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Abstract

It is well-known that Excess-of-Loss reinsurance has more marketability than Stop-

Loss reinsurance, though Stop-Loss reinsurance is the most prominent setting dis-

cussed in the optimal (re)insurance design literature. We point out that optimal

reinsurance policy under Stop-Loss leads to a zero insolvency probability, which mo-

tivates our paper. We provide a remedy to this peculiar property of the optimal

Stop-Loss reinsurance contract by investigating the optimal Excess-of-Loss reinsur-

ance contract instead. We also provide estimators for the optimal Excess-of-Loss and

Stop-Loss contracts and investigate their statistical properties under many premium

principle assumptions and various risk preferences, which according to our knowl-

edge, have never been investigated in the literature. Simulated data and real-life

data are used to illustrate our main theoretical findings.

Keywords and phrases: Risk analysis, Optimal Insurance, Nonparametric Estima-

tion.

1 Introduction

1.1 Literature Review

Risk transfer is an effective risk management exercise and consists of transferring liabilities

from one or multiple risk holders (known as insurance buyer(s)) to another or multiple insurance
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carriers (known as insurance seller(s)). Finding the optimal contact between (amongst) two (or

more than two) parties has received a huge amount of attention in the literature of actuarial

science. A simple Google Scholar search on April 23, 2024 with the keywords “optimal insurance”

and “risk transfer” resulted in 2,830,000 and 5,810,000, respectively research outputs. This is

not surprising since the optimality of such risk management exercise goes beyond understanding

insurance liabilities. This paper aims to contribute to the problem of optimal insurance contract

of insurance liabilities, which has a very specific trait that is not shared with other sector-

specific liabilities (e.g., financial liabilities) in the sense that the insurance liabilities do not have

a liquid market so that their value is market-based valuation. Cost-of-Capital (CoC) approach

is a practical methodology for evaluating insurance liabilities, which are based on the cost of

meeting the local capital requirements to hold such liabilities in that territory. In other words,

CoC is a regulatory-based methodology that is used within the insurance sector.

The optimal risk transfer problem is often understood in the optimal insurance literature

as how an insurer and reinsurer would share the aggregate liability between the two insurance

players so that the risk position of the insurer is optimized; the optimization from the reinsurer’s

point of view is also possible. One may view the problem from both the insurer’s and reinsurer’s

point of view, a case in which the analysis becomes a Pareto optimal insurance contract prob-

lem that is a long-standing strand of research established in economic theory with ramifications

in insurance and risk literature, but also in the wider operations research field; an insurance

perspective could be found in Ruschendorf (2013) and references therein. Other equilibrium

concepts are possible; for example, Boonen and Ghossoub (2023) investigates the Bowley equi-

librium with risk sharing and optimal reinsurance formulations, and focus on the common traits

of Bowley optimality and Pareto efficiency under fairly general preferences. Bespoke conditions

could be imposed on the optimal (re)insurance contract besides the usual absence of moral haz-

ard; one interesting setting is the so called Vajda condition that is discussed in Boonen and

Jiang (2022).

Depending on the risk preferences, the optimal reinsurance literature is quite rich; e.g.,

Cai et al. (2008) and Cai and Tan (2007) consider Value-at-Risk (VaR) and Expected Shortfall

(ES) buyer’s preferences, while quantile risk and expectile preferences are investigated in Asimit,

Badescu and Verdonck (2013), and Cai and Weng (2016), respectively; Balbás, Balbás and Heras

(2009) investigates some general risk preferences. The optimal contract from the buyer’s point of

view in the presence of the seller’s counterparty default risk is discussed in Chen (2024), Chi and
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Tan (2021), Cai, Lemieux, and Liu (2014), Asimit, Badescu and Cheung (2013), and Bernard

and Ludkovski (2012). Regulatory considerations are discussed for example in Asimit, Chi, and

Hu (2015) and Bernard and Tian (2009). Robust formulations are investigated for example in

Asimit, Hu and Xie (2019), Asimit et al. (2017), Balbás, Balbás and Heras (2011), Boonen and

Jiang (2024) and Gollier (2014), while Cai, Li and Mao (2023) provides a theoretical perspective

to robust decision-making when preferences are ordered by distorsion risk measures which are

considered in our paper and many other papers in the optimal (re)insurance literature. Non-

standard settings are considered in the literature; e.g., Bäuerle and Glauner (2018) investigates

the optimal transfer in an insurance network from an economic point of view, while Asimit et al.

(2016) studies Solvency II capital efficiency through risk transfers within an insurance group.

The optimal insurance problem under expected utility settings is often defined without mak-

ing any assumption regarding the seller’s premium principle. When risk preferences are ordered

by risk measures, then premium principle assumptions are required. Kaluszka (2001) studies

the mean-variance premium principle, Asimit, Badescu and Verdonck (2013) investigate quantile

risk premium principles, and Chi and Tan (2013) consider general premium principles, though

many other papers rely on certain premium principle assumptions that are specific to the buyer’s

risk preferences.

1.2 Background and Problem Definition

Throughout this paper, the insurance field is represented by (Ω,F ,P), an atomless proba-

bility space, endowed with L0 := L0(Ω,F ,P), the set of all non-negative real-valued random

variables on this probability space. Let Lq, q ∈ [0,∞), be the set of random variables with finite

qth moment, and L∞ be the set of bounded random variables. A risk measure φ is a function

that maps an element of L0 to a (extended) real number, i.e. φ : L0 → ℜ. We recall below

some properties for a generic risk measure and generic random variable Y – with cumulative dis-

tribution function (cdf) FY , survival distribution function F̄Y , and generalized left-continuous

inverse F−
Y (s) := infx∈ℜ

{
FY (x) ≥ s

}
– representing the future loss of a financial asset or

insurance liability.

Convexity: φ(aY1 + (1− a)Y2) ≤ aφ(Y1) + (1−a)φ(Y2) for any Y1, Y2 ∈ L0 and a ∈ [0, 1];

Homogeneous of order τ > 0: φ (cY ) = cτφ(Y ) for any Y ∈ L0 and c ≥ 0;

Shift invariance: φ(Y + c) = φ(Y ) for any Y ∈ L0 and c ∈ ℜ;
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Translation invariance: φ (Y + c) = φ(Y ) + c for any Y ∈ L0 and c ∈ ℜ.

These properties are well-known in the literature and an extensive introduction to risk measures

can be found in Föllmer and Schied (2011). Two well-known risk measures are Value-at-Risk

(VaR) and Expected Shortfall (ES), defined as

VaRp(Y ) = F−
Y (p) and ESp(Y ) = min

t∈ℜ

{
t+

1

1− p
E(Y − t)+

}
,

where (·)+ = max(·, 0) and p ∈ (0, 1) is the risk level. It is evident that the two risk measures

are homogeneous of order 1 and translation invariant, and ES is convex.

We are now ready to provide the mathematical formulation of the problem of interest. Sup-

pose that an insurer has insured a large number of policies with independent and identically

distributed non-negative losses Xi for 1 ≤ i ≤ N with cdf FX1(x).

We consider now that the reinsurance premium is calculated by the expected value principle.

Thus, the total cost for this portfolio of policies after buying Excess-of-Loss (EoL) reinsurance

becomes

T (d,N, ρ) =
N∑
i=1

(Xi ∧ d) + (1 + ρ)E

(
N∑
i=1

(Xi − d)+

)
, (1)

where ρ > 0 is the loading factor. A practical question is to find the optimal retention d for

T (d,N, ρ) by minimizing the buyer’s risk when its perception of risk is modeled by some given

risk measures such as VaR and ES. To better appreciate our study, we first point out an issue

with the Stop-loss (SL) optimal reinsurance (SL is EoL with N = 1) in Cai and Tan (2007),

where the total cost T (d, 1, ρ) is studied; that is, the optimal retention is found via minimizing

VaRp

(
T (d, 1, ρ)

)
or ESp

(
T (d, 1, ρ)

)
, which leads to the following optimal retention

d∗ = F−
X1

(
1− 1

1 + ρ

)
when 1− p < (1 + ρ)−1. (2)

Now, if 1− p < (1 + ρ)−1 then

P
(
T (d∗, 1, ρ) > VaRp

(
T (d∗, 1, ρ)

))
= P(X1 ∧ d∗ > d∗) = 0,

implying no high risk to the buyer, which is mathematically explained by the truncated buyer’s
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liability X1∧d. The same issue remains if one replaces X1∧d by (
∑N

i=1Xi)∧d, i.e., considering

the SL for the total loss instead of one loss in Cai and Tan (2007). However, when the number

of policies is large enough,
∑N

i=1(Xi∧d) will not have such a truncation issue to cause a severely

distorted risk level for optimal retention, and thus, the optimal EoL (with N > 1) retention

would not share the same counter-intuitive property as SL (when N = 1). Specifically, under

the EoL approach, P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) becomes 1 − p, the “correct” level, as

long as N is sufficiently large. Numerical and theoretical justifications of this assertion are

leveraged to Section 1 of the supplementary material. Furthermore, the SL optimal retention

d∗ in (2) is not an explicit function of the risk level p. This is also counter-intuitive as the SL

optimal retention may remain constant while p, which implies the insurance company’s level of

risk aversion, increases. Conversely, we will show in the real data analysis (see Section 5) that

the EoL optimal retention decreases as p increases.

To derive the optimal retention, it is necessary to know the distribution function of
∑N

i=1(Xi∧

d), which is well-known to be challenging. This motivates us to define approximately optimal

retention by using a normal distribution to approximate the distribution of
∑N

i=1(Xi ∧ d) when

N is large enough.

Before outlining our main contributions, we would like to differentiate the EoL and SL

contracts, which are compared in this paper. Note that EoL has more marketability than SL

as the latter is prohibitively expensive to buyers since the deductible is applied to the annual

aggregate loss and not to the individual claims (as for EoL). There are other negative traits of

SL that are not shared with EoL. For example, the loss development of an insurance claim is the

process of a claim from reporting until the claim is fully settled, which takes a significant amount

of time for many lines of business such as personal accident insurance, medical malpractice

insurance, workers compensation, liability claims, etc.; the lag is even larger for long-tail lines

of coverage where arbitrage or court proceedings are more likely to occur. Long lags are big

impediments to activate SL contracts since the deductible is applied to the aggregate loss, which

is known when all claims from that year are fully settled and that may require many years; this

is not the case to EoL where each claim is shared between the buyer and seller.

The main contributions of this paper are twofold. First, we point out that optimal reinsur-

ance policy under SL – one of the most prominent settings discussed in the literature – leads to

zero insolvency probability for VaR-based regulatory environments as is the case for EU and UK

insurance companies where capital requirements are designed on the 1/200 event basis over a
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one-year time horizon. This peculiar property of the optimal SL reinsurance contract is the main

motivation of our paper and we show that a remedy is possible if one investigates the optimal

EoL reinsurance contract instead. Second, we provide estimators to the optimal EoL/SL de-

ductible and investigate their statistical properties under many premium principle assumptions

and various risk preferences, which, according to our knowledge, have never been investigated

in the literature.

The paper is organized as follows: EoL risk model is considered under the VaRp risk measure

in Section 2 for various premium principles, which are further generalized in Section 3 when the

risk preferences are ordered by distortion risk measures. Some simulation studies are provided

in Section 4, while real data analysis is employed in Section 5.

2 Approximately optimal retention for VaR

In this section, we consider the total cost of T (d,N, ρ) under the VaRp risk measure. Later,

we will generalize the result to distortion risk measures in Section 3. Because VaR is translation

invariant, we have

VaRp

(
T (d,N, ρ)

)
= VaRp

(
N∑
i=1

(Xi ∧ d)

)
+ (1 + ρ)NE{(X1 − d)+}. (3)

Define 
µ1(d) = E(X1 ∧ d) =

∫ d
0 F̄X1(x) dx,

µ2(d) = E(X2
1 ∧ d2) = 2

∫ d
0 F̄X1(x)x dx,

ν1(d) = E{(X1 − d)+} =
∫∞
d F̄X1(x) dx.

For large N , it follows from the Central Limit Theorem that

VaRp

(
N∑
i=1

(Xi ∧ d)

)
= Nµ1(d) +

√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N), (4)

where Φ(x) is the cdf of a standard normal random variable. Therefore, instead of minimizing

VaRp

(
T (d,N, ρ)

)
to obtain the optimal retention d, we propose to ignore the o(

√
N) term in

(4) to approximate the right hand side of (3), i.e., minimizing

GN,ρ(d) := NE(X1) +Nρν1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p), (5)
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whose solution is called an approximately optimal retention.

The structure of this section is as follows: Section 2.1 identifies the optimal retention by

assuming a constant loading factor under the expected value principle, while a decreasing load-

ing factor is considered in Section 2.2; the standard deviation and Sharpe ratio principles are

explored in Sections 2.3 and 2.4 by assuming a decreasing loading factor.

2.1 Constant Loading Factor

We now solve (5) with a constant loading factor ρ > 0. In this case, the optimal retention

turns out to be a solution to

HN,ρ(d) := {d− µ1(d)}2 −

( √
Nρ

Φ−(p)

)2

{µ2(d)− µ2
1(d)} = 0. (6)

The next result stated as Theorem 1 shows that (6) admits a unique solution under some very

mild regularity conditions. Recall that we allow FX1(0) > 0 in Theorem 1, which means that

the event of having no claim is not a null set.

Theorem 1. Assume E(X1) < ∞, FX1(·) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞),

and is continuous on (0,∞). When the support is [0,∞), we further assume FX1(0) <
Nρ2

Nρ2+(Φ−(p))2
,

which is always true when N is large enough. Then, there exists a unique approximately optimal

retention d∗N,ρ ∈ (0,∞) such that

d∗N,ρ = argmin
d>0

GN,ρ(d) and HN,ρ(d
∗
N,ρ) = 0.

Proof. Note that µ′
1(d) = F̄X1(d), µ

′
2(d) = 2dF̄X1(d), and ν ′1(d) = −F̄X1(d), and in turn,

G′
N,ρ(d) = −NρF̄X1(d) +

√
NF̄X1(d)

d− µ1(d)√
µ2(d)− µ2

1(d)
Φ−(p) (7)

=

√
NF̄X1(d)Φ

−(p)(
d−µ1(d)√
µ2(d)−µ2

1(d)
+

√
Nρ

Φ−(p)

)
{µ2(d)− µ2

1(d)}
HN,ρ(d).

Hence, solving G′
N,ρ(d) = 0 for d ∈ (0,∞) is equivalent to solving HN,ρ(d) = 0 for d ∈ (0,∞).

That is, we only need to show that there is a unique solution for HN,ρ(d) = 0.
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Since d− µ1(d) > 0 and µ2(d)− µ2
1(d) > 0 for all d > 0, and

H ′
N,ρ(d) = 2{d− µ1(d)}

FX1(d)

1 +

( √
Nρ

Φ−(p)

)2
−

( √
Nρ

Φ−(p)

)2
 ,

we conclude that H ′
N,ρ(d) is negative, zero, and positive for 0 < d < d1, d1 ≤ d ≤ d2, and d > d2,

respectively, where FX1(d) =
Nρ2

Nρ2+(Φ−(p))2
happens and only happens on d ∈ [d1, d2], which is

ensured by the conditions that the right endpoint of FX1(x) is infinity, FX1(x) is continuous on

(0,∞), and FX1(0) <
Nρ2

Nρ2+(Φ−(p))2
. That is,

HN,ρ(d) is strictly ↓ on (0, d1), constant on [d1, d2], and strictly ↑ on (d2,∞), (8)

Note that

lim
d→∞

d2

µ2(d)
=

 limd→∞
2d

2dF̄X1
(d)

= ∞ if µ2(∞) = ∞,

∞ if µ2(∞) < ∞.

Thus, limd→∞HN,ρ(d)/d
2 = 1 and limd→∞HN,ρ(d) = ∞. The latter, (7) and (8), and the fact

that limd→0HN,ρ(d) = 0 conclude that HN,ρ(d) = 0 has a unique solution on (d2,∞). The proof

is now complete.

2.2 Decreasing Loading Factor

Note that d∗N,ρ diverges to infinity as N → ∞, which is not surprising since a constant ρ for

anyN implies that the seller does not include the diversification effect in its premium calculation,

case in which the seller would not be incentivized to participate in such reinsurance contract.

Therefore, it would be more practical to adjust/reduce the loading factor as N gets large so that

the reinsurance premium becomes more realistic. To estimate d∗N,ρ and study its asymptotic

properties, we consider instead a bounded approximated optimal retention by assuming ρ = ρN

such that

lim
N→∞

ρN
√
N = δ ∈ (0,∞), (9)

where δ may depend on the retention d. In this case, d∗N,ρN
is the unique solution toHN,ρN (d) = 0

and converges to the unique solution to

{d− µ̂1(d)}2 −
(

δ

Φ−(p)

)2

{µ̂2(d)− µ̂2
1(d)} = 0.
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To estimate this solution nonparametrically, we solve the following equation

ĤN,ρN (d) := {d− µ̂1(d)}2 −

(√
NρN

Φ−(p)

)2

{µ̂2(d)− µ̂2
1(d)} = 0, (10)

where

µ̂1(d) =
1

N

N∑
i=1

(Xi ∧ d) and µ̂2(d) =
1

N

N∑
i=1

(X2
i ∧ d2). (11)

Let d̂∗N,ρN
denote this solution, which is an estimator for d∗N,ρN

. Let Σ(d) denote the covariance

matrix of Zi(d), where Zi(d) = (Xi ∧ d,X2
i ∧ d2)τ , and define

µ̂∗
1(d) =

1

N

N∑
i=1

I(Xi > d) and µ̂∗
2(d) =

2d

N

N∑
i=1

I(Xi > d), (12)

which estimate the first-order derivatives, µ′
1(d) and µ′

2(d), respectively. The asymptotic prop-

erties of d̂∗N,ρN
are given in Theorem 2.

Theorem 2. Under conditions of Theorem 1 and (9), we have

√
N{d̂∗N,ρN

− d∗N,ρN
}

ĉ−1
0

√
(ĉ1, ĉ2)Σ̂0(ĉ1, ĉ2)τ

d→ N(0, 1),

where

ĉ0 = 2{d̂∗N,ρN
− µ̂1(d̂

∗
N,ρN

)}{1− µ̂∗
1(d̂

∗
N,ρN

)}

−

(
ρN

√
N

Φ−(p)

)2

{µ̂∗
2(d̂

∗
N,ρN

)− 2µ̂1(d̂
∗
N,ρN

)µ̂∗
1(d̂

∗
N,ρN

)},

ĉ1 = 2{d̂∗N,ρN
− µ̂1(d̂

∗
N,ρN

)} −

(
ρN

√
N

Φ−(p)

)2

2µ̂1(d̂
∗
N,ρN

), ĉ2 =

(
ρN

√
N

Φ−(p)

)2

,

Σ̂0 =
1

N

N∑
i=1

[
Zi(d̂

∗
N,ρN

)− 1

N

N∑
i′=1

Zi′(d̂
∗
N,ρN

)

][
Zi(d̂

∗
N,ρN

)− 1

N

N∑
i′=1

Zi′(d̂
∗
N,ρN

)

]τ
.

Proof. For simplicity, the proof uses d∗ and d̂∗ for d∗N,ρN
and d̂∗N,ρN

, respectively. Then

√
N

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

 d→ N(0,Σ0) (13)
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when

Σ(d∗) → Σ0 as N → ∞. (14)

It follows from (13) that

µ̂1(d̂
∗)− µ1(d

∗) = µ̂1(d̂
∗)− µ1(d̂

∗) + µ1(d̂
∗)− µ1(d

∗)

= {µ̂1(d
∗)− µ1(d

∗)}+ µ′
1(d

∗){d̂∗ − d∗}+ op(1/
√
N),

µ̂2(d̂
∗)− µ2(d

∗) = {µ̂2(d
∗)− µ2(d

∗)}+ µ′
2(d

∗){d̂∗ − d∗}+ op(1/
√
N),

{d̂∗ − µ̂1(d̂
∗)}2 − {d∗ − µ1(d

∗)}2

= 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)}(d̂∗ − d∗)

−2{d∗ − µ1(d
∗)}{µ̂1(d

∗)− µ1(d
∗))}+ op(1/

√
N),

{µ̂2(d̂
∗)− µ̂2

1(d̂
∗)} − {µ2(d

∗)− µ2
1(d

∗)}

= {µ̂2(d
∗)− µ2(d

∗)} − 2µ1(d
∗){µ̂1(d

∗)− µ1(d
∗)}

+{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)}{d̂∗ − d∗}+ op(1/

√
N),

implying that

0 = ĤN,ρN (d̂
∗)−HN,ρN (d

∗)

= 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)}{d̂∗ − d∗} − 2{d∗ − µ1(d

∗)}{µ̂1(d
∗)− µ1(d

∗)}

−
(

δ
Φ−(p)

)2 {
{µ̂2(d

∗)− µ2(d
∗)} − 2µ1(d

∗){µ̂1(d
∗)− µ1(d

∗)}

+{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)}{d̂∗ − d∗}

}
+ op(1/

√
N),

i.e.,

c0{d̂∗ − d∗} = c1{µ̂1(d
∗)− µ1(d

∗)}+ c2{µ̂2(d
∗)− µ2(d

∗)}+ op(1/
√
N),

where

c0 = 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)} −

(
δ

Φ−(p)

)2

{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)},

c1 = 2{d∗ − µ1(d
∗)} −

(
δ

Φ−(p)

)2

2µ1(d
∗), and c2 =

(
δ

Φ−(p)

)2

.

Hence,
√
N{d̂∗ − d∗} d→ N

(
0,

1

c20
(c1, c2)Σ0(c1, c2)

τ

)
,

which implies our main result since ĉ0, ĉ1, ĉ2, Σ̂0 are consistent estimators of c0, c1, c2,Σ0, respec-

10



tively. The proof is now complete.

2.3 Standard Deviation Premium Principle

We extend the analysis in Section 2.2 by assuming a decreasing loading factor and the

standard deviation principle. Specifically, a particular choice of ρ is assumed in (5) as

ρ = ρ0SD

(
1

N

N∑
i=1

(Xi − d)+

)
= ρ0N

−1/2
√

ν2(d)− ν21(d), (15)

which depends on both N and d and satisfies (9), where

ν2(d) = E{(Xi − d)2+} = 2

∫ ∞

d
F̄X1(x)(x− d) dx satisfying ν ′2(d) = −2ν1(d).

Hence, the total cost for the insurer becomes

T̃ (d) =
N∑
i=1

(Xi ∧ d) +Nν1(d) + ρ0
√
Nν1(d)

√
ν2(d)− ν21(d),

and the optimal retention should minimize

VaRp(T̃ (d)) = Nµ1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N)

+Nν1(d) + ρ0
√
Nν1(d)

√
ν2(d)− ν21(d).

Once again, we seek for d that minimizes (16) below as we ignore the o(
√
N) terms:

G̃(d) = NE(X1) +
√
N{Φ−(p)

√
µ2(d)− µ2

1(d) + ρ0ν1(d)
√
ν2(d)− ν21(d)}. (16)

The existence of the approximately optimal retention is shown in Theorem 3 below.

Theorem 3. Assume FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞), is continuous

on (0,∞), and

lim
t→∞

F̄X1(tx)

F̄X1(t)
= x−α for all x > 0 and some α > 2. (17)

If FX1(0) > 0, we further assume that

Φ−(p)
√

F̄X1(0)FX1(0) < ρ0F̄X1(0)
√
E(X2

1 )− {E(X1)}2 + ρ0
FX1(0){E(X1)}2√
E(X2

1 )− {E(X1)}2
. (18)
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Then, there exists at least one solution of G̃′(d) = 0 and an approximately optimal retention

d∗ ∈ (0,∞) is its smallest solution, which is a local minimum of G̃(d).

Proof. Because

G̃′(d)√
N

= Φ−(p)
F̄X1(d){d− µ1(d)}√

µ2(d)− µ2
1(d)

− ρ0F̄X1(d)
√

ν2(d)− ν21(d)− ρ0
FX1(d)ν

2
1(d)√

ν2(d)− ν21(d)

and

lim
d→0

{d− µ1(d)}2

µ2(d)− µ2
1(d)

= lim
d→0

2{d− µ1(d)}FX1(d)

2F̄X1(d){d− µ1(d)}
=

FX1(0)

F̄X1(0)
, (19)

it follows from (18) in Theorem 3 that

limd→0
G̃′(d)√

N
= Φ−(p)

√
F̄X1(0)FX1(0)− ρ0F̄X1(0)

√
E(X2

1 )− {E(X1)}2

−ρ0
FX1

(0){E(X1)}2√
E(X2

1 )−{E(X1)}2

< 0.

(20)

By (17), we have

lim
d→∞

ν1(d)

dF̄X1(d)
=

1

α− 1
and lim

d→∞

ν2(d)

d2F̄X1(d)
=

2

(α− 1)(α− 2)
, (21)

implying that

lim
d→∞

G̃′(d)√
NF̄X1(d)d

=
Φ−(p)√

E(X2
1 )− {E(X1)}2

> 0. (22)

Hence, it follows from (20) and (22) that there exists at least one solution of G̃′(d) = 0 for

d ∈ (0,∞), and let d∗ be the smallest solution. Then, there exists d1 > d∗ such that G̃′(d) < 0

for d ∈ (0, d∗), G̃′(d) ≥ 0 for d ∈ (d∗, d1), and G̃′(d1) > 0, implying that d∗ is a local minimum

of G̃(d) for d ∈ (0,∞). The proof is now complete.

To estimate the optimal retention nonparametrically, we minimize the following function for

d:

ˆ̃G(d) = Φ−(p)
√

µ̂2(d)− µ̂2
1(d) + ρ0ν̂1(d)

√
ν̂2(d)− ν̂21(d), (23)

where µ̂1(d) and µ̂2(d) are given by (11),

ν̂1(d) =
1

N

N∑
i=1

(Xi − d)+, and ν̂2(d) =
1

N

N∑
i=1

(Xi − d)2+. (24)
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Denote d̃N,ρ0 and
ˆ̃
dN,ρ0 as the minimizers of G̃(d) in (16) and ˆ̃G(d) in (23), respectively. Put

Z̃i(d) = (I(Xi > d), Xi∧d,X2
i ∧d2, (Xi−d)+, (Xi−d)2+)

τ , and let Σ̃(d) be the covariance matrix

of Z̃i(d). Define

ν̂∗1(d) = − 1

N

N∑
i=1

I(Xi > d) and ν̂∗2(d) = −2ν̂1(d) (25)

to estimate ν ′1(d) and ν ′2(d) on top of µ̂∗
1(d) and µ̂∗

2(d) which are defined in (12). We further

denote ˆ̄FX1(d) =
∑N

i=1 I(Xi > d)/N as the empirical survival function of X1 and f̂X1(d) as

any consistent estimator of the density function for X1, e.g., a kernel density estimation. The

asymptotic properties of the approximately optimal retention are provided in Theorem 4.

Theorem 4. Under conditions of Theorem 3 and (15), and that X1 has a density function fX1,

we have √
N{ ˆ̃d∗N,ρ0

− d̃∗N,ρ0
}

b̂−1
0

√
b̂ ˆ̃Σ0b̂τ

d→ N(0, 1),

with b̂ := (b̂1, b̂2, b̂3, b̂4, b̂5), where

b̂0 =
Φ−1(p) ˆ̄FX1(

ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
− b̂1f̂X1(

ˆ̃
d∗N,ρ0) + b̂2µ̂

∗
1(
ˆ̃
d∗N,ρ0) + b̂3µ̂

∗
2(
ˆ̃
d∗N,ρ0)

+b̂4ν̂
∗
1(

ˆ̃
d∗N,ρ0) + b̂5ν̂

∗
2(

ˆ̃
d∗N,ρ0),

b̂1 = Φ−1(p)

ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
− ρ0

ν̂2(
ˆ̃
d∗N,ρ0

)− 2ν̂21(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)
,

b̂2 = Φ−1(p)

− ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
+

µ̂1(
ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

)[
ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)]

(µ̂2(
ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

))3/2

 ,

b̂3 = −Φ−1(p)
ˆ̄FX1(

ˆ̃
d∗N,ρ0

)[
ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)]

2(µ̂2(
ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

))3/2
,

b̂4 = −2ρ0ν̂1(
ˆ̃
d∗N,ρ0)

 1− 2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)

+
ν̂2(

ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

) + ν̂21(
ˆ̃
d∗N,ρ0

)[1− 2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)]

2(ν̂2(
ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

))3/2

 ,

b̂5 = ρ0

 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)
−

ν̂2(
ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

)+ ν̂21(
ˆ̃
d∗N,ρ0

)[1−2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)]

2(ν̂2(
ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

))3/2

,
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ˆ̃Σ0 =
1

N

N∑
i=1

[
Z̃i(

ˆ̃
d∗N,ρ0)−

1

N

N∑
i′=1

Z̃i′(
ˆ̃
d∗N,ρ0)

][
Z̃i(

ˆ̃
d∗N,ρ0)−

1

N

N∑
i′=1

Z̃i′(
ˆ̃
d∗N,ρ0)

]τ
.

Proof. For notational convenience, we write d∗ and d̂∗ for d̃∗N,ρ0
and

ˆ̃
d∗N,ρ0

, respectively. Then

√
N



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


d→ N(0, Σ̃0) (26)

when Σ̃(d∗) → Σ̃0 as N → ∞. Expansion of ˆ̃G′(d̂∗)− G̃′(d∗) yields

0 = ˆ̃G′(d̂∗)− G̃′(d∗) (27)

=
Φ−1(p)F̄X1(d

∗)√
µ2(d∗)− µ2

1(d
∗)

[
d̂∗ − d∗

]
+ b1

[
ˆ̄FX1(d̂

∗)− F̄X1(d
∗)
]

+ b2

[
µ̂1(d̂

∗)− µ1(d
∗)
]
+ b3

[
µ̂2(d̂

∗)− µ2(d
∗)
]

+ b4

[
ν̂1(d̂

∗)− ν1(d
∗)
]
+ b5

[
ν̂2(d̂

∗)− ν2(d
∗)
]
+ oP (1/

√
N),

where

b1 = Φ−1(p)
d̃∗N,ρ0

− µ1(d
∗)√

µ2(d∗)− µ2
1(d

∗)
− ρ0

ν2(d
∗)− 2ν21(d

∗)√
ν2(d∗)− ν21(d

∗)
,

b2 = Φ−1(p)

[
− F̄X1(d

∗)√
µ2(d∗)− µ2

1(d
∗)

+
µ1(d

∗)F̄X1(d
∗)[d̃∗N,ρ0

− µ1(d
∗)]

(µ2(d∗)− µ2
1(d

∗))3/2

]
,

b3 = −Φ−1(p)
F̄X1(d

∗)[d̃∗N,ρ0
− µ1(d

∗)]

2(µ2(d∗)− µ2
1(d

∗))3/2
,

b4 = −2ρ0ν1(d
∗)

[
1− 2F̄X1(d

∗)√
ν2(d∗)− ν21(d

∗)
+

ν2(d
∗)F̄X1(d

∗) + ν21(d
∗)[1− 2F̄X1(d

∗)]

2(ν2(d∗)− ν21(d
∗))3/2

]
,

b5 = ρ0

[
F̄X1(d

∗)√
ν2(d∗)− ν21(d

∗)
− ν2(d

∗)F̄X1(d
∗) + ν21(d

∗)[1− 2F̄X1(d
∗)]

2(ν2(d∗)− ν21(d
∗))3/2

]
.
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We also have

ˆ̄FX1(d̂
∗)− F̄X1(d

∗)

µ̂1(d̂
∗)− µ1(d

∗)

µ̂2(d̂
∗)− µ2(d

∗)

ν̂1(d̂
∗)− ν1(d

∗)

ν̂2(d̂
∗)− ν2(d

∗)


=



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


+



−fX1(d
∗)

µ′
1(d

∗)

µ′
2(d

∗)

ν ′1(d
∗)

ν ′2(d
∗)


(
d̂∗ − d∗

)
+ oP (1/

√
N).

The latter together with (26) and (27) imply that

√
N(d̂∗ − d∗) = −

√
Nb−1

0 b



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


+ oP (1)

d→ N(0, b−2
0 bΣ̃0b

τ ),

where b = (b1, b2, b3, b4, b5) and

b0 = Φ−1(p)F̄X1(d
∗)/
√

µ2(d∗)− µ2
1(d

∗)− b1fX1(d
∗) + b2µ

′
1(d

∗) + b3µ
′
2(d

∗)

+b4ν
′
1(d

∗) + b5ν
′
2(d

∗).

Hence, the theorem follows as b̂0, b̂ and ˆ̃Σ0 are consistent estimators of b0, b and Σ̃0, respectively.

The proof is now complete.

2.4 Sharpe Ratio Premium Principle

We now recast the results in Section 2.3 by assuming the Sharpe Ratio premium principle

E

(
N∑
i=1

(Xi − d)+

)
+ ρ0

E(
∑N

i=1(Xi − d)+)

SD(
∑N

i=1(Xi − d)+)
= Nν1(d) + ρ0

√
N

ν1(d)√
ν2(d)− ν21(d)

, (28)

leading to the total cost for the insurer as

T̃ (d) =

N∑
i=1

(Xi ∧ d) +Nν1(d) + ρ0
√
N

ν1(d)√
ν2(d)− ν21(d)

.
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In this case, the loading factor becomes

ρ =
ρ0

SD(
∑N

i=1(Xi − d)+)
=

ρ0√
N
√

ν2(d)− ν21(d)
,

which is decreasing in N and satisfies (9). As before, the optimal retention minimizes

VaRp(T̃ (d)) = Nµ1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N)

+Nν1(d) + ρ0
√
N ν1(d)√

ν2(d)−ν21 (d)
,

and we seek for d that minimizes (29) below by ignoring the o(
√
N) terms:

Ḡ(d) = NE(X1) +
√
N

{
Φ−(p)

√
µ2(d)− µ2

1(d) + ρ0
ν1(d)√

ν2(d)− ν21(d)

}
. (29)

The existence of the approximately optimal retention is shown in Theorem 5 below.

Theorem 5. Assume FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞), is continuous

on (0,∞), and

lim
t→∞

F̄X1(tx)

F̄X1(t)
= x−α for all x > 0 and some α ∈ (2, 4). (30)

If FX1(0) > 0, we further assume that

Φ−(p)
√

F̄X1(0)FX1(0) < ρ0
F̄X1(0)√

E(X2
1 )− {E(X1)}2

− ρ0
FX1(0){E(X1)}2

{E(X2
1 )− {E(X1)}2}3/2

. (31)

Then, there exists at least one solution of Ḡ′(d) = 0 and an approximately optimal retention

d∗ ∈ (0,∞) is its smallest solution, which is a local minimum of Ḡ(d).

Proof. Because

Ḡ′(d)√
N

= Φ−(p)
F̄X1(d){d− µ1(d)}√

µ2(d)− µ2
1(d)

− ρ0
F̄X1(d)√

ν2(d)− ν21(d)
+ ρ0

FX1(d)ν
2
1(d)

{ν2(d)− ν21(d)}3/2
,

it follows from (17) and (31) that

limd→0
G̃′(d)√

N
= Φ−(p)

√
F̄X1(0)FX1(0)− ρ0

F̄X1
(0)√

E(X2
1 )−{E(X1)}2

+ρ0
FX1

(0){E(X1)}2

{E(X2
1 )−{E(X1)}2}3/2

< 0.

(32)
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By (30) with α < 4 and (21),

lim
d→∞

Ḡ′(d)√
NF̄X1(d)d

=
Φ−(p)√

E(X2
1 )− {E(X1)}2

> 0. (33)

Hence, it follows from (32) and (33) that there exists at least one solution of Ḡ′(d) = 0 for

d ∈ (0,∞), and let d∗ be the smallest solution. Then, there exists d1 > d∗ such that Ḡ′(d) < 0

for d ∈ (0, d∗), Ḡ′(d) ≥ 0 for d ∈ (d∗, d1), and Ḡ′(d1) > 0, implying that d∗ is a local minimum

of Ḡ(d) for d ∈ (0,∞). The proof is now complete.

To estimate the optimal retention nonparametrically, we minimize the following function for

d:

ˆ̄G(d) = Φ−(p)
√
µ̂2(d)− µ̂2

1(d) + ρ0
ν̂1(d)√

ν̂2(d)− ν̂21(d)
. (34)

Denote d̄N,ρ0 and ˆ̄dN,ρ0 as the minimizers of Ḡ(d) in (29) and ˆ̄G(d) in (34), respectively. The

asymptotic properties of the approximately optimal retention are provided in Theorem 6.

Theorem 6. Under conditions of Theorem 5 and (28), and that X1 has a density function fX1,

we have √
N{ ˆ̄d∗N,ρ0

− d̄∗N,ρ0
}

â−1
0

√
â ˆ̄Σ0âτ

d→ N(0, 1),

with â := (â1, â2, â3, â4, â5), where â2, â3 and ˆ̄Σ0 are identical to b̂2, b̂3 and ˆ̃Σ0, respectively, in

Theorem 4 though
ˆ̃
d∗N,ρ0

is replaced by ˆ̄d∗N,ρ0
, and

â0 =
Φ−1(p) ˆ̄FX1(

ˆ̄d∗N,ρ0
)√

µ̂2(
ˆ̄d∗N,ρ0

)− µ̂2
1(
ˆ̄d∗N,ρ0

)
− â1f̂X1(

ˆ̄d∗N,ρ0) + â2µ̂
∗
1(
ˆ̄d∗N,ρ0) + â3µ̂

∗
2(
ˆ̄d∗N,ρ0)

+â4ν̂
∗
1(

ˆ̄d∗N,ρ0) + â5ν̂
∗
2(

ˆ̄d∗N,ρ0),

â1 = Φ−1(p)

ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̄d∗N,ρ0

)√
µ̂2(

ˆ̄d∗N,ρ0
)− µ̂2

1(
ˆ̄d∗N,ρ0

)
− ρ0

ν̂2(
ˆ̄d∗N,ρ0

)

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
,

â4 = ρ0ν̂1(
ˆ̄d∗N,ρ0)

 2

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
+

3[ν̂21(
ˆ̄d∗N,ρ0

)− ν̂2(
ˆ̄d∗N,ρ0

) ˆ̄FX1(
ˆ̄d∗N,ρ0

)]

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))5/2

 ,

â5 = −ρ0

 ˆ̄FX1(
ˆ̄d∗N,ρ0

)

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
+

3[ν̂21(
ˆ̄d∗N,ρ0

)− ν̂2(
ˆ̄d∗N,ρ0

) ˆ̄FX1(
ˆ̄d∗N,ρ0

)]

2(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))5/2

 .

Proof. Since the proof is similar to that for Theorem 4, we omit the details.
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Remark 1. Another choice of the reinsurance premium beyond the Sharpe Ratio may also seem

natural. That is, we could use the Standard Deviation to determine the reinsurance premium as

follows:

E

(
N∑
i=1

(Xi − d)+

)
+ ρ0SD

(
N∑
i=1

(Xi − d)+

)
= Nν1(d) + ρ0

√
N
√
ν2(d)− ν21(d).

However, the resulting objective function has a positive derivative at d = 0, which often leads

to a trivial approximately optimal retention being either zero or infinity. Therefore, we do not

discuss this setting in the paper as the optimal retention is trivial.

3 Generalization to distortion risk measures

We show now that our results in Section 2 can be naturally extended to optimal reinsurance

problems under general distortion risk measures. A large class of quantile-based risk measures

is the distorted class, for which Definition 1 is needed.

Definition 1. A distortion function is a non-decreasing function h : [0, 1] → [0, 1] such that

h(0) = h(0+) = 0 and h(1) = h(1−) = 1.

Yarri’s dual theory of choice under risk – e.g., see Yaari (1987) – postulates that the risk

preferences of a nonrisk neutral decision maker could be modeled by an expectation concerning

a reweighed or distorted probability measure, where the distortion function is as in Definition 1.

We are ready to define a distortion risk measure, which is given as Definition 2.

Definition 2. Let Y be a non-negative random variable and h be a distortion function. The

Choquet integral

φh(Y ) :=

∫ ∞

0
h ◦ F̄Y (x) dx =

∫ ∞

0

(
1− h̃ ◦ FY (x)

)
dx (35)

is called a distortion risk measure, where h̃(·) = 1− h(1− ·) on [0, 1].

Note that h̃ is a distortion function since h is a distortion function. Further, ρh(Y ) is an

expectation with respect to a reweighed probability measure, namely h̃ ◦ FY ; that is, ρh(Y ) =∫∞
0 x dh̃ ◦ FY (x) is a Lebesgue-Stieljes integral. It is not difficult to see that VaR and ES

are distortion risk measures with distortion functions hVaRp(s) := I{p≤s≤1} and hESp(s) :=

min
(

s
1−p , 1

)
, respectively for all s ∈ [0, 1]. Other examples are i) Dual-power with hDP (s) :=
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1 − (1 − s)β, β ≥ 1, ii) Gini with hG(s) := (1 + β)s − βs2, 0 ≤ β ≤ 1, iii) Proportional

hazard transform (PHT) with hPHT (s) := s1−β, 0 ≤ β < 1, and iv) Wang transform with

hWT (s) := Φ
(
Φ−(s) + β

)
, β ≥ 0.

The results in Section 2 could be generalized to the class of distortion risk measures through

Lemma 1 after verifying some robustness conditions. Note that the case in which the risk

preferences are ordered by ES is a special case of our main results in this section.

Lemma 1. Let Z follow the standard normal distribution N(0, 1). We have

φh

(
T (d,N, ρ)

)
= N(E(X1) + ρν1(d)) +

√
N
√

µ2(d)− µ2
1(d)φh(Z) + o(

√
N).

Proof. It follows from the Central Limit Theorem that

F−
T (d,N,ρ)(p) = N(E(X1) + ρν1(d)) +

√
N
√
µ2(d)− µ2

1(d)Φ
−(α) + o(

√
N), p ∈ (0, 1).

As 0 ≤
∑n

i=1(Xi ∧ d) ≤ Nd and Z is integrable, we have {Z} ∪ {T (d,N, ρ) : N = 1, 2 . . . }

is h-uniformly integrable.∗ By Theorem 4 of Wang et al. (2020), translation invariance and

homogeneity of φh of order 1,

φh

(
T (d,N, ρ)

)
= N

(
E(X1) + ρν1(d)

)
+
√
N
√
µ2(d)− µ2

1(d)φh(Z) + o(
√
N).

Therefore, instead of minimizing φh

(
T (d,N, ρ)

)
to define the optimal retention d, we seek

an approximately optimal retention d by minimizing

Gφ(d) := NE(X1) +Nρν1(d) +
√
N
√
µ2(d)− µ2

1(d)φh(Z). (36)

Similar to Theorem 1, we can show the unique solution after replacing Φ−(p) in Theorem 1

with φh(Z). Further, we can estimate this unique approximately optimal retention and derive

its asymptotic normal limit. Specifically, we have a generalized result below following a proof

∗For a distortion function h, a set of random variables X is called h-uniformly integrable if

lim
k↓0

sup
S∈X

∫ k

0

|F−
S (1− t)| dh(t) = 0 and lim

k↑1
sup
S∈X

∫ 1

k

|F−
S (1− t)| dh(t) = 0.
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similar to that of Theorem 1, which is given as Theorem 7 that needs the following notation.

Hφ(d) := {d− µ1(d)}2 −

( √
Nρ

φh(Z)

)2

{µ2(d)− µ2
1(d)} = 0.

Theorem 7. Assume E(X1) < ∞, FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or

(0,∞), and is continuous on (0,∞). When the support is [0,∞), we further assume FX1(0) <

Nρ2

Nρ2+(φh(Z))2
, which is always true when N is large enough. Then, there exists a unique approx-

imately optimal retention d∗φ,N ∈ (0,∞) such that

d∗φ,N = argmin
d>0

Gφ(d) and Hφ(d
∗
φ,N ) = 0.

In light of Lemma 1, we can also extend Theorems 2-4 in a similar sense to Theorem 1 by

changing Φ−(p) to φh(Z) for which no other adjustments are needed.

4 Simulation studies

We conduct two simulation studies in this section. Section 4.1 assesses the validity of sub-

stituting the actual VaR of total cost VaRp

(
T (d,N, ρ)

)
as specified in (3) with the normal-

approximated VaR GN,ρ(d) outlined in (5); this assessment is conducted under the four loading

factor rules delineated in Sections 2.1–2.4. Section 4.2 empirically examines the statistical prop-

erties of the optimal retention estimators introduced in Theorems 2, 4, and 6.

4.1 Examining validity of approximately optimal retention

We generate samples of Xi from a Pareto (type-II) distribution with a probability density

function given by fX(x) = (α/λ)(1+x/λ)−(α+1), where the shape parameter α = 9 and the scale

parameter λ = 8, such that E[Xi] = α/(λ−1) = 1. We set the risk level at p = 0.75 and consider

sample sizes of N = 10, 25, and 100. In this analysis, we examine all four loading factor rules

by setting ρ = 0.3 for the constant loading factor, choosing δ = 0.5 for the decreasing loading

factor, and ρ0 = 0.5 for the remaining two rules.

We compute the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
using (3), where E{(X1− d)+}

and VaRp(
∑N

i=1(Xi∧d)) are approximated through B = 50000 simulated samples. For example,

we have E{
∑N

i=1(Xi ∧ d)} ≈ (1/B)
∑B

j=1

∑N
i=1(Xij ∧ d) with Xij iid sampled from a Pareto

distribution for i = 1, . . . , N and j = 1, . . . , B. We also compute the normal-approximated VaR
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of total cost GN,ρ(d) in (5) by numerical integration.

Figure 1 (left panel) and Figure 2 plot GN,ρ(d) (red curves) and VaRp

(
T (d,N, ρ)

)
(black

curves) as a function of d for N = 10 and 100 under the four loading factor rules. We note that

GN,ρ(d) approximates closely to VaRp

(
T (d,N, ρ)

)
under all loading factor rules. For all loading

factor rules except for the constant loading factor, we observe an optimal retention d∗ ∈ [0, 1]

that minimizes the VaR of the total cost. Conversely, for the constant loading factor, both

VaRp

(
T (d,N, ρ)

)
and GN,ρ(d) become flat as d increases, especially when N is large. Hence, it

is difficult to identify d∗ by solely observing the plots.
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Figure 1: Left panels: VaRp

(
T (d,N, ρ)

)
(black curves), GN,ρ(d) (red curves), G

(2)
N,ρ(d) (green

curves) and G
(3)
N,ρ(d) (blue curves) for N = 10, 100 under the constant loading factor. Right

panels: [GN,ρ(d)−VaRp

(
T (d,N, ρ)

)
] (red curves), [G

(2)
N,ρ(d)−VaRp

(
T (d,N, ρ)

)
] (green curves)

and [G
(3)
N,ρ(d)−VaRp

(
T (d,N, ρ)

)
] (blue curves) versus d.

We then numerically calculate the actual and approximately optimal retentions d∗ and d∗N,ρ,

and the results are displayed in Table 1. Recall that the approximation order of GN,ρ(d) in (5)

is o(
√
N). For all loading factor rules other than the constant loading factor, the actual optimal

retention d∗, which minimizes the true VaR of total cost VaRp

(
T (d,N, ρ)

)
, yields similar values

as the approximately optimal retention d∗N,ρ, which minimizes the approximated VaR of total
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Figure 2: VaRp

(
T (d,N, ρ)

)
(black curves) and GN,ρ(d) (red curves) versus or N = 10, 100 under

various loading factor rules.

cost GN,ρ(d). Also, the relative difference |(d∗N,ρ − d∗)/d∗N,ρ| generally reduces as N increases.

Furthermore, d∗ does not change substantially as N changes. As a result, the approximate

optimal retention approach for VaR works well under these three loading factor rules.

For the constant loading factor, while the optimal retention exists despite the flatness of the

curves in the left panels of Figure 1, there are noticeable discrepancies between d∗ and d∗N,ρ for a

given N , especially when N is large. Hence, the normal approximation with order o(
√
N) is not

sufficiently accurate in determining the optimal retention under this loading factor rule. One may
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Table 1: Actual optimal retention d∗, approximately optimal retention d∗N,ρ, and the relative
difference between d∗ and d∗N,ρ (in %) across various loading factor rules, N , and approximation
orders.

Loading factor rule N Approx. order Actual Approx. Diff. (%)

Constant loading factor 10 o(
√
N) 1.8549 1.4856 -19.91

Constant loading factor 10 o(1) 1.8549 1.6276 -12.25

Constant loading factor 10 o(1/
√
N) 1.8549 1.5921 -14.17

Constant loading factor 25 o(
√
N) 3.4442 2.6838 -22.08

Constant loading factor 25 o(1) 3.4442 2.9634 -13.96

Constant loading factor 25 o(1/
√
N) 3.4442 2.9969 -12.99

Constant loading factor 100 o(
√
N) 7.1241 5.6581 -20.58

Constant loading factor 100 o(1) 7.1241 6.3361 -11.06

Constant loading factor 100 o(1/
√
N) 7.1241 6.6660 -6.43

Decreasing loading factor 10 o(
√
N) 0.5034 0.5472 8.70

Decreasing loading factor 25 o(
√
N) 0.5835 0.5472 -6.21

Decreasing loading factor 100 o(
√
N) 0.5472 0.5472 0.02

Standard deviation principle 10 o(
√
N) 0.7847 0.8189 4.36

Standard deviation principle 25 o(
√
N) 0.8187 0.8189 0.03

Standard deviation principle 100 o(
√
N) 0.8499 0.8189 -3.64

Sharpe ratio principle 10 o(
√
N) 0.2797 0.3218 15.06

Sharpe ratio principle 25 o(
√
N) 0.3149 0.3218 2.18

Sharpe ratio principle 100 o(
√
N) 0.3203 0.3218 0.45

address this issue by employing Edgeworth expansion to improve the approximation precision.

Denote G
(2)
N,ρ and G

(3)
N,ρ as the Edgeworth approximated VaRs with orders o(1) and o(1/

√
N),

respectively; see Section 2 of the supplementary material for more details. We now add G
(2)
N,ρ

(green curves) and G
(3)
N,ρ (blue curves) to the left panels of Figure 1 and the approximation errors

[G
(2)
N,ρ−VaRp

(
T (d,N, ρ)

)
] (green curves) and [G

(3)
N,ρ−VaRp

(
T (d,N, ρ)

)
] (blue curves) to the right

panels. We numerically calculate the optimal retention that minimizes the approximated VaRs

G
(2)
N,ρ(d) and G

(3)
N,ρ(d), and the results are added to Table 1. From the right panel, it is apparent

that the approximation errors of VaR, especially for the higher-order Edgeworth expansions (blue

curves), are significantly reduced compared to the normal approximations. The discrepancies

between d∗ and d∗N,ρ are also significantly reduced by employing higher-order approximation

methods. In a nutshell, the use of a constant loading factor needs a higher order Edgeworth

expansion for the approximately optimal retention when N is large.

4.2 Verifying statistical properties of nonparametric approach

We adopt the same simulation setup as in Section 4.1 except assessing larger sample sizes

of N = 500, 2000, and 10000. The computational complexity associated with such large sample
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sizes is given by the fact the direct estimation of the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
is unfeasible without resorting to the normal approximation technique. In each simulation run,

we compute the nonparametric estimation of the approximately optimal retention, which is

d̂∗N,ρN
under the decreasing loading factor,

ˆ̃
dN,ρN under the standard deviation principle, or

ˆ̄dN,ρN under the Sharpe ratio principle. To obtain an M -vector of estimated optimal retentions,

which is {d̂∗(m)
N,ρN

}m=1,...,M for each of the three loading factor rules, we repeat the simulation runs

M = 5000 times. Additionally, through numerical integration, we compute the “true” approx-

imately optimal retention, denoted as d∗N,ρN
under the decreasing loading factor, d̃N,ρN under

the standard deviation principle, or d̄N,ρN under the Sharpe ratio principle. We calculate the

sample mean of {d̂∗(m)
N,ρN

}m=1,...,M and compare it with the true approximately optimal retention

to evaluate the bias of the proposed nonparametric estimation approach.

Table 2: Columns 2–4 : True approximately optimal retention, the sample mean of the nonpara-
metrically estimated approximately optimal retentions, and their relative difference; Columns
5–7 : Theoretical and empirical standard error of the estimated optimal retention, and their
relative difference.

Mean optimal retention Std. Error optimal retention

True Estimated Bias (%) Theoretical Empirical Diff. (%)
Decreasing loading factor
N = 500 0.5472 0.5478 0.10 0.0392 0.0392 -0.05
N = 2000 0.5472 0.5478 0.11 0.0196 0.0201 2.57
N = 10000 0.5472 0.5474 0.04 0.0088 0.0087 -0.24
Standard deviation principle
N = 500 0.8189 0.8185 -0.05 0.1115 0.1199 7.54
N = 2000 0.8189 0.8187 -0.03 0.0577 0.0594 2.98
N = 10000 0.8189 0.8191 0.02 0.0263 0.0262 -0.22
Sharpe ratio principle
N = 500 0.3218 0.3259 1.29 0.0442 0.0468 5.85
N = 2000 0.3218 0.3233 0.46 0.0229 0.0235 2.64
N = 10000 0.3218 0.3220 0.07 0.0104 0.0105 1.73

Utilizing the results from Theorems 2, 4 and 6, we compute the theoretical standard error

of the optimal retention estimators, represented as, for example, N−1/2ĉ−1
0

√
(ĉ1, ĉ2)Σ̂0(ĉ1, ĉ2)τ

under the decreasing loading factor, and compare it with the sample standard deviation of

{d̂∗(m)
N,ρN

}m=1,...,M to assess the validity of the theoretical results. Note that for the computation

of standard errors under Theorems 4 and 6, we utilize the kernel density estimator f̂X1(d) with

a Gaussian kernel function and a bandwidth of 0.1. While alternative kernel functions and

bandwidths are possible, we have observed that they exert negligible influence on the computed

standard errors, hence we do not delve into further details regarding these alternatives. Table 2
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summarizes the findings across various N and loading factor rules. Our observations indicate

minimal estimation biases of the nonparametrically estimated optimal retention in all scenarios,

and in turn, we empirically confirm the consistency of the proposed nonparametric estimators.

Moreover, the empirical standard deviations of our estimators closely align with the theoretical

standard errors across all cases, which provides empirical validation to the asymptotic properties

outlined in Theorems 2, 4 and 6. Additionally, as N becomes large, we note a decline in the

relative bias of the estimated optimal retention, as well as the relative difference between the

theoretical and empirical standard errors, consistent with the asymptotic theories.

5 Real Data analysis

We analyze the frecomfire dataset, which consists of 9,613 commercial fire losses located

in France, spanning from 1982 to 1996. This dataset is publicly accessible via the R package

CASdatasets. The left panel of Figure 3 displays the empirical density of claim severities, with

each claim expressed in million euros (at the 2007 value). The distribution of claim sizes exhibits

significant right-skewness, as evidenced by several extreme losses indicated by arrows. In the

right panel of Figure 3, the Lorenz curve illustrates the cumulative share of claim amounts

against the cumulative normalized rank of claims. A substantial deviation of the Lorenz curve

from the equality line indicates considerable disparities between large and small claims. The

pronounced gap between the Lorenz curve and the equality line reflects the wide dispersion of

claim amounts. Notably, the median, mean, and maximum loss amounts are 0.7633, 1.9811, and

315.54, respectively, with the 20 largest loss comprising more than 10% of the total loss. The

heavy-tailed nature of the claim distribution, coupled with several exceptionally large losses,

highlights the importance for insurance companies to transfer individual losses, rather than

aggregate liabilities, to reinsurers. This motivates the analysis of EoL reinsurance, rather than

SL reinsurance, as explored, for instance, by Cai and Tan (2007).

Our primary objective is to investigate the variations in nonparametric estimates of the

approximately optimal retention across various effective loading factors ρ and risk levels p under

three loading factor rules: decreasing loading factor, standard deviation principle, and Sharpe

ratio principle. It is important to highlight that we assess the effective loading factors ρ by

using expressions such as (15) under the standard deviation principle, rather than relying on

the nominal loading factors like ρ0 in (15) so that we ensure equitable comparisons among the
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Figure 3: Left panel : Empirical density plot of claim severity; Right panel : Lorenz curve (thick
solid curve) of claim severity with the equality line (dotted 45-degree line).

three loading factor rules.
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Figure 4: Optimal retention versus effective loading factor (solid curves) with fixed p = 0.9 (left
panel) or p = 0.95 (right panel). The 95% confidence intervals are displayed as shaded areas.

Figure 4 displays the optimal retention as a function of the effective loading factor ρ, with

fixed values of p = 0.9 (left panel) or p = 0.95 (right panel) under each of the three loading factor

rules, accompanied by corresponding 95% confidence intervals determined based on Theorems 2,

4 and 6. Across all loading factor rules, it is evident that the optimal retention level increases

with ρ for any fixed p. This observation is intuitive, as a higher ρ implies a greater cost for

risk transfer, thereby incentivizing insurers to retain losses up to a higher level. Furthermore,

it is observed that the standard deviation loading factor principle yields the highest optimal

retention for any fixed p and ρ, followed by the decreasing loading factor, and finally the Sharpe

ratio principle. This trend can be rationalized by considering that the standard deviation of

the excess loss (X1 − d)+ decreases as d increases. Consequently, the effective loading factor

under the standard deviation principle diminishes with increasing d, encouraging insurers to
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select a higher retention level to mitigate reinsurance costs. Additionally, the confidence bands

under the standard deviation and Sharpe ratio principles are notably wider than those under

the decreasing loading factor. This discrepancy arises because the loading factor ρ under either

principle, which is contingent on the second moment of the excess loss, may be heavily influenced

by extreme losses, leading to increased standard errors. Conversely, the normal-approximated

VaR of the total cost relies solely on the excess loss up to its first moment under the decreasing

loading factor, resulting in decreased sensitivity of the estimated optimal retention to extreme

losses.
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Figure 5: Optimal retention versus risk level p (solid curves) with fixed ρ = 0.005 (left panel)
or ρ = 0.02 (right panel). The 95% confidence intervals are displayed as shaded areas.

Figure 5 illustrates the optimal retention versus the risk level p, with fixed values of ρ = 0.005

(left panel) or ρ = 0.02 (right panel) under the three loading factor rules, accompanied by 95%

confidence intervals. Across all loading factor rules, it is observed that the optimal retention

decreases as p increases. This outcome is logical, as a higher risk level p signifies insurers’

greater aversion to risk, thereby reducing their inclination to retain extreme losses by opting for

a smaller retention level. Notably, our proposed method addresses the counterintuitive finding

of Cai and Tan (2007) that the optimal retention remains unchanged as p varies.
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Supplementary materials for “A Revisit of the
Optimal Excess-of-Loss Contract”

1 Numerical study: Comparing EoL and SL approaches

In this section, we substantiate the assertions presented in Section 1.2 of the manuscript

regarding the comparison between the EoL and SL approaches. This is accomplished through a

numerical investigation with a small N supported by theoretical reasoning. We simulate Xi from

a Pareto (type-II) distribution with pdf fX(x) = (α/λ)(1 + x/λ)−(α+1) with shape parameter

α = 9 and scale parameter λ = 8, such that the mean is E[Xi] = α/(λ − 1) = 1. We choose

p = 0.75 for the risk level, ρ = 0.2 for the loading factor, and consider N = 2, 3, 5, 10. We first

compute the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
using (3), where VaRp(

∑N
i=1(Xi ∧ d))

and E{(X1 − d)+} are approximated, respectively, by the empirical p-VaR and expectation of∑N
i=1(Xi ∧ d) and (X1 − d)+ from B = 50, 000 simulated samples. For example, we compute

E{
∑N

i=1(Xi∧d)} ≈ (1/B)
∑B

j=1

∑N
i=1(Xij∧d) with Xij iid sampled from the Pareto distribution

for i = 1, . . . , N and j = 1, . . . , B.

Figure 6 plots VaRp

(
T (d,N, ρ)

)
as a function of d for variousN . We note that VaRp

(
T (d,N, ρ)

)
is piecewise differentiable except for N turning points, which are illustrated by the gray dotted

vertical lines added in Figure 6. In addition, if we denote the i-th turning point as d̃N (i) for

i = 1, . . . , N −1, we observe that d̃N (i) = {d : P (
∑N

i=1(Xi∧d) ≥ (N − i+1)d) = 1−p}; indeed,

the density function of
∑N

i=1(Xi ∧ d) exhibits jump points at integer multiples of d, causing the

turning points.

We then numerically calculate d∗, i.e., minimize VaRp

(
T (d,N, ρ)

)
over d, and compute

the probability P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) for various N . An interesting series of

observations is further noted.

First, the calculated value of d∗ is 0.1633, 0.1643, 0.5025, 0.8779, respectively, for N =

2, 3, 5, 10. This coincides with the analysis in Theorem 1 that the optimal retention increases

with N if ρ is fixed.

Second, the calculated probability P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) is 0, 0, 0.25 and 0.25,

respectively, for N = 2, 3, 5, 10. As N is large enough, the probability will be exactly 0.25, and

otherwise, the probability will be exactly zero.

Third, we observe from the figure that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 0 if d∗ ≤ d̃N (1)
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Figure 6: VaRp

(
T (d,N, ρ)

)
versus d ∈ [0, 5] for various N . Gray vertical lines represent the

turning points of the curves.

and P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 0.25 if d∗ > d̃N (1). Indeed, one can justify it

theoretically as follows. From the definition of d̃N (i), if d∗ ≤ d̃N (1), we have

1− p = P (

N∑
i=1

Xi ∧ d̃N (i) ≥ Nd̃N (i)) = P (Xi ≥ d̃N (i))N

≤ P (Xi ≥ d∗)N = P (
N∑
i=1

Xi ∧ d∗ ≥ Nd∗).

Since P (
∑N

i=1Xi ∧ d∗ ≥ Nd∗) ≥ 1 − p,
∑N

i=1Xi ∧ d∗ is upper bounded by Nd∗ and hence

P (
∑N

i=1Xi ∧ d∗ > Nd∗) = 0, we have VaRp(
∑N

i=1Xi ∧ d∗) = Nd∗ and hence P (
∑N

i=1Xi ∧ d∗ >

VaRp(
∑N

i=1Xi ∧ d∗)) = 0. If d∗ > d̃N (1), we have VaRp(
∑N

i=1Xi ∧ d∗) < Nd∗, and the

distribution function of
∑N

i=1Xi ∧ d∗ is continuous on (0, Nd∗). Hence, P (
∑N

i=1Xi ∧ d∗ >

VaRp(
∑N

i=1Xi ∧ d∗)) = 1 − p by the basic definition of quantile. Therefore, we conclude that

the VaR of the total cost with the optimal retention is appropriate if and only if the optimal

retention is above the first turning point.

Fourth, one can also show that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 1 − p if and only if
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P (Xi ≥ d∗) ≤ (1− p)1/N . With a larger N , this condition is more likely to hold. With N = 1,

i.e., the SL approach following Cai and Tan (2007), we have d∗ = F−
X1

(1 − 1/(1 + ρ)) given

1 − p < (1 + ρ)−1, and hence P (Xi ≥ d∗) = (1 + ρ)−1 > (1 − p), meaning that the condition

never holds.

Overall, while P (T (d∗, 1, ρ) > VaRp(T (d
∗, 1, ρ))) = 0 under the SL approach, we empirically

and theoretically show that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 1 − p, the correct level, for

sufficiently large N under the EoL approach. Hence, the EoL optimal retention would not inherit

the same counter-intuitive property as the SL optimal retention.

2 Approximating VaR of total cost by Edgeworth expansion

To address the issue of insufficient accuracy outlined by Section 4.1 under the constant

loading factor rule, we employ Edgeworth expansion to improve the approximation precision

from (4) in the manuscript to obtain G
(2)
N,ρ and G

(3)
N,ρ. Suppose that Z1, . . . , ZN are iid random

variables with zero mean, unit variance, and E[Z4
1 ] < ∞. Then, standard Edgeworth expansion

yields

P

(
1√
N

N∑
i=1

Zi ≤ x

)
= Φ(x)− 1√

N
p1(x)ϕ(x) +

1

N
p2(x)ϕ(x) + o(N−1), (37)

where p1(x) = −κ3H2(x)/6, p2(x) = −(κ4H3(x)/24+κ23H5(x)/72). Here, κ3 = E[(Z1−E[Z1])
3]

and κ4 = E[(Z1−E[Z1])
4]−3E[(Z1−E[Z1])

2]2 are the moment quantities, and H2(x) = x2−1,

H3(x) = x3− 3x and H5(x) = x5− 10x3+15x are the Hermite polynomials. From (37) and (3),

one can apply the Cornish-Fisher expansion and write

VaRp (T (d,N, ρ)) =
√
N
√
µ2(d)− µ2

1(d)

[
Φ−(p) +

1√
N

p̃1(p; d) +
1

N
p̃2(p; d)

]
(38)

+NE[X1] +Nρν1(d) + o

(
1√
N

)
,

where p̃1(p; d) = − κ̃3(d)
6 H2(p) and

p̃2(p; d) =
κ̃4(d)

24
H3(p) +

κ̃3(d)
2

72

(
H5(p) + 2H ′

2(p)H2(p)− pH2(p)
2
)
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with

κ̃3(d) =
E[(X1 ∧ d− E[X1 ∧ d])3]

E[(X1 ∧ d− E[X1 ∧ d])2]3/2
, κ̃4(d) =

E[(X1 ∧ d− E[X1 ∧ d])4]

E[(X1 ∧ d− E[X1 ∧ d])2]2
− 3.

We alternatively propose to compute the approximate optimal retention by minimizing

G
(2)
N,ρ(d) = NE[X1] +Nρν1(d) +

√
N
√
µ2(d)− µ2

1(d)

[
Φ−(p) +

1√
N

p̃1(p; d)

]
(39)

or

G
(3)
N,ρ(d) = NE[X1] +Nρν1(d) (40)

+
√
N
√
µ2(d)− µ2

1(d)

[
Φ−(p) +

1√
N

p̃1(p; d) +
1

N
p̃2(p; d)

]
,

where the error terms underlying G
(2)
N,ρ and G

(3)
N,ρ are, respectively, o(1) and o(N−1/2).
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