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THE DENSITY OF GABOR SYSTEMS IN EXPANSIBLE LOCALLY

COMPACT ABELIAN GROUPS

E. KING, R. NORES, AND V. PATERNOSTRO

Abstract. We investigate the reproducing properties of Gabor systems within the context of
expansible groups. These properties are established in terms of density conditions. The concept
of density that we employ mirrors the well-known Beurling density defined in Euclidean space,
which is made possible due to the expansive structure. Along the way, for groups with an
open and compact subgroup, we demonstrate that modulation spaces are continuously embed-
ded in Wiener spaces. Utilizing this result, we derive the Bessel condition of Gabor systems.
Additionally, we construct Gabor orthonormal bases with arbitrarily small or large densities,
enabling us to conclude that a Comparison Theorem, such as the one proven to be valid in the
Euclidean case, cannot hold in this context. Finally, we establish that Gabor frames possess
the Homogeneous Approximation Property.

1. Introduction

A Gabor system is a set of functions in L2(Rd) that are obtained by translating a single
window in time and frequency along a set Λ ⊆ R2d. Their structure makes them of particular
importance in many applications such as wireless communication, analysis and description of
speech signals or music signals and more (see for instance, [10, 11, 22]). Because of this, it is
important to study their reproducing properties, that is, to understand which properties of the
generating window and the set Λ of time-frequency shifts guarantee the Gabor system to be an
orthonormal basis, a Bessel sequence, a frame, or a Riesz basis. When the set Λ does not have
a particular structure, these reproducing properties are stated in terms of its Beurling density.

Consider a subset Λ in Rd. The upper and lower Beurling density of Λ, denoted by D+(Λ)
and D−(Λ) respectively, captures its asymptotic behavior within balls of varying radius. In
mathematical terms, they are given by:

D+(Λ) = lim sup
r→∞

sup
x∈Rd

#(Λ ∩Br(x))

rd
, and D−(Λ) = lim inf

r→∞
inf
x∈Rd

#(Λ ∩Br(x))

rd

where Br(x) denotes the ball centered in x with radius r and # indicates the cardinality of a
set. A very complete survey on the results about density of Gabor systems is [14].

Beurling density is a concept that is also related to conditions for sampling and interpolation.
See, for example, Landau’s result in [18]. In order to explore the validity of Landau’s result in the
context of locally compact abelian groups that are compactly generated, Gröchenig, Kutyniok,
and Seip in [12], provide a definition of Beurling density by means of a comparison with a
canonical lattice of reference. We refer to [1] for related results on the existence of sampling and
interpolation sets near to the critical density in LCA groups.

In this paper we focus on studying Gabor systems in terms of density within the framework of
expansible locally compact abelian groups, that is, locally compact abelian (LCA) groups which
have an open and compact subgroup and an expansive automorphism. (See Definition 2.2.1 for
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more details). One example of a such an expansible LCA group is the space of p-adic numbers
Qp.

This type of LCA group does not possess lattices, and thus, the notion of density given in
[12] needs to be reformulated. However, the presence of the expansive automorphism allows us
to elaborate the concept of density in the spirit of Beurling density in Rd. A similar approach
was given in [21].

Then, given an expansible LCA group G, a window ϕ ∈ L2(G) and a set Λ ⊆ G × Ĝ,

where Ĝ denotes the Pontryagin dual group of G, we explore whether or not the Gabor system
generated by ϕ by time-frequency shifts along Λ, S(ϕ,Λ), is a Bessel sequence or a frame of
L2(G) depending on the density of Λ. We first show that if S(ϕ,Λ) is a Bessel sequence in
L2(G), then Λ must be of finite density. Conversely, when Λ is of finite density and ϕ has some
decay, S(ϕ,Λ) is a Bessel sequence. Our results are thus analogues for expansible LCA groups
of [5, Theorem 3.1] and [14, Theorem 12], which are in the Euclidean setting.

Surprisingly, in the framework in which we work, we can construct Gabor systems that are
orthonormal bases, with the set of time-frequency shifts having arbitrarily small density in some
cases and arbitrarily big density in others. This contrasts with what happens in the Euclidean
case, where if a Gabor system S(ϕ,Λ) is a frame of L2(Rd), the lower density of Λ must be
bigger than 1 (see [5, Theorem 1.1]). Another consequence of our construction is that it is not
possible to obtain a Comparison Theorem in this context such as [5, Theorem 3.6]. However,
we were able to prove that, in the setting of expansible LCA groups, a Gabor system that is a
frame has the well-known Homogeneous Approximation Property (see Theorem 5.3.3).

On the other hand, we move to a more abstract setting where we deal with unitary and
projective representations of a locally compact group having an open and compact subgroup.
We based our analysis in the notion of modulation spaces introduced in [8, 9]. We prove that
the generalized wavelet transform (voice transform) induced by the (unitary or projective) rep-
resentation, continuously maps the modulation space of order p into the Wiener space W (C, ℓp).
We then apply these resuls to the case were the projective representation is the one given by
time-frequency translations, resulting in Gabor systems.

The article is structured as follows: In Section 2, we recall certain definitions about LCA
groups and expansive automorphisms as well as what we will need about frame theory. We
investigate in Section 3 the concept of density. We establish its (essentially) independence with
respect to the chosen automorphism used to defining the density and we show an equivalent
condition for a set to have finite upper density. Moving to Section 4, we use the theory of
modulation spaces developed by Feichtinger and Gröchenig in [8, 9]. When the underlying
locally compact group has an open and compact subgroup, we establish one of the pivotal
results of this work, namely, the continuous inclusion of modulation spaces into Wiener spaces
through the generalized wavelet transform. Finally, in Section 5 we prove that some classical
properties of Gabor systems hold true in our context and provide examples which show that
there are others that do not.

2. Preliminaries

In this section we fix the context where we will work in. We will also recall some aspects of
frame theory that we will need.

2.1. LCA groups. A locally compact abelian group G – LCA group for short – is an abelian
group which is also a locally compact topological space such that both multiplication and inver-
sion are homeomorphism of the space. We will always assume that the topology is Hausdorff.
See, e.g., [16] for a general reference
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Given an LCA group G written additively, we denote by Ĝ its Pontryagin dual group. By
mG we denote a Haar measure associated to G (with the desired normalization defined below).

Since the dual of the dual group is topologically isomorphic to the original group, for ξ ∈ Ĝ
and x ∈ G we write 〈x, ξ〉 to indicate the character ξ applied to x (i.e. ξ(x)) or the character
x applied to ξ. For a subgroup H ⊆ G, its annihilator is denoted by H⊥ and is defined as

H⊥ = {ξ ∈ Ĝ : 〈h, ξ〉 = 1∀h ∈ H}. It is well known that if H is closed, H⊥ is a closed

subgroup of Ĝ.

For a closed subgroup H of G, the dual of the quotient group G/H, Ĝ/H is algebraically and

topologically isomorphic to H⊥ and Ĥ is algebraically and topologically isomorphic to Ĝ/H⊥.

When H ⊆ G is an open and compact subgroup, then so is H⊥ ⊆ Ĝ. As a consequence, the

quotients G/H and Ĝ/H⊥ are discrete abelian groups.

For an LCA group G with an open and compact subgroup H, we consider the following
normalization of the Haar measures involved: we fixmG such thatmG(H) = 1 andmĜ(H

⊥) = 1.
As explained in [16, Comment (31.1)], this choice guarantees that the Fourier transform between

L2(G) and L2(Ĝ) is an isometry. We take mH = mG |H , mĤ = mĜ |H⊥ and mG/H and mĜ/H⊥

to be the counting measures. Then, the Fourier transforms between L2(H) and L2(Ĝ/H⊥) and
between L2(G/H) and L2(H⊥) are isometries.

2.2. Expansive automorphisms. Let G be an LCA group. The group of homeomorphic
automorphisms of G into itself is denoted by Aut(G). For a given A ∈ Aut(G), the measure
µA defined by µA(U) = mG(AU) where U is a Borel set of G is a non-zero Haar measure on
G. Therefore, there is a unique positive number |A|, the so-called modulus of A, such that
µA = |A|mG.

For A ∈ Aut(G), there is an adjoint A∗ ∈ Aut(Ĝ) defined as 〈Ax, γ〉 = 〈x,A∗γ〉 for all x ∈ G

and γ ∈ Ĝ. It holds that |A∗| = |A|.

We next present the definition of expansive automorphisms as given in [2], where they were
used to define a wavelet theory over local fields. See also [21].

Definition 2.2.1. [2, Definition 2.5] Let G be an LCA group and H ⊆ G an open and compact
subgroup, and let A ∈ Aut(G). We say that A is expansive with respect to H if the next two
conditions hold true:

(1) H ( AH;
(2)

⋂
n≤0A

nH = {0}.

When H is fixed or clear from the context, we will simply say that A is expansive.

There exist many groups G with expansive automorphism A. We now give several examples.

Example 2.2.2. [2, Example 2.10] Let p be a prime number. Define the p-adic valuation over
Q as |prx|p = p−r for all r ∈ Z and all x ∈ Q such that the numerator and denominator of x are
both relatively prime to p. Then Qp is the completion of Q with respect to the p-adic valuation.
Each element of Qp may be represented as a Laurent series

Qp =





∑

n≥n0

anp
n : n0 ∈ Z and an ∈ {0, 1, . . . , p − 1}



 ,

where addition “carries” rather than is modular. That is,

(p − 1)p + 1p = p2 6= 0p.
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Then Qp is a locally compact abelian group with group operation addition and topology defined
via the p-adic valuation. The Laurent series are not formal as they converge in the topology.

Then the p-adic integers Zp, defined as the set of power series

Zp =




∑

n≥0

anp
n : an ∈ {0, 1, . . . , p− 1}



 ,

is an open and compact subset of Qp. Further characterizations of Zp are that Zp is the unit
ball (with respect to p-adic valuation) of Qp and the closure of Z in Qp.

The p-adic numbers are self-dual. Let {·} : Qp → Qp be defined as




∑

n≥n0

anp
n



 =

max{0,n0}∑

n=n0

anp
n.

Then each y ∈ Qp defines an element of Q̂p as 〈·, y〉 = exp(2πi {·y}).

If we consider A : Qp → Qp to be the morphism given by Ax = p−1x, then A is an automor-
phism of Qp and it is easy to see that is expansive with respect to Zp.

Example 2.2.3. [2, Example 2.11] Let p be a prime number, where Fp is the field of order p.
The additive group of the field Fp((t)) of formal Laurent series in variable t:

Fp((t)) =





∑

n≥n0

ant
n : n0 ∈ Z and an ∈ Fp



 ,

where addition is modular rather than “carries”:

(p− 1)t+ 1t = 0t = 0

is an LCA group with respect to the topology defined from an analog of the p-adic valuation. The
set of formal power series

Fp[[t]] =




∑

n≥0

ant
n : an ∈ Fp





is an open and compact subgroup. One possible expansive automorphism is multiplying by t−1.
However, the structure of Fp((t)) yields a richer collection of automorphisms.

Both classes of the LCA groups above are also fields. Further examples may be formed by
considering the additive groups of finite field extensions or vector spaces over the above examples.

Example 2.2.4. [2, Example 2.14] Let G1 be an LCA group with an open and compact subgroup
H1 and G2 be a nontrivial discrete abelian group. If we consider G = G1×G2, then G is an LCA

group with aopen and compact subgroup H = H1×{0}. Further, the annihilator H⊥ is H1× Ĝ2

and if A1 is an automorphism of G1 which is expansive with respect to H1, then A = A1 × idG2

is an automorphism of G which is expansive with respect to H. However, in this case, the union
of all positive iterates AnH can not cover G since AH = A1H1 × {0}.

Following [21], we shall call an LCA group which admits an expansive automorphism an expan-
sible group. Expansiveness can also be characterized by the action of the adjoint automorphism
as the next lemma shows, whose proof can be found in [2, Lemma 2.6].

Lemma 2.2.5. Let G be an LCA with an open and compact subgroup H ⊆ G, and let A ∈
Aut(G).
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(i) H ⊆ AH if and only if H⊥ ⊆ A∗H⊥.
(ii) H ( AH if and only if H⊥ ( A∗H⊥.
(iii) If H ⊆ AH, then

⋂

n≤0

AnH = {0} ⇐⇒
⋃

n≥0

A∗nH⊥ = Ĝ.(1)

Given an LCA group G with an open and compact subgroup H and expansive automorphism
A : G→ G, we define for n ∈ Z and x ∈ G,

Qn(x) = x+AnH.

One may think of this as the “ball” with “center” x and “radius” |A|n, keeping in mind that
if y ∈ Qn(x) then Qn(x) = Qn(y), so the choice of “center” is not unique. In the case that
G = Qp, H = Zp , and A is multiplication by 1/p, the Qn(x) are precisely the balls in the metric
induced by the p-adic valuation. Note that each Qn(x) is an open and compact subset of G and
also a coset of AnH in G. Moreover, by [15, Theorem 4.5], {Qn(x)}n∈Z,x∈G is a basis for the
topology of G.

In this paper, we will be dealing with the specific scenario of forming “balls” in G× Ĝ, where

G satisfies the hypothesis above. In that case, we write for n ∈ Z and (x, γ) ∈ G× Ĝ

Qn(x, γ) = (x, γ) + (An ⊗ (A∗)n) (H ×H⊥)

= (x+AnH)×
(
γ + (A∗)nH⊥

)
= Qn(x)×Qn(γ).(2)

Note that in this case, the “radius” of Qn(x, γ) is (|A||A
∗|)n = |A|2n.

When A is expansive with respect to H and A∗ is expansive with respect to H⊥, we have that

{Qn(x, γ)}n∈Z,x∈G,γ∈Ĝ
is a basis for the topology of G × Ĝ. This is because for n ≤ m,x ∈ G

and γ ∈ Ĝ, Qn(x)×Qm(γ) ⊆ Qm(x, γ).

2.3. Frames and Riesz bases. Let {ϕi}i∈I be a family of elements in a separable Hilbert
space H. It is said that {ϕi}i∈I is a frame for H if there exist constants A,B > 0 such that

(3) A‖f‖2 ≤
∑

i∈I

|〈f, ϕi〉|
2 ≤ B‖f‖2 ∀f ∈ H.

The constants A,B are called frame bounds. The frame operator defined as Sf =
∑

i∈I〈f, ϕi〉ϕi

for f ∈ H, is a bounded, invertible, and positive operator from H onto itself. This provides the
well known frame decomposition

f = S−1Sf =
∑

i∈I

〈f, ϕi〉φi ∀f ∈ H,

where φi = S−1ϕi. The family {φi}i∈I is also a frame for H, which is called the canoni-

cal dual frame, and has frame bounds B−1, A−1. Any other frame {φ̃i}i∈I satisfying f =∑
i∈I〈f, ϕi〉φ̃i ∀f ∈ H, is called a dual frame, and it is well known that a frame can have dual

frames besides the canonical one (typically infinitely many). For a general reference on frame
theory, see, e.g., [4].

Riesz bases are special cases of frames and can be characterized as those frames which are
biorthogonal to their canonical dual frame, i.e., such that 〈ϕi, φj〉 = δij .

A family {ϕi}i∈I which satisfies the right inequality in (3) (but possibly not the left) is called
a Bessel sequence for H.
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3. Density with respect to expansive automorphisms

In this section, using the balls defined above, we will consider the concept of density, which
will extend that of the well known Beurling density for Euclidean spaces Rd. This concept has
been considered before in LCA groups that are compactly generated in [1, 12], however, with
another approach. In [21] the authors work with the same density as here, but they consider a
slightly different notion of expansive automorphism. In fact, their automorphism only satisfies
condition (2) of Definition 2.2.1.

Definition 3.0.1. Let G be an LCA group, H ⊆ G an open and compact subgroup and A ∈
Aut(G) expansive with respect to H. For n ∈ Z, a sequence (countable or uncountable) Λ ⊆ G
is said to be (A,n)-uniformly separated if #{Λ ∩ Qn(x)} ≤ 1 for all x ∈ G. We say that Λ is
simply uniformly separated if it is (A,n)-uniformly separated for some n ∈ Z. Additionally, Λ
is said to be A-separated if it is a finite union of uniformly separated sequences.

Recall that, if G is an LCA group and H ⊆ G is a subgroup, a section of a quotient group
G/H is a measurable set of representatives, and it contains exactly one element of each coset.
As we already said, if H ⊆ G is an open and compact subgroup, since H⊥ is also compact, then
G/H is a discrete group. Thus, every section C ⊆ G for the quotient G/H must be discrete as
well. This is because for x ∈ C, x = C ∩ (x+H) and then, since x+H is an open set in G, C
is discrete with respect to the topology of G.

With this in mind, we can say that Λ is (A,n)-uniformly separated if and only if #{Λ ∩
Qn(A

nc)} ≤ 1 for all c ∈ C. This is a direct consequence of the fact that for every n ∈ Z,
{Qn(A

nc)}c∈C is a partition of G, that is, G =
⋃

c∈C Qn(A
nc) where the union is disjoint, and

that Qn(A
nc) = Qn(x) for every x ∈ Qn(A

nc).

Definition 3.0.2. Let G be an LCA group, H ⊆ G an open and compact subgroup and A ∈
Aut(G) expansive with respect to H. For a sequence Λ ⊆ G, the upper and lower Beurling
density of Λ are defined by

D+
A(Λ) := lim sup

n→+∞

1

|A|n
max
x∈G

#{Λ ∩Qn(x)},

and

D−
A(Λ) := lim inf

n→+∞

1

|A|n
min
x∈G

#{Λ ∩Qn(x)},

respectively. If D+
A(Λ) = D−

A(Λ) we say that Λ has uniform density DA(Λ) = D+
A(Λ) = D−

A(Λ).

The analogy with the Beurling density defined in Rd [5, 14, 21] is clear from the definition
noting that, since mG is invariant under translations and mG(H) = 1, we have that |A|n =
mG(A

nH) = mG(Qn(x)) for any x ∈ G.

At first glance, the Beurling density seems to depend on the automorphism. However, if
both the automorphism and their adjoint are expansive, the density becomes independent of the
automorphism choice, as we show next. First, we observe some properties about sections that
will be useful.

Remark 3.0.3. Given A ∈ Aut(G) expansive with respect to an open and compact subgroup H
of G, the quotient AH/H must be finite. This is because AH is compact and then, it may be
covered by finite (disjoints) cosets x+H. Let C0 ⊆ AH be a finite section for AH/H. Therefore,
AH =

⋃
c0∈C0

H + c0, and then we have that mG(AH) = #C0 which implies |A| = #C0.
Moreover, since AH ⊆ G is also an open and compact subgroup, we can take C1 a discrete
section for G/AH. An easy computation shows that the set C := C0 + C1 must be a (discrete)
section for G/H. From now on, we will consider sections for G/H of this form.
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Lemma 3.0.4. Let G be an LCA group, H ⊆ G an open and compact subgroup and A, B ∈
Aut(G) be expansive with respect to H such that A∗ and B∗ are expansive with respect to H⊥

as well. Then, for every sequence Λ ⊆ G,

D+
A(Λ) = D+

B(Λ) and D−
A(Λ) = D−

B(Λ).

Proof. Because of the expansiveness of A∗ we know by (1) that G =
⋃

n≥0A
nH. Let n ∈ N be

fixed. Then there exists k0 = k0(n) ∈ N such that BnH ⊆ Ak0H because BnH is compact and
{AkH}k∈N is an open cover of nested sets.

Let X = {xi}i∈I ⊆ Ak0H be a section of Ak0H/BnH. Then

Ak0H =
⋃

i∈I

(BnH + xi),

and for x ∈ G,

QA
k0(x) = Ak0H + x =

⋃

i∈I

(BnH + xi) + x =
⋃

i∈I

QB
n (xi + x).

By intersecting with Λ and taking the maximum cardinal over G we obtain the following
inequality,

max
x∈G

#{QA
k0(x) ∩ Λ} = max

x∈G
#{

⋃

i∈I

QB
n (xi + x) ∩ Λ}

≤
∑

i∈I

max
x∈G

#{QB
n (xi + x) ∩ Λ}

=
∑

i∈I

max
x∈G

#{QB
n (x) ∩ Λ} = (#I)max

x∈G
#{QB

n (x) ∩ Λ}.

Furthermore, #(Ak0H/H) = #(Ak0H/BnH)#(BnH/H) and then

#I = #(Ak0H/BnH) =
|A|k0

|B|n
.

Finally, we obtain

maxx∈G#{QA
k0
(x) ∩ Λ}

|A|k0
≤

|A|k0

|B|n
maxx∈G#{QB

n (x) ∩ Λ}

|A|k0
=

maxx∈G#{QB
n (x) ∩ Λ}

|B|n
.

If we take lim supn→∞ in the last inequality we have that D+
A(Λ) ≤ D+

B(Λ). By using the

expansiveness of B∗ and doing the same reasoning we obtain that D+
A(Λ) = D+

B(Λ). A similar

procedure proves that D−
A(Λ) = D−

B(Λ).

�

As a consequence of the above result and in order to keep as clear as posible the exposition,
we choose to omit the subscript A in the density and simply right D+(Λ), D−(Λ) and D(Λ).

The next lemma shows a characterization of the sequences Λ whose upper density is finite
and provides a valid version of [5, Lemma 2.3] in this context. Our proof is based on the group
structure. In [21, Theorem 3.7], the authors proved the same result based on [21, Lemma 2.3],
which is not satisfied in our case. (See Example 2.2.4 and [21, Lemma 2.3, item (ii)]).

Lemma 3.0.5. Let G be an LCA group, H ⊆ G an open and compact subgroup and A ∈ Aut(G)
expansive with respect to H. If Λ ⊂ G is a sequence, then the following conditions are equivalent:
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(i) D+(Λ) <∞;
(ii) For some n ∈ Z there exists Nn > 0 such that #{Λ ∩ Qn(A

nc)} ≤ Nn for all c ∈ C,
where C is a section for G/H.

Additionaly, if (ii) holds for some n ∈ Z, it holds for every n ∈ Z.

Proof. (i) ⇒ (ii). It is obvious from the definition of D+(Λ).
(ii) ⇒ (i). Let n ∈ Z and Nn > 0 be such that #{Λ ∩ Qn(A

nc)} ≤ Nn for all c ∈ C and call
for every c ∈ C, Λ ∩Qn(A

nc) = {λ1,c, · · · , λr,c} with r = r(c) ≤ Nn. Now, for j ∈ {1, · · · , Nn}
and c0 ∈ C0 set Λj,c0 := {λj,c0+c1 : c1 ∈ C1}. By construction, each element of Λj,c0 lies in a
different coset of G/AnH. Then, since there are at most |A|Nn many Λj,c0 sets, we have that
any coset of G/AnH contains at most |A|Nn elements of Λ.

Now, since

An+1H = An(AH) =
⋃

c0∈C0

(AnH +Anc0)

and

G = AnG =
⋃

c0∈C0,c1∈C1

(AnH +Anc0 +Anc1) =
⋃

c1∈C1


 ⋃

c0∈C0

(AnH +Anc0) +Anc1


 ,

each coset of G/(An+1H) has at most |A|2Nn elements of Λ. Continuing by induction, we see
that if m > n, then each coset of G/(AmH) has at most |A|m−n+1Nn elements of Λ.

As a consequence,

D+(Λ) = lim sup
m→+∞

1

|A|m
max
x∈G

#{Λ ∩Qm(x)}

≤ lim sup
m→+∞

1

|A|m
|A|m−n+1Nn

=
Nn

|A|n−1
<∞.

Suppose now that (ii) fails for some n ∈ Z. Then, maxx∈G#{Λ ∩ Qm(x)} = +∞ for every
m ≥ n. As a consequence, D+(Λ) = +∞. This completes the proof. �

Remark 3.0.6. Note that if Λ ⊂ G is a sequence and D+(Λ) < ∞, we can deduce from the
proof of Lemma 3.0.5 that for every fixed n ∈ Z, Λ =

⋃
j∈{1,··· ,Nn},c0∈C0

Λj,co where the union is

disjoint. Moreover, every set Λj,co is a uniformly separated sequence because we saw that each
element of Λj,co lies in a different coset of G/AnH and then #{Λj,co ∩ [AnH +Anc]} ≤ 1 for
every c ∈ C. Therefore, when D+(Λ) < ∞ we have that Λ must be a finite union of uniformly
separated sequences; that is, Λ must be A-separated. Since uniformly separated sequences must
be countable, Λ must be countable as well.

Example 3.0.7. Let G be an LCA group, H ⊆ G an open and compact subgroup and C section
of the quotient G/H. Consider Λ := C. Then, we have that for all c ∈ C, #{C ∩ Q0(c)} = 1
and proceeding as in the proof of Lemma 3.0.5 we get #{C ∩ Qn(A

nc)} = |A|n for all n ∈ Z.
Therefore, D+(C) = D−(C) = 1 = D(C).

4. Modulation spaces on locally compact groups

In this section, we consider G a locally compact group (non necessarily abelian), with an open
and compact subgroup H. Using definitions and lemmas from the seminal papers [8, 9], we will
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prove that the generalized wavelet transform continuously maps modulation spaces into Wiener
spaces.

Let G be a locally compact group with right Haar measure mG. To emphasize that G needs
not be abelian, along this section we use multiplicative notation. Given H a Hilbert space, a
unitary representation of G on H is a continuous homomorphism π : G → U(H). For f, g ∈ H
we consider Vgf : G → C, the generalized wavelet transform (also called voice transform or
representation coefficients) of f with respect to the window g defined by

Vgf(x) := 〈f, π(x)g〉, x ∈ G.

The set of analyzing vectors on G is given by

(4) A := {g ∈ H : Vgg ∈ L1(G)}.

Note that for g ∈ H and x ∈ G, since π is a representation, Vπ(x)g(π(x)g)(y) = Vgg(x
−1yx) for

all y ∈ G. Thus, A is invariant under π. Then, when π is an irreducible unitary representation,
that is, without proper invariant subspaces, A must be a dense linear subspace of H.

In the remainder of this section, we assume that H ⊆ G is an open and compact subgroup.
Examples of non-abelian groups with that property follows.

Example 4.0.1. Fix p prime and n ≥ 2. Then the general linear group GLn(Qp) is a non-
abelian locally compact group with well-understood representation theory, and GLn(Zp) is an
open and compact subgroup [3].

We denote the space of continuous functions on G as C := C(G). For ϕ ∈ C and every x ∈ G
we see that ‖χHx ·ϕ‖∞ = supy∈Hx |ϕ(y)| <∞, where χA is the characteristic function of A that
takes the value 1 for x ∈ A and 0 otherwise.

For 1 ≤ p <∞, the Wiener space W (C, Lp) is defined as

W (C, Lp) := {ϕ ∈ C :

∫

G
‖χHx · ϕ‖

p
∞dmG(x) <∞}.

It turns out that W (C, Lp) equipped with the norm ‖ϕ‖W (C,Lp) :=
(∫

G ‖χHx · ϕ‖
p
∞dmG(x)

)1/p
is a Banach space.

Additionally, if C is a section of G/H and 1 ≤ p <∞, let us denote by W (C, ℓp) the space

W (C, ℓp) := {ϕ ∈ C :
∑

x∈C

‖χHx · ϕ‖
p
∞ <∞}.

We note that W (C, ℓp) does not depend on the choice of the section C. Furthermore, it holds

thatW (C, ℓp) endowed with the norm given by ‖ϕ‖W (C,ℓp) :=
(∑

x∈C ‖χHx · ϕ‖
p
∞

)1/p
is a Banach

space.

Moreover, it can be seen that actually W (C, ℓp) = W (C, Lp) and the norms ‖ · ‖W (C,Lp) and
‖ · ‖W (C,ℓp) coincide as we show in the next lemma.

Lemma 4.0.2. Let G be a locally compact group with an open and compact subgroup. Then,
W (C, ℓp) =W (C, Lp). Moreover, for ϕ ∈ C,

‖ϕ‖W (C,ℓp) = ‖ϕ‖W (C,Lp).
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Proof. Let ϕ ∈ C. Since G =
⋃

c∈C Hc where the union is disjoint, C is a section of G/H and
mG(H) = 1, we can write

‖ϕ‖pW (C,Lp) =

∫

G
‖χHx · ϕ‖

p
∞dmG(x) =

∑

c∈C

∫

Hc
‖χHx · ϕ‖

p
∞dmG(x)

=
∑

c∈C

∫

Hc
‖χHc · ϕ‖

p
∞dmG(x) =

∑

c∈C

‖χHc · ϕ‖
p
∞

= ‖ϕ‖p
W (C,ℓp)

.

Then ϕ ∈W (C, ℓp) if and only if ϕ ∈W (C, Lp). �

We now consider the following subset of A,

(5) B = {g ∈ H : Vgg ∈W (C, L1)},

which turns out to be also invariant under π. As before, when π is irreducible, B is dense in H.
Moreover, when additionally G is abelian, as a consequence of [9, Lemma 7.2], A = B.

Fixing an arbitrary non-zero element g ∈ A, the space M 1(G) is given by

M
1(G) := {f ∈ H : Vgf ∈ L1(G)},

and it is called a modulation space. It is a Banach space with the norm ‖f‖M 1 := ‖Vgf‖L1 .
The set M 1 is independent of the choice of g; i.e., different vectors in A give the same space
with equivalent norms (see, for instance, [8, Theorem 4.2]). Considering the topological dual
of M 1, denoted as (M 1(G))′, and p ∈ [1,∞], it is said that f ∈ M p(G), the modulation space
of order p, if f ∈ (M 1(G))′ and ‖Vgf‖Lp(G) < +∞. These spaces are Banach spaces with the
norm ‖f‖M p = ‖Vgf‖Lp , and they are also independent of the choice of the window g. For more
details on these spaces we refer to [8, Section 4].

It is known [9, Theorem 8.1] that for general locally compact groups, when g ∈ B, Vg maps the
space M p into W (C, ℓp). We will prove now that, when G has an open and compact subgroup,
Vg maps M p into W (C, ℓp) continuously.

Proposition 4.0.3. Let G be a locally compact group with an open and compact subgroup H,
π : G → U(H) an irreducible unitary representation of G, g ∈ B, and 1 ≤ p ≤ +∞. If
f ∈ M p(G), then Vgf ∈W (C, ℓp). Furthermore, there exists a constant K > 0 such that

(6) ‖Vgf‖W (C,ℓp) ≤ K‖f‖M p

for every f ∈ M p(G).

Proof. By [9, Theorem 8.1] we know that for f ∈ M p(G) we have Vgf ∈W (C, Lp), and that for
each set X = {xi}i∈I which is a section of G/H, the linear operator given by

RX : f 7→ (Vgf(xi))i∈I

maps M p(G) in ℓp(I) continuously; i.e., there exists KX > 0 such that

‖(Vgf(xi))i∈I‖ℓp ≤ KX‖f‖M p ∀f ∈ M
p(G).

Consider F = {RX : X is a section of G/H} and fix f ∈ M p(G). Then, since Vgf is continu-
ous, we have that

sup
RX∈F

‖RX(f)‖ℓp = sup
X={xi}i∈I

‖(Vgf(xi))i∈I‖ℓp = ‖(Vgf(x̃i))i∈I‖ℓp
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where X is a section of G/H and, for each i ∈ I, x̃i ∈ H + xi is a point that maximizes |Vgf |
on H + xi. Then, by the uniform boundedness principle there exists K > 0 such that

sup
RX∈F

‖RX‖ = sup
RX∈F

KX ≤ K.

Consequently, we have for all sections {xi}i∈I of G/H that the following inequality holds

‖(Vgf(xi))i∈I‖ℓp ≤ K‖f‖M p ,

for every f ∈ M p(G). Now, note that, for each f ∈ M p(G), ‖Vgf‖W (C,ℓp) = ‖(Vgf(x̃i))i∈I‖ℓp

for a proper section X̃ = {x̃i}i∈I . Thus,

‖Vgf‖W (C,ℓp) ≤ K‖f‖M p ∀f ∈ M
p(G).

�

We shall see now that there is a valid version of Proposition 4.0.3 for projective representations.

For this, let G be a locally compact group and recall that a projective representation is a
continuous mapping Π : G→ U(H) for which there exists a continuous function α : G×G → T,
called a 2-cocycle, such that Π(x)Π(y) = α(x, y)Π(xy). It is usual to call Π an α-projective
representation to emphasize the dependence of Π on α. As we did for unitary representations,
we define the generalized wavelet transform corresponding to a projective representation as

VΠ
g f(x) := 〈f,Π(x)g〉,

for f, g ∈ H.

Every projective representation of G induces a unitary representation on the Mackey group
associated to G. The last is defined as follows: if G is a locally compact group and α is a
2-cocycle, as a topological space, it is just G× T and the product is given by

(x1, τ1)(x2, τ2) = (x1x2, τ1τ2α(x1, x2)),

for x1, x2 ∈ G and τ1, τ2 ∈ T. The Mackey group associated to G is a locally compact group
and its Haar measure is given by the product of the Haar measures on G and T. Then, for a
α-projective representation Π : G→ U(H), define π : G× T → U(H) as

(7) π(x, τ) := τΠ(x),

for τ ∈ T, x ∈ G. This mapping π turns out to be a unitary representation, and it is irreducible
when Π is. Note that for every f, g ∈ H, x ∈ G and τ ∈ T we have

VΠ
g f(x) = τ〈f, τΠ(x)g〉 = τ〈f, π(x, τ)g〉 = τVgf(x, τ),

with Vgf being the generalized wavelet transform associated to π. As a consequence, the sets A
and B given in (4) and (5) respectively, remain equal if we use the generalized wavelet transform
induced by Π instead of the one induced by the unitary representation given by (7). Then, the
same holds for modulation spaces.

Therefore, we obtain the corresponding version of Proposition 4.0.3 for projective representa-
tions. This result is a particular case of [13, Theorem 2.5], with a significant distinction being
our successful demonstration that the inclusion given by the Wavelet transform is continuous.

Theorem 4.0.4. Let G be a locally compact group with an open and compact subgroup, Π : G→
U(H) a irreducible projective representation of G, g ∈ B and 1 ≤ p ≤ +∞. If f ∈ M p(G) then
VΠ
g f ∈W (C, ℓp). Furthermore, there exists a constant K > 0 such that

(8) ‖VΠ
g f‖W (C,ℓp) ≤ K‖f‖M p

for every f ∈ M p(G).
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Proof. Note that if H ⊆ G is the open and compact subgroup of G, then H × T is an open and
compact subgroup of the Mackey group of G. Also note that if C is a section of G/H, then
C × {1} is a section of (G × T)/(H × T). Therefore, for each c ∈ C we have

‖χHc · V
Π
g f‖∞ = ‖χHc×T · Vgf‖∞,

and then

‖VΠ
g f‖W (C,ℓp) = ‖Vgf‖W (C(G×T),ℓp).

The result follows by applying Proposition 4.0.3. �

5. Reproducing properties of Gabor systems

In this section we study Bessel and frame conditions on Gabor systems in terms of density.
To be precise, let us fix G, an LCA group. For every x ∈ G, the translation operator by x of a
function f ∈ L2(G) is given by

Txf(y) = f(y − x), for mG-a.e. y ∈ G.

For ξ ∈ Ĝ, the modulation operator by ξ of a function f ∈ L2(G) is defined by

Mξf(y) = 〈y, ξ〉f(y), for mG-a.e. y ∈ G..

Now, given a funcion ϕ ∈ L2(G) and a sequence Λ ⊆ G × Ĝ, we define the Gabor system
generated by ϕ and Λ as

S(ϕ,Λ) = {MξTxϕ}(x,ξ)∈Λ.

In order to establish frame conditions on S(ϕ,Λ) in terms of density of Λ, we assume that
G has an open and compact subgroup H, and we fix A ∈ Aut(G) expansive with respect to H

such that A∗ is expansive with respect to H⊥. Then, the densities of Λ ⊆ G× Ĝ are

D+(Λ) := lim sup
n→+∞

1

|A|2n
max

(x,ξ)∈G×Ĝ
#{Λ ∩Qn(x, ξ)},

and

D−(Λ) := lim inf
n→+∞

1

|A|2n
min

(x,ξ)∈G×Ĝ
#{Λ ∩Qn(x, ξ)},

where Qn(x, ξ) is defined as in (2).

On the other hand, note that translation and modulation operators are unitary in L2(G), and

they satisfy the intertwining relationship MξTxf = 〈x, ξ〉TxMξf for all x ∈ G, ξ ∈ Ĝ and for all

f ∈ L2(G). Thus, the Gabor representation Π : G× Ĝ→ U(L2(G)) given by

(9) Π(x, ξ) :=MξTx

is an irreducible projective representation with 2-cocycle given by α((x1, ξ1), (x2, ξ2)) = 〈x1, ξ2〉.
Then, we can make use of the tools described in the previous section. In particular, we have
defined the well-know short-time Fourier transform

Vgf(x, ξ) := 〈f,MξTxg〉 = VΠ
g f(x, ξ),

where, f, g ∈ L2(G), and (x, ξ) ∈ G × Ĝ. For fixed f, g ∈ L2(G), Vgf is well defined and

continuous on G× Ĝ.

When we consider translations along a section of G/H and modulations along a section of

Ĝ/H⊥ of the function χH , it turns out that the obtained Gabor system is an ortonormal basis
for L2(G). See [13, Theorem 2.7, Case II] for a proof of this fact.
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Lemma 5.0.1. Let C and D be sets of coset representatives of G/H and Ĝ/H⊥ respectively,
and consider Λ = C ×D. Then, S(χH ,Λ) is an orthonormal basis for L2(G).

5.1. Bessel sequences. In this section we show one necessary and one sufficient condition for
a Gabor system to be a Bessel sequence of L2(G).

We begin by proving that if a Gabor system is a Bessel sequence, then Λ must have finite
upper density. This was proved before for Rd in [5, Theorem 3.1].

Theorem 5.1.1. Let ϕ ∈ L2(G) and let Λ ⊆ G× Ĝ. If S(ϕ,Λ) is a Bessel sequence in L2(G),
then D+(Λ) <∞.

Proof. Let f ∈ L2(G) with ‖f‖2 = 1 such that 〈ϕ, f〉 6= 0 and define Aϕf : G× Ĝ→ R≥0

Aϕf(x, ξ) := |Vϕf(x, ξ)|.

Then, Aϕf is continuous on G× Ĝ.

As Aϕf 6= 0, there exists (x0, ξ0) ∈ G× Ĝ and n0 ∈ Z such that η := inf{Aϕf(x, ξ) : (x, ξ) ∈
Qn0

(x0, ξ0)} > 0.

If we had D+(Λ) = ∞, by Lemma 3.0.5 for each N > 0 there should exist some (xN , ξN ) such
that #{Λ ∩Qn0

(xN , ξN )} ≥ N .

Now, note that if (x, ξ) ∈ Qn0
(xN , ξN ), then (x, ξ)−(xN , ξN )+(x0, ξ0) ∈ Qn0

(x0, ξ0) and thus

|〈f,Mξ−ξN+ξ0Tx−xN+x0
ϕ〉| ≥ η.

Since |〈f,Mξ−ξN+ξ0Tx−xN+x0
ϕ〉| = |〈Mξ0−ξNTx0−xN

f,MξTxϕ〉| we have that
∑

(x,ξ)∈Λ∩Qn0
(xN ,ξN )

|〈Mξ0−ξNTx0−xN
f,MξTxϕ〉|

2 ≥ η2N,

for all N ∈ N. Hence, S(ϕ,Λ) can not be a Bessel sequence because ‖Mξ0−ξNTx0−xN
f‖2 =

‖f‖2 = 1. �

The above theorem extends to a finite union of Gabor systems. More precisely, let

Λ1, . . . ,Λr ⊆ G × Ĝ be sequences each indexed in I1, . . . , Ir, respectively. That is, Λk =
{(xi,k, ξi,k)}i∈Ik , for 1 ≤ k ≤ r. Define I = {(i, k) : i ∈ Ik, 1 ≤ k ≤ r} and Λ as the se-
quence {(xi,k, ξi,k) : (i, k) ∈ I}. By abuse of notation, we will simply write Λ =

⋃r
k=1Λk and

say that Λ is the disjoint union of Λ1, . . . ,Λr. Once this is clear, we can state the result that
we announced.

Theorem 5.1.2. For 1 ≤ k ≤ r, let ϕk ∈ L2(G) and Λk ⊆ G × Ĝ a sequence. Consider Λ the
disjoint union of Λ1, . . . ,Λr. If

⋃r
k=1 S(ϕk,Λk) is a Bessel sequence, then D+(Λ) <∞.

Proof. Note that since
⋃r

k=1 S(ϕk,Λk) is a Bessel sequence, so is S(ϕk,Λk) for every 1 ≤ k ≤ r.
Then, by Theorem 5.1.1 we have that D+(Λk) <∞ for every 1 ≤ k ≤ r.

Now, since Λ is the disjoint union of Λ1, . . . ,Λr, for each n ∈ Z and (x, ξ) ∈ G× Ĝ,

#{Λ ∩Qn(x, ξ)} =

r∑

k=1

#{Λk ∩Qn(x, ξ)},

and as a consequence
r∑

k=1

D−(Λk) ≤ D−(Λ) ≤ D+(Λ) ≤
r∑

k=1

D+(Λk).

From here the conclusion follows. �
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In what follows we shall prove a weaker converse of Theorem 5.1.1. For this to be true, we
have to assume that the generating function of the Gabor system must have a particular decay;
that is, it must be a function of M 1(G).

As a consequence of [17, Theorem 4.7] we have that, when the representation involved is the
Gabor representation (9), A = B = M 1(G), and then, Theorem 4.0.4 holds for g ∈ M 1(G).

Then, we have the following result, which is a generalization of [14, Theorem 12] to our setting.

Theorem 5.1.3. Let ϕ ∈ M 1(G), ϕ 6= 0 and Λ ⊆ G × Ĝ any sequence with D+(Λ) < +∞.
Then S(ϕ,Λ) is a Bessel sequence.

Proof. By Lemma 3.0.5, since D+(Λ) < +∞ there exists N0 > 0 such that #{Λ∩Q0(c, d)} ≤ N0

for all (c, d) ∈ C ×D. Then for f ∈ L2(G),
∑

(x,ξ)∈Λ

|〈f,MξTxϕ〉|
2 =

∑

(x,ξ)∈Λ

|Vϕf(x, ξ)|
2

=
∑

(c,d)∈C×D

∑

(x,ξ)∈Λ∩Q0(c,d)

|Vϕf(x, ξ)|
2

≤
∑

(c,d)∈C×D

N0 sup
(x,ξ)∈Q0(c,d)

|Vϕf(x, ξ)|
2

= N0‖Vϕf‖
2
W (C,ℓ2) ≤ N0K‖f‖2

M 2 ,

where the last inequality is the result of Theorem 4.0.4. Finally, since ‖f‖M 2 = ‖Vϕf‖2 and by
the well-known orthogonality relationship of the short-time Fourier transform (see [8, Section
2.2], ‖Vϕf‖2 = ‖f‖2‖ϕ‖2, we conclude the result. �

It is known that every locally compact abelian group G is algebraically and topologically
isomorphic to Rd × G0, where G0 is an LCA group with an open and compact subgroup (see,
e.g., [6]). For the case where G0 is an expansible group we can combine Theorem 5.1.3 with [14,
Theorem 12] to prove a similar statement for the product group Rd ×G0.

Proposition 5.1.4. Let G0 be an expansible LCA group. Take g1 ∈M1(Rd), g2 ∈M1(G0) and

Λ = Λ1 × Λ2, where Λ1 ⊆ R2d and Λ2 ⊆ G0 × Ĝ0. Suppose that Λ1 and Λ2 have finite upper
density, where the density of Λ1 is the usual Beurling density defined in the introduction, and
the density of Λ2 is as in Definition 3.0.2. If we consider g ∈ L2(Rd ×G0) given by g = g1 ⊗ g2,
then S(g,Λ) is a Bessel sequence for L2(Rd ×G0)

Proof. First observe that for (x1, x2, ξ1, ξ2) ∈ (Rd ×G0) × (Rd × Ĝ0) and f ∈ L2(Rd ×G0), we
have

Vgf(x1, x2, ξ1, ξ2) =

∫

Rd

∫

G0

f(y1, y2)g(y1 − x1, y2 − x2)〈y1, ξ1〉〈y2, ξ2〉dmG0
(y2)dy1

=

∫

Rd

∫

G0

f(y1, y2)g1(y1 − x1)g2(y2 − x2)〈y1, ξ1〉〈y2, ξ2〉dmG0
(y2)dy1

∫

Rd

g1(y1 − x1)〈y1, ξ1〉

(∫

G0

f(y1, y2)g2(y2)〈y2, ξ2〉dmG0
(y2)

)
dy1

= Vg1 (Vg2f•(x2, ξ2)) (x1, ξ1),

where by f• we denote the function the is obtained when the first variable of f is fixed.
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On the other hand, since both upper densities are finite, we know from Lemma 3.0.5 and [5,
Lemma 2.3] that there exist N0 and N1 ∈ N such that

#(Λ2 ∩Q0(x, ξ)) ≤ N0 for all (x, ξ) ∈ G0 × Ĝ0 and

#(Λ1 ∩B1(t)) ≤ N1 for all t ∈ R2d,

where B1(0) = [0, 1]2d and B1(t) = B1(0) + t.

Putting this together we obtain
∑

(x1,x2,ξ1,ξ2)∈Λ

|Vgf(x1, x2, ξ1, ξ2)|
2 =

∑

(x2,ξ2)∈Λ2

∑

(x1,ξ1)∈Λ1

|Vg1 (Vg2f•(x2, ξ2)) (x1, ξ1)|
2

=
∑

(x2,ξ2)∈Λ2

∑

j∈Z2d

∑

(x1,ξ1)∈Λ1∩B1(j)

|Vg1 (Vg2f•(x2, ξ2)) (x1, ξ1)|
2

≤
∑

(x2,ξ2)∈Λ2

∑

j∈Z2d

N1 sup
(x1,ξ1)∈Λ1∩B1(j)

|Vg1 (Vg2f•(x2, ξ2)) (x1, ξ1)|
2

= N1

∑

(x2,ξ2)∈Λ2

‖Vg1(Vg2f•(x2, ξ2))‖
2
W (Rd)

≤ N1

∑

(x2,ξ2)∈Λ2

‖Vg2f•(x2, ξ2)‖
2
L2(Rd)K1‖g1‖

2
L2(Rd),

where in the last inequality we used [14, Theorem 12] and the fact that Vg2f•(x2, ξ2) ∈ L2(Rd)

for a.e. (x2, ξ2) ∈ G0 × Ĝ0.

Now, using Fubini and Theorem 4.0.4 we have

N1K1‖g1‖
2
L2(Rd)

∑

(x2,ξ2)∈Λ2

‖Vg2f•(x2, ξ2)‖
2
L2(Rd) = K0

∑

(x2,ξ2)∈Λ2

∫

Rd

|Vg2fy1(x2, ξ2)|
2dy1

= K0

∫

Rd

∑

(c,d)∈C×D

∑

(x2,ξ2)∈Λ2∩Q0(c,d)

|Vg2fy1(x2, ξ2)|
2dy1

≤ K0

∫

Rd

∑

(c,d)∈C×D

N0 sup
(x2,ξ2)∈Λ2∩Q0(c,d)

|Vg2fy1(x2, ξ2)|
2dy1

= K0N0

∫

Rd

‖Vg2fy1‖
2
W (G0)

dy1

≤ K

∫

Rd

‖fy1‖
2
L2(G0)

dy1

= K

∫

Rd

∫

G0

|f(y1, y2)|
2dy2dy1 = K‖f‖2L2(Rd×G0)

.

Since
∑

(x1,x2,ξ1,ξ2)∈Λ
|〈f,M(ξ1,ξ2)T(x1,x2)g〉|

2 =
∑

(x1,x2,ξ1,ξ2)∈Λ
|Vgf(x1, x2, ξ1, ξ2)|

2, the above

computation shows that S(g,Λ) is a Bessel sequence.

�

5.2. Riesz bases and frames. In the Euclidean case, it is well known that if Λ and Γ are
sequences of R2d and for ψ, φ ∈ L2(Rd), S(ψ,Λ) is a frame and S(φ,Γ) is a Riesz basis of
L2(Rd), then the upper density (resp., lower) of Γ will be lower or equal than the upper density
(resp., lower) of Λ (see [5, Theorem 3.6]). The following corollaries can be derived from this
result.
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Corollary 5.2.1. Let g ∈ L2(Rd) and Λ ⊆ R2d.

(i) If S(g,Λ) is a Riesz basis of L2(Rd) then D(Λ) = 1.
(ii) If S(g,Λ) is a frame of L2(Rd) then D−(Λ) ≥ 1.

In our context, none of these statements are true, as we will prove with the following example.
This also indicates that it is not possible to have a density comparison theorem like the one valid
in the Euclidean case.

Example 5.2.2. Let G be expansive with A and H given. ϕ := χA−1H and Λ = Λ1 + Λ2 with

Λ1 and Λ2 sections of G/H × Ĝ/H⊥ and (H/A−1H) × (H⊥/A∗−1H⊥) respectively. We have
that A−1H is an open and compact subgroup, A is expansive with respect to A−1H and Λ is a

section of (G/A−1H)× (Ĝ/A∗−1H⊥). Then S(χA−1H ,Λ) is an orthonormal basis for L2(G) by
Lemma 5.0.1.

We want to calculate D(Λ). For n ∈ N we have

max
(x,ξ)∈G×Ĝ

#(Qn(x, ξ) ∩ Λ) ≤
∑

λ2∈Λ2

max
(x,ξ)∈G×Ĝ

#(Qn(x, ξ) ∩ (Λ1 + λ2))

=
∑

λ2∈Λ2

max
(x,ξ)∈G×Ĝ

#(Qn(x, ξ) ∩ Λ1)

= #Λ2 max
(x,ξ)∈G×Ĝ

#(Qn(x, ξ) ∩ Λ1)

= |A|2 max
(x,ξ)∈G×Ĝ

#(Qn(x, ξ) ∩ Λ1).

Dividing by |A|2n and taking lim sup we obtain that

D+(Λ) ≤ |A|2D+(Λ1) = |A|2.

By doing analogous calculation with the minimum, we obtain that D−(Λ) ≥ |A|2D−(Λ1) = |A|2

and therefore D(Λ) = |A|2.

Using the same procedure as in Example 5.2.2, we can construct orthonormal Gabor bases
with arbitrarily large density or arbitrarily close to 0 density. For this, it suffices to consider,

for each k ∈ Z, the function ϕk = χAkH and Λk a section of (G/AkH)× (Ĝ/A∗kH⊥). We then
have that D(Λk) = |A|−2k and S(ϕk,Λk) is an orthonormal basis for L2(G).

5.3. Homogeneous Approximation Property. An important tool that also holds in this
context is the Homogeneous Approximation Property (HAP) for Gabor frames. The HAP in
L2(Rd) was introduced by Ramanathan and Steger in [19] in order to prove the Comparison
Theorem, but is a fundamental result of independent interest. It essentially states that for any
irregular Gabor frame S(ϕ,Λ) in L2(Rd), the rate of approximation of a Gabor frame expansion
of a function f is invariant under time-frequency shifts of f . What Ramanathan and Steger
established corresponds to what is subsequently identified in the literature as weak HAP . In the
Euclidean case, Christensen, Deng and Heil demonstrate in [5] that every Gabor frame possesses
this particular property. We will prove that the same holds true in our context.

Definition 5.3.1. Assume that S(ϕ,Λ) = {MξTxϕ}(x,ξ)∈Λ is a frame for L2(G), and let Φ =

{φx,ξ}(x,ξ)∈Λ denote its canonical dual frame. For each n ∈ Z and (y, γ) ∈ G× Ĝ, set

W (n, y, γ) = span{φx,ξ : (x, ξ) ∈ Λ ∩Qn(y, γ)}.
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We say that S(ϕ,Λ) has the Homogeneous Approximation Property (HAP) if

∀f ∈ L2(G) and ∀ǫ > 0, ∃N ∈ N such that

dist(MγTyf,W (N, y, γ)) < ǫ, ∀(y, γ) ∈ G× Ĝ.

Our goal is to prove that every frame of the form
⋃r

k=1 S(ϕk,Λk) has the HAP. We need the
next lemma.

Lemma 5.3.2. Set ϕ := χH and let n ∈ Z be fixed. Then, there exists C > 0 such that for

every f ∈ L2(G) and every (x, ξ) ∈ G× Ĝ, we have

(10) |〈ϕ,MξTxf〉|
2 ≤ C

∫∫

Qn(x,ξ)
|〈ϕ,MγTyf〉|

2 dmG(y) dmĜ
(γ).

Further, when n ≤ 0, equality holds in (10) when C = |A|−2n. For arbitrary n ∈ Z, C = 1 may
be chosen to make the inequality hold.

Proof. In order to simplify the notation we write dy := dmG(y) and dγ := dmĜ(γ). We first show
that the statement holds for (x, ξ) = (0, 0) and n ≤ 0, noting that we may apply Fubini-Tonelli’s
theorem to manipulate the integral since H ×H⊥ is compact and f ∈ L2(G):
∫∫

Qn(0,0)
|〈ϕ,MγTyf〉|

2 dy dγ =

∫∫

Qn(0,0)
|〈T−yM−γϕ, f〉|

2 dy dγ =

∫∫

Qn(0,0)
|〈M−γT−yϕ, f〉|

2 dy dγ

=

∫

AnH

∫

(A∗)nH⊥

(∫

G
〈z,−γ〉χH(z + y)f(z) dz

)(∫

G
〈w, γ〉χH (w + y)f(w) dw

)
dy dγ

=

∫

G
f(z)

∫

G
f(w)

∫

(A∗)nH⊥

〈z,−γ〉〈w, γ〉

∫

AnH
χH(z + y)χH(w + y) dy dγ dw dz

=

∫

G
f(z)

∫

G
f(w)

∫

(A∗)nH⊥

〈w − z, γ〉

(∫

G
χ(AnH)∩(−z+H)∩(−w+H)(y) dy

)
dγ dw dz.

Since A is expansive and n is nonpositive,

χ(AnH)∩(−z+H)∩(−w+H)(y) =

{
χAnH(y); z, w ∈ H
0; otherwise

,

hence

∫

G
χ(AnH)∩(−z+H)∩(−w+H)(y) dy =

{
mG(A

nH); z, w ∈ H
0; otherwise

= |A|nχH(z)χH(w).

Therefore,∫∫

Qn(0,0)
|〈ϕ,MγTyf〉|

2 dy dγ =

∫

G
f(z)

∫

G
f(w)

∫

(A∗)nH⊥

〈w − z, γ〉|A|nχH(z)χH(w) dγ dw dz

= |A|n
∫

G
f(z)

∫

G
f(w)mĜ((A

∗)nH⊥)χH(z)χH(w) dw dz

= |A|2n
∫

G
f(z)

∫

G
f(w)χH(z)χH(w) dw dz = |A|2n

∫

G
f(z)χH(z) dz

∫

G
f(w)χH(w) dw

= |A|2n|〈ϕ, f〉|2,

where we have used that (A∗)nH⊥ ⊆ H⊥ since A is expansive and n is nonpositive.

Now, for arbitrary (x, ξ) ∈ G × Ĝ and n ≤ 0, replace f by MξTxf in the calculations above
to obtain
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|〈ϕ,MξTxf〉|
2 = |A|−2n

∫∫

Qn(0,0)
|〈ϕ,MγTyMξTxf〉|

2 dy dγ

= |A|−2n

∫∫

Qn(0,0)
|〈ϕ, (y, ξ)MγMξTyTxf〉|

2 dy dγ

= |A|−2n

∫∫

Qn(0,0)
|〈ϕ,Mγ+ξTy+xf〉|

2 dy dγ

= |A|−2n

∫∫

Qn(x,ξ)
|〈ϕ,MγTyf〉|

2 dy dγ.

Finally, for n ≥ 1, we note that

|〈ϕ,MξTxf〉|
2 =

∫∫

Q0(x,ξ)
|〈ϕ,MγTyf〉|

2 dy dγ ≤

∫∫

Qn(x,ξ)
|〈ϕ,MγTyf〉|

2 dy dγ.

�

If ϕ1, . . . , ϕr ∈ L2(G), Λ1, . . . ,Λk ⊆ G × Ĝ is such that
⋃r

k=1 S(ϕk,Λk) is a frame for L2(G)
let us denote its canonical dual frame as

{φk,x,ξ : (x, ξ) ∈ Λk, 1 ≤ k ≤ r}.

Given n ∈ Z and (y, γ) ∈ G× Ĝ we recall that

W (n, y, γ) := span{φk,x,ξ : (x, ξ) ∈ Qn(y, γ) ∩ Λk, 1 ≤ k ≤ r}.

Note that since
⋃r

k=1 S(ϕk,Λk) is a frame for L2(G), S(ϕk,Λk) is a Bessel sequence for every
1 ≤ k ≤ r. Then, by Theorem 5.1.1, D+(Λk) < ∞, and by Lemma 3.0.5, #(Qn(y, γ) ∩ Λk) is
finite for every 1 ≤ k ≤ r. Hence, W (n, y, γ) is a finite dimensional subspace of L2(G) and thus
closed. The following result states that for this type of frame the HAP always holds.

Theorem 5.3.3. Let ϕ1, . . . , ϕr ∈ L2(G), Λ1, . . . ,Λk ∈ G× Ĝ be such that
⋃r

k=1 S(ϕk,Λk) is a
frame for L2(G). Then, for every f ∈ L2(G) the following condition holds:

∀ ε > 0, ∃N ∈ N such that ∀ (y, γ) ∈ G× Ĝ, d(MγTyf,W (N, y, γ)) < ε.

Proof. Let

K = {f ∈ L2(G) : ∀ ε > 0, ∃N ∈ N s.t. ∀ (y, γ) ∈ G× Ĝ, d(MγTyf,W (N, y, γ)) < ε}.

Then, it is easily seen that K is a subspace that is closed.

We want to show that MγTyϕ ∈ K for all (y, γ) ∈ C ×D where ϕ := χH and C and D are
like in Lemma 5.0.1. By this lemma, we know that {MγTyϕ}(y,γ)∈C×D is an orthonormal basis

for L2(G) and then we will conclude that K = L2(G).

Consider Λ to be the disjoint union of Λ1, . . . ,Λr. Then, by Theorem 5.1.2 we know that
D+(Λ) <∞. Therefore, by Remark 3.0.6 for each fixed ñ ∈ Z there exists a partition of each Λk

into disjoint sets Λ
(k)
1 , . . . ,Λ

(k)
nk

such that #{Λ
(k)
j ∩Qñ(x, ξ)} ≤ 1 for every j = 1, . . . , nk, every

k = 1, . . . , r and every (x, ξ) ∈ G× Ĝ. Then, in order to simplify the notation, we can fix ñ ∈ Z
and assume that each Λk is uniformly separated for that ñ.

From here, we deduce that for (x1, ξ1), (x2, ξ2) ∈ Λk, Qñ(x1, ξ1) ∩Qñ(x2, ξ2) = ∅.
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Now, fix (x0, ξ0) ∈ C ×D and take any (y, γ) ∈ G× Ĝ. Since
⋃r

k=1 S(ϕk,Λk) is a frame, we
can write

MγTy(Mξ0Tx0
ϕ) =

r∑

k=1

∑

(x,ξ)∈Λk

〈MγTy(Mξ0Tx0
ϕ),MξTxϕk〉φk,x,ξ.

Now, since for every n ∈ Z,
∑r

k=1

∑
(x,ξ)∈Qn(y,γ)∩Λk

〈MγTy(Mξ0Tx0
ϕ),MξTxϕk〉φk,x,ξ is an ele-

ment of W (n, y, γ), we have that

d(MγTy(Mξ0Tx0
ϕ),W (n, y, γ))2

≤ ‖MγTy(Mξ0Tx0
ϕ)−

r∑

k=1

∑

(x,ξ)∈Qn(y,γ)∩Λk

〈MγTy(Mξ0Tx0
ϕ),MξTxϕk〉φk,x,ξ‖

2

= ‖
r∑

k=1

∑

(x,ξ)∈Λk\Qn(y,γ)

〈MγTy(Mξ0Tx0
ϕ),MξTxϕk〉φk,x,ξ‖

2

≤ C̃
r∑

k=1

∑

(x,ξ)∈Λk\Qn(y,γ)

|〈MγTy(Mξ0Tx0
ϕ),MξTxϕk〉|

2

= C̃

r∑

k=1

∑

(x,ξ)∈Λk\Qn(y,γ)

|〈ϕ,Mξ−γ−ξ0Tx−y−x0
ϕk〉|

2

≤ C̃C

r∑

k=1

∑

(x,ξ)∈Λk\Qn(y,γ)

∫∫

Qñ(x−y−x0,ξ−γ−ξ0)
|〈ϕ,MδTzϕk〉|

2 dδ dz,(11)

where in the last inequality we have used Lemma 5.3.2. Note that by a simple change of variables
∫∫

Qñ(y+x0−x,γ+ξ0−ξ)
|〈ϕ,MδTzϕk〉|

2 dz dδ =

∫∫

Qñ(x−y−x0,ξ−γ−ξ0)
|〈ϕ,MδTzϕk〉|

2 dz dδ.

Since balls with center in Λk an radius ñ are disjoint, we have that for a fixed k ∈ {1, . . . , r}
⋃

(x,ξ)∈Λk\Qn(y,γ)

Qñ(x− y − x0, ξ − γ − ξ0)

is a disjoint union. Moreover, for every n > ñ
⋃

(x,ξ)∈Λk\Qn(y,γ)

Qñ(x− y − x0, ξ − γ − ξ0) ⊆
(
G× Ĝ

)
\Qn−ñ(x0, ξ0),

and then, combining this with (11) we obtain that

d(MγTy(Mξ0Tx0
ϕ),W (n, y, γ))2 ≤ C̃C

r∑

k=1

∫∫

(G×Ĝ)\Qn−ñ(x0,ξ0)
|〈ϕ,MδTzϕk〉|

2 dz dδ.

The last integral can be made as small as we want by taking n large enough, independently
of (y, γ). �

Corollary 5.3.4. Let ϕ1, . . . , ϕr ∈ L2(G), Λ1, . . . ,Λk ∈ G × Ĝ be such that
⋃r

k=1 S(ϕk,Λk) is
a frame for L2(G). Then for each f ∈ L2(G) and each ǫ > 0, there exist N ∈ N such that

∀(y, γ) ∈ G× Ĝ, ∀k > 0, ∀(x, ξ) ∈ Qk(y, γ) d(MξTxf,W (N + k, y, γ)) < ǫ.

Proof. Simply note that if (x, ξ) ∈ Qk(y, γ), then W (N,x, ξ) ⊂ W (N + k, y, γ) and therefore
d(MξTxf,W (N + k, y, γ)) ≤ d(MξTxf,W (N,x, ξ)). �
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[7] H. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via integrable group repre-
sentations. In Function spaces and applications (Lund, 1986), volume 1302 of Lecture Notes in Math., pages
52–73. Springer, Berlin, 1988.
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[12] K. Gröchenig, G. Kutyniok, and K. Seip. Landau’s necessary density conditions for LCA groups. J. Funct.
Anal., 255(7):1831–1850, 2008.
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