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Network scientists often use complex dynamic processes to describe network contagions, but
tools for fitting contagion models typically assume simple dynamics. Here, we address this gap by
developing a nonparametric method to reconstruct a network and dynamics from a series of node
states, using a model that breaks the dichotomy between simple pairwise and complex neighborhood-
based contagions. We then show that a network is more easily reconstructed when observed through
the lens of complex contagions if it is dense or the dynamic saturates, and that simple contagions
are better otherwise.

Contacts between individuals are how diseases, infor-
mation, and transmissible social behavior spread through
a population. Classical epidemic models treat these con-
tact as well-mixed [1], but we now have overwhelming
evidence that the structure of these social systems can
strongly influence the outcomes of a contagion—for ex-
ample, the epidemic threshold [2], extent [3, 4] or the
time-scale of spread and the distribution of secondary
infections [5]. Despite the strength of the evidence for
structural models, network methods remain difficult to
deploy beyond the theoretical laboratory, partly because
detailed contact patterns are seldom observed and in-
stead need to be inferred from messy and incomplete ob-
servational data [6, 7]. In fact, this inference problem—
network reconstruction—is still a fundamental problem
in network science [6, 8].

Recent progress suggests that state-of-the-art recon-
struction is possible with Bayesian frameworks [9, 10] in
cases where the contagion spreads via single exposures to
infectious individuals [9]. Other recent work has shown
that network reconstruction is possible using measure-
ments from repeated simple cascades [10], or binary state
time series [11]. Less is known about the inference of so-
cial contagions, often thought to spread due to multiple
exposures [12–14]. Previous studies have focused on dis-
tinguishing different types of contagions, whether inter-
acting contagions and social reinforcement [15], simple
and complex contagions [16, 17], or heterogeneous and
complex contagions [18], but these assume the underly-
ing contact network is known and there is no emphasis
on reconstruction itself.

In this Letter, we develop a nonparametric approach
to network reconstruction from contagion data that
does not assume the contagion dynamics are simple or
complex. Using a time series of binary node states as
input, we show how to jointly identify the network’s
structure and the dynamical rules that generated the
contagion. Our method is conceptually related to that
of Refs. [11, 19, 20], which all reconstruct a network and
its dynamical rules from binary time-series. Unlike these
previous studies, however, we put few restrictions on the

contagion rules, and we generate a complete posterior
distribution over parameters and contagion rules instead
of point estimates.
We then use this framework to examine the difficulty of
network reconstruction as a function of the contagion
process’s rules.

Neighborhood-based contagions on networks.
We describe network contagions with a neighborhood-
based susceptible–infected–susceptible (SIS) model [21],
which encapsulates several simple and complex contagion
processes as special cases. This contagion process is de-
fined as follows: At time t, each infected nodes recover
with probability γ and each susceptible nodes become
infected with probability c(ν, θ), where c : N 7→ [0, 1]
is the contagion function, ν is the number of infected
neighbors of a node, and θ denotes any function pa-
rameters. We write this function as a contagion vector
c = [c0, . . . , cN−1]

T in nonparametric form, where cν de-
notes the probability of infection by ν infected neighbors
and N is the number of nodes.
The classical network SIS and threshold models are

special cases of this general model [21]. In discrete
simple contagions, a node is infected with probability
β from a single exposure, and exposures are modeled
as independent, meaning that the contagion function is
c(ν, β) = 1−(1−β)ν . In complex contagions, multiple ex-
posures are required for the process to spread, and they
are most commonly studied using the threshold model
[12, 13], where a node adopts an opinion when the num-
ber of its neighbors holding that opinion exceeds a critical
threshold τ . In that case, the contagion function becomes
c(ν, β, τ) = β1ν ≥ τ , where β = 1. This nonparametric
model allows us to define a reconstruction process unre-
stricted by these two particular cases.
To describe the time evolution of this dynamical pro-

cess mathematically, we denote the states of all nodes
with a vector x(t) = [x1(t), . . . , xN (t)]T , where xi(t) is
the infection status of individual i at time t, with xi(t) =
0 corresponding to a susceptible state and xi(t) = 1 to
the infected state. We track the states of nodes at unit
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FIG. 1. Overview of the problem. (a) A contagion spreads
on a network for T time steps, and we observe the resulting
sequence of states X. The probability that a susceptible node
(white) becomes infected (red) at the next time step is a func-
tion c(ν) of the number of infected neighbors it has, e.g., ν = 4
for the square node highlighted in blue. (b) We compute a
nonparametric Bayesian estimate of the contagion function
c(ν). Here, we show an estimate of c(ν) obtained from a single
short realization of the dynamics when the network is known.
Error bars show the 50% highest-density posterior interval
(HDPI) of c(ν). (c) We estimate the network and the conta-
gion function c(ν) simultaneously using the marginals of the
posterior distribution, Eq. (7). The reconstruction error goes
to 0 as the amount of data T goes to infinity. The shaded
regions indicate the 50% HDPI, and lines show the median
AUROC across 1, 000 repetitions. (d) The reconstruction
quality is determined by the shape of the contagion function,
here demonstrated by varying its overall infectivity β and
the level of complexity ω ∈ [0, 1]. We use the parametrization
c(ν, β, ω) = (1−ω)g+ωh where g(ν, β) = 1−(1−β)ν describes
a simple contagion model, and h(ν, β) = β1ν≥2 describes a
complex threshold model.

time intervals t = 0, 1, . . . , T . The collection of the state
vectors is then the matrix X = [x(0), x(1), . . . , x(T )].

All the transition probabilities of the dynamics can be
compactly expressed as

P (xi(t+ 1) | xi(t), A, θ) =

b
(
γ, 1− xi(t+ 1)

)xi(t)
b
(
cνi(t), xi(t+ 1)

)1−xi(t)
,
(1)

where θ denotes all model parameters collectively—
the recovery rate and the nonparametric contagion
functions—and where b(p, x) = px(1 − p)1−x is the
Bernoulli probability mass function. In the absence of
additional dependencies, we can write the joint probabil-

ity of the transitions from step t to step t+ 1 as

P (x(t+ 1) | x(t), A, θ)

=
∏
i∈V

P (xi(t+ 1) | xi(t), A, θ). (2)

The joint probability of a sequence of states X is then
given as the product

P (X = x | A, θ) =

T−1∏
t=1

P (x(t+ 1) | x(t), A, θ) , (3)

since the dynamics are Markovian. By substituting
Eq. (1) in Eq. (2) and then in Eq. (3) and re-arranging
terms, we can finally rewrite this probability as

P (X | A, θ) = f(γ,X)

N−1∏
ℓ=0

cmℓ

ℓ (1− cℓ)
nℓ , (4)

where

mℓ =

T−1∑
t=0

∑
i∈V

[1− xi(t)]xi(t+ 1)1νi(t)=ℓ, (5a)

nℓ =

T−1∑
t=0

∑
i∈V

[1− xi(t)][1− xi(t+ 1)]1νi(t)=ℓ, (5b)

are the counts of infection events occurring and failing
to occur when the number of infected neighbors is ℓ, and
where f(γ,X) is a function of γ and X, but not of A.
(This factorization is due to Eq. (1), where νi(t) is the
only term that depends on A, implicitly.)
These equations determine the probability of a par-

ticular sequence of node states occurring for a given
adjacency matrix A and set of dynamical parameters θ
and, through Bayesian inference, they can be reversed to
obtain the probability of these structural and dynamical
properties given a sequence of system states. Figure 1
highlights this framework, which we now describe in
more detail.

Network and dynamic reconstruction. Apply-
ing Bayes’ rule, we write

P (A, θ, ρ | X) =
P (X | A, θ) P (A | ρ) P (ρ, θ)

P (X)
, (6)

where P (A | ρ) is our prior over network structures A,
and where ρ ∈ [0, 1] is a parameter of the network model,
a simple Erdös-Rényi model of expected density ρ. This

model assigns a probability P (A | ρ) = ρ|E|(1−ρ)(
N
2 )−|E|

to networks with |E| edges on N nodes. (But see Ref. [9]
on replacing this simplistic assumption with more struc-
tured models.) Noticing that the parameters of the dy-
namical process θ = (γ, c) and the density ρ are all de-
fined on the interval [0, 1], we choose independent (con-
jugate) beta priors with hyperparameters (aγ , bγ) for γ,
and likewise for all the other parameters.
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With these modeling choices, the posterior distribution
can be written in closed form as

P (A, θ, ρ | X) ∝ f(γ,X)×
N−1∏
ℓ=0

cmℓ+aℓ−1
ℓ (1− cℓ)

nℓ+bℓ−1

× ρ|E|+aρ−1(1− ρ)(
N
2 )−|E|+bρ−1, (7)

where we have dropped normalization terms and rede-
fined f(γ,X) to include the prior density of γ also.
The network structure A is the primary target of net-

work reconstruction, so we first focus on the marginal
posterior distribution, which is obtained by integrating
Eq. (7) over contagion vectors c, recovery rates γ, and
densities ρ. This yield

P (A | X) ∝ B
(
|E|+ aρ,

(
N

2

)
− |E|+ bρ

)
×

N−1∏
ℓ=0

B(mℓ + aℓ, nℓ + bℓ), (8)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta func-
tion. We generate samples from this distribution with
a simple edge-flip Markov chain Monte Carlo (MCMC)
algorithm [9]. We can then use these samples to com-
pute a matrix Q of edge probability estimates, Q =∑Ns

s=1 A
(s)/Ns where Ns is the number of samples. All

our results are computed using chains starting from ran-
dom initial conditions, with samples taken every 104

steps following an initial burn-in of 105 steps.
We augment these network samples with estimates of

the dynamical parameters, θ = (γ, c), using the relation

P (γ, c, ρ | X, A) ∝ P (γ | X, A)P (c | X, A)P (ρ | X, A),

which is obtained by conditioning Eq. (7) on A, dropping
all constants and noticing that the results factorize as
a product of beta densities. More specifically, we find
that P (γ | X, A) is a beta distribution with parameters
(h+ aγ , g + bγ), where

g =

T−1∑
t=0

∑
i∈V

xi(t)xi(t+ 1),

h =

T−1∑
t=0

∑
i∈V

xi(t)[1− xi(t+ 1)].

Similarly, the nonparametric infection probabilities c fol-
low beta distributions cℓ ∼ Beta(mℓ+aℓ, nℓ+ bℓ). There
is no need to sample ρ directly as A offers a good sum-
mary of structure; nonetheless, if needed, its posterior
density is also a beta distribution.

Results. Figure 1 illustrates our nonparametric
Bayesian approach using Zachary’s Karate Club network
(henceforth ZKC) [22] as an example. We generate syn-
thetic time series of T = 1, 000 states with a recov-
ery rate of γ = 0.1 starting from the initial condition

x(0) = 1 to prevent premature stochastic extinctions.
We study the impact of the contagion function by run-
ning these simulations with both the SIS model, defined
by c(ν, β) = 1 − (1 − β)ν , and the threshold contagion
model c(ν, β, τ) = β1ν ≥ τ with τ = 2 (we also consid-
ered τ = 3 in the Supporting Information). We find that
imperfect reconstruction of the contagion function c is
possible with short time series, as illustrated in Fig. 1(b).
Values of ν for which we have little data—corresponding
to high degrees—are more difficult to estimate accurately,
as our nonparametric framework does not benefit from
the strong inductive biases of simpler models.

Figure 1(c) describes the quality of the network recon-
struction for ZKC, as measured by the Area Under the
Receiver Operating Characteristic (AUROC) [23], as a
function of the amount of time-series data. We calcu-
late the AUROC by treating the edges A of the ZKC as
binary labels and edge probabilities Q as posterior esti-
mates for these labels. To make this comparison mean-
ingful, we first select β = 0.04 for the simple contagion
process and then match the maximum number of infec-
tion events per node of both processes in expectation by
tuning the value β of the complex contagion process with
the Robbins-Monro algorithm [24]. Both processes thus
generate a similar amount of transition data, but their
quality may vary.

We observe an intermediate value of T where complex
contagions reconstruct the network more accurately than
simple contagions. In addition, there is a critical quantity
of time-series data, after which increasing the amount
of data leads to diminishing returns in reconstruction
accuracy. Lastly, we construct a mixture of contagion
functions parametrized by ω ∈ [0, 1] (where ω = 0 corre-
sponds to a simple contagion and ω = 1 to a threshold
contagion) Fig. 1(d) demonstrates that network recon-
struction depends on both the infectivity of the contagion
function and the complexity of the contagion.

Having confirmed that the method works well, we then
investigate whether complex or simple contagion models
lead to an easier network reconstruction problem. We
explore this question through a comprehensive simula-
tion experiment with generative network models that
capture structural properties observed in empirical net-
works. The Erdös-Rényi model [26], which we use to
examine the effect of network density, is characterized by
p, the probability of two nodes connecting at random.
We use the network configuration model [27] with a de-
gree distribution p(k) ∝ kα supported on [2, N − 1] to
observe the effects of degree heterogeneity, and we com-
ment that when α is increased, the network density also
increases. The clustered network model [28], which we
use to represent clique structure, is constructed by form-
ing a bipartite network, where type-1 nodes have degree 2
and type-2 nodes have degree s, and then projecting that
network onto the type-1 nodes to create cliques of size s.
The mean degree of the projected network scales with
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FIG. 2. The average difference in reconstruction performance
between simple and complex contagions for the SIS model and
the threshold model with τ = 2. Red denotes regions where
complex contagions outperform simple contagions. Blue de-
notes regions where simple contagions outperform complex
contagions. The first row visualizes a sample from each net-
work model; the second row compares the performance of the
network reconstruction; and the third row compares the esti-
mation of the network density. The gray lines show the basic
reproduction number R0 = βσ/γ ∈ {1, 11, 21, ...} [25], where
σ(A) is the spectral radius of A, and grow when moving from
the lower left corner to the upper right.

the square of the clique size. We fix the network size to
N = 50 nodes and generated time series of T = 2 × 103

steps. (We ran the study on two additional models; see
the Supporting Information for more details.)

Figure 2 summarizes the result of this experiment us-
ing the difference in AUROC, with positive values (red)
corresponding to regions of the parameter space where
complex contagions outperform simple contagions. To
complement this information, we also calculate the net-
work density estimate quality, ϕρ = 1−

∑Ns

s=1 |ρ̂s−ρ|/Ns

and compute a difference in performance ∆ϕρ.

We find structural and dynamical regimes where differ-
ent types of contagions outperform each other. The re-
gions where simple contagions outperform complex con-
tagions can be sufficiently explained by the basic repro-
duction number R0, calculated as βσ/γ, where σ(A) is
the spectral radius ofA. For all models, the simple conta-
gion process outperforms the complex contagion process
in a region roughly corresponding to 2 ≤ R0 ≤ 6 in the
simple contagion. For higher R0 values, the complex con-
tagion process outperforms simple contagion as the infec-
tion time series saturates. Complex contagion never gen-
erates transitions with ν = 1 since the threshold forbids
it; this allows the algorithm to infer denser substructures

without noise introduced by pairwise infection informa-
tion. Just above this region, there is another region for
large enough R0 where simple contagion again outper-
forms complex contagion. This can be understood be-
cause complex contagion infers a network close to a com-
plete network, whereas simple contagion infers an empty
network—but with high confidence about several of the
network links. For the densest of networks, these algo-
rithms perform equally (notice that the densest power
law CM is far from a complete network), because there is
so much saturation that the elimination of pairwise infor-
mation is not enough to overcome the confounding noise
present when almost every node is infected at once.

There may be cases where, although our algorithm fails
to place links correctly, it nonetheless can accurately re-
cover the number of links, i.e., the density, ρ. Comparing
the performance of complex contagions with respect to
simple contagions in the bottom row of Fig. 2, we observe
that these regions do not correspond to the performance
differences with respect to AUROC. The regions in the
upper right of the plots for the Erdös-Rényi and clustered
network models where complex contagions vastly outper-
form simple contagions in estimating the network density
are caused by bimodality in the distribution of estimated
ρ values inferred from simple contagion time series. This
is because our MCMC sampler struggles to sample in this
region and gets stuck in local maxima due to the rugged-
ness of the likelihood landscape. In the lower left of the
plots, where the variance in the estimated value of ρ is
lower, we see similar behavior as described above for the
AUROC.

A distinguishing feature of the threshold contagion is
that it cannot spread to nodes within the 1-core. We
observe this in Fig. 3, where we revisit the ZKC results
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FIG. 3. Difference in reconstruction performance of the net-
work SIS contagion process and the threshold contagion pro-
cess with threshold τ = 2, for nodes of various coreness and
dynamical parameters identical to those chosen in Fig. 1(c).
This illustrates that for intermediate amounts of infection
data, complex contagions outperform simple contagions due
to their recovery of k ≥ 2-core nodes. The shaded regions rep-
resent the 50% HDPI, and the lines are the median of 1,000
realizations.
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to study the reconstruction performance of nodes with
specific coreness values, calculated as the average of

ϕi = 1− 1

Ns

Ns∑
s=1

 1

N

N∑
j=1

|Qij −Aij |

 (9)

over all nodes i within the same coreness class. We find
that nodes of coreness greater than one are responsible
for complex contagions outperforming simple contagions
in the region before AUROC plateaus [see Fig. 1(c)]. Sim-
ilarly, as the amount of data is increased with T , we see
that the differential performance of 1-core nodes seems
to drive the improvement in the performance of simple
contagions compared with complex contagions.

Discussion. By developing a nonparametric ap-
proach to the network inference problem, we avoided
model-based biases and were able to study how the com-
plexity of a dynamic process helps or hurts our ability
to infer its rules and the network that supports it. We
found that complex contagions can have an advantage
over equivalent simple contagions if they can avoid satu-
ration and better resolve dense networks.

This result suggests that different dynamical processes
have different statistical power to resolve different net-
work structures, with threshold contagions being better
in dense cliques when the dynamics are sufficiently in-
tense. More generally, we could imagine optimizing or
tuning a dynamic process to infer different network fea-
tures. Alternatively, it also suggests that different data
streams allow us to learn different types of network fea-
tures depending on the complexity of their generative
mechanisms.

Future work should, therefore, explore other network
structures and other types of contagions (e.g., relative
thresholds, superlinear contagions). In doing so, we
should be able to categorize different types of contagions
not just by their global accuracy but by how well they can
resolve different local features of networks. Our work will
not only inspire future network reconstruction methods
but also guide how well different types of experimental
data can hope to inform network reconstruction.

Data availability. All code and data used in this
study are available on Github [29]. All networks are vi-
sualized with XGI [30].
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SUPPORTING INFORMATION

Additional models. We also considered network models with constant density, specifically, the small-world
network model and the stochastic block model (SBM) [31]. The small-world network model [32], which we use to
study the effect of “small-worldness” and the clustering coefficient is constructed with a ring network composed of
degree 6 nodes and rewired these links with probability p. The SBM, which we use to examine community structure,
was constructed with two communities of equal size and a constant mean degree of 10. The imbalance parameter [33],
ϵ, interpolates between the two extreme cases of an Erdös-Rényi network without community structure (ϵ = 0) and
two disconnected communities (ϵ = 1).

Additional results. In this section, we present additional results supporting our conclusions in the main text.
Firstly, we compare the performance of simple and complex contagion, but now, where complex contagion is a threshold
model with τ = 3.
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FIG. 4. The average difference in reconstruction performance between simple and complex contagion for the SIS model and
the threshold model with τ = 3. Red denotes regions where complex contagions outperform simple contagions. Blue denotes
regions where simple contagions outperform complex contagions. The first row visualizes a sample from each network model;
the second row compares the performance of the network reconstruction; and the third row compares the estimation of the
network density. The gray lines show the basic reproduction number R0 = βσ/γ ∈ {1, 11, 21, ...}, and grow when moving from
the lower left corner to the upper right.

Fig. 4 illustrates much of the same behavior as seen in Fig. 2, with the exception of the AUROC for the CM. This
can be understood because the minimum degree of the power-law degree sequence is 2. When the exponent of the
power law is small enough, the degree sequence is quite homogeneous, and the network can be seen as a perturbation
of a 2-regular network, which is insufficiently connected to sustain a contagion that requires three infected neighbors
to infect a node.

Fig. 5 plots the AUROC of the SIS model, the threshold model with τ = 2, and the threshold model with τ = 3
over the set of its dynamical and structural parameters. This corroborates our results in Figs. 2 and 4 and provides
context for the performance of these algorithms in an absolute sense. Black regions indicate areas where our algorithm
does no better than random, and red regions indicate areas where our algorithm outperforms a random classifier. The
results in this figure illustrate that our main takeaways —that R0 is sufficient to explain when simple contagion
outperforms complex contagion—holds. For example, for the SBM, the epidemic threshold remains constant in the
mean-field limit for a fixed mean degree, and our network reconstruction seems to be independent of the structural
parameter, ϵ.
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FIG. 5. The performance of network reconstruction for several common generative network models. For each network model,
we plot the AUROC with respect to the infectivity and a characteristic structural parameter for three common contagion
models: the network SIS model and a variant of the threshold contagion model with two different thresholds, τ = 2 and τ = 3.
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