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ABSTRACT

Terrestrial particle accelerators collide charged particles, then watch the trajectory of outgoing debris – but they cannot manipulate
dark matter. Fortunately, dark matter is the main component of galaxy clusters, which are continuously pulled together by gravity.
We show that galaxy cluster mergers can be exploited as enormous, natural dark matter colliders. We analyse hydrodynamical
simulations of a universe containing self-interacting dark matter (SIDM) in which all particles interact via gravity, and dark
matter particles can also scatter off each other via a massive mediator. During cluster collisions, SIDM spreads out and lags
behind cluster member galaxies. Individual systems can have quirky dynamics that makes them difficult to interpret. Statistically,
however, we find that the mean or median of dark matter’s spatial offset in many collisions can be robustly modelled, and is
independent of our viewing angle and halo mass even in collisions between unequal-mass systems. If the SIDM cross-section
were 𝜎/𝑚 = 0.1 cm2 g−1 = 0.18 barn GeV−1, the ‘bulleticity’ lag would be ∼5 per cent that of gas due to ram pressure, and could
be detected at 95 per cent confidence in weak lensing observations of ∼100 well-chosen clusters.
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1 INTRODUCTION

Galaxy clusters grow by merging with each other. During a merger,
their three major constituents behave differently. Galaxies are point-
like on this scale and act as collisionless test particles affected only
by gravity. Diffuse gas experiences ram pressure, so is decelerated
and disassociated from the galaxies. Dark matter (DM) follows a
trajectory determined by whichever fundamental forces act on it.
If DM interacts only via gravity, it should remain with the cluster
galaxies. However, if it has a non-zero cross-section for collision
with other DM particles, this self-interacting DM (SIDM) can also
lag behind the galaxies (Clowe et al. 2006; Robertson et al. 2017a).
Observationally, galaxies are visible in (a smoothed map of their)
optical emission, while the diffuse gas is visible in X-ray emission or
via the Sunyaev-Zel’dovich (1970) effect. The DM can be mapped
via gravitational lensing.

The Bullet Cluster (1E0657-558) is the best known example of
colliding clusters. The ‘Bullet’ refers to the smaller cluster, which
has passed through and is now moving away from the main cluster.
Early weak lensing measurements of the offset between its galax-
ies and DM implied a self-interaction cross-section per unit mass

★ E-mail: ellen.sirks@sydney.edu.au

𝜎/𝑚 < 5 cm2 g−1, when calibrated against an analytic model of
SIDM dynamics (Markevitch et al. 2004). This was improved by
Randall et al. (2008) who ran SIDM-only simulations of Bullet
Cluster-like systems. Combined with higher precision strong lens-
ing measurements, Bradač et al. (2008) found 𝜎/𝑚 < 1.25 cm2 g−1.
Including ordinary matter in simulations of SIDM reduces its ef-
fect, by steepening the gravitational potential well at the cluster core
(e.g. Mastromarino et al. 2023), and fully hydrodynamic simulations
of the Bullet Cluster relaxed the constraint to 𝜎/𝑚 < 2 cm2 g−1

(Robertson et al. 2017a).
Particle colliders do not stop collecting data after one event. As-

trophysical constraints should improve with statistical measurements
from a large sample of merging clusters (Massey et al. 2011). Fur-
thermore, because the average velocity 𝑣 of DM particles increases
with halo mass, measurements of collisions between galaxy clus-
ters, galaxy groups, or individual galaxies could also characterise
any velocity-dependence of the interaction: this would constrain
the mass of the force mediator particle (Adhikari et al. 2022). In
a first attempt at this measurement, Harvey et al. (2015) adopted a
strategy of analysing as many cluster mergers as possible, all with
equal weight. When calibrated against an analytical model, the 30
mergers in the Hubble Space Telescope (HST) archive at the time
yielded a constraint on the cross-section of 𝜎/𝑚 < 0.47 cm2 g−1 at
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𝑣 ∼ 1000 km s−1. In the future, this strategy can be easily extended to
all-sky, monochromatic lensing surveys like Euclid. With additional
telescope time, Wittman et al. (2018) showed that multi-colour imag-
ing can be used to reduce noise by better identifying components of
clusters that entered a merger together. Some systems give anoma-
lously high measurements; some anomalously low. Simultaneously
re-weighting to account for the fact that some have more statistical
power than others, the constraint changed to 𝜎/𝑚 < 2 cm2 g−1.

To calibrate future observations, this paper uses hydrodynamical
simulations of galaxy clusters with both SIDM and ordinary matter,
in a cosmologically expanding volume. We study merging clusters
in simulated universes with different DM interaction strengths (al-
ways with a massive mediator particle; Fischer et al. 2022), and test
whether an observable offset between DM and stars could indeed be
used to measure the interaction cross-section between DM particles.

The value of the SIDM cross-section is unconstrained across
many orders of magnitude (Kusenko & Steinhardt 2001; Duffy &
van Bibber 2009; Loeb & Weiner 2011; Kamada et al. 2020). A
‘natural’ scale for models invoking a dark-sector analogue of the
strong force (e.g. Mohapatra et al. 2002; Foot 2014; Hochberg
et al. 2015) is the same order of magnitude as nuclear interactions,
𝜎/𝑚 ∼ 0.6 cm2 g−1 = 1 barn GeV−1. A particularly meaningful and
potentially achievable goal is to test whether 𝜎/𝑚 is significantly
more or less than 0.1 cm2 g−1. If it is greater than this, DM particles
that scatter off of each other are gradually ejected from dense regions
of the Universe, reducing the density in the centres of haloes and
slowing their gravitational collapse (Peter et al. 2013; Vogelsberger
et al. 2016; Tulin & Yu 2018). From the perspective of Occam’s
razor, this effect would then be sufficient to solve the seemingly un-
related ‘small-scale crisis’ in the standard model of cosmology – that
simulations produce too much substructure that is too dense (Zavala
et al. 2013; Vogelsberger et al. 2014; Elbert et al. 2015). The long
time that it takes for scattering to fully erode a DM cusp would also
provide a natural mechanism (Creasey et al. 2017) to explain the ob-
served diversity of DM density profiles (Oman et al. 2015; Oldham
& Auger 2018). For full reviews of SIDM, see Adhikari et al. (2022)
or Tulin & Yu (2018).

This paper is organised as follows: we present our suite of cos-
mological simulations in Section 2, and our methods for locating
different types of matter in Section 3. We present results in Sec-
tion 4, including prospects for future observations. We summarise
and conclude in Section 5.

2 DATA

2.1 The BAHAMAS simulations

We use the BAHAMAS suite of cosmological simulations (McCarthy
et al. 2017). These use a modified version of the GADGET-3 code
to model DM and baryonic physics including radiative cooling, star
formation, chemical evolution, and stellar and AGN feedback. Each
simulation volume is a periodic box, 400 ℎ−1 Mpc on a side. This
contains 2×10243 particles, with DM particles of mass𝑚DM = 5.5×
109 M⊙ , gas particles initially of mass 1.1×109 M⊙ , and gravitational
softening length ℎgrav that is fixed in comoving coordinates at 𝑧 > 3
then constant at ℎgrav = 5.7 physical kpc thereafter. They assume
the WMAP 9-year cosmology (Ωm = 0.2793, Ωb = 0.0463, ΩΛ =

0.7207, 𝜎8 = 0.812, 𝑛𝑠 = 0.972 and ℎ = 0.700; Hinshaw et al.
2013).

SIDM with velocity-independent interaction cross sections per unit
mass of 𝜎/𝑚 = [0, 0.1, 0.3, 1] cm2 g−1 is implemented in resimula-
tions from identical initial conditions (hereafter ‘CDM’, ‘SIDM0.1’,

‘SIDM0.3’ and ‘SIDM1’ runs; Robertson et al. 2019). These values
span the range of empirically-allowed cross-sections. SIDM particle
scattering is infrequent, elastic, isotropic, and happens during each
simulation time-stepΔ𝑡, with neighbours inside radius ℎSIDM = ℎgrav
with probability

𝑃scat =
(𝜎/𝑚) 𝑚DM 𝑣 Δ𝑡

4
3𝜋ℎ

3
SIDM

, (1)

where 𝑣 is the particles’ relative velocity. For more details about our
implementation of scattering, see Robertson et al. (2017b).

2.2 Colliding cluster sample selection

In each simulation volume we identify the 300 most massive clusters
in the simulation snapshot at redshift 𝑧 = 0, then select those with one
or more subhaloes of ⩾ 5 per cent the total mass 𝑀cl within 4 Mpc.
This yields ∼100 clusters and ∼135 subhaloes in each simulation
(Table 1). To investigate the effects of DM self-interactions on both
scales, we shall analyse both the main cluster haloes and subhaloes.

A similarly inclusive selection strategy could be employed by a
future analysis of all-sky surveys. Without having selected simulated
systems based on their dynamics, we find relatively small separa-
tions between their components of matter. Denoting the 3D distance
between galaxies (‘stars’) and gas as 𝛿SG, our sample has mean com-
ponent separation ⟨𝛿SG⟩ = 33±2 kpc, with rms scatter 49 kpc (which
will later be needed as variance ⟨𝛿2

SG⟩ = (2.4± 0.3) × 103 kpc2). We
also find that more subhaloes have yet to reach first pericentre within
their host cluster than have passed it.

Previous studies with finite telescope time have instead prefer-
entially observed systems with high 𝛿SG (because these turn out
to be most sensitive to DM interactions: see Section 3.3). For ex-
ample, Harvey et al. (2015) selected clusters with bimodal dis-
tributions of X-ray emission and the largest separations between
galaxies and gas that fitted within the field of view of the Hub-
ble Space Telescope (HST). Their observed sample had 2D separa-
tions with mean ⟨𝛿SG⟩ = 83 ± 9 kpc with rms 114 kpc or variance
⟨𝛿2

SG⟩ = (12.9 ± 3.0) × 103 kpc2 (alternatively, at mean redshift
⟨𝑧⟩ = 0.4, ⟨𝛿SG⟩ = 17.7 ± 2.1 arcsec with rms 25 arcsec or variance
⟨𝛿2

SG⟩ = 632 ± 157 arcsec2). Future studies adopting a similar se-
lection strategy should easily be able to maintain or increase these
values, because new clusters with large separations between galaxies
and gas continue to be found in X-ray or SZ surveys (Kubo et al. 2009;
Okabe et al. 2010; Tempel et al. 2017; Haines et al. 2018; Zenteno
et al. 2020; Fu et al. 2024). Notably, this includes nearby clusters
whose separations appear huge on the sky but whose gravitational
lensing signal is spread over an area too large to be observed easily
by HST (e.g. McCleary et al. 2020). Nearby clusters are particularly
promising for our test. Unlike weak lensing measurements of DM
mass (where signal-to-noise follows lensing sensitivity in peaking at
redshift 𝑧∼0.3), weak lensing measurements of DM position (in kpc)
are optimal at 𝑧∼0.05 so long as the telescope has a sufficiently large
field of view to capture the broader (in arcminutes) shear field (Kubo
et al. 2007; Massey et al. 2011).

3 METHOD

It is possible to quantify the offset between a cluster’s different com-
ponents using their position (Massey et al. 2011) or quadrupole mo-
ments (McDonald et al. 2022). We choose the former, and first need
a definition of position. In observational studies, the methods to find

MNRAS 000, 1–11 (2024)



Merging galaxy clusters and SIDM 3

Table 1. Properties of BAHAMAS simulated clusters that have subhaloes with mass > 5 per cent the total cluster mass within a sphere of radius 4 physical Mpc
from the centre of potential.

Simulation Number of clusters with number of subhaloes Mean mass Mean separation between stars and gas
𝑁clusters 𝑁sub = 1 𝑁sub = 2 𝑁sub = 3 𝑁sub = 4 𝑁sub,tot ⟨𝑀cl ⟩ [1014 𝑀⊙] ⟨𝑀sub ⟩ [1014 𝑀⊙] ⟨𝛿SG ⟩cl [kpc] ⟨𝛿SG ⟩sub [kpc]

CDM 107 82 20 4 1 138 2.96 ± 0.14 0.39 ± 0.02 22.98 ± 3.44 21.70 ± 1.87
SIDM0.1 103 79 19 2 3 135 3.11 ± 0.21 0.40 ± 0.02 24.45 ± 2.79 25.01 ± 2.51
SIDM0.3 102 76 23 2 1 132 3.15 ± 0.21 0.42 ± 0.03 23.43 ± 2.82 25.16 ± 2.97
SIDM1 105 83 17 3 2 134 3.16 ± 0.20 0.42 ± 0.03 29.56 ± 3.83 21.57 ± 2.12

the positions of the gas, galaxies and DM all differ. In simulations, we
can split the particles by type and access their distributions directly.

3.1 Measuring the location of components of matter

We use the shrinking-spheres method to determine the 3D location
of each (star, gas, DM) component (see e.g. Power et al. 2003). A first
sphere is constructed at the centre of potential returned by subfind
(Springel et al. 2001; Dolag et al. 2009), with initial radius 0.35𝑅200
for each halo or its equivalent for each subhalo1. The centre is then
moved to the centre of mass of particles of a given type within the
current sphere, and the radius is shrunk by a factor 𝑓 = 0.9. This
process is repeated until the sphere would contain fewer than 100
particles of that type. The recorded position is the centre of mass of
all particles of that type within the final sphere.

The shrinking-spheres method occasionally fails, by meandering
to an incorrect local peak. Failures happen most frequently for gas
particles, and more often in main haloes than subhaloes. The ef-
fect creates what appears to be either a mismatch between stellar
and gas clumps that were not together at the start of infall, or the
misidentificiation of a centroid analogous to that found by George
et al. (2012) for real observations of stellar light. Such failures lead
to a 3D separation between stars and gas much larger than the typical
values (of order 50 kpc), and we mitigate them by excluding from all
further analysis the ∼1 halo per simulation box for which we measure
𝛿SG > 250 kpc. The precise value of this cut is fairly arbitrary and
does not affect our results.

In observational studies, only 2D projected positions can be mea-
sured. We project the measured 3D positions along 𝑥, 𝑦 and 𝑧-axes
by discarding one coordinate in turn, then record three independent
configurations for each system. If we instead use a shrinking-circles
measurement as specified by Robertson et al. (2017a), we find re-
sults with consistent mean and uncertainty, but which move around
within the full extent of 68 per cent error bars. This suggests that
the two measurements are effectively independent, with noise that
is dominated by chance projection of substructures. We shall carry
out analyses in both 3D and different implementations of 2D, but no
such choices affect our final conclusions.

3.2 Measuring spatial offsets between components of matter

Consider a triangle (Fig. 1) with vertices at the centre of mass of
stellar matter (S for ‘stars’), gas (G), and DM (D). The vector from
the gas to the stars, −𝒓SG, defines the system’s expected direction

1 We use an initial radius for subhaloes 𝑅init = 0.35(𝑀sub/ 4
3 𝜋 Δc 𝜌crit )1/3,

where 𝑀sub is the mass of the subhalo as determined by subfind, 𝜌crit is the
critical density, and the overdensity constant Δc = 200.

Figure 1. During a collision between galaxy clusters, the galaxies (S for
‘stars’), gas (G), and DM (D) can become separated. Ram pressure on the
cluster’s gas means that the vector from a cluster’s gas to its stars approxi-
mately indicates its direction of motion. We define the positive-definite length
of this vector 𝛿SG. To test whether pressure also acts on DM, we measure the
distance from the DM to the stars, in components parallel to the direction of
motion, 𝛿SI, and perpendicular to it, 𝛿DI.

of motion, and the ‘base’ of the triangle. Whether the locations are
defined in 3D or 2D, the spatial offset from the stars to the gas is
merely the length of this vector,

𝛿SG = |𝒓SG |, (2)

which is positive-definite and has measurement uncertainty

𝜎2
SG = 𝜎2

S + 𝜎2
G (3)

due to uncertainty 𝜎S and 𝜎G in the locations of stellar and gaseous
material along a coordinate direction (we assume this to be isotropic).

The location of DM is offset from the location of stars, with
components in the direction of motion

𝛿SI =
𝒓SG · 𝒓SD
|𝒓SG |

, (4)

and perpendicular to it

𝛿DI = ± |𝒓SG × 𝒓SD |
|𝒓SG |

, (5)

where (I) is the point at which a perpendicular from (D) passes
through the base of the triangle. Both equation (4) and (5) can be
either positive or negative. In 2D, we take the sign of 𝛿DI to be the
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sign of the cross-product of 𝒓SG and 𝒓SD (numerator in equation (5)),
resulting in a positive 𝛿DI in Fig. 1. In 3D, we use the sign of the
cross-product of 𝒓SG and 𝒓S, dotted with 𝒓SD.

Through standard error propagation, these offsets have measure-
ment uncertainty

𝜎2
SI = 𝜎2

SD +
2𝛿2

SI
𝛿2

SG
𝜎2

SG = 𝜎2
D +

(
1 +

2𝛿2
SI

𝛿2
SG

)
𝜎2

S +
2𝛿2

SI
𝛿2

SG
𝜎2

G (6)

and

𝜎2
DI = 𝜎2

SD +
2𝛿2

DI
𝛿2

SG
𝜎2

SG = 𝜎2
D +

(
1 +

2𝛿2
DI

𝛿2
SG

)
𝜎2

S +
2𝛿2

DI
𝛿2

SG
𝜎2

G. (7)

It is informative to calculate the fractional offset of DM, or ‘bul-
leticity’

𝛽∥ ≡
𝛿SI
𝛿SG

. (8)

This dimensionless ratio has two advantages. First, even though we
can observe only the projection of a 3D offset onto the plane of the
sky, this quantity is independent of the 3D orientation. Second, an
approximate, analytic model of SIDM dynamics suggests that al-
though offsets of each component gradually increase after a merger
(see fig. 6 of Robertson et al. 2017a), the ratio 𝛽∥ should be constant
for all merger configurations, at all times during the merger. This
implies that measurements of 𝛽∥ from different systems can be aver-
aged (Harvey et al. 2015, we shall discuss this model in more detail
in Section 4). Measurement noise for individual systems (which may
produce 𝛽∥ < 0 or even 𝛽∥ > 1) propagates to uncertainty on 𝛽∥ of

𝜎2
𝛽∥

=
1

𝛿2
SG

[
𝜎2

SI + 𝛽2
∥ 𝜎

2
SG

]
(9)

=
1

𝛿2
SG

[
𝜎2

D + (1 + 2𝛽2
∥ )𝜎

2
S + (2𝛽2

∥ )𝜎
2
G

]
, (10)

where our equation (9) recovers equation (1) of Wittman et al. (2018).
As a control test, we also renormalise the perpendicular offset of

DM,

𝛽⊥ ≡ 𝛿DI
𝛿SG

, (11)

which should be consistent with zero on average, if the Universe
does not have a handedness (and in the absence of systematics).
Measurement uncertainty propagates into uncertainty on 𝛽⊥ of

𝜎2
𝛽⊥

=
1

𝛿2
SG

[
𝜎2

DI + 𝛽2
⊥ 𝜎2

SG

]
(12)

=
1

𝛿2
SG

[
𝜎2

D + (1 + 2𝛽2
⊥)𝜎2

S + (2𝛽2
⊥)𝜎2

G

]
. (13)

3.3 Combining measurements from many collisions

If 𝛽∥ is universal, it should be possible to measure and interpret the
average value ⟨𝛽∥ ⟩ from a large number of 𝑁halo merging haloes.
Assuming that a given survey will have approximately constant mea-
surement uncertainty 𝜎D and 𝜎S, the standard error on the mean of
equation (8) is

𝜎2
⟨𝛽∥ ⟩ =

〈
1

𝛿2
SG

〉
𝜎2

D + 𝜎2
S + 2𝛽2

∥ (𝜎
2
S + 𝜎2

G)
𝑁halo

. (14)

Some merging systems have more discriminating power than oth-
ers (Wittman et al. 2018). A measurement of 𝛽∥ is a calibration of

the location of DM, some distance 𝛿SI along a ruler of length 𝛿SG.
If measurement precision is constant, systems with a long ruler offer
high dynamic range and high signal-to-noise. Measurement precision
is roughly constant in terms of angle on the sky, so systems with the
longest rulers are those near the viewer, those with a collision aligned
in the plane of the sky, and those with timing such that the separation
is maximised. When analysing observations, Wittman et al. (2018)
found it helpful to average systems using an inverse-variance weight

𝑤𝑖 ∝ 𝛿2
SG,𝑖

, (15)

which is obtained from equation (14) while ignoring terms O(𝛽2
∥ )

both because they are small, and to avoid biasing the measurement
of 𝛽∥ itself. The error on the weighted mean then becomes

𝜎2
⟨𝛽∥ ⟩𝑤 =

1〈
𝛿2

SG

〉 𝜎2
D + 𝜎2

S + O(𝛽2
∥ )

𝑁halo
. (16)

In this paper, we shall use neither means nor weighted means. We
shall instead quote measurements of 𝛽∥ using a median, and ‘1𝜎-
like’ uncertainties (separation between the 16th and 84th percentiles
of the distribution). The median is similar to the mean within scatter,
but in simulations rather than observations, our automated methods
produce unstable scatter in the mean – and even more scatter in
the weighted mean. A small fraction of the time this is because the
shrinking spheres method failed catastrophically (see Section 3.1); it
is difficult to exclude failed measurements via cuts on 𝛿SG, because
those cuts would exclude haloes with the highest signal to noise – and
the weight becomes strongly dominated by the system with the largest
𝛿SG that survives the cut. For example, a single subhalo with large
𝛿SG in our sample increases the weighted mean by a factor of nearly
10 compared to the value if it is excluded. A weighted mean might
be more suitable when clean measurements are available, i.e. when
random statistical errors dominate over systematic errors. Curiously,
we find that our results are stable when using weight 𝑤𝑖 ∝ 𝛿SG,i (see
Appendix A). This is not motivated mathematically, but empirically
we find that it would be worth investigating in the future.

4 RESULTS

Measurements of 𝛽∥ from simulated merging clusters follow an ap-
proximately Gaussian distribution with an asymmetric tail to positive
values (see Fig. 2, and Appendix B for measurements of individual
components), aside from the outliers discussed above. Measurements
of 𝛽⊥ are similar but without the tail. Distributions of 𝛽∥ are remark-
ably consistent between subhaloes (leftmost two columns in Fig. 2)
and main haloes (rightmost two columns), and almost indistinguish-
able whether measured in 2D (first and third columns) or 3D (second
and fourth columns). We fit a Gaussian perturbed with skewness 𝜖

and kurtosis 𝛿 (the sinh-arcsinh normal distribution, Jones & Pewsey
2009)

𝑓 (𝑥; 𝜇, 𝜎, 𝛿, 𝜖) = 𝛿

𝜎

√︄
1 + 𝑆2 (𝑦; 𝛿, 𝜖)

2𝜋(1 + 𝑦2)
exp

(
−1

2
𝑆2 (𝑦; 𝛿, 𝜖)

)
(17)

to all of these profiles, where 𝑆(𝑦; 𝛿, 𝜖) = sinh(𝛿 sinh−1 (𝑦) − 𝜖) and
𝑦 = (𝑥 − 𝜇)/𝜎. When 𝜖 = 0 and 𝛿 = 1, this reduces to the normal
distribution with mean 𝜇 and standard deviation 𝜎. We average this
analytic function in the same bins as the data (30 bins of equal
width between -2.5 and 2.5), then use the Markov Chain Monte
Carlo (MCMC) sampler emcee (Foreman-Mackey et al. 2013) to
obtain the maximum-likelihood values and posterior PDFs of the
free parameters.
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Figure 2. The fractional offset of DM from galaxies, 𝛽∥ , in simulations of colliding galaxy clusters. Columns of panels separate the offset in main haloes or
subhaloes, and using quantities accessible from 2D projections on the sky or 3D simulations. Rows of panels show results from simulated universes with SIDM
cross-section 𝜎/𝑚 = [0, 0.1, 0.3, 1] cm2 g−1 from top to bottom. Red dashed lines show the best-fitting perturbed Gaussian, see Section 4. Fits use the
MCMC sampler emcee, and assume Poisson noise on each bin.

4.1 Scatter of DM offsets

We first recover the result noticed by Kim et al. (2017) and Harvey
et al. (2017, 2019) that scatter in measurements of 𝛽∥ increases with
SIDM cross-section 𝜎/𝑚 (see Fig. 3; the same is true for 𝛽⊥). This
is likely due to the collision giving an impulse to the BCG that sets
it oscillating. Since it oscillates within a gravitational potential that
is dominated by DM, and SIDM clusters have a ‘core’ of constant
density, the BCG is less tightly bound and its oscillations have a
larger amplitude. The observed scatter in offsets samples random
phases of oscillation at the moment when it is measured.

We discover that the scatter of 𝛽∥ and 𝛽⊥ in subhaloes also in-
creases with SIDM cross-section 𝜎/𝑚, although less than that in
main haloes. This may be simply because subhaloes are tidally dis-
rupted before their offsets increase to the same extent as main haloes.
Scatter in offsets could be used to measure the SIDM cross-section
in the real Universe (Harvey et al. 2019). However, there is no null
test for CDM, and no control test for systematics – so its interpre-
tation will rely entirely on calibration via simulations. We shall not
consider it further in this paper.

4.2 Typical DM offset

The median value of 𝛽∥ increases with SIDM cross-section 𝜎/𝑚.
Measurements are generally consistent for both main haloes and
subhaloes, so we show the median of the combined sample (Fig. 4).
Measurements of the perpendicular control test, 𝛽⊥, are consistent
with zero as expected. Importantly, results are virtually indistinguish-
able whether quantities are calculated in 3D after projection into 2D.

In this sense, the measurement should therefore be as accessible to
observations as it is to simulations.

Our measurements are remarkably well fit by the model

𝛽∥ (𝜎/𝑚) = 𝐵

(
1 − 𝑒−(𝜎/𝑚)/𝐴

)
(18)

predicted by Harvey et al. (2014, see their equation 33 and fig. 2).
This model interpolates between two well-understood extremes. At
low 𝜎, the halo is optically thin, and the effective drag force grows
linearly with the interaction cross-section. The constant of propor-
tionality 𝐴 reflects the relative interaction strengths of DM and gas
(or the characteristic cross-section at which a halo becomes optically
thick). At high 𝜎, DM particles at the front of the halo always scatter
incoming DM and shield particles behind, so the halo becomes opti-
cally thick. The drag then becomes a constant, with parameter 𝐵 that
depends on the geometry of the halo. The model predicts that 𝛽∥ is
notably independent of infall velocity, impact parameter, and time.
We fit free parameters 𝐴 and 𝐵 to our data using the Python function
scipy.optimize.minimize and an asymmetric loss function to account
for asymmetric errors bars (Table 2, with best-fitting models overlaid
in Fig. 4).

Our only measurement not well fit by model (18) is that, for sub-
haloes in CDM (𝜎/𝑚 = 0) simulations, we measure median 𝛽∥ > 0
at∼95 per cent confidence level. That we would not expect CDM to be
offset from galaxies is particularly important as a null test. With our
present sample size, we tentatively ascribe this as a statistical fluke
or a limitation of simulation resolution (for 𝛿SG ≈ 23 kpc, a value
𝛽∥ = 0.03 represents a measurement of 𝛿SI to ∼12 per cent of the
BAHAMAS softening length). We believe this because our measure-
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Figure 3. The width of the best-fitting perturbed Gaussian to distributions of
𝛽∥ in Fig. 2. Variation between clusters grows with SIDM cross-section for
main haloes (red squares and dashed line for 2D, green triangles and dash-
dotted lined for 3D) and subhaloes (blue circles and solid line for 2D, black
diamonds and dotted line for 3D). The errors are the 1𝜎 uncertainties returned
by the fit to the distributions in Fig. 2. The straight lines plotted here were
fitted to the data points using the Python function scipy.optimize.curve_fit.
The 3D data points have been slightly offset for clarity.

ments of higher mass CDM main haloes (not shown by themselves)
are consistent with zero offset, and Schaller et al. (2015)’s mea-
surements of lower mass individual galaxies also show zero offset
in CDM simulations with better resolution. Furthermore, the mean
(rather than median) value of 𝛽∥ happens to be slightly positive for
main haloes and slightly negative for subhaloes. Nonetheless, this
should be re-measured in future work. Robertson et al. (2017a) mea-
sured no offset in idealised simulations, so it is feasible that this
is a new effect particular to fully cosmological simulations, caused
by the varied impact parameters, ongoing star formation, or chance
projection of substructures (which dominate measurement noise; see
Section 3.1).

Finally, it is interesting to note that Robertson et al. (2017a) re-
port a small bias when measuring the position of one halo in the
outskirts of another, because the second halo contributes a gra-
dient of particles across the shrinking circle. We confirm this, by
comparing positions measured (by default) using all particles, with
positions measured using only bound particles. We find that posi-
tions move by a comparable amount in the same direction, such
that the effect on 𝛽∥ is negligible. Using angle brackets to de-
note medians, we measure in CDM simulations a decrease from
⟨𝛽∥ ⟩all

2D = 0.0307+0.011
−0.005 to ⟨𝛽∥ ⟩bound

2D = 0.0302+0.011
−0.006, and an in-

crease from ⟨𝛽∥ ⟩all
3D = 0.0265+0.016

−0.007 to ⟨𝛽∥ ⟩bound
3D = 0.0273+0.017

−0.008.

4.3 Selection effects

Our interpretation of the average measurement from many colliding
systems presupposes that ⟨𝛽∥ ⟩ is universal (see the start of Sec-
tion 3.3). The components of our simulated mergers are typically
closer than those in observations (see Section 2.2). Furthermore, the
offsets of individual components of matter vary with time since col-
lision (Robertson et al. 2017a). If 𝛽∥ also varies with time, it matters
whether clusters are observed before or after pericentric passage.

Unfortunately, the BAHAMAS simulations do not include enough
cluster mergers to reach discriminating statistics if we split our sam-
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Figure 4. Median fractional offset between galaxies and DM in simu-
lated colliding clusters, as a function of the SIDM cross-section 𝜎/𝑚 =

[0, 0.1, 0.3, 1] cm2 g−1 (top panel), and the perpendicular control test that
should be consistent with zero in the absence of systematics (bottom panel).
Red circles and blue triangles show similar calculations using information
available in 3D or that projected onto a 2D sky; for clarity, 3D data points are
horizontally offset by a small amount. Error bars show ‘1𝜎-like’ uncertainty,
between the 16th and 84th percentiles. Curves show the best fits of model (18),
with parameters tabulated in the bottom row of Table 2.

Table 2. Best-fitting parameters of Harvey et al. (2014)’s analytic model
𝛽∥ (𝜎/𝑚) (equation 18) to our measurements of median 𝛽∥ , from quantities
accessible in either 2D or 3D. Rows show results from the entire sample, just
the main haloes, just the substructures, and haloes in 2-body systems, split by
the sign of their relative velocity (i.e. whether they are approaching pericentre
or receding after it).

2D 3D
𝐴 𝐵 𝐴 𝐵

[cm2 g−1] [cm2 g−1]
All haloes 0.25±0.09 0.14±0.02 0.32±0.12 0.15±0.03
Main haloes 0.28±0.13 0.14±0.03 0.27±0.09 0.14±0.02
Substructures 0.36±0.16 0.15±0.03 0.42±0.19 0.16±0.04
Approaching 0.11±0.14 0.12±0.13 0.13±0.04 0.24±0.13
Receding 0.19±0.11 0.36±0.38 0.14±0.05 0.10±0.09

ple, nor enough snapshots to measure them at different times since
collision. Indeed, it is not always clear from the single snapshot
available whether clusters have already reached pericentre. For sys-
tems with only two haloes, splitting by whether the net velocity
of their particles is approaching or receding yields unstable mea-
surements of parameter 𝐴 and much larger uncertainties in param-
eter 𝐵 (Table 2). For two-halo systems in SIDM1 simulations anal-
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Figure 5. Forecast upper 95 per cent confidence limits on 𝛽∥ (top) and 𝜎/𝑚
(bottom) for future observations with JWST (gold hexagon), HST single- and
multi-band imaging (green triangle pointing left and purple triangle pointing
right), SuperBIT (blue cross), Euclid (red square) and LSST (grey triangle
pointing up), as a function of the number of merging clusters observed. Most
predictions assume multicolour imaging; this experiment has only ever been
performed in practice with single-band HST imaging.

ysed in 2D (using angle brackets to denote medians, and propagat-
ing 16/84 percentile uncertainties like standard deviations), we find
⟨𝛽∥ ⟩recede/⟨𝛽∥ ⟩approach = 1.39+0.62

−0.46 (or 0.39+0.48
−0.30 split further into

main haloes, and 2.84+3.17
−0.87 for subhaloes). Future investigation of

this would be interesting with larger simulations. If it makes a sig-
nificant difference to predictions of ⟨𝛽∥ ⟩, the selection of simulated
clusters should be matched to selection biases in observational sam-
ples. Alternatively, observational samples could be selected carefully,
inferring the direction of motion using a combination of optical and
X-ray data, or shock fronts in e.g. radio emission.

4.4 Future prospects

Measurements of 𝛽∥ are a promising way to test the interaction
cross-section of DM. Symmetries are expected to provide a null
result 𝛽∥ = 0 in the case of CDM (𝜎/𝑚 = 0) and a perpendicular
test for systematics, 𝛽⊥. Future surveys may be able to combine
measurements of 𝛽∥ and 𝛽⊥ from a large number of observed merging
galaxy clusters.

To forecast a future survey’s ability to rule out the null hy-
pothesis 𝜎/𝑚 = 0, we first consider the expected uncertainty on
⟨𝛽∥ ⟩𝑤 (equation 16), setting 𝜎/𝑚 = 0, and bootstrapping the
other parameters from observational experience with single-band
HST data (Harvey et al. 2015). A large sample of merging clus-

Table 3. Assumed characteristics of hypothetical astronomical observations
that could be used to measure the offset of DM from ordinary matter, as
proposed in this paper. For various telescopes, columns indicate: the density
of resolved galaxies behind merging clusters, 𝑛gal, the precision with which it
is possible to measure the location of stellar material, 𝜎S, and DM, 𝜎D. The
final column indicates the number of clusters, 𝑁cluster, that must be observed
to potentially rule out the hypothesis 𝜎/𝑚 = 0 with 95 per cent confidence.

Telescope 𝑛gal 𝜎S 𝜎D Required
[arcmin−2] [arcsec] [arcsec] 𝑁cluster

JWST 150 0.6 69.8/√𝑛gal = 5.7 42
HST (multi-band) 75 0.6 69.8/√𝑛gal = 8.1 84

(single band) 75 0.6 98.7/√𝑛gal =11.4 168
SuperBIT 40 0.6 69.8/√𝑛gal =10.4 140
Euclid 30 0.6 69.8/√𝑛gal =12.7 210
LSST 26 0.6 69.8/√𝑛gal =13.7 242

ters should at least maintain Harvey et al. (2015)’s sample mean2

of 1/⟨𝛿2
SG⟩ = 1.6 × 10−3 arcsec−2 (as discussed in Section 2.2, but

converting the number into angular units), with 𝑁halo = 2.3𝑁cluster.
The observationally achieved uncertainty on the location of stel-
lar material, 𝜎S = 0.6 arcsec, is both subdominant and unlikely to
change significantly because it depends on astrophysical effects such
as confusion between multiple BCGs (George et al. 2012). Analysis
of mock images suggests the achieved uncertainty on the location of
DM, 𝜎D = 11.4 arcsec, is reduced by approximately 30 per cent by
perfect separation between galaxies in front of or behind the cluster
using multicolour photometry, and falls proportionally to 1/√𝑛gal,
the density of resolved background galaxies (Harvey et al. 2013).
Table 3 collates expectations of 𝑛gal for the James Webb Space Tele-
scope (JWST, Gardner et al. 2006; Casey et al. 2023), Super-Pressure
Balloon-borne Imaging Telescope (SuperBIT, Romualdez et al. 2016;
Shaaban et al. 2022), Euclid (Laureĳs et al. 2011; Euclid Collabora-
tion et al. 2022) and the Vera C. Rubin Observatory (LSST, Chang
et al. 2013; Ivezić et al. 2019).

For each future survey we calculate the single-tailed 95 per cent
confidence limit on

𝜎2
⟨𝛽∥ ⟩𝑤 =

𝜋

2
× 1.6 × 10−3

2.3 𝑁cluster
×

(
𝜎2

S + 𝜎2
D

)
, (19)

using the values in Table 3 and assuming a Gaussian error distribution
(which Fig. 3B of Harvey et al. 2015, suggests to be reasonable).We
estimate the standard error on the median by multiplying the standard
error of the mean by a factor of

√︁
𝜋/2 (for details see chapter 4 of

Maindonald & Braun 2010). We finally convert this to a single-
tailed 95 per cent confidence limit on 𝜎/𝑚 using equation (18) with
parameter values from Table 2 (all haloes, 2D). These two confidence
limits are shown, as a function of the number of observed systems, in
Fig. 5. The number of typical merging clusters that must be observed
by any telescope to reach the target particle physics sensitivity of
0.1 cm2 g−1 can be read from the bottom panel of Fig. 5, and is listed
in Table 3. Indeed, SuperBIT’s design characteristics were optimised
to meet this goal as its primary science driver (McCleary et al. 2023).

This forecast is valid for surveys measuring (or placing upper limits
on) SIDM cross-section 0.05 ≲ 𝜎/𝑚 ≲ 0.5 cm2 g−1. At lower cross-
sections, either simulation resolution, noise, or cosmological effects
(see Section 4.2) inhibit simulated values of 𝛽∥ reaching zero. Such
tight constraints would require observations of approximately three
times more clusters than listed in Table 3. At higher cross-sections,

2 The relevant quantity for unweighted averages (equation 14) is ⟨1/𝛿2
SG ⟩ =

85.2 × 10−3 arcsec−2, although we do not use it here.
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the limited number of simulated clusters leads to measurement un-
certainty such that sometimes ⟨𝛽∥ ⟩ > 𝐵, which is incompatible with
equation (18). That model cannot be used to map ⟨𝛽∥ ⟩ onto 𝜎/𝑚,
until sufficient clusters have been observed such that (in this case)
95 per cent of the posterior probability is at values of ⟨𝛽∥ ⟩ < 𝐵.

5 CONCLUSIONS

Terrestrial particle physics experiments have established that DM
interacts very weakly, if at all, with Standard Model particles. How-
ever, terrestrial experiments are unable to test whether DM particles
interact with each other – as predicted for many proposed models of
self-interacting DM (SIDM, e.g. Kusenko & Steinhardt 2001; Duffy
& van Bibber 2009; Loeb & Weiner 2011; Kamada et al. 2020), in-
cluding a large class containing a dark-sector analogue of the strong
force (Mohapatra et al. 2002; Foot 2014; Hochberg et al. 2015). In
the latter models, the natural scale of the interaction cross-section is
the same order as for nuclear interactions, 𝜎/𝑚 ∼ 0.6 cm2 g−1.

Using cosmological simulations, we have measured the effect of
DM self-interactions on the major mergers of galaxy clusters. We
find that the offset between DM and galaxies (as a fraction of that
between gas and galaxies) is a promising test of SIDM. This ‘bullet-
icity’, 𝛽∥ , increases with cross-section in a way that matches the
predictions from an analytic model (equation 18) originally proposed
by Harvey et al. (2014). Because it is a fractional offset, the same
measurements can be accessed using either 3D or 2D projected data.
Symmetries provide a null test ⟨𝛽∥ ⟩ = 0 for non-interacting DM, and
an orthogonal test ⟨𝛽⊥⟩ = 0 for systematics or to measure scatter.

Three challenges remain with theoretical predictions. First, be-
cause of instabilities in our identification of peak positions, we find
the median offset of DM haloes to be more robust than the mean.
It would be interesting to repeat this analysis with methods for peak
finding that are closer to those used with observational data. These
may differently weight the distribution of matter close to a peak or
at distance from it, which is important if the distribution is skewed.
Second, we find that the median (and mean) 𝛽∥ is slightly positive for
all values of interaction cross-section, even 𝜎/𝑚 = 0 (Fig. 4). This
implies that it is more likely for DM to be found between the stars and
gas, rather than leading the stars. Other CDM simulations (Schaller
et al. 2015; Robertson et al. 2017a), and an analytic model (equa-
tion 18) predicted ⟨𝛽∥ ⟩ to be consistent with zero when 𝜎/𝑚 = 0.
Our measurement of an offset in the non-interacting CDM case might
be a statistical anomaly, might be caused by the matching of DM to
galaxy and gas peaks when starting shrinking spheres from subfind
positions, or it might be a symptom of more complex dynamical pro-
cesses. Third, our simulated survey volume is too small to contain
sufficient systems for the sample to be usefully split by e.g. mass
ratio, impact speed, or time before/after first pericentric passage. It
will be important to test whether 𝛽∥ is a universal function of 𝜎/𝑚
for a range of these parameters, as predicted. We have no evidence
from BAHAMAS to indicate that it is not, but are running larger
simulation volumes precisely to test this. In future simulations, it
will also be interesting to measure the 𝛽∥ produced by SIDM inter-
actions mediated by low-mass particles that produce more frequent
but smaller momentum exchange scattering events, which manifests
on macroscopic scales as something closer to a drag force (Fischer
et al. 2022).

Finally, we made predictions for limits on the DM self-interaction
cross-section that could be ascertained by future telescopes. The
test is promising, with astronomical observations of ∼100 merging
clusters yielding constraints relevant to particle physics. If 𝛽∥ is

not perfectly universal, larger simulations will also be important
to interpret observations, by reproducing sample selection effects –
e.g. with larger values of ⟨𝛿SG⟩ and more systems just after first
pericentric passage. Reproducing selection effects would be even
more important if averaging samples with a mean or weighted mean
rather than a median, because these are so strongly dominated by a
small number of systems.
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APPENDIX A: WEIGHTED MEDIAN OF ENSEMBLE

We here investigate the weighted median of 𝛽∥ . The weighted median
is equal to the weighted 50th percentile, where the weighted 100𝑝th

percentile (0 < 𝑝 < 1) is calculated by sorting the data and finding
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Figure A1. Weighted median fractional offset between galaxies and DM in
simulated colliding clusters, as a function of the SIDM cross-section 𝜎/𝑚 =

[0, 0.1, 0.3, 1] cm2g−1 (top panel), and the perpendicular control test that
should be consistent with zero in the absence of systematics (bottom panel).
Red circles and blue triangles show similar calculations using information
available in 3D or that projected onto a 2D sky; for clarity, 3D data points are
horizontally offset by a small amount. Error bars show ‘1𝜎-like’ uncertainty,
i.e. the separation between the 16th and 84th percentiles of the distributions.
Curves show the best fits of model (18), with parameters tabulated in the
bottom row of Table A1.

Table A1. Best-fitting parameters of Harvey et al. (2014)’s analytic model
𝛽∥ (𝜎/𝑚) (equation 18) to our measurements of (𝛿SG-)weighted median 𝛽∥ ,
from quantities accessible in either 2D or 3D. Rows show results from just
the substructures, just the main haloes, and everything combined.

2D 3D
𝐴 𝐵 𝐴 𝐵

[cm2 g−1] [cm2 g−1]
All haloes 0.11±0.12 0.09±0.02 0.15±0.15 0.09±0.03
Main haloes 0.02±0.05 0.09±0.01 0.05±0.02 0.09±0.01
Substructures 0.48±0.19 0.16±0.04 0.63±0.38 0.16±0.06

the smallest set of data for which the weights sum to a fraction 𝑝 of
the total weight.

Using inverse variance weights 𝑤𝑖 ∝ 𝛿2
SG,i (Equation 15), we

found that the median 𝛽∥ becomes highly unstable. Curiously, it is
stable with weight𝑤𝑖 ∝ 𝛿SG,i (Fig. A1 and Table A1). This is because
it calculates the median of ⟨𝛿SI⟩/⟨𝛿SG⟩. This scheme is unjustified
mathematically, but would be worth considering in future analyses.
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Figure B1. The distance between stellar matter and DM in simulations of colliding galaxy clusters, parallel to the direction of motion (see Fig. 1). Columns
of panels separate the distance in main haloes or subhaloes, and using quantities accessible from 2D projections on the sky or 3D simulations. Rows of panels
show results from simulated universes with SIDM cross-section 𝜎/𝑚 = [0, 0.1, 0.3, 1] cm2g−1 from top to bottom. Note that the 𝑦-axis range is different in
each column.
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Figure B2. Similar to Fig. B1, but now for the component of the vector from stellar matter to DM perpendicular to the direction of motion (see Fig.1).
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Figure B3. Similar to Fig. B1 and B2, but now for the distance from stellar matter to the gas (see Fig.1). Note that by definition 𝛿SG is always positive.

APPENDIX B: OFFSETS OF INDIVIDUAL COMPONENTS

Figures B1, B2 and B3 show the distributions of distances used to
calculate the distance ratios 𝛽∥ and 𝛽⊥ (which are themselves shown
in Figures 2 and 4). Uncertainties on the number of counts in each
bin are assumed to be the square root of the counts plus one. One
unexplained curiosity is that anomalously few systems have 𝛿DI = 0
in SIDM simulations. We cannot explain this, and merely speculate
that the galaxies may be oscillating within the DM halo on a radial
orbit, and thus spend very little time at pericentre.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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