 such that for any

p € N the spectrum of Hy, in the interval [0, K| is contained in the ep /A
neighborhood of %.
When X is compact, a stronger result, with p~/2 instead of p~/* was

proved by L. Charles [2]. This estimate seems to be optimal.
For an interval [a, b], let K|, be the closed subset of X given by

IC[GJ,] ={zeX :X,Na,b] # 0}

In other words, » € K,y iff Ay ,(x) € [a,b] for some k € Z7 and p =
1,...,rank(F).

By [18, Theorem 1.5] (see also [2, Theorem 1.3]), if xo & K[, 4, then the
Schwartz kernel of the spectral projection Ej, ;) of the operator H;, associated
with [a, b] satisfies

(110) ‘E[a,b](x07$0)‘ = O(p_oo)v p — Q.

By this theorem, if zg & K, ), then, for any sequence {u, € C*(X, L’ ®
E),p € N} of eigenfunctions of H, with the corresponding eigenvalues )\, in
[a, b] for any p € N, we have

[up(zo)| = O(p™™), p— o0

In other words, the essential support of the sequence {u,,p € N} is contained
in IC[a,b]'
The main results of the paper are the following two theorems.

Theorem 1.2. Assume that, for an interval [a,b] C R, the set K,y is
compact. Then there exists € > 0 such that for any p € N the spectrum of
H, in[a+ ep™ "4 b — ep™'/4] is discrete.
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As in Theorem I the order p~/* doesn’t seem to be optimal and,
probably, can be improved.

Theorem 1.3. Under the assumptions of Theorem [L3, for any [a1,b1] C
(a,b), there exist pg € N and C,c > 0 such that, for any u, € C>*(X,LP ®
E)NL*(X,LP ® E) such that

Hypup = Apup

with p > py and A\, € [a1,b1], we have
| exovmekion)u,(@)Pde < Ol

1.3. Discussion. Our study is partly motivated by the spectral theory of
magnetic Schrodinger operators with magnetic walls. The magnetic wall is
usually modeled by the magnetic field, whose intensity has a fast transition
along a hypersurface (an interface). A typical example was introduced by
Iwatsuka in [I5]. Iwatsuka model is given by the magnetic field in R? having
positive bounded intensity b(z1,z2) = b(z2) that converges to two distinct
constants b4 as 9 — +00. The extreme version of this model is the magnetic
field with intensity b— > 0 for zo < 0 and by > b_ for zo > 0, with
by — b_ large enough. Since [15], there is an extensive literature devoted to
the study of this class of models and its generalizations (see, for instance,
[T, 6 [7, @9, 20] and references therein). Closely related models are magnetic
quantum Hall systems described by the magnetic Schrédinger operator with
Dirichlet boundary conditions in a compact domain of the Euclidean space
(this can be treated as a hard wall, or as an infinite electric potential outside
of the domain; see, for instance, [3| [0, 1I] and references therein).

The analysis of such models distinguishes between edge and bulk behavior
for the states associated with the Hamiltonian. We are interested in the edge
states. These states are localized near the interface and generate a current
along the interface, classically described by the so-called snake orbits, first
introduced in [22]. The edge states exist as soon as the energy lies strictly
in a gap of the set of the Landau levels. If the interface is compact, this
part of the spectrum is discrete.

The existence of the edge states was proved in [3] for a constant mag-
netic field in a half-plane, in [I0] for a constant magnetic field in some
domains in the Euclidean plane with Dirichlet boundary conditions and in
[0, [7] for Iwatsuka models. In [II], the authors studied the edge states
for the magnetic Schrodinger operator with Dirichlet boundary conditions
in a simply-connected domain with compact boundary. In [12], the study
of the edge states obtained for Iwatsuka models extended to the case of a
general regular curve. Here the localization and propagation properties of
the edge states are investigated. This study was significantly improved in
[8], where the authors consider the Robin Laplacian on a smooth bounded
two-dimensional domain in the presence of a constant magnetic field and
obtain a uniform description of the spectrum located between the Landau
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levels in the semiclassical limit. In particular, they established exponential
localization near the boundary of the corresponding edge states, which was
not considered in [I11 [12].

In our paper, we address the question of exponential localization in a
very general setting of the Bochner-Schrodinger operator on a manifold of
bounded geometry. In the above notation, one can consider the set K,y
as an interface. Unlike [I2], the transition of the magnetic field along the
interface is not fast (we hope to discuss this case elsewhere), but the mag-
netic field is not constant. Instead of the set of Landau levels associated
with limiting values of the intensity of the magnetic field at infinity as in
the Iwatsuka model, we are dealing with the set of local Landau levels >,
assigned to each point x of the manifold. Our choice of the interface en-
sures that the set of local Landau levels in the bulk has a gap (a,b). From
this point of view, we prove that if the interface gy is compact, then the
spectrum of the operator in [a,b] is discrete, and the corresponding eigen-
sections are edge states. Moreover, they are exponentially localized away
the interface K ).

Asymptotic localization of eigenfunctions of the magnetic Schrédinger
operator associated with eigenvalues below the bottom of the essential spec-
trum usually follows from Agmon type estimates. But when we consider
eigenvalues in gaps of the essential spectrum, such a method doesn’t work.
Instead, we use some weighted norm estimates for the operator. This is a
slight modification of the method used in [17) 18] (see also the references
therein) to prove exponential localization away the diagonal for Schwartz
kernels of various functions of the Bochner-Schrédinger operator and in [8] to
prove exponential localization of the boundary states of the Robin magnetic
Laplacian away the boundary, where weighted estimates for the resolvent
have been used.

The paper is organized as follows. In Section B, we prove Theorem
In Section B, we prove Theorem

2. DISCRETENESS OF THE SPECTRUM
This section is devoted to the proof of Theorem

2.1. Lower bound for the norm. The following proposition plays a cru-
cial role both in the proof of Theorem and in the proof of Theorem
L3l

Proposition 2.1. Let [a,b] C R be a bounded interval and
Q[a,b} =X\ ’C[a,b} ={reX:3,N[a,bl =0}

Then there exist C' > 0 and py € N such that, for any A € (a,b), for any
p > po and for any u € C*(X,LP ® E) compactly supported in 4y, we
have

I(Hy = AYull > (d(A,Z) = Cp~ V) ull,
where d(\,X) stands for the distance from A to 3.
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Remark 1. In case Q) = X, we get a new proof of Theorem [L11

The proof of Proposition 2.1l will be given in Section First, we com-
plete the proof of Theorem

2.2. Proof of Theorem[I.2l Theorem [[2lfollows immediately from Propo-
sition 2] and the following manifold version of [2I, Lemma 2.1].

Let (£, h%) be a Hermitian vector bundle on X with a Hermitian connec-
tion V. We suppose that € has bounded geometry. Let V € C£°(X, End(&))
be a self-adjoint endomorphism. Consider the Bochner-Schrodinger operator
H acting on C*(X, &) by

H=A®+V.
Lemma 2.2. Let A € R. Suppose that there exist 6 > 0 and a compact
subset K C X such that
(2.1) I(H = Aul| = 6|ull
for any u € H*(X,&) supported in X \ K. Then \ & oess(H).
Proof. On the contrary, assume that A\ € oess(H). Then there exists is an

orthonormal sequence (uy,)ney in L2(X, €) such that u, € H*(X, &) for any
n € N and

(2.2) |(H = MNuy| — 0, n— oo.

There exists a sequence x,, € C°(X) such that 0 < x,,(x) < 1 for any
r € X, xm = 1 in a neighborhood of K and

C C
@] < S, [Axme)| < 5, wEX,

where ¢ > 0 is independent of m. Such a sequence can be easily constructed,
using a “smoothed distance” function d € C*°(X x X) (see, for instance,
[16, Proposition 4,1]), satisfying the following conditions:

(1) there is a constant r > 0 such that

‘J(ﬂj‘,y)—d($,y)‘ <7 x)Z/GXv

where d stands for the distance function on (X, g);

(2) for any k > 0, there exists C} > 0 such that, for any multi-index
with || = k,

‘afd(a:,y)‘ <Cp, xz,y€X,

where the derivatives are taken with respect to normal coordinates defined
by the exponential map at x.

Now we assume that K is contained in some open ball B(zg,r) C X of
radius 7 > 0 centered at xg € X. Take a function xy € C°(R) such that
0<x(t) <1foranyteR, x(t)=1if |[t| <r+~ and put

X(®) = X <%£Zv(x,xo)> Czex

It is easy to check that the sequence (., )men satisfies the desired conditions.
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Since
[H, Xm] = —2dxm - vg + AXm,
we get
c c
I il < SV | 4+ =S5 .

We can estimate || VEu,|| in the following way:

[VEun|* = (A%un, up) = (H = N, un) + (A = V)un, up)
< I(H = Nunl? + Cllunll?,
and, therefore,
IVEunl < I(H = Xunl| + Cllun]|-

This gives the estimate
C
(2.3) IH, xmlunll < —([(H = Aunll + [un])-

From the equality
(H - )‘)(1 - Xm)un - (1 - Xm)(H - )‘)un - [Ha Xm]uny

we infer that
1
[(H = A) (1 = xm)unl| < C([(H — MNun|| + EHunH)'

On the other hand, since 1 — x,, is supported in X \ K, by assumption, we
have

I(H = A)(1 = xm )t = 0[I(1 = Xm ) un |-
By ([22)), we conclude that for any € > 0 there exist m and N such that for
any n > N,

(2'4) H(l - Xm)unH <e.

Since
(H - A)(Xmun) = Xm(H - A)un + [H, Xm]um

by 22) and 23], the sequence (H — A\)(Xmun)nen is bounded in L?(X, &),

By ellipticity of H, it follows that the sequence (X, tn)nen is bounded in
H?(D, &), where D C X is a regular bounded domain, which contains the
support of y,,. Passing to a subsequence, we may assume that (X, un)nen
converges to some v € L?(X,E). By @4), for any n > N, |[Xmun| >
llunl — (1 — xm)un|| > 1 — €. and, therefore, ||v]| > 1 —e.

On the other hand, we have

||U||2 = nh_g;lo<Xmum Xmun+1>

= lim <un - (1 - Xm)umun—I—l - (1 - Xm)un+l>
n—o0

= lm (—((1 = Xm)Un, Unt1) — (Un, (1 = Xm)Uns1)
n—oo

+ <(1 - Xm)uny (1 - Xm)un+l>) < 2¢ + €.

We get a contradiction if we choose € > 0 small enough. U
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The rest of this section is devoted to the proof of Proposition 2.1 We
will use some constructions introduced in [I7], and, therefore, we will briefly
remind them, referring the interested reader to [I7] for more details.

2.3. Approximation by the model operator. We construct an approx-
imation of the operator H, by the model operator ’H;(,xo) in a sufficiently
small neighborhood of an arbitrary point xg.

First, we consider some special coordinates near zy. We choose an or-

thonormal base {e; : j =1,...,2n} in T,, X such that
(2.5)  Byyear—1 = ag(xo)esr, Bgoear = —ag(zo)eak—1, k=1,...,n.

Then, for any zg € X, there exists a coordinate chart s, : B(0,c) C R?" it
Uz, = #2,(B(0,¢)) C X defined on the ball B(0,c) of radius ¢ centered in
the origin in R?" with some ¢ > 0, independent of z, such that

(2.6) 2#20(0) = o, (Dsgy)o(e;) =€5, j=1,...,2n,

and »; B is a constant 2-form on B(0, c) given by

n
(2.7) (+:,B)z = > ar(r0)dZos—1 N dZy, 7 € B(0,c).
k=1
Here, by abuse of notation, we use the same notation {e; : j =1,...,2n}

for the standard base in R?".

Moreover, for every k > 0, there exists Cp > 0 such that, for any two
charts s, : B(0,¢) C R* 5 U, C X and s, : B(0,¢) CR™ S U,, € X
with Uy,NUg # 0, the map %;alo%mﬁ : %;61(U% NUz,) C R?" — R?" satisfies
the following condition: for any multiindex a with |a| < k

(2.8) 0% (52, o s) (@) < Cry, x € %;BI(U% NUg,) C R2",

The construction of sz, is essentially the proof of the Darboux Lemma
based on the well-known Moser argument. We refer the reader to [I7, Ap-
pendix] for more details.

It is easy to see that there exists a trivialization of the Hermitian line
bundle L over Uy,:

TILO 1 Ugy x C SL
such that the connection one-form of V£ in this trivialization coincides with

the one-form #(*) given by (IH). We also assume that there exists a trivi-
alization of the Hermitian bundle E over U,,:

Uz »

E =
Tro Upo X Eyy — E ‘Uro ,
These trivializations induce a trivialization of LP @ E over Uy,:
L B =
Toop = (Tay)P @ Tpo : Uny X Egy = P Q E |1, -

For any = € Uy, we will write 74, ,(z) : Bz, — LE ® E, for the associated
linear map in the fibers.
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Let g., = »;,9 be the Riemannian metric on B(0,c) induced by the
Riemannian metric ¢ on X. We introduce a map
:cop 1 C%(X, P @ E) — C™(B(0,¢), By, ),
defined for u € C*°(X, LP ® E) by
(2.9) T, pulZ) = |gag (D72 (20y (2) w520 (2))], - Z € B(O,0).

Consider the differential operator Hl(f =T v o Hyo (Ty )~! acting on
C*®(B(0,c), Ey,). It can be written as
H™) = |guy ()75, 0 Hy o (75, )~ a0 (2)] 72,

Using the standard formula for the Bochner Laplacian in local coordinates,
one can write

(2.10) 7, 0 H, o(l,O’p)_1

Zo,p

2n

1

— - § gV LeEyLIOE ; > TIVEEE LV,
Zm 1 —

where {e;} is the standard base in R?", gf;g” is the inverse of the ma-
trix of guy, Vio = 727 0 Voo (£~ € C*(B(0,¢),End(E,,)) and I'* €

Tag
C>(B(0,¢)), £ = 1,...,2n, are some functions. If we denote by I'F ¢
C>=(T(B(0,¢)), End(ExO)) the connection one-form for the connection V¥,
we can write

VP = Vi) + T (), v e T(B(0,¢) = B(0,¢) x R™".

where the connection vz(fo’ is given by (LA4]).
Then we have

_ - 1
920V O F gy | = VD) 4 T (v) = Ju(ingag ).
It follows that

1
(2.11) H{O = = Z gimv iy (o) 4~ ZFMOVZ(@ +vx0+2—9Gx0
Zm 1

with some Fy ,,, Gy, € C(B(0,c), End(Ey,,)), uniformly bounded on zy.
By (211)), it follows that

2n

1
(2.12) H{™) — Hr0) = - 3 (gl — 5w v )

P D€ " Pyem
fm=1

1
to ZFMO P6£+V1’O_V9€0(0)+Z_9Gx()'

By (2.4), we have gﬁz’"b(Z) = 5em,€,m =1,...,2n.
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2.4. Norm estimates. We recall some norm estimates for the model op-
erator proved in [I7, Section 2.3]. We will denote by || - || the L?-norm in

CX(Ty X, Eyy). We recall that Véxo) stands for the connection on the triv-
ial line bundle Lg ® Ey given by (L4) and AI(,mO) for the Bochner Laplacian
on C(Ty, X, L @ Ey) = C°(Ty X, Ey,) associated with this connection.
~1
Denote by Rgco)()\) = (7_[;:00) — )\> , A & X, the resolvent of the
(z0)

operator H, . It satisfies the estimate

(2.13) |REDO)]| < dO0Sag) L A ¢ B,
where |- || denotes the operator norm for the L2norms and d(), ¥,,) denotes

the distance from X to ¥;,. Moreover, for any K > 0, there exist C7 > 0
and Cy > 0 such that for any A € X, || < K,

Lvmo)R(mo)(A)'

—1
AL < C1d(A, Ta) 7

2n

1
Z _vgfggvl(?,ez) (xo H < Cad(A, 21‘0) )
ko1 1P

where {e; : j =1,...,2n} stands for the fixed orthonormal base in T, X.
As consequences, we have for any u € COO(TIOX ,Exp)

(2.14) [[ull < d(X, Ea0)™ H( )

zo-

(2.15) Viroy

|
< Crd(X, Sy )"t H (Hgm) - >\> u

s AL Y, A < K.

2n

1 X

(216) > |[=Vivio)y
k=1

< Cod(N, Epy) "t H (Hgm) - >\> |, A g, N < K.

2.5. Special covers. Finally, we need some special covers by coordinates
charts. For each p € N, we consider the restrictions of the coordinates charts
5, to the ball B(0, p~'/%). One can choose an at most countable collection
of coordinate charts

Ha,p *= Kza,p |BO,p—1/4) B(pr_1/4) — Ua,p = %a,p(B(Oap_1/4)) C X,
with 1 < a < I,,, I, € NU{oo}, which cover Q2 and for the cardinality of the
set Ipo ={1<B<1,:UypnUpg, # D}, we have

HT,, <Ky, 1<a<l,
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with the constant Ky independent of p. For simplicity of notation, we will
often omit p, writing s, U, etc.

Choose a family of smooth functions {p, = pap : R? — [0;1],1 < a <
I,,} supported on the ball B(0, p~ /%), which gives a partition of unity on X
subordinate to {U, }:

Ip
D (paos,')=1onQ,

a=1

and satisfies the condition: for any ~ € Zi", there exists C, > 0 such that
07 pa(2)] < C,pVPN Z e R 1 <a <,

For every 1 < o < I,, we denote by g, the induced Riemannian metric
gz, on B(0,p~1/*). We will use notation

ko ok, 0 o0 —1/4
Tp =Ty, : C(X,[’ ® E) — C™(B(0,p ", E,.)

«

for the composition of the map 7T , defined by ([3]) with the restriction
map C=(B(0,¢), E,,) — C(B(0,p~'/*), E,,).
We have

(2.17) ITaul 017,520 = Nilz2we Lrmy

2.6. Proof of Proposition 2.l Let [a,b] C R and Q© C X be an open
domain such that for any z € Q, ¥, N[a,b] = 0. Let u € C*°(X,LP ® E) be
compactly supported in Q and A € (a,b). We apply the standard localization
formula

Ip
(2.18) | (Hy = Nul® = Y (I(Hy = V(a0 Yl = [ Hy, 0o 0525 ull?).

a=1

Since u is compactly supported in €2, we may assume that a belongs to
the set Z, o = {a € I, : Uy N Q # 0}. Generally speaking, for « € 7, q,
T may not belong to Q. We only know that d(z4,Q) < p~/%. Therefore,
there exists 0 > 0 such that for any a € 7, o, we have

(2.19) Yoo Nla—0p~ Y4 b+ sp~ /4 = 0.
For the first term in the right-hand side of ([2.I8]), we get
1(Hp = M1(#a 0 225 Yl [P = II(HS) = M) [paTaulll.

1/4

Since ¢, is supported on the ball B(0,p~"/*), we have

)
g5 (Z) — 6| < Cp™V4, [Va(Z) — Va(0)] < Op Y4,
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on the support of ¢, and therefore from ([2.12]) we get

() = ) T

L2(R27l Ez )
<Cyp~ ' Z p,ez p,en)l‘PaT*u
Z m=1 L2 (R2n7Eiva)
+ Cap (%)cpaT;u
L2(R2n7Eza)

+ 03P_1/4 HQDaTauHLZ(RZ”,Exa) :
Using (Z14)), 2I7) and @I6), for X € (a + dp~ /4, b — 6p~1/*), we have

| (Ffe) = #f)) oo T

L2(R2" E,,)

< Cp VAN, 5, H( ~ ) ¢aTiu

L2(R?",E,,) :
Using the last estimate and (2.14]), we infer that
||(H;(>%) = NleaToulll 2@ E,.)

> || () = MlpaTiud|

L2 (RZ” Exa )

= || = 1 eu T

LQ(RQ"EM)
>(1— Cp V4N, 2, ) IIHE) = N paTiulll 2@ s,
>(d(\, Xz,) — CP—1/4)HﬁﬂaT&kuHLZ(RZn,Emy
Thus, for the first term in the right-hand side of ([2I8]), we get
(220)  [[(Hp — N(@a 0 25 Yulll = (AN, Sa,) = Cp™ ) (pa 0 325 ul -
For the second term in the right-hand side of ([2I8]), we write
1[Hps pa 0 65 Tull> = I[HS™), pa] Tul®

Using (ZI1), we compute the commutator [H},xa), Mk

1
[H( ) ()001 - - Z 29 erpaV D, 6,21 + ga efem(poc ]_9 Z Fé,aeégpa'
Zm 1 =

Since |Vqo| < Cp'/%, V24| < C’pl/2 we get

I, po)Tiull 2 (e, 5, ) < Z leca Ve Taull r2(p0 p-1/4),5,,.)
Zm 1

|
+ %HTauHL2(B(0,p*1/4),Eza)'
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Using that (V,(, ew)b)* = —v,(;’fg,i and [v},?gi, (e00a)?] = 2esp0etemPa, We
proceed as follows:
Hef@avgng;qu(B (0.p= V1), Ey,.)
=(eepa Vi) Thu, eé@avéxgleau)LQ(B(O,pfl/‘l),Eza)
= (V;(,,e,l(ewa) V;E;xéﬁ,)zT;U 13 u)LZ(B(O,p*1/4),Exa)
= — ((ee0a)* (V) 2 Tiu, Thu W) [2(B(0p~1/1),Es,)
- 2(egcpaegem<paV§, gw)lT;u Tow) 12(B(0,p-1/4),E,.,)

For the first term, using the fact that |[Vi,| < Cp'/* and the equality

2n
= () = Al = p(HfE) — V(2,)),
m=1
we get
2n
> ((eewa) (Vi) * Tow, Tow) o (0,p-1/4). 5,
lm=1

=p Y _((eea)’ (HF™) =V (2a)) T, Tou) 1230 p-1/4) ...

<CPPR(I(H) = VT ullZa g o1/, 5,y T 1 el T2 s0p- 10,5,
For the second term, using that |Ve,| < Cp'/4, V2. | < Cp/?, we get

2n

Y Rerpaciempa Vel Taw, Taw) 1250 p-1/1) £, )
£,m=1

<Cp'/? Z leecpa Vi) Taull 250 p-1/0), B 1wt 2 (0.5 1/4) 4,
fm=1

_1/2 Z Heggpa pmng;uHLg (B(0,p~ 1/4) Eax)
{,m=1
+p3/2HT*“”L2(B (0p-1/4), 5y )"

We conclude that

(1-Cp~/?) ZZ leepa Vi) Tarl 72 p0,p-1/0)5,..)
m=1

< Cp3/2(”( p) )‘)T;“H%Z(B(Om*l/‘*)ﬂm) + ”T;UH%Z(B(O7P’1/4)7EM))’
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and, if p is large enough,

Z ||ewavéxélmTaUHL2(B(o,p71/4),Ema)
lm=1

< CPHI(HE) = NTxull g2 50.p-1/1), 5., + 1 Tattll 2 (0p-1/1).2,.))-
It follows that

IHS), pal Tiul| 2 (ren .. )
< Cp_1/4(||(7-[l()%) = NTgull2pop-1/1),6..) + 1Taull 2B p-1/4),8,,))

and

(2:21) [|[Hp, pa © 55 Jull L2(g2n 1,
< Op™ A ([[(Hy = Ml(pa © 72 )ulll + [[(pa © 55 Yull)-

Combining (Z20) and ZZT)), from ZI8), assuming d(\, ¥) > Cp~ /4, we
get

1y = Nul® = Y (I(Hp = N(#a 0 225 alll® = [y, pa © 52 ull?)

a€l, o
Y (= Cap™ ) Hy = V(a0 52 )l
a€l, o
— Cop™||(a 0 55 Jul?)
> Y (AN Zg,) = Cp~ V2 = Csp™ V)l 0 525l

a€l, o
>((d(A,2) = Cp~ V)2 = Cap™'2) |u*.

If C3 < 0, this completes the proof of Proposition 21l If C3 > 0, we
complete the proof as follows:

v

I(H, — A)ul?
>(d(A,2) — (C + G )p Y (N, B) — (C = C3 )4 |Jul?
(A Z) — (C+ O3 ™V u?

v

assuming d(X, ) > (C' + Cé/z)p_l/‘l.

3. EIGENSECTION ESTIMATES

This section is devoted to the proof of Theorem[I.3l The proof of Theorem
[[3] is obtained by a slight modification of the proof [8, Proposition 2.1].
Instead of resolvent estimates, we use norm estimates for the operator given
by Proposition 211
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3.1. Weight functions. We will use some weight functions. As shown in
[16) Proposition 4.1] (see also [19, Section 3.1]), for any p € N, there exists
a function ¢, € C*>°(X), satisfying the following conditions:

(1) we have

1
3.1 O, (x) — d(x, Ky, <—, z€X, peN;
(3.1) |®p(2) — d(z, Ko )| 7
or any k > 0, there exists Cy, > 0 such that
2) fi k>0, th ists Cy > 0 such th
1 k—1
(3.2) <%> (vkcb,,(x)( <Cn z€X, peN
Define a family of differential operators on C*°(X, LP ® E) by
(3.3) H,, = VPP H, e ™VPP  peN, 7R
An easy computation gives that
-
3.4 H,,=H,+—A,+7°B,,
(3.4) P, P N P P
where
(3.5) Ay = —2d®, - VI"E L A®,, B, = —|d®,*.

Here, for u € C®°(X, [P ® E), d®,- VI"®Fy € C>(X, [P @ E) stands for the
pointwise inner product of d®, € C*®°(X,T*X) and VF'®Ey € C®(X, [P @
E ® T*X) determined by the Riemannian metric.

3.2. Proof of Theorem[L.3l Suppose that u, € C*(X, LPQE)NL*(X, LP®
E) is such that
Hyup = Apuyp

with some p € N and \, € [a1,b1] C (a,b). Then, for v, = e™VP¥ry, we
have
(3.6) H, v, = A\pvyp.

Choose an arbitrary as and bs such that a; > as > a and by < by < b.
Let

V= Q[az,bz] = {:E eX: XN [a2,b2] = @}

This is an open subset of X, which contains ) = Q4,p)- Moreover, since B
and V' are C*°-bounded, there exists € > 0 such that ;o := {r € O :
d(z,081) > 2¢} contains €.

Now let ¢, € Cy°(X) be supported in €21, ¢, =1 on

V| < C1p'/%,  |V2g,| < Cap.

1,5]771/2 and

Then

Hyp,7(¢pvp) = Ap@pvp + [Hp,rs dplvp.
By Proposition 2] there exist Cy > 0 and py € N, such that for any p > pg,
we have

(3.7) | (Hp — Ap)dpvpll = Collgpupl|-
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Lemma 3.1. For any 7 > 0 small enough, there exists Cy > 0, such that
for any p > pg, we have

(3.8) [(Hpr — Ap)dpupll > Colldpupl|-
Proof. We can write
(3.9) | (Hpr — Ap)Opupll = (Hp — Ap)@pvpll — | (Hp,r — Hp)dpvpl-

By B4) and B3]), we have
T P
H,, — H,= —(—2d®, - VF'®F + A®,) — 72|d®,|>.
p; \/]3( P ») |dD,|

Using [B2), we get
(3.10) [[(Hp;r—Hp)dpup|| < Ch

N

To estimate the first term in the right hand side of ([BI0]), we proceed as
follows:

||VLP®E¢pUp||2 :((VLP(@E)*VLp@EUp’Up) = (p(Hp — V) dpup, dpup)
=(p(Hp — Ap) pvp, dpvp) + p((Ap — V) dpvp, dpvp)
<pl[(Hp — Ap)dpvplll|pvpll + CpH@prsz
§€2p||(Hp - )‘p)¢pvp||2 +(C+ E_2)29”@51)”1)”2
with an arbitrary € > 0 to be chosen later, which gives an estimate
1
NG

Using this estimate, from (BI0]), we get

| (Hp;r — Hp)dpvpl|
< Ci7el|(Hp — Ap)ppupll + (C2 + C3€_1)T”¢pvpu + C4T2”¢IJUPH'

HVLP@E(%UP”+C27'H¢p”p”"‘037'2“@3%”-

IVY2E gpupll < el (Hp — Ap)dpupll + (C + € )| 6.

We choose ¢ such that Ci7e = %:

1
| (Hp;r — Hp)ppupll < §||(Hp — Ap)Ppvpl| + Cs7||dpupl| + 067'2H¢pvp||-

Using ([B.7)), from this estimate and (33)), we get

1
| (Hp,r — Ap)dpvpl| > §”(Hp — Ap)@pupll — Cs7|Ppvp || — C67'2H¢pvp”

> 2 Collgyupll ~ Csrlldypll — Cor* 6yl
Taking 7 small enough, we complete the proof. O
Let us fix 7 as in Lemma 3] By (B.6]), we have
(3.11) (Hp,r = Ap)bpvp = [Hp,r, dplup.
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By B4) and (33), we compute
1
(3.12) [Hp,rs ¢pl = 5(_2d¢p VP Agy) —

27

VP
Since d¢, and A¢,, are supported in Oy \ Q p-1/2, we have

(3.13) [dépvpll < Cpl/z‘WpUpHa [A¢y vpll < Cplltbpupl,

where 1, € Cp°(X) is supported in X\ 5.,-1/2 and ¢p = 1 on X\Qy -1/,

in particular on suppd¢, C 1 \ Qy p-1/2-
Therefore, by (BI12]) and [BI3]), we get

2
(3.14) [[Hp,7, ¢plopll < Elld% - VE SRy || 4 Collpup -

dd, - de,.

Now we need an estimate for ||d¢, - VF'@F

following lemma.

vp||, which is given by the

Lemma 3.2. We have
lldop - vLp(gugvzo|| < Cpllbpvp|-

The proof of this lemma will be given in Section B3l First, we complete
the proof of Theorem [[.31
By [BI4) and Lemma [B.2] we infer that
[[Hp,» dplvpll < Crllpop]|-

From this estimate, taking into account [31) and BI2]), we get
[pupll < Crllvbpupll.

Now we proceed as follows:

[y ate < [ @I @) s
Q LQ 12

= ”UPH%Z(QI -1/2) < [lgpupll® < CEllebpup|* = C12”¢pvp”iz(x\m)
s€ ,2€ep

2 2 =}
<7 ”UPHL2(X\W) =G /X\Q

1,261)71/2

VP |y (@) Pdr < CF,

since @, = 0 on X\ 5,172 C X\, that completes the proof of Theorem
.ol

3.3. Proof of Lemma As in Section 23], we choose an at most count-
able collection of coordinate charts (with p = 1)

Yo 1= 5y | B0e) + B(0,¢) = Ua = 54 (B(0,¢)) C X,

with 1 < a < I, I € NU{oo}, which cover © and for the cardinality of the
set o ={1 < B <1:U,NUg # @}, we have

(3.15) #T,< Ky, 1<a<l.
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Choose a family of smooth functions {p, : R?*" — [0;1],1 < o < I}
supported on the ball B(0,c), which gives a partition of unity subordinate
to {Uq}:

I
Zcpao% 2zlonQ

a=1

and satisfies the condition: for any ~ € Zi", there exists C, > 0 such that
(3.16) 070a(Z)| < Cy, ZeR™, 1<a<l.

Recall the localization formula
I I
1Pull> = " I1P[(¢a 0 565 )ulll> = > I[P, ¢a 0 565 'Jul?,
a=1 a=1

which gives

I
(3.17) dy - V2w, 12 <3 [ldgy - VEOF (pa 0 25 Yoy |17,
a=1
For any «, 1 < o < I, choose a local orthonormal frame (ega), . egi)) in

TX defined on U,, which is C°°-bounded in «. For simplicity of notatlon,
we denote u = (pq 0 35 1)v, € C°(U,) and will omit a, writing e; instead
of ¢!, We get

g Ves

2n 2n 2n
LPQE, _ , LPQE,, _ LP®E
do, -V U= E e]gbpvej U= E Ve % (ejop)u E (ejejop)u
j=1 j=1 J=1

and, therefore, by ([.I3]), we have

2n
ldp - VE O Ful> <C1 Y ([VEF[(ejdp)ul|* + Cop®|[thpul|?
j—l

(3.18) <C Z IVEE (e;6p)ul | + Cop?|[pul?
J,k=1

2n
=C1 Y [IVH"®F (ejdp)ul | + Cop®|[topul*.
j=1

By (BI0I), all the constants here and below can be taken to be independent
of a.
Now we apply the formula

1P(xu) || = R(Pu, Px*u) + [|[P, x]ul*.
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For any j = 1,2,...,2n, using the fact that [V£:®E,ej¢p] = epe;j¢p and

BI3), we get
IVE" 25 (ejdp)ulll? = ZHVLP@E [(ejdp)ull”

= Z R(Ve, Pu, Ve “Fl(ejdp)ul) + ||(erejdp)ul®
2n

<D RV FE)VE O, (ejdp)*u) + Cap?||[pul*.
k=1

The operator H), can be written as

2n

1 P P P
H == LPQEN*7LPQE _ gLPQF i
b pg(vek V=Vl )V
Therefore, we proceed as follows:
(3.19) [[V¥"®F[(ejgp)u]ll?
< pR(Hyu, (ej¢p)*u) + C%(Vggfv u, (ejp)*u) + Cap?|[pul|*.

By [B4) and (33]), we have

(Hypu, (ej¢p)*u) =

((H,,,T+f(2dc1> SVEEE AD) 4 72dD,| P u, (e ¢p) ).

Therefore, for the first term in the right hand side of ([B.19]), we get

(3:20)  [R(Hyu, (j0p)*w)| < |(Hpru, (ejp)*u)

C' P
;(dCI) - Ve, (ej¢p)?u) + Coplltbypul®.

For the first term in the right hand side of ([B.20]), we recall that u =
(¢a © 25 )v, and use ([B.86):

(3.21) (Hpru, (ej(ﬁp)2u) = (Hp,r(¢a © %a_l)vzn (ej¢p)2u)
= )‘pH(ej¢p)uH2 + ([Hp,rs 0 © %a_l]vzn (ej(ﬁp)2u)
< ([Hp,rspa © %;l]vpa (ej¢p)2u) + Clebpqu.
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Using the formula for the commutator [H, ;, 94 0 5, 1] (cf. (BI2)), we get

([Hp,ﬂ Pa © %(;l]vpv (ej¢p)2u)
=I—1)<<—2d<soa 0 57) - VO 4 A 0 3221))0p, (¢0)7)

2
— 2L dD, - d(pe 0 325 Y0y, (e56p) ).

VP
By BI3), it follows that

(3:22)  [([Hp,r, pa © 55 up, (ej0p)*w)]

< Z[(d(pa 0 355 1) - VB0, (ej0p) )| + Cv/Bllppll L2 (v 1pull

2
D
Here v,v,, is not supported in Uy, but, since d(pq 0 5 1) is supported in U,,

we can put the integration over Ul,.
For the first term in the right hand side of ([3.22]), we proceed as follows:

(d(pa o %(;1) : VLP@EUIN (ej¢p)2u)

2n
= > (ex(pao %;1)V£:®E”pv (ej(ﬁp)2u)
k=1

2
= (ex(a © %;1)(€j¢p)V£:®EUpa (€j¢p)u)

3

=D _(erlpa 0 5 )(ejdp)up, (Vi “F) [(ej0p)ul)

= > (exl(en(pa 0 525" )(e0p)]vp, (ejp)u)-

k=1

Now we use the fact that (ngp@E)* = —V£:®E + c,p, where ¢, is an
endomorphism of LP? ® E over U, such that |c; »| = O(p) and conclude that

(d(pa 0525 ") - V" ¥y, (ej¢p) w)]
< Cp" 2 pull V5P [(ejép)ul) + Cro?1vpvpll 2w 1l -

Plugging this estimate into (3.22]), we get

(3.23) [([Hp;7,¢a 0 %;l]vzn (€j¢p)2u)‘

C P
< %H%UHHVL #P(ejop)ul) + Cpllvpvpllraw,) Ipull-
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Combining (B2I) and B23), we get an estimate for the first term in the
right hand side of (320,

(3.24)  [(Hp,ru, (€j¢p)2 )|

fllwp ull[VE 2 E((ejép)ulll + Collepvpll L2 () 14pull-

For the second term in the right hand side of ([3.20]), we proceed as follows:

(d®, - VE®Ey, (e;pp)*u) = ((ejdp) ZekCD VEOEy, (e;dp)u)
k=1

2n
= (Z ekq)pveL:®E[(ej¢p) s (ej0p)u) Zekq) (exejdp)u, (ejdp)u).

k=1
Therefore, we get

(3.25) |(d®, - V*'®Pu, (e;¢p)u)]
< Cip IV EEE (e ¢ )ul | |9l + Cop® 2 ||1hpul|*.

Plugging (3:24]) and (3:25)) into ([B:20), we get an estimate for the first term
in the right hand side of (.19

(3.26)  [R(Hpu, (¢;¢p)*w)]
< VP OB sy yulllpul + Copllgpopl 2w Iyl
For the second term in the right hand side of ([BI9]), we write
(V5555 e (e56p) ) = <<ej¢p>v§’®v{ s (e56,)0)
= (V5. callestl (esdp)t) + (2 Vewerdestpln (es6p))

that gives an estimate
(327) R(VESE , u.(ej0,))]
< Cup' 2|V (e )ulll[$pull + Cop™?|[hpul*.
Plugging (3:20) and 27) into ([BI9]), we get an estimate

IVE € (ejdp)ulll” < Crpll V" (ejdp)ulll[pull+Cop® [pvpll L2 o) [0l
Now we proceed as follows:

G-

IVE O E (s dp)ull* <=7 (7 [pull” + e V"5 (e0p)ul )

+ Osp? ”%JUPHL?(UQ l[hpul].

Taking & £le < 1 and using the fact that [[¢yu < l1¥pvpllL2(v.), We infer that

192 (i)l | < Colldptnllzeqey
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Now we use (BI8) and recall that u = (pq © 3, )v,. We get

ldgp - V2" (0a © 525 )oplll < Collpvpll 2 (w,)-

By BI7), it follows that

1
ldgy - V" <Pu, | < € 3 Iyl oo,

a=1

By [BI5), we have the estimate

1
Z ||7/)pvp||%2(Ua) < Kol[¢pupl?,

a=1

which completes the proof of Lemma

(1]
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