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Abstract

In recent work, Franck Barthe and Mokshay Madiman introduced the concept of the Lyusternik
region, denoted by Λn(m), to better understand volumes of sumsets. They gave a characterization of
Λn(2) (the volumes of compact sets in Rn when at most m = 2 sets are added together) and proved that
Lebesgue measure satisfies a fractional superadditive property. We attempt to imitate the idea of the
Lyusternik region by defining a region based on the Schneider non-convexity index function, which was
originally defined by Rolf Schneider in 1975. We call this region the Schneider region, denoted by Sn(m).
In this paper, we will give an initial characterization of the region S1(2) and in doing so, we will prove
that the Schneider non-convexity index of a sumset c(A1 +A2) has a best lower bound in terms of c(A1)
and c(A2). We will pose some open questions about extending this lower bound to higher dimensions
and large sums. We will also show that, analogous to Lebesgue measure, the Schneider non-convexity
index has a fractional subadditive property. Regarding the Lyusternik region, we will show that when
the number of sets being added is m ≥ 3, that the region Λn(m) is not closed, proving a new qualitative
property for the region.
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1 Introduction

1.1 The Schneider non-convexity index

In 1975 Rolf Schneider introduced a measure of non-convexity [17]. For a set A ⊆ Rn the Schneider non-
convexity index of A is defined by

c(A) := inf{λ ≥ 0 : A+ λconv(A) is convex}.

In the case that A is the empty set, c(∅) = 0. In the original paper the following theorem was proved.

Theorem 1.1 (Schneider [17]). Let A ⊆ Rn be a compact set. Then 0 ≤ c(A) ≤ n. The left inequality is
equality if and only if A is convex, and the right inequality is equality if and only if A consists of exactly
n+ 1 affinely independent points.

Theorem 1.1 hints that the Schneider non-convexity index makes a good measure of non-convexity in the
sense that the only sets that can have an index of zero are convex sets.

A recent review [9] contains results about functions which can be thought of as measures of non-convexity.
In particular, the authors review the Schneider non-convexity index, and prove the following upper bound
for the sum of three sets.

Theorem 1.2 (Fradelizi et al. [9]). Let A,B,C be subsets of Rn. Then

c(A+B + C) ≤ max{c(A+B), c(B + C)}. (1)

In section 3 we will show that this upper bound can be used to prove a larger set of inequalities for the
Schneider non-convexity index.

1.2 The Lyusternik region

The Lyusternik region, introduced in the paper [3] is defined as follows.

Definition 1.1 (The Lyusternik region). For positive integers m,n, let Kn(m) denote the set of all m-
tuples A = (A1, . . . , Am) of non-empty, compact sets in Rn. Let 2[m] denote the collection of all subsets of
[m] := {1, . . . ,m}. For each A ∈ Kn(m), define the function vA : 2[m] → R by

vA(S) :=

∣

∣

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

∣

∣

,

where |A| denotes the Lebesgue measure of the set A. The (n,m)-Lyusternik region is defined by

Λn(m) := {vA : A ∈ Kn(m)}.

The set Λn(m) can be viewed as a subset of R2m in the following way. Choose an ordering S1, . . . , S2m of
2[m]. Then the function vA corresponds to the vector (vA(S1), . . . , vA(S2m)). For example, if m = 2, then
the function vA will be associated with the vector (0, |A1|, |A2|, |A1 + A2|). In fact, if we wanted we could
drop the first component corresponding to the empty set, since that component will always be 0.
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What follows is some terminology which is of interest in the study of the Lyusternik region.

1. Fractional partitions: For an integer m ≥ 2, a set ∅ 6= G ⊆ 2[m] of subsets of [m] is called a
hypergraph. If β : G → [0,∞) is some function, then the pair (G, β) is called a weighted hypergraph. If,
in addition, the function β (which can be thought of as an assignment of weights to each of the sets
S ∈ G) satisfies: ∀i ∈ [m],

∑

S∈G:i∈S β(S) = 1, then the pair (G, β) is called a fractional partition of
[m].

2. Fractional superadditive/subadditive set functions: A function f : 2[m] → [0,∞) is called
fractionally superadditive if for each T ⊆ [m],

f(T ) ≥
∑

S∈G

β(S)f(S)

is true for any fractional partition (G, β) of T . If the inequality sign is flipped, then the set function is
called fractionally subadditive. We will use the notation ΓFSA(m) to denote the set of all fractionally
superadditive functions f as defined above for which f(∅) = 0.

3. Supermodular/submodular set functions: A function f : 2[m] → [0,∞) is called supermodular if
for any S, T ⊆ [m],

f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ).

If the inequality sign is flipped, then the function is called submodular. We will use the notation
ΓSM (m) to denote the set of all supermodular functions f as defined above such that f(∅) = 0.

The following result, which is proved in [3], summarizes what is known about the Lyusternik region and its
relation with ΓFSA(m) and ΓSM (m).

Theorem 1.3 (Barthe and Madiman [3]). The following statements are true.

1. In the case that m = 2, and n ≥ 1, the Lyusternik region is characterized by

Λn(2) = {(0, a, b, c) ∈ R4
+ : c ≥ (a

1
n + b

1
n )n}.

In fact, we have the relation
Λ1(2) = ΓSM (2) = ΓFSA(2).

2. If m ≥ 3, then Λn(m) ( ΓFSA(m).

3. If m ≥ 3, then Λn(m) and ΓSM (m) have nonempty intersection, but neither is a subset of the other.

The first statement of Theorem 1.3 shows that the Lyusternik region is completely determined by the
Brunn-Minkowski-Lyusternik inequality for compact sets [12] when the number of sets being added is m = 2.
We also note that related to the Lyusternik region is the Stam region [14].

1.3 Outline of the paper

The motivation of the results in this paper came from the papers [3, 9, 17]. It is natural to attempt to imitate
the idea of the Lyusternik region with one of the measures of non-convexity, and the Schneider non-convexity
index is a natural candidate for this. What follows is an outline of the new contributions this paper adds to
the study of the Schneider non-convexity index and the Lyusternik region.

1. Fractional subadditivity of c: In Section 3 we will use the inequality in Theorem 1.2 along with
a simplification from the paper [3] to prove that the Schneider non-convexity index is fractionally
subadditive.

2. The Schneider region: In Section 4.1 we will define the Schneider region, denoted by Sn(m), which
is defined in an analogous way to the Lyusternik region, except that the underlying set function is
the Schneider non-convexity index instead of Lebesgue measure. We will give a characterization of the
region S1(2), which turns out to be a difficult problem and actually leads to the main result of this
paper which is explained in the next item.

3



3. A best lower bound: In Section 2, we will prove that if A1 and A2 are non-empty, compact sets
in R, then the index of the sumset c(A1 + A2) has a best lower bound in terms of the indices c(A1)
and c(A2). This lower bound can then be extended to a lower bound for Cartesian product sets in Rn,
which is explained in Section 2.3. It turns out that it is tedious to prove this is a lower bound, even in
the one-dimensional case. We summarize some of the unanswered questions in Section 2.4.

4. Closure properties of the Lyusternik region: In Section 4.2 we will define a one-dimensional
fractal set, and then use it to characterize a small piece of the region Λn(3). It will follow that the
region Λn(m) is not a closed set when m ≥ 3, which contrasts with the known characterization for
Λn(2).

1.4 Related research

For work related to fractional superadditivity, see [4, 3, 8]. These papers cover a conjecture made by Bobkov
et al. of a fractional generalization the Brunn-Minkowski inequality. For the case where the sets are compact,
but not convex the conjecture was resolved in dimension 1, but counter examples were found in dimension
n ≥ 7. Around the same time a special case of the conjecture was verified in dimensions 2 and 3 for star-
shaped sets. In fact, before the fractional Brunn-Minkowski conjecture, it was shown that the power entropy
of a random variable is fractionally superadditive [1, 14, 13].

For references on supermodularity, we note the paper [16] where it is proved that supermodularity implies
fractional superadditivity (under the condition that the empty set is mapped to 0), and in [10], it is proved
that volume satisfies a more generalized supermodularity property known as m-supermodularity, where the
higher order supermodularity seems to have originated in [7].

An area of study related to this study of the Schneider non-convexity index is the study of the convex-
ification property that Minkowski summation has on compact sets. This fundamental observation is given
by the Shapley-Folkman theorem [6, 18, 19] which states that the kth set average A(k) := 1

k

∑k

i=1 A of a
compact set A converges in volume deficit (if |A(k)| > 0 for some k when card(A) > 1) and the Hausdorff
metric to conv(A). Recently this property has been studied in the infinite dimensional case [2].

1.5 Acknowledgements

I thank Robert Fraser and Buma Fridman for many helpful discussions on this topic. I especially thank
Robert Fraser for taking the time to carefully read through this paper and for offering helpful corrections
and advice. The author of this paper was supported in part by the National Science Foundation LEAPS -
Division of Mathematical Sciences Grant No. 2316659.

2 The best lower bound

2.1 Notation

1. A useful formula: For a compact set A ⊆ R, we define the largest gap in A by

G(A) := inf{ε ≥ 0 : A+ [0, ε] is convex}.

The diameter of A is defined by
diam(A) := |conv(A)|.

For the one-dimensional case, the Schneider non-convexity index of the set A can be computed with
the convenient formula

c(A) =
G(A)

diam(A)
.
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To verify that this formula is correct, let A be compact, and translated so that min(A) = 0. Then we
can write conv(A) = [0, a], where a > 0. Observe that

c(A) = inf{λ ≥ 0 : A+ λconv(A) is convex}

= inf{λ ≥ 0 : A+ a[0, λ] is convex}

= inf
{ ε

a
≥ 0 : A+ a

[

0,
ε

a

]

is convex
}

=
1

a
inf{ε ≥ 0 : A+ [0, ε] is convex}

=
G(A)

diam(A)
.

2. We will define the function r : [0, 1] → [0, 1] by

r(c) =
1− c

1 + c
.

To simplify notation, if σ ∈ Sk (the group of permutations on [k] := {1, . . . , k}), and {Aj}
k
j=1 are

compact sets, then we will define
rσ(j) := r

(

c(Aσ(j))
)

.

3. R-sets and L-sets: For 0 ≤ α < 1 and α′ ≥ 0, suppose A is of the form A = [0, α] ∪ [1, 1 + α′]. If
α > α′, then A is called an L-set (i.e the left interval is longer than the right interval). If α < α′, then
A is called an R-set (i.e the right interval is longer than the left interval). In the case that α = α′, A
is called a balanced set.

4. If m ≥ 1 is some integer and A1, . . . , Am are sets in Rn, then for a set S ⊆ [m] we will define
AS :=

∑

i∈S Ai.

5. If a and b are real numbers, such that either sign(a) = sign(b) or a = b = 0, then we will use the
notation a ≈ b. It will be convenient to use this notation with the derivative of a rational function
f(x) = p(x)

q(x) . The derivative satisfies f ′(x) ≈ q(x)p′(x) − p(x)q′(x). Also, if γ(n1, n2) is a rational

function of two variables, then we will use the notation Djγ(n1, n2) to denote the partial derivative of
γ with respect to the jth coordinate evaluated at (n1, n2).

2.2 Compact sets in one-dimension

The objective of this subsection is to prove

Theorem 2.1. Let A1 and A2 be non-empty, compact sets in R. Then

c(A1 +A2) ≥ max

(

0, min
σ∈S2

1− rσ(1) − 2rσ(2)

3 + rσ(1) + 2rσ(2)

)

.

This is the best lower bound in the sense that if c1, c2 ∈ [0, 1], then

min
A∈K1(2)
c(Aj)=cj

j∈[2]

c(A1 +A2) = max

(

0, min
σ∈S2

1− r(cσ(1))− 2r(cσ(2))

3 + r(cσ(1)) + 2r(cσ(2))

)

.

That is, minimizing c(A1+A2) over all the compact sets A1, A2 with fixed convexity indices c1, c2 respectively,
achieves exactly the lower bound.

The next result gives a characterization of L-sets and R-sets in terms of the function r.

5



Lemma 2.1. Let A be a nonempty, compact set in R, let c := c(A) denote the convexity index of A, and
define the number

r :=
1− c

1 + c
.

Then the following characterizations hold.

1. If A is an L-set, then we can write

A =

[

0, r + n

(

1− r

2

)]

∪

[

1, 1 + r − n

(

1 + r

2

)]

,

where n > 0 is a real number which satisfies n(1+r
2 ) ≤ r.

2. If A is an R-set, then we can write

A =

[

0, r − n

(

1− r

2

)]

∪

[

1, 1 + r + n

(

1 + r

2

)]

,

where n > 0 is a real number which satisfies n(1−r
2 ) ≤ r.

3. If A is a balanced set, then we can write A = [0, r] ∪ [1, 1 + r].

Proof. We will prove this result for the case that A is an L-set. If A is an R-set, then the proof will be
almost identical, and if A is a balanced set, just set n = 0 in the characterization for either of the first two
parts. When A is an L-set, write A = [0, α]∪ [1, 1+α′], where α > α′. Then we can write α = α′ +n, where
n := α − α′. Then A can be written as A = [0, α′ + n] ∪ [1, 1 + α′]. The convexity index of A, call it c, is
given by

c =
1− α′ − n

1 + α′
.

This implies that

α′ = r − n

(

1 + r

2

)

.

The characterization for the L-set follows.

The purpose of the next result is to verify that filling in the gaps of sets A and B to achieve new sets A′

and B′ will give a sumset A′ +B′ that is closer to being convex than the sumset A+B.

Lemma 2.2. Let A and B be nonempty, compact sets in Rn. If A ⊆ A′ ⊆ conv(A) and B ⊆ B′ ⊆ conv(B),
then c(A′ +B′) ≤ c(A+B).

Proof. Using the notation given in the statement, if λ ≥ c(A+B), then

A+ B + λconv(A+B) = conv(A) + conv(B) + λconv(A+B)

⊇ A′ +B′ + λconv(A′ +B′)

⊇ A+B + λconv(A+B).

It follows that
A+B + λconv(A+B) = A′ +B′ + λconv(A′ +B′).

Since the set on the left is convex, the set on the right must also be convex. Therefore λ ≥ c(A′ +B′), from
which it follows that c(A′ +B′) ≤ c(A+B).

The proof of Theorem 2.1 will be broken into four different cases, which are verified in the next four
lemmata.
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Lemma 2.3. Let A1 be an L-set and A2 be an R-set such that

min
σ∈S2

(

1− rσ(1) − 2rσ(2)
)

> 0. (2)

Then for any m ∈ (0, 1],

c(A1 +mA2) ≥ min
σ∈S2

1− rσ(1) − 2rσ(2)

3 + rσ(1) + 2rσ(2)
. (3)

Proof. Since A1 is an L-set and A2 is an R-set, we can use Lemma 2.1. Then

A1 =

[

0, r1 + n1

(

1− r1
2

)]

∪

[

1, 1 + r1 − n1

(

1 + r1
2

)]

=: I1 ∪ J1,

mA2 =

[

0,mr2 −mn2

(

1− r2
2

)]

∪

[

m,m+mr2 +mn2

(

1 + r2
2

)]

=: I2 ∪ J2.

Using Minkowski addition of the sets we get

A1 +mA2 = (I1 + I2) ∪ (I1 + J2) ∪ (J1 + I2) ∪ (J1 + J2).

For an arbitrary interval I, let L(I) denote the left endpoint of I, and let R(I) denote the right endpoint of
I. We will now identify the candidates for the largest gap of the sumset. These candidates are

g0(m) := L(J1 + I2)−R(I1 + I2),

g1(m) := L(I1 + J2)−R(I1 + I2),

g2(m) := L(J1 + I2)−R(I1 + J2),

g3(m) := L(J1 + J2)−R(J1 + I2),

g4(m) := L(J1 + J2)−R(I1 + J2).

We can calculate these gap candidates (purposely leaving out g0(m)) explicitly as

g1(m) = m− r1 −mr2 − n1

(

1− r1
2

)

+mn2

(

1− r2
2

)

,

g2(m) = 1−m− r1 −mr2 − n1

(

1− r1
2

)

−mn2

(

1 + r2
2

)

,

g3(m) = m− r1 −mr2 + n1

(

1 + r1
2

)

+mn2

(

1− r2
2

)

,

g4(m) = 1− r1 −mr2 − n1

(

1− r2
2

)

−mn2

(

1 + r2
2

)

.

Claim 2.1. The largest gap of the sumset takes the form

G(A1 +mA2) = max {g1(m), g2(m),min{g3(m), g4(m)}, 0} .

Proof of Claim 2.1. There are four intervals in the sumset: I1 + I2, J1 + I2, I1 + J2, and J1 + J2. Since
R(I1 + I2) < R(I1 + J2), the gap g0(m) is never a candidate for the largest gap (except when m = 1, in
which case g1(m) = g0(m)). We will show that R(I1 + I2) < 1 = L(J1 + I2). To verify this, we compute

R(I1 + I2) = r1 +mr2 + n1

(

1− r1
2

)

−mn2

(

1− r2
2

)

≤ 2r1 + r2 < 1.

Then R(I1 + I2) < 1 = L(I2 + J1) which implies that the interval I1 + I2 is always some positive distance
to the left of the interval I2 + J1 and the gap between these two intervals happens to be g0(m). The two
intervals yet unaccounted for are I1 + J2 and J1 + J2. First, since L(J1 + J2) > L(I2 + J1), the interval
J1 + J2 can never intersect the gap g0(m). Since L(I1 + J2) = m ∈ (0, 1], the interval I1 + J2 will cover part

7



of the gap g0(m). This implies that g1(m) and g2(m) are candidates for the largest gap. The only other
possibility for a gap in the sumset is the gap between the intervals J1 + J2 and I2 + J1, which is g3(m),
in the case that R(I1 + J2) ≤ R(I2 + J1), or the gap between the intervals J1 + J2 and I1 + J2, which is
g4(m), in the case that R(I1 + J2) > R(I2 + J1). In other words, the other candidate for the largest gap is
min(g3(m), g4(m)). It follows that

G(A1 +mA2) = max{g1(m), g2(m),min{g3(m), g4(m)}, 0}, (4)

where we include the 0 for the possibility that all the gap candidates are negative (which we will find cannot
happen). This completes the proof of the claim.

For the next part of this lemma, we will omit the 0 from Claim 2.1. If it turns out that the lower bound
we achieve is a positive number (which it will), then it will follow that the 0 in the formula for the largest
gap is extraneous and we will have proved the lemma. We only need to consider two cases.

Case 1. min{g3(m), g4(m)} = g3(m).

In this case we have

G(A1 +mA2) = max{g1(m), g2(m), g3(m)} ≥ max{g2(m), g3(m)}.

Letting d12(m) denote the diameter of the sumset, the convexity index of the sumset is

c(A1 +mA2) ≥ max

{

g2(m)

d12(m)
,
g3(m)

d12(m)

}

=: max{F2(m), F3(m)}. (5)

We will show that F2(m) is non-increasing with m, and that F3(m) is non-decreasing with m. It will follow
that the quantity on the right of (5) is minimized when F2(m) = F3(m). We will start with F2(m). Write

F2(m) =
1−m(1 + r2)

(

1 + n2

2

)

− r1 − n1

(

1−r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 − n1

(

1+r1
2

) . (6)

Then
F ′
2(m) ≈ (1 + r2)

(

1 +
n2

2

)

(n1 − 2) ≤ 0.

The last inequality follows from the fact given in Lemma 2.1 that n1 ≤ 2r1
1+r1

≤ 2. For F3(m), write

F3(m) =
m(1− r2)

(

1 + n2

2

)

− r1 + n1

(

1+r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then

F ′
3(m) ≈(1 − r2)

(

1 +
n2

2

)

(

1 + r1 − n1

(

1 + r1
2

))

+ (1 + r2)
(

1 +
n2

2

)

(

r1 − n1

(

1 + r1
2

))

≥ 0.

We used the fact from Lemma 2.1 that n1(1+ r1) ≤ 2r1. This verifies what we needed, so we minimize now.
We have that F2(m) = F3(m) if and only if m = (1 − n1)(2 + n2)

−1. Now substitute this value of m into
equation (6) to get

c(A1 +mA2) ≥
1− (1 + r2)(1− n1)

(

1+
n2
2

2+n2

)

− r1 − n1

(

1−r1
2

)

1 + (1 + r2)(1 − n1)
(

1+
n2
2

2+n2

)

+ r1 − n1

(

1+r1
2

)

:= γ(n1, n2).

First we notice that
1 + n2

2

2 + n2
=

1

2
.
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Then

γ(n1, n2) =
1− 1

2 (1 + r2)(1 − n1)− r1 − n1

(

1−r1
2

)

1 + 1
2 (1 + r2)(1− n1) + r1 − n1

(

1+r1
2

)

=
1− 2r1 − r2 + n1(r1 + r2)

3 + 2r1 + r2 − n1(2 + r1 + r2)

≥
1− 2r1 − r2
3 + 2r1 + r2

.

This proves the lower bound.

Case 2. min{g3(m), g4(m)} = g4(m).

Then we have

G(A1 +mA2) = max{g1(m), g2(m), g4(m)} ≥ max{g1(m), g4(m)}.

In this case the convexity index is given by

c(A1 +mA2) ≥ max{F1(m), F4(m)}, (7)

where we recall that Fj(m) :=
gj(m)
d12(m) . We will show that F1(m) is non-decreasing in m, and that F4(m)

is non-increasing with m. It will follow that the right side of (7) is minimized when F1(m) = F4(m). For
F1(m), write

F1(m) =
m(1− r2)

(

1 + n2

2

)

− r1 − n1

(

1−r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then

F ′
1(m) ≈(1 − r2)

(

1 +
n2

2

)

(

1 + r1 − n1

(

1 + r1
2

))

+ (1 + r2)
(

1 +
n2

2

)

(

r1 + n1

(

1− r1
2

))

≥ 0.

Hence F1(m) is non-decreasing. For F4(m), write

F4(m) =
1− r1 −m

(

r2 + n2

(

1+r2
2

))

− n1

(

1−r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then

F ′
4(m) ≈−

(

r2 + n2

(

1 + r2
2

))(

1 + r1 − n1

(

1 + r1
2

))

− (1 + r2)
(

1 +
n2

2

)

(

1− r1 − n1

(

1− r1
2

))

≤ 0.

Hence F4(m) is non-increasing. Now, F1(m) = F4(m) if and only if m = 1
1+n2

. Substituting this value of m
into F1(m) we get

c(A1 +mA2) ≥
(1− r2)

(

1+
n2
2

1+n2

)

− r1 − n1

(

1−r1
2

)

1 + (1 + r2)
(

1+
n2
2

1+n2

)

+ r1 − n1

(

1+r1
2

)

=: γ(n1, n2).

The function γ(n1, n2) is decreasing in the variables n1 and n2. To see this, assume that r1 ≥ r2. Then

D1γ(n1, n2) ≈ −

(

1 + r1
2

)

+

(

1 + n2

2

1 + n2

)

(r1 − r2)

≤∗ −

(

1 + r1
2

)

+ (r1 − r2)

=
1

2
(−1 + r1 − 2r2) ≤ 0.
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The ≤∗ followed from the fact that the quantity
1+

n2
2

1+n2
is decreasing in n2, and so is maximized when n2 = 0.

We can see by observing the above calculation that the above quantity is non-positive in the case that
r1 ≤ r2. For the variable n2 observe that

D2γ(n1, n2) ≈ −
1− r2

2(1 + n2)2

[

1 + r1 − n1

(

1 + r1
2

)]

−
1 + r2

2(1 + n2)2

[

r1 + n1

(

1− r1
2

)]

≤ 0.

Then, since n1 ≤ 2r1
1+r1

and n2 ≤ 2r2
1−r2

the lower bound for γ(n1, n2) is

γ(n1, n2) ≥ γ

(

2r1
1 + r1

,
2r2

1− r2

)

=
1− r1 − r2 − 3r1r2

2 + 2r1 + 2r2 + 2r1r2
. (8)

Now, for at least one j ∈ [2], rj ≤
1
3 . If not, then for any σ ∈ S2,

1− rσ(1) − 2rσ(2) < 1−
1

3
−

2

3
= 0.

This is a contradiction. For each j ∈ [2], we must have rj ≤
1
2 . To see this, observe that for each σ ∈ S2,

2rσ(2) ≤ rσ(1) + 2rσ(2) < 1.

Then rσ(2) ≤
1
2 . Wlog, suppose that r1 = min{r1, r2}. Then r1 ≤ 1

3 , and therefore −3r1r2 ≥ −r2. Also,

r1 + 2r1r2 ≤
1

2
+

2

4
= 1.

Putting this all together, we find using (8) that

γ(n1, n2) ≥
1− r1 − 2r2
3 + r1 + 2r2

.

This proves the bound we need, completing the proof of the lemma.

Lemma 2.4. Let A1 be an R-set, and A2 be an L-set such that (2) holds. Then for any m ∈ (0, 1], (3)
holds.

Proof. By Lemma 2.1 we can write

A1 =

[

0, r1 − n1

(

1− r1
2

)]

∪

[

1, 1 + r1 + n1

(

1 + r1
2

)]

=: I1 ∪ J1,

mA2 =

[

0,mr2 +mn2

(

1− r2
2

)]

∪

[

m,m+mr2 −mn2

(

1 + r2
2

)]

=: I2 ∪ J2.

Using Minkowski addition we get

A1 +mA2 = (I1 + I2) ∪ (I1 + J2) ∪ (J1 + I2) ∪ (J1 + J2).

The possible gaps are gj, 1 ≤ j ≤ 4, just as defined in the proof of Lemma 2.3. In fact, they can be written
explicitly as

g1(m) = m− r1 −mr2 + n1

(

1− r1
2

)

−mn2

(

1− r2
2

)

,

g2(m) = 1−m− r1 −mr2 + n1

(

1− r1
2

)

+mn2

(

1 + r2
2

)

,

g3(m) = m− r1 −mr2 − n1

(

1 + r1
2

)

−mn2

(

1− r2
2

)

,

g4(m) = 1− r1 −mr2 + n1

(

1− r1
2

)

+mn2

(

1 + r2
2

)

.
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Claim 2.2. The largest gap of the sumset is

G(A1 +mA2) = max{g1(m), g2(m),min{g3(m), g4(m)}, 0}.

Proof of Claim 2.2. This will be proved just as in Claim 2.1. By careful observation, the entire proof is
identical except we need to verify that R(I1 + I2) < 1. We can see this by calculating

R(I1 + I2) = r1 +mr2 − n1

(

1− r1
2

)

+mn2

(

1− r2
2

)

≤ r1 + 2r2 < 1.

This proves the claim.

Just as before, we will continue the proof by omitting the 0 in Claim 2.2. There are two cases to consider.

Case 3. min{g3(m), g4(m)} = g3(m).

Then

c(A1 +mA2) =
max{g1(m), g2(m), g3(m)}

d12(m)
≥

max{g1(m), g2(m)}

d12(m)
=: max{F1(m), F2(m)}. (9)

It will be shown that F1(m) is non-decreasing with m, and that F2(m) is non-increasing with m. Then it
will follow that the right side of (9) is minimized when F1(m) = F2(m). For F1(m), write

F1(m) =
m(1− r2)

(

1− n2

2

)

− r1 + n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 + n1

(

1+r1
2

) .

Then

F ′
1(m) ≈(1 − r2)

(

1−
n2

2

)

(

1 + r1 + n1

(

1 + r1
2

))

+ (1 + r2)
(

1−
n2

2

)

(

r1 − n1

(

1− r1
2

))

≥ 0,

which verifies that F1(m) is non-decreasing. For F2(m), write

F2(m) =
1−m(1 + r2)

(

1− n2

2

)

− r1 + n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 + n1

(

1+r1
2

) .

Then

F ′
2(m) ≈− (1 + r2)

(

1−
n2

2

)

(

1 + r1 + n1

(

1 + r1
2

))

− (1 + r2)
(

1−
n2

2

)

(

1− r1 + n1

(

1− r1
2

))

≤ 0,

which verifies that F2(m) is non-increasing. Now, F1(m) = F2(m) if and only if m = 1
2−n2

. Then

max{F1(m), F2(m)} ≥
1− (1 + r2)

(

1−
n2
2

2−n2

)

− r1 + n1

(

1−r1
2

)

1 + (1 + r2)
(

1−
n2
2

2−n2

)

+ r1 + n1

(

1+r1
2

)

=
1− 1

2 (1 + r2)− r1 + n1

(

1−r1
2

)

1 + 1
2 (1 + r2) + r1 + n1

(

1+r1
2

)

=
1− 2r1 − r2 + n1(1− r1)

3 + 2r1 + r2 + n1(1 + r1)
=: γ(n1).
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Now, γ′(n1) ≈ 2 + 2r2 > 0, so that γ is increasing in n1. Then

γ(n1) ≥ γ(0) =
1− 2r1 − r2
3 + 2r1 + r2

.

This proves the lower bound.

Case 4. min{g3(m), g4(m)} = g4(m).

Then

c(A1 +mA2) =
max{g1(m), g2(m), g4(m)}

d12(m)
≥

max{g1(m), g4(m)}

d12(m)
=: max{F1(m), F4(m)}.

We already know that F1(m) is non-decreasing. We will show that F4(m) is non-increasing. Then we
minimize by finding where F1(m) = F4(m). For F4(m) write

F4(m) =
1− r1 −m

(

r2 − n2

(

1+r2
2

))

+ n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 + n1

(

1+r1
2

) .

Then

F ′
4(m) ≈−

(

r2 − n2

(

1 + r2
2

))(

1 + r1 + n1

(

1 + r1
2

))

− (1 + r2)
(

1−
n2

2

)

(

1− r1 + n1

(

1− r1
2

))

≤ 0,

which verifies that F4(m) is non-increasing. Now, F1(m) = F4(m) if and only ifm = 1
1−n2

. Then substituting

m = 1
1−n2

into F1(m), we get

max{F1(m), F4(m)} ≥
(1− r2)

(

1−
n2
2

1−n2

)

− r1 + n1

(

1−r1
2

)

1 + (1 + r2)
(

1−
n2
2

1−n2

)

+ r1 + n1

(

1+r1
2

)

=: γ(n1, n2).

Now, suppose that r2 < r1. Since
(

1−
n2
2

1−n2

)

is increasing in n2 and n2 ≤ 2r2
1+r2

, we have

(

1− n2

2

1− n2

)

≤
1

1− r2
.

It follows that

D1γ(n1, n2) ≈
1

2
+

r1
2

+

(

1− n2

2

1− n2

)

(r2 − r1)

≥
1

2
+

r1
2

+
r2 − r1
1− r2

=
1− r1 + r2 − r1r2

2(1− r2)
≥ 0.

In the case the r2 ≥ r1, one can verify by inspection that the above quantity is non-negative. It follows that
γ(n1, n2) ≥ γ(0, n2). We also have that

D2γ(0, n2) ≈
1 + 2r1 − r2
2(1− n2)2

≥ 0.

Then

γ(n1, n2) ≥ γ(0, 0) =
1− r1 − r2
2 + r1 + r2

≥
1− 2r1 − r2
3 + 2r1 + r2

,

which completes the proof of the lemma.

12



Lemma 2.5. Let A1 and A2 be L-sets such that (2) holds. Then for any m ∈ (0, 1], (3) holds.

Proof. Using Lemma 2.1 we may write

A1 =

[

0, r1 + n1

(

1− r1
2

)]

∪

[

1, 1 + r1 − n1

(

1 + r1
2

)]

=: I1 ∪ J1,

mA2 =

[

0,mr2 +mn2

(

1− r2
2

)]

∪

[

m,m+mr2 −mn2

(

1 + r2
2

)]

=: I2 ∪ J2.

Adding the sets together we get

A1 +mA2 = (I1 + I2) ∪ (I1 + J2) ∪ (J1 + I2) ∪ (J1 + J2).

The gaps gj , 1 ≤ j ≤ 4 are defined the same as in Lemma 2.3. These gaps can be written explicitly as

g1(m) = m− r1 −mr2 − n1

(

1− r1
2

)

−mn2

(

1− r2
2

)

,

g2(m) = 1−m− r1 −mr2 − n1

(

1− r1
2

)

+mn2

(

1 + r2
2

)

,

g3(m) = m− r1 −mr2 + n1

(

1 + r1
2

)

−mn2

(

1− r2
2

)

,

g4(m) = 1− r1 −mr2 − n1

(

1− r1
2

)

+mn2

(

1 + r2
2

)

.

Claim 2.3. The largest gap of the sumset is given by

G(A1 +mA2) = max{g1(m), g2(m),min{g3(m), g4(m)}, 0}.

Proof of Claim 2.3. All we need to do is to check the same conditions that were verified in Claim 2.2. We
have

R(I1 + I2) = r1 +mr2 + n1

(

1− r2
2

)

+mn2

(

1− r2
2

)

≤ r1 + r2 +
r1(1 − r1)

1 + r1
+

r2(1− r2)

1 + r2

=
2r1

1 + r1
+

2r2
1 + r2

=
2r1 + 2r2 + 4r1r2
1 + r1 + r2 + r1r2

=: P (r1, r2).

Now, since min(r1, r2) ≤
1
3 we have

P (r1, r2)− 1 ≈ (2r1 + 2r2 + 4r1r2)− (1 + r1 + r2 + r1r2)

= r1 + r2 + 3r1r2 − 1

≤ r1 + r2 +max(r1, r2)− 1 < 0.

We have verified that R(I1 + I2) < 1, which proves the claim.

Omitting the 0 in Claim 2.3, we only need the following two cases.

Case 5. min{g3(m), g4(m)} = g3(m).

Then

c(A1 +mA2) =
max{g1(m), g2(m), g3(m)}

d12(m)
≥

max{g2(m), g3(m)}

d12(m)
=: max{F2(m), F3(m)}.
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It will be shown that F2(m) is non-increasing, and that F3(m) is non-decreasing. Then to minimize, we will
find where F2(m) = F3(m). Now,

F2(m) =
1−m(1 + r2)

(

1− n2

2

)

− r1 − n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then
F ′
2(m) ≈ −(1 + r2)

(

1−
n2

2

)

(2 − n1) ≤ 0,

which verifies that F2(m) is non-increasing. For F3(m) we have

F3(m) =
m(1− r2)

(

1− n2

2

)

− r1 + n1

(

1+r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then

F ′
3(m) ≈(1 − r2)

(

1−
n2

2

)

(

1 + r1 − n1

(

1 + r1
2

))

+ (1 + r2)
(

1−
n2

2

)

(

r1 − n1

(

1 + r1
2

))

≥ 0,

which verifies that F3(m) is non-decreasing. Now, F2(m) = F3(m) if and only ifm = 1−n1

2−n2
. Then substituting

m = 1−n1

2−n2
into F3(m) we get

max{F2(m), F3(m)} ≥
(1− r2)(1− n1)

(

1−
n2
2

2−n2

)

− r1 + n1

(

1+r1
2

)

1 + (1 + r2)(1 − n1)
(

1−
n2
2

2−n2

)

+ r1 − n1

(

1+r1
2

)

=
1
2 (1− r2)(1− n1)− r1 + n1

(

1+r1
2

)

1 + 1
2 (1 + r2)(1 − n1) + r1 − n1

(

1+r1
2

)

=
1− 2r1 − r2 + n1(r1 + r2)

3 + 2r1 + r2 − n1(2 + r1 + r2)

≥
1− 2r1 − r2
3 + 2r1 + r2

.

This proves the lower bound we need.

Case 6. min{g3(m), g4(m)} = g4(m).

Then
c(A1 +mA2) = max{F1(m), F2(m), F4(m)} ≥ max{F1(m), F4(m)}.

We will show that F1(m) is non-decreasing, and that F4(m) is non-increasing. For F1(m), write

F1(m) =
m(1− r2)

(

1− n2

2

)

− r1 − n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 − n1

(

1+r1
2

) .

Then

F ′
1(m) ≈(1 − r2)

(

1−
n2

2

)

(

1 + r1 − n1

(

1 + r1
2

))

+ (1 + r2)
(

1−
n2

2

)

(

r1 + n1

(

1− r1
2

))

≥ 0,

which verifies that F1(m) is non-decreasing. For F4(m), write

F4(m) =
1− r1 −m

(

r2 − n2

(

1+r2
2

))

− n1

(

1−r1
2

)

1 +m(1 + r2)
(

1− n2

2

)

+ r1 − n1

(

1+r1
2

) .
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Then

F ′
4(m) ≈−

(

r2 − n2

(

1 + r2
2

))(

1 + r1 − n1

(

1 + r1
2

))

− (1 + r2)
(

1−
n2

2

)

(

1− r1 − n1

(

1− r1
2

))

≤ 0,

which verifies that F4(m) is non-increasing. Now, F1(m) = F4(m) if and only ifm = 1
1−n2

. Then substituting

m = 1
1−n2

into F1(m) we get

max{F1(m), F4(m)} ≥
(1− r2)

(

1−
n2
2

1−n2

)

− r1 − n1

(

1−r1
2

)

1 + (1 + r2)
(

1−
n2
2

1−n2

)

+ r1 − n1

(

1+r1
2

)

=: γ(n1, n2).

Suppose that r1 > r2. Since
(

1−
n2
2

1−n2

)

is increasing, and n2 ≤ 2r2
1+r2

we have

(

1− n2

2

1− n2

)

≤
1

1− r2
.

Then

D1γ(n1, n2) ≈ −
1

2
−

r1
2

+

(

1− n2

2

1− n2

)

(r1 − r2)

≤ −
1

2
−

r1
2

+

(

r1 − r2
1− r2

)

=
−1 + r1 − r2 + r1r2

2(1− r2)
≤ 0.

If r1 ≤ r2, then it can be seen that the above quantity is not positive. Then, since n1 ≤ 2r1
1+r1

we have

γ(n1, n2) ≥ γ

(

2r1
1 + r1

, n2

)

=
(1− r2)

(

1−
n2
2

1−n2

)

− 2r1
1+r1

1 + (1 + r2)
(

1−
n2
2

1−n2

) .

Now,

D2γ

(

2r1
1 + r1

, n2

)

≈
1

2(1− n2)2

[

1− r2 +
2r1(1 + r2)

1 + r1

]

≥ 0.

Then

γ(n1, n2) ≥ γ

(

2r1
1 + r1

, 0

)

=
1− r1 − r2 − r1r2
2 + 2r1 + r2 + r1r2

≥
1− 2r1 − r2
3 + 2r1 + r2

.

This proves the lemma.

Lemma 2.6. Let A1 and A2 be R-sets such that (2) holds. Then for any m ∈ (0, 1], (3) holds.

Proof. Using Lemma 2.1, we can write

A1 =

[

0, r1 − n1

(

1− r1
2

)]

∪

[

1, 1 + r1 + n1

(

1 + r1
2

)]

=: I1 ∪ J1,

mA2 =

[

0,mr2 −mn2

(

1− r2
2

)]

∪

[

m,m+mr2 +mn2

(

1 + r2
2

)]

=: I2 ∪ J2.

Using Minkowski addition we get

A1 +mA2 = (I1 + I2) ∪ (I1 + J2) ∪ (J1 + I2) ∪ (J1 + J2).
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The gaps gj , 1 ≤ j ≤ 4 are defined as in Lemma 2.3. Written explicitly the gaps are

g1(m) = m− r1 −mr2 + n1

(

1− r1
2

)

+mn2

(

1− r2
2

)

,

g2(m) = 1−m− r1 −mr2 + n1

(

1− r1
2

)

−mn2

(

1 + r2
2

)

,

g3(m) = m− r1 −mr2 − n1

(

1 + r1
2

)

+mn2

(

1− r2
2

)

,

g4(m) = 1− r1 −mr2 + n1

(

1− r1
2

)

−mn2

(

1 + r2
2

)

.

Claim 2.4. The biggest gap of the sumset is

G(A1 +mA2) = max{g1(m), g2(m),min{g3(m), g4(m)}, 0}.

Proof of Claim 2.4. Following the same routine as the previous claims, we calculate

R(I1 + I2) = r1 +mr2 − n1

(

1− r1
2

)

−mn2

(

1− r2
2

)

≤ r1 + r2 < 1.

We already know that g0(m) cannot be a candidate for largest gap, so we have proved the claim.

Omitting the 0 in the above claim we consider two cases.

Case 7. min{g3(m), g4(m)} = g3(m).

Then
c(A1 +mA2) = max{F1(m), F2(m), F3(m)} ≥ max{F1(m), F2(m)}.

. We will show that F1(m) is non-decreasing, and that F2(m) is non-increasing. For F1(m), write

F1(m) =
m(1− r2)

(

1 + n2

2

)

− r1 + n1

(

1−r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 + n1

(

1+r1
2

) .

Then

F ′
1(m) ≈(1 − r2)

(

1 +
n2

2

)

(

1 + r1 + n1

(

1 + r1
2

))

+ (1 + r2)
(

1 +
n2

2

)

(

r1 − n1

(

1− r1
2

))

≥ 0,

which verifies that F1(m) is non-decreasing. For F2(m), write

F2(m) =
1−m(1 + r2)

(

1 + n2

2

)

− r1 + n1

(

1−r1
2

)

1 +m(1 + r2)
(

1 + n2

2

)

+ r1 + n1

(

1+r1
2

) .

Then
F ′
2(m) ≈ −(1 + r2)

(

1 +
n2

2

)

(2 + n1) ≤ 0,

which verifies that F2(m) is non-increasing. Now, F1(m) = F2(m) if and only ifm = 1
2+n2

. Then substituting

m = 1
2+n2

into F1(m) we have

max{F1(m), F2(m)} ≥
(1− r2)

(

1+
n2
2

2+n2

)

− r1 + n1

(

1−r1
2

)

1 + (1 + r2)
(

1+
n2
2

2+n2

)

+ r1 + n1

(

1+r1
2

)

=
1− 2r1 − r2 + n1(1− r1)

3 + 2r1 + r2 + n1(1 + r1)
=: γ(n1).
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We have
γ′(n1) ≈ 2(1 + r2) ≥ 0.

It follows that

γ(n1) ≥ γ(0) =
1− 2r1 − r2
3 + 2r1 + r2

.

This proves the lower bound.

Case 8. min{g3(m), g4(m)} = g4(m).

Then m ≥ 1+n1

1+n2
≥ 1

2+n2
, where we used the inequality g4(m) ≤ g3(m). Since F1(m) is non-decreasing,

we use the previous case to get

c(A1 +mA2) = max{F1(m), F2(m), F4(m)} ≥ F1(m) ≥ F1

(

1

2 + n2

)

≥
1− 2r1 − r2
3 + 2r1 + r2

.

This completes the proof.

Now we can prove the main result.

Proof of Theorem 2.1. Let A1 and A2 be non-empty, compact sets in R. Suppose that

min
σ∈S2

(1− rσ(1) − 2rσ(2)) > 0.

By using Lemma 2.2 we may assume that A1 and A2 are each homothetic to either an L-set, or an R-set
(we will allow for the possibility that n1 or n2 is equal to 0, so we also cover the possibility that either set is
a balanced set). So, using translation invariance so min(Ai) = 0, we may assume that A1 and A2 have the
form

A1 = [0,m1α1] ∪ [m1,m1 +m1α
′
1],

A2 = [0,m2α2] ∪ [m2,m2 +m2α
′
2].

Without loss of generality, we may assume that m2 ≤ m1. By using invariance under affine transformations
we may further assume, by replacing each set Ai with m−1

1 Ai if needed, that A1 and A2 have the form

A1 = [0, α1] ∪ [1, 1 + α′
1],

A2 = [0,mα2] ∪ [m,m+mα′
2],

where m ∈ [0, 1]. This is exactly the situation of Lemmas 2.3,2.4,2.5, and 2.6. This verifies the lower bound
for arbitrary compact sets in R. Now we must show that this is the best lower bound. Let c1, c2 ∈ [0, 1].
Choose Aσ(1) = [0, r(cσ(1))] ∪ [1, 1 + r(cσ(1))], and Aσ(2) = [0, 2r(cσ(2))] ∪ [2, 2 + 2r(cσ(2))]. Then

Aσ(1) +Aσ(2) =[0, r(cσ(1)) + 2r(cσ(2))] ∪ [1, 1 + r(cσ(1)) + 2r(cσ(2))]

∪ [2, 2 + r(cσ(1)) + 2r(cσ(2))] ∪ [3, 3 + r(cσ(1)) + 2r(cσ(2))].

If minσ∈S2
(1 − rσ(1) − 2rσ(2)) ≤ 0, then we see that c(A1 + A2) = 0 as long as we choose the appropriate

σ ∈ S2 which achieves the minimum. If minσ∈S2
(1 − rσ(1) − 2rσ(2)) > 0, then choose the σ ∈ S2 which

minimizes, and we see that

c(A1 +A2) =
1− r(cσ(1))− 2r(cσ(2))

3 + r(cσ(1)) + 2r(cσ(2))
.

In any case, for fixed convexity indices c1, c2, we have found compact sets A1, A2 such that c(Aj) = cj and
which achieve the lower bound.
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2.3 Compact Cartesian product sets

As a corollary to Theorem 2.1 we can show that the convexity index of Minkowski sums of Cartesian product
sets in Rn have a certain non-trivial lower bound.

Theorem 2.2. Let n ≥ 2 be an integer. For j ∈ [2] and i ∈ [n], let Aji be non-empty, compact sets in R.
For j ∈ [2] define

Aj := Aj1 ×Aj2 × · · · ×Ajn ∈ Rn. (10)

Then

c(A1 + A2) ≥ max

(

0,max
i∈[n]

min
σ∈S2

1− rσ(1)i − 2rσ(2)i
3 + rσ(1)i + 2rσ(2)i

)

. (11)

Moreover, this is the best lower bound in the same sense that if cji ∈ [0, 1] for j ∈ [2] and i ∈ [n], then

min
Aji∈K1

c(Aji)=cji
j∈[2],i∈[n]

c (A1 +A2) = max

(

0,max
i∈[n]

min
σ∈S2

1− r(cσ(1)i)− 2r(cσ(2)i)

3 + r(cσ(1)i) + 2r(cσ(2)i
)

)

,

where A1 and A2 are defined as in (10).

Proof. For λ ≥ 0, we have

(A1 +A2) + λconv(A1 +A2)

= (A11 +A21)× · · · × (A1n +A2n) + λ(conv(A11 +A21)× · · · × conv(A1n +A2n))

= [(A11 +A21) + λconv(A11 +A21)]× · · · × [(A1n +A2n) + λconv(A1n +A2n)].

The above set is convex if and only if the component sets are each convex. It follows that

c(A1 +A2) = max{c(A11 +A21), . . . , c(A1n +A2n)}. (12)

By Theorem 2.1, we have for each i ∈ [n] that

c(A1i +A2i) ≥ max

(

0, min
σ∈S2

1− rσ(1)i − 2rσ(2)i
3 + rσ(1)i + 2rσ(2)i

)

. (13)

Putting (12) and (13) together, we have the necessary lower bound. To see that the lower bound is the best
lower bound, just use the fact that (13) can be made equality according to the statement of Theorem 2.1,
then the maximum (12) must be equal to the bound (11). This completes the proof.

2.4 Open problems

The problem of finding the best lower bound for the convexity index of Minkowski sums of arbitrary compact
sets A1 and A2 in Rn when n ≥ 2 is interesting.

Problem 2.1. Find the function Fn : [0, n]2 → R which solves the minimization problem

min
A∈Kn(2)
c(Aj)=cj

j∈[2]

c(A1 +A2) = Fn(c1, c2).

It is natural to try to extend Theorem 2.1 to sums with k ≥ 2 compact sets in R.

Problem 2.2. Find the function F1 : [0, 1]k → R which solves the minimization problem

min
A∈K1(k)
c(Aj)=cj

j∈[k]

c(A1 + · · ·+Ak) = F1(c1, . . . , ck).

The next proposition gives a possible candidate for the function F1(c1, . . . , ck) in Problem 2.2.
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Proposition 2.1. The solution F1 to the minimization problem 2.2 satisfies

F1(c1, . . . , ck) ≤ max

(

0, min
σ∈Sk

1−
∑k

j=1 2
j−1r(cσ(j))

2k − 1 +
∑k

j=1 2
j−1r(cσ(j))

)

.

Proof. Choose σ∗ ∈ Sk so that

1−
∑k

j=1 2
j−1r(cσ∗(j))

2k − 1 +
∑k

j=1 2
j−1r(cσ∗(j))

= min
σ∈Sk

1−
∑k

j=1 2
j−1r(cσ(j))

2k − 1 +
∑k

j=1 2
j−1r(cσ(j))

.

For each j ∈ [k] define Aσ∗(j) := [0, 2j−1r(cσ∗(j))] ∪ [2j−1, 2j−1 + 2j−1r(cσ∗(j))]. Then

k
∑

j=1

Aσ∗(j) =

2k−1
⋃

j=0



j, j +

k
∑

j=1

2j−1r(cσ∗(j))



 .

Since all the gaps in this sumset are the same length, the largest gap is

G = max



0, 1−

k
∑

j=1

2j−1r(cσ∗(j))



 .

The diameter of the sumset is

d = 2k − 1 +
k
∑

j=1

2j−1r(cσ∗(j)).

Since the convexity index is c(A1 + · · ·+Ak) =
G
d
, the result follows immediately.

As additional motivation for solving Problem 2.2, we will show how a solution will allow for an explicit
formula for what is called the induced measure of non-convexity c∗.

Definition 2.1. For some integer n ≥ 1, let x ∈ [0, n], and define

Nx := inf{k ∈ Z : There exists A ∈ Kn(k) such that c(Aj) = x ∀j ∈ [k] and A1 + · · ·+Ak is convex.}.

The measure of non-convexity induced by the Schneider non-convexity index is defined by

c∗(A) := Nc(A) − 1.

If A is the empty set, then set c∗(A) = 0.

Remark 2.1. It is noted here that the motivation for the definition of c∗ comes from the Shapley-Folkman
Theorem [6, 18, 19], which says that the kth set average A(k) := (1/k)

∑k
i=1 A converges to conv(A) in

Hausdorff distance and volume deficit. We are interested in understanding specifically how convex a large
sum of sets with the same convexity index can be made.

If equality holds in Proposition 2.1, then we can obtain a formula for c∗(A) when A is compact in R.

Proposition 2.2. Let A ⊆ R be a non-empty, compact set such that c(A) < 1. Assume that the inequality
in Proposition 2.1 is in fact an equality. Then

c∗(A) = Int

[

log2

(

1

1− c(A)

)]

,

where for any x ∈ R, we define Int[x] := inf{k ∈ Z : k ≥ x}. Moreover, if c(A) = 1, then c∗(A) = ∞.
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Proof. Assuming equality holds in Proposition 2.1, then to prove this proposition, we need to solve the
inequality

1−

k
∑

j=1

2j−1r (c(A)) ≤ 0.

Using the formula
∑k

j=1 2
j−1 = 2k − 1, we solve the inequality to get

log2

(

2

1− c(A)

)

≤ k.

From this, we see that

Nc(A) = Int

[

log2

(

2

1− c(A)

)]

= 1 + Int

[

log2

(

1

1− c(A)

)]

,

which completes the proof (If c(A) = 1, it is only necessary to realize that no finite number of sets with
exactly two points can add to an interval).

3 Fractional subadditivity of the Schneider non-convexity index

3.1 Preliminary information

We will start off with an important lemma about reducing to partitions with rational weights. This idea
is not new, as it is originally used for this type of problem in [3] for the proof that Lebesgue measure is
fractionally superadditive. The idea also works for the Schneider non-convexity index.

Lemma 3.1 (Barthe and Madiman [3]). Let m be a positive integer, and suppose that for each rational
fractional partition (G, β) of [m] (i.e β(S) ∈ Q for each S ∈ G) we have the fractional subbadditive inequality

c

(

m
∑

i=1

Ai

)

≤
∑

S∈G

β(S)c

(

∑

i∈S

Ai

)

. (14)

Then the fractional subadditive inequality (14) holds for any fractional partition of [m].

Remark 3.1. The significance of Lemma 3.1 is that it allows us to reduce proving the fractional subadditive
property for arbitrary partitions to proving the property for the partitions which have rational weights. If
the weights are all rational, then they have a common denominator q ∈ Z+. It follows that in the rational
case, we need to prove that

q · c(A1 + · · ·+Am) ≤

t
∑

j=1

c





∑

i∈Sj

Ai



 ,

where the sets Sj are an enumeration of the sets S ∈ G, possibly with repetition, q ∈ Z+ is some positive
integer, and each i ∈ [m] belongs to exactly q of the sets Sj .

The other important result is a corollary of Theorem 1.2 stated in the introduction. The following lemma
is essentially given in [9], but we will provide the proof here anyway for completion.

Lemma 3.2 (Fradelizi et al. [9]). Let m be a positive integer, and let A1, . . . , Am be non-empty, compact
sets in Rn. Then for any S, T ⊆ [m], we have

c

(

∑

i∈S∪T

Ai

)

≤ max

{

c

(

∑

i∈S

Ai

)

, c

(

∑

i∈T

Ai

)}

.
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Proof. Suppose that S ∩ T = ∅. Then

∑

i∈S∪T

Ai =
∑

i∈S

Ai +
∑

i∈T

Ai.

We then use the inequality c(A + B) ≤ max{c(A), c(B)} with A :=
∑

i∈S Ai and B :=
∑

i∈T Ai. Next,
suppose that S\T = ∅. Then S ⊆ T and we have

∑

i∈S∪T

Ai =
∑

i∈T

Ai,

from which the inequality immediately follows. This reasoning also covers the case where T \S = ∅. Finally,
assume that none of the sets S ∩ T , S\T , or T \S is the empty set. Using the notation in Theorem 1.2, let
A =

∑

i∈S\T Ai, B =
∑

i∈S∩T Ai, and C =
∑

i∈T\S Ai. Using the relation S ∪T = (S\T )∪ (S ∩T )∪ (T \S),
which is a disjoint union, we get

A+B + C =
∑

i∈S\T

Ai +
∑

i∈S∩T

Ai +
∑

i∈T\S

Ai =
∑

i∈S∪T

Ai,

A+B =
∑

i∈S\T

Ai +
∑

i∈S∩T

Ai =
∑

i∈S

Ai,

B + C =
∑

i∈T\S

Ai +
∑

i∈S∩T

Ai =
∑

i∈T

Ai.

Now, combining the above three sums with Theorem 1.2 completes the proof.

We will also look into the equality conditions of the fractional subadditive inequalities in the case when
the dimension is n = 1. There is a certain convention introduced in the paper [15] which can be used when
the function under consideration is translation invariant. To begin with, we will give a simple example.

Example 3.1. Consider the first of the non-trivial fractional subadditive inequalities

c(A1 +A2 +A3) ≤
1

2
c(A1 +A2) +

1

2
c(A1 +A3) +

1

2
c(A2 +A3).

Suppose, for example, that the set A3 contains only one point. Then using the translation invariance of the
Schneider non-convexity index, the inequality can be simplified to

c(A1 +A2) ≤
1

2
c(A1 +A2) +

1

2
c(A1) +

1

2
c(A2).

We can simplify things even further to get

c(A1 +A2) ≤ c(A1) + c(A2),

which is a fractional sub-additive inequality on 3− 1 = 2 sets.

The idea demonstrated in Example 3.1 holds in the general case, as is shown in [15] for volumes, but is
also true for the Schneider non-convexity index since the proof only relies on translation invariance.

Lemma 3.3 ([15]). Let m be a positive integer, let (G, β) be a fractional partition of [m], and let A1, . . . , Am

be non-empty, compact sets in Rn. Suppose that exactly k < m of the sets A1, . . . , Am have card(Ai) = 1.
Let B1, . . . , Bm−k denote those sets Ai for which card(Ai) ≥ 2. Then there exists a fractional partition
(G∗, β∗) of [m− k] such that

∑

T∈G∗

β∗(T )c

(

∑

i∈T

Bi

)

=
∑

S∈G

β(S)c

(

∑

i∈S

Ai

)

. (15)
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Remark 3.2. The partition (G∗, β∗) in Lemma 3.3 is referred to as the translated partition. Let A1, . . . , Am

be sets in Rn. Suppose that we want to find when (14) is equality. Using Lemma 3.3, we only need to
consider the case where each set Ai has card(Ai) ≥ 2. For in the case that some of the sets Ai contain a
single point we have by translation invariance of c, and assuming (which we will prove) that c is fractionally
subadditive

c

(

m
∑

i=1

Ai

)

= c

(

m−k
∑

i=1

Bi

)

≤
∑

T∈G∗

β∗(T )c

(

∑

i∈T

Bi

)

=
∑

S∈G

β(S)c

(

∑

i∈S

Ai

)

.

It follows that the fractional subadditive inequality for (G∗, β∗) is equality if and only if the fractional
subadditive inequality for (G, β) is equality.

3.2 Proof of the fractional subadditivity

Theorem 3.1. Let A1, . . . , Am be non-empty, compact sets in Rn, and let (G, β) be a fractional partition of
[m]. Then

c

(

m
∑

i=1

Ai

)

≤
∑

S∈G

β(S)c

(

∑

i∈S

Ai

)

.

Moreover, in the case of dimension n = 1, equality holds if and only if exactly one of the properties holds:

1. The translated partition is trivial (i.e G∗ = [k] and β∗([k]) = 1).

2. The translated partition is non-trivial and for each S ∈ G with β(S) > 0, the set
∑

i∈S Ai is an interval.

Proof. By Lemma 3.1 we need to prove that

q · c(A[m]) ≤

t
∑

j=1

c(ASj
),

where q ≥ 1 is an integer, the sets {Sj}
t
j=1 are an enumeration of the sets S ∈ G, and each i ∈ [m] belongs

to exactly q of the sets Sj . Then t ≥ q. Otherwise, if t < q, each i ∈ [m] belongs to fewer than q sets Sj . Let
r ≥ 0 be an integer such that t = q+ r. It must be true that any r+1 of the sets Sj must have a union that
is equal to [m]. To see this, assume for contradiction that there exist sets Sj1 , . . . Sjr+1

and i ∈ [m] such that

i /∈ Sj1 ∪ · · · ∪ Sjr+1
.

Then i can belong to at most q + r − (r + 1) = q − 1 of the sets Sj , which is a contradiction. Now, suppose
that the sets Sj are arranged so that

c(AS1
) ≥ c(AS2

) ≥ · · · ≥ c(ASt
).

For j ∈ [q − 1] we have, by using induction on Lemma 3.2

c(A[m]) = c





∑

i∈Sj∪[Sq∪···∪St]

Ai





≤ max{c(ASj
), c(ASq

), . . . , c(ASt
)}

= c(ASj
).

Using Lemma 3.2 again, we have

c(A[m]) = c





∑

i∈Sq∪···∪St

Ai





≤ max{c(ASq
), . . . , c(ASt

)}

≤ c(ASq
) + · · ·+ c(ASt

).

22



Now combine the above q inequalities to get

q · c(A[m]) ≤

q−1
∑

j=1

c(ASj
) +

q+r
∑

j=q

c(ASj
) =

t
∑

j=1

c(ASj
).

This completes the proof that c is fractionally subadditive.
Now we will prove the equality conditions for n = 1. Suppose that the fractional partition is non-trivial.

By Lemma 3.3 and translation invariance, we may assume that card(Ai) ≥ 2 for each i ∈ [m]. We want to
show that

c(A[m]) =
∑

S∈G

β(S)c(AS)

if and only if each set AS is an interval, where A1, . . . , Am each have card(Ai) ≥ 2. Since the weights are
rational by assumption the equality can be written as

q · c(A[m]) =

q+r
∑

j=1

c(ASj
),

where r ≥ 1 is an integer (if r = 0, then the partition is trivial) and the sets Sj are arranged such that

c(AS1
) ≥ c(AS2

) ≥ · · · ≥ c(ASq+r
).

Recall that any r + 1 of the sets Sj must have a union that is equal to [m]. Then since we are assuming
equality holds

c(A[m]) = c





∑

Sq∪Sq+1∪···∪Sq+r

A





= max{c(ASq
), c(ASq+1

), . . . , c(ASq+r
)}

= c(ASq
).

But by observing the proof of the inequality we must have

c(A[m]) = c(ASq
) + c(ASq+1

) + · · ·+ c(ASq+r
).

Then
c(ASq+1

) = · · · = c(ASq+r
) = 0.

It follows that each of the sets Sj , q+1 ≤ j ≤ q+r are intervals. Again, observing the proof of the inequality
we have

c(A[m]) = c(AS1
) = · · · = c(ASq

).

If Sq+1 ∪ · · · ∪ Sq+r = [m], then c(A[m]) = 0 and it follows that c(ASj
) = 0 for each j ∈ [q + r] which proves

what we need. Now, assume that c(A[m]) > 0 and that Sq+1 ∪ · · · ∪ Sq+r 6= [m]. We claim that there exists
j ∈ [q] such that (Sq+1 ∪ · · · ∪ Sq+r)\Sj 6= ∅. If not, then for each j ∈ [q] we have Sq+1 ∪ · · · ∪ Sq+r ⊆ Sj ,
and some i ∈ Sq+1 ∪ · · · ∪ Sq+r belongs to at least q + 1 sets Sj , which is a contradiction. Now, choose
j ∈ [q] such that (Sq+1 ∪ · · · ∪ Sq+r)\Sj 6= ∅. Recall that c(ASj

) = 0 for each j ≥ q + 1. It follows that
ASq+1

+ · · ·+ASq+r
= conv(ASq+1

+ · · ·+ASq+r
). Then

A[m] = ASj∪(Sq+1∪···∪Sq+r)

= ASj\(Sq+1∪···∪Sq+r) +ASq+1∪···∪Sq+r

= ASj\(Sq+1∪···∪Sq+r) + conv(ASq+1∪···∪Sq+r
)

= ASj\(Sq+1∪···∪Sq+r) + conv(ASj∩(Sq+1∪···∪Sq+r))

+ conv(A(Sq+1∪···∪ASq+r
)\Sj

).
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Now, the set ASj
cannot be an interval since c(ASj

) = c(A[m]) > 0. Then since conv(A(Sq+1∪···∪ASq+r
)\Sj

) is

an interval with positive length it follows that

c(A[m]) ≤ c(ASj
+ conv(A(Sq+1∪···∪ASq+r

)\Sj
))

< c(ASj
).

This is a contradiction. Therefore the assumption that c(A[m]) > 0 is false. It follows that c(A[m]) = 0 and
that c(ASj

) = 0 for each j ∈ [q]. Then each of the sets ASj
is an interval and the equality conditions are

complete.

Remark 3.3. We have not been able to figure out the equality conditions when the dimension is n ≥ 2. The
reason for this is that in general it is not true that if A is compact and B is convex (containing more than
one point), then c(A + B) < c(A). For example, if A = ([0, 1] ∪ [2, 3]) × {0} and B = {0} × [0, 1], then
c(A) = 1

3 and it can be verified that also c(A+B) = 1
3 .

4 Regions defined by set functions

4.1 The Schneider region

The Schneider region is defined in a similar way as the Lyusternik region.

Definition 4.1. For positive integers n,m recall that the set Kn(m) represents the collection of all m-
tuples A = (A1, . . . , Am) of non-empty, compact sets in Rn. Analogous to the Lyusternik region, for a set
A ∈ Kn(m) we define the function cA : 2[m] → [0,∞) by

cA(S) := c

(

∑

i∈S

Ai

)

.

Then the (n,m)-Schneider region is defined by

Sn(m) := {cA : A ∈ Kn(m)}.

Just as in the definition of the Lyusternik region, we can associate an element cA ∈ Sn(m) with a vector
in R2m by first fixing an ordering S1, . . . , S2m of the sets in 2[m], and then associating cA with the vector
(cA(S1), . . . , cA(S2m)).

Remark 4.1. To make the characterization of S1(2) easier to state, we introduce some notation. For a set
S ⊆ [m] define

Sn(m,S) := {cA ∈ Sn(m) : card(Ai) ≥ 2 iff i ∈ S}.

The set Sn(m,S) represents the piece of Sn(m) for which exactly the sets Ai with i ∈ S contain two or more
points, and any other sets Ai each consist of a single element. We will also use the following conventions for
the upper and lower bounds on c(A1 +A2). Let c1, c2 ∈ [0, 1]. Define

L := L(c1, c2) = max

(

0, min
σ∈S2

1− r(cσ(1))− 2r(cσ(2))

3 + r(cσ(1)) + 2r(cσ(2))

)

,

M := M(c1, c2) = max(c1, c2).

4.1.1 The largest gap in a sumset

We will need the fact that G(A1 + A2) ≤ max{G(A1), G(A2)}, which follows from the definition. In the
lemma below, we prove an even better upper bound for the bound on the largest gap in the sum of k sets,
which is much more than we need, but is interesting.
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Lemma 4.1. Let k ≥ 1 be an integer, and let A1, . . . , Ak be non-empty, compact sets in R such that

G(A1) ≥ G(A2) ≥ · · · ≥ G(Ak).

Then

G





k
∑

j=1

Aj



 ≤ max
1≤r≤k



G(Ar)−

k
∑

j=r+1

G(Aj)



 .

Moreover, this is the best upper bound in the sense that if g1 ≥ g2 ≥ · · · ≥ gk ≥ 0, then

max
A∈K1(k)
G(Aj)=gj

G





k
∑

j=1

Aj



 = max
1≤r≤k



gr −

k
∑

j=r+1

gj



 .

Proof. We will prove this result by induction on the number of sets k. By translation invariance, we may
assume that min(Ai) = 0 for each i ∈ [k]. For the initial step, where k = 1, we just observe that G(A1) =
max{G(A1)}. For the induction step, assume that the upper bound is true for sums of k − 1 sets, and let
A1, . . . , Ak be compact sets such that

G(A1) ≥ · · · ≥ G(Ak).

By induction we have

G

(

k
∑

i=2

Ai

)

≤ max
2≤r≤k



G(Ar)−
k
∑

j=r+1

G(Aj)



 .

We may assume that card(A1) < ∞. Otherwise, remove all but finitely many points from A1 to achieve a
new set A′

1 such that card(A′
1) < ∞ and G(A1) = G(A′

1). Then observe that G(A1 + A2) ≤ G(A′
1 + A2),

so that if we prove the upper bound with A′
1, we also have verified the upper bound with A1. With this

finite assumption on A1, we may write A1 = {x0, x1, . . . , xm}, where x0 := 0 < x1 < · · · < xm := a1. Then
denoting A := A2 + · · ·+Ak, we have

A1 + (A2 + · · ·+Ak) =

m
⋃

j=0

(A+ {xj}). (16)

For each i ∈ [k] define ai := max(Ai). It is enough, by (16), to check the largest gap in each of the intervals

[xj−1, xj +
∑k

i=2 ai], for j ∈ [m]. Fix j ∈ [m]. If xj > xj−1 +
∑k

i=2 ai, then using the fact that G(Ai) ≤ ai,
we calculate

xj − (xj−1 +

k
∑

i=1

ai) = (xj − xj−1)−

k
∑

i=2

ai

≤ G(A1)−

k
∑

i=2

ai

≤ G(A1)−

k
∑

i=2

G(Ai).

It follows that

G

(

(A1 +A) ∩ [xj−1, xj +

k
∑

i=2

ai]

)

≤ max

{

G(A), G(A1)−

k
∑

i=2

G(Ai)

}

.

If xj ≤ xj−1 +
∑k

i=2 ai, then

G

(

(A1 +A) ∩ [xj−1, xj +

k
∑

i=2

ai]

)

≤ G(A).
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This is true for any j ∈ [m]. Therefore

G

(

k
∑

i=1

Ai

)

= max
j∈[m]

G

(

(A1 +A) ∩ [xj−1, xj +

k
∑

i=2

ai]

)

≤ max

{

G(A), G (A1)−
k
∑

i=2

G(Ai)

}

≤ max
1≤r≤k



G(Ar)−

k
∑

j=r+1

G(Aj)



 .

This proves the upper bound. It remains to show that this is the best upper bound. To see this, let
g1 ≥ g2 ≥ · · · ≥ gk ≥ 0 and define Aj = {0, gj}. Suppose we first calculate G(Ak−1 +Ak). We have

Ak−1 +Ak = {0, gk, gk−1, gk−1 + gk}. (17)

By observation we see that

G(Ak−1 +Ak) = G((Ak−1 +Ak) ∩ [0, gk−1]) = max{gk, gk−1 − gk}.

Notice that the largest gap comes from the first three terms in (17), and if we add terms between the third
and fourth terms, the largest gap remains unchanged. Now, consider the set Ak−2 + Ak−1 + Ak. We can
write

Ak−2 +Ak−1 +Ak = (Ak−1 +Ak) ∪ ({gk−2}+ (Ak−1 +Ak).

If gk−2 ≤ gk−1 + gk, then we still take the maximum over the set {gk, gk−1 − gk}, since by the above
observation, the new set will consist of two copies of Ak−1+Ak, which overlap somewhere in [gk−1, gk−1+gk],
therefore not disturbing the largest gap from the first sum, but also not adding any larger gaps. If gk−2 >
gk−1 + gk, then we have two disjoint copies of Ak−1 + Ak separated by a distance of gk−2 − gk−1 − gk. It
follows from this that

G(Ak−2 + Ak−1 +Ak) = max{gk, gk−1 − gk, gk−2 − gk−1 − gk}.

Also, we observe that we only need to use the points less than or equal to gk−2 to achieve this. Continuing
this process inductively, we see that after t iterations the largest gap is

G





k
∑

j=k−t

Aj



 = max
k−t≤r≤k



gr −
k
∑

j=r+1

gj



 .

By setting t = k − 1, we get the result.

Remark 4.2. Lemma 4.1 can also be interpreted as the best upper bound for the Hausdorff distance to convex
hull. For a compact set A ⊆ Rn, define the Hausdorff distance between A and conv(A) by

d(A) := inf{λ > 0 : conv(A) ⊆ A+ rBn
2 },

where Bn
2 is the unit ball in Rn with respect to the l2 norm. In dimension n = 1, we will verify that

d(A) = 1
2G(A). To see this, observe that since A+ λ[−1, 1] + λ = A+ λ[0, 2], we have

d(A) = inf{λ > 0 : conv(A) ⊆ A+ λ[−1, 1]}

= inf{λ > 0 : A+ λ[−1, 1] is convex }

= inf{λ > 0 : A+ λ[0, 2] is convex }

=
1

2
inf{λ > 0 : A+ λ[0, 1] is convex } =

1

2
G(A).
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This can be seen geometrically too. If A is compact, then it is well known that

d(A) = sup
x∈conv(A)

d(x,A),

where d(x,A) is the smallest distance from x to the set A. Intuitively, in dimension n = 1 this supremum
will be attained when the point x lies exactly half way through the largest gap inside the set A, from which
we get the above claim. Therefore another way to state Lemma 4.1 is that if d(A1) ≥ · · · ≥ d(Ak), then

d





k
∑

j=1

Aj



 ≤ max
1≤r≤k



d(Ar)−

k
∑

j=r+1

d(Aj)



 .

This is the best upper bound in the same sense as given above.

4.1.2 Characterization for two sets in one-dimension

We now give the characterization of S1(2). Refer to Remark 4.1 for notation.

Theorem 4.1. In the case n = 1, m = 2 we have that

S1(2) = S1(2, {1, 2}) ∪ S1(2, {1}) ∪ S1(2, {2}) ∪ S1(2,∅),

where

1. S1(2, {1, 2}) = {(0, c1, c2, c12) ∈ R4
+ : (c1, c2) ∈ [0, 1]2, c12 ∈ [L,M)}.

2. S1(2, {1}) = {(0, c1, 0, c12) ∈ R4
+ : c1 ∈ [0, 1], c12 = c1}.

3. S1(2, {2}) = {(0, 0, c2, c12) ∈ R4
+ : c2 ∈ [0, 1], c12 = c2}.

4. S1(2,∅) = {(0, 0, 0, 0)}.

Proof. The characterization of S1(2,∅) follows from the fact that the only sets being considered are point sets.
The characterization of S1(2, {1}) follows from the fact that if A1, A2 are sets in R such that card(A2) = 1,
then c(A1+A2) = c(A1). By the same reasoning we can verify the characterization for S1(2, {2}). It remains
to verify the characterization for S1(2, {1, 2}). To prove this, let cA ∈ S1(2, {1, 2}). Then A = (A1, A2)
is a pair of nonempty, compact sets which contain two or more points each. Define c1 := c(A1) and
c2 := c(A2). By Theorem 2.1, c(A1 + A2) ≥ L. To verify the upper bound we use Lemma 4.1 and the fact
that |conv(Ai)| > 0 to get

c(A1 +A2) ≤
max {G(A1), G(A2)}

|conv(A1)|+ |conv(A2)|
< max

{

G(A1)

|conv(A1)|
,

G(A2)

|conv(A2)|

}

=: M.

Hence, c(A1 + A2) ∈ [L,M). Now, let (0, c1, c2, c12) ∈ R4
+ such that (c1, c2) ∈ [0, 1]2, and c12 ∈ [L,M).

We will show that there exist compact sets A1, A2, which are not point sets, and c(A1) = c1, c(A2) = c2,
c(A1 + A2) = c12. For j ∈ [2] and σ ∈ S2, set Aσ(j) = [0, r(cσ(j))] ∪ [1, 1 + r(cσ(j))]. Then c(Aσ(j)) = cσ(j).
First, choose σ∗ ∈ S2 such that

1− r(cσ∗(1))− 2r(cσ∗(2))

3 + r(cσ∗(1)) + 2r(cσ∗(2))
= min

σ∈S2

1− r(cσ(1))− 2r(cσ(2))

3 + r(cσ(1)) + 2r(cσ(2))
.

If m ∈ [2,∞), then the sumset Aσ∗(1) +mAσ∗(2) has as its largest gap

G = m− 1− r(cσ∗(1))−mr(cσ∗(2)).

Then for m ∈ [2,∞), the convexity index of the above sumset is

c(Aσ∗(1) +mAσ∗(2)) =
m− 1− r(cσ∗(1))−mr(cσ∗(2))

1 +m+ r(cσ∗(1)) +mr(cσ∗(2))
.
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The above rational function is non-decreasing and continuous as a function of m. Also

lim
m→∞

m− 1− r(cσ∗(1))−mr(cσ∗(2))

1 +m+ r(cσ∗(1)) +mr(cσ∗(2))
=

1− r(cσ∗(2))

1 + r(cσ∗(2))
= cσ∗(2).

Setting f∗(m) := c(Aσ∗(1) +mAσ∗(2)), it follows that

f∗ ([2,∞)) =

[

1− r(cσ∗(1))− 2r(cσ∗(2))

3 + r(cσ∗(1)) + 2r(cσ∗(2))
, cσ∗(2)

)

= [L, cσ∗(2)).

It may not be true that cσ∗(2) = max{c1, c2}. If that is the case, then choose σ∗ ∈ S2 such that cσ∗(2) =
max{c1, c2}. Repeating the same computations that were done for σ∗, we find, setting f∗(m) := c(Aσ∗(1) +
mAσ∗(2)) that

f∗ ([2,∞)) =

[

1− r(cσ∗(1))− 2r(cσ∗(2))

3 + r(cσ∗(1)) + 2r(cσ∗(2))
, cσ∗(2)

)

=

[

1− r(cσ∗(1))− 2r(cσ∗(2))

3 + r(cσ∗(1)) + 2r(cσ∗(2))
,M

)

.

Then f∗([2,∞)) ∪ f∗([2,∞)) = [L,M). This completes the proof.

Remark 4.3. We note here that, while in general finding a complete characterization of the region Sn(m)
for any n,m looks extremely complicated, it would be interesting to achieve a characterization of the region
Sn(2), for n ≥ 2. The main difficulty that has prevented us from achieving this is that we do not know the
generalization of Theorem 2.1 for arbitrary compact sets in Rn.

4.1.3 Two sets in high dimension

As noted in the remark in the previous section, we do not know the characterization of Sn(2) when n ≥ 2.
But, we can give the characterization for a piece of this region.

Proposition 4.1. Let n ≥ 2. Then

{(0, c1, c2, c12) ∈ R4
+ : (c1, c2) ∈ [0, 1]2, c12 ∈ [0,max(c1, c2)]} ⊆ Sn(2).

Proof. It is enough to prove this for n = 2. For the case where n > 2, use the fact that Sn(2) ⊆ Sn+1(2).
This can be verified by using the fact that for a compact set A ⊆ Rn, c(A×{0}) = c(A). Now, for 0 ≤ r ≤ R,
define

A(r, R) := {x ∈ R2 : r ≤ |x| ≤ R}

to be the annulus with smaller radius r and larger radius R. Assume without loss of generality that c1 =
max(c1, c2), and that c1 > 0 (If c1 = 0, then we could define A1 and A2 to be each a single point). Define
A1 := A(c1, 1) and A2 := A(c2, 1). Then c(A1) = c1 and for any m > 0, c(mA2) = c2. In particular, let
m ∈ (0, c1]. Observe that A1 +mA2 = A(c1 −m, 1 +m) (this is a similar computation to adding two one
dimensional sets together). Then c(A1 +mA2) =

c1−m
1+m

. Since this is a continuous, decreasing function of
m, we see that as m varies in the interval (0, c1], c(A1 +mA2) can take any value in the interval [0, c1). All
that remains is to show that the maximum can be attained. Let A1 and A2 be any sets in R with convexity
indices c1 and c2 respectively. Set A′

1 = A1 ×{0} and A′
2 = {0}×A2. Then c(A′

j) = cj for each j ∈ [2]. The
sumset is A′

1 +A′
2 = A1 ×A2. Then c(A′

1 +A′
2) = max{c(A1), c(A2)}, which shows the maximum convexity

index is attained. This proves the proposition.

Remark 4.4. We can use Proposition 4.1 to get a partial answer to Problem 2.1. In fact, by the above
proposition if c1, c2 ∈ [0, 1] and n ≥ 2, then Fn(c1, c2) = 0.

4.2 Closure properties of the Lyusternik region

4.2.1 The construction of a fractal set

We first need to construct a fractal set.
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Definition 4.2. Let I be some interval of length |I| > 0, let N ≥ 3 be an integer, and choose k ∈
{0, . . . , N − 1}. Denote m := min(I), and Ij := [m+ j|I|N−1,m+ (j + 1)|I|N−1]. Then

I = I0 ∪ I1 ∪ · · · ∪ IN−1.

Define Fk(I) := I0 ∪ · · · ∪ Ik. That is, we divide the interval I into exactly N sub-intervals of equal length,
and keep only the first k + 1 sub-intervals. We will define the fractal set C(N, k) inductively as follows.

1. Let C1 := Fk([0, 1]). Then we can write

C1 = I0 ∪ I1 ∪ · · · ∪ Ik,

where each interval It has length
1
N
.

2. For j = 2 define C2 := Fk(I0) ∪ · · · ∪ Fk(Ik). That is,

C2 =
⋃

α∈S2

I2,α,

where each interval I2,α has length 1
N2 .

3. For j − 1 ≥ 2, suppose that we have constructed Cj−1 so that

Cj−1 =
⋃

α∈Sj−1

Ij−1,α,

where the set Sj−1 is some indexing set, and the intervals Ij−1,α each have length 1
Nj−1 . Define

Cj :=
⋃

α∈Sj−1

Fk(Ij−1,α) =
⋃

α∈Sj

Ij,α

so that the intervals Ij,α each have length 1
Nj .

With this inductive construction, we can define

C(N, k) :=

∞
⋂

j=1

Cj .

We now show that the set C(N, k) can be written as the subset of [0, 1] which consists of exactly those
numbers possessing a base N representation that only allows the digits 0, . . . , k.

Lemma 4.2. The set C(N, k) is a compact set and has the representation

C(N, k) =







∞
∑

j=1

xj

N j
: xj ∈ {0, 1, . . . , k}







. (18)

Proof. Since C(N, k) is the intersection of closed sets, it is a closed set. Therefore C(N, k) is a closed
and bounded subset of R, so it is compact. Denote the right side of (18) by S. We want to prove that

C(N, k) = S. Let x ∈ C(N, k). Then x ∈ Cj for each j ∈ N. In particular, x ∈ C1 =
⋃k

j=0 Ij . Then there
exists x1 ∈ {0, . . . , k} such that x ∈ J1 := Ix1

. Denote the left endpoint of J1 by L1. Since x ∈ Ix1
, we have

|L1 − x| ≤ 1
N
. Now, suppose by induction that we have found integers x1, . . . , xr ∈ {0, . . . , k} and intervals

Jj := Ij,xj
⊂ Cj for j ∈ [r] with length |Jj | =

1
Nj such that x ∈

⋂r
j=1 Jj , and Lj :=

xj

Nj + Lj−1 are the left

endpoints of the intervals Jj which satisfy |Lj − x| ≤ 1
Nj . Since Jr ⊂ Cr, we have x ∈ Fk(Ixr

) =
⋃k

α=0 Ir,α.
Then there exists xr+1 ∈ {1, . . . , k} such that x ∈ Jr+1 := Ir+1,xr+1

. The left endpoint of the interval Jr+1

is given by Lr+1 = Lr +
xr+1

Nr+1 , and satisfies |Lr+1 − x| ≤ 1
Nr+1 . In this way, we inductively construct a

sequence {xj}
∞
j=1 of integers in {0, . . . , k} such that for each r ∈ N, |

∑r

j=1
xj

Nj − x| ≤ 1
Nr . It follows that

x =
∑∞

j=1
xj

Nj , which implies that x ∈ S. For the other direction let x ∈ S. Then x = limr→∞

∑r
j=1

xj

Nj .

For each r, the partial sum
∑r

j=1
xj

Nj is an element of C(N, k). This follows from the fact that each partial
sum is a left endpoint of an interval Ir,α for sum α ∈ Sr, and therefore belongs to C(N, k), since C(N, k)
contains all left endpoints of the intervals Ij,α for each j ∈ N and α ∈ Sj . Since C(N, k) is a compact set,
this implies that x ∈ C(N, k). Therefore C(N, k) = S.
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Next we observe some nice properties.

Lemma 4.3. The set C(N, k) has the following properties.

1. For any 0 ≤ k ≤ N − 2, we have |C(N, k)| = 0.

2. If k = N − 1, then C(N,N − 1) = [0, 1].

3. If k + l ≤ N − 1, then C(N, k) + C(N, l) = C(N, k + l).

4. The diameter of C(N, k) is diam (C(N, k)) = k
N−1 .

Proof. For the first property, we use the definition of C(N, k) and observe that in the jth iteration, we remove
a total volume of (N − 1− k)N−j from (k + 1)j−1 of the sub-intervals. Then the total volume removed is

|[0, 1]\C(N, k)| = (N − 1− k)

∞
∑

j=1

(k + 1)j−1

N j
=

N − k − 1

k + 1
·

k + 1

N − k − 1
= 1.

Therefore |C(N, k)| = 0. The second property follows from the fact that C(N,N − 1) is exactly the base N
representation of the interval [0, 1]. To verify the third property, we observe that

C(N, k) + C(N, l) =







∞
∑

j=1

xj

N j
: xj ∈ {0, 1, . . . , k}







+







∞
∑

j=1

xj

N j
: xj ∈ {0, 1, . . . , l}







=







∞
∑

j=1

xj

N j
: xj ∈ {0, 1, . . . , k + l}







=: C(N, k + l).

To verify the fourth property we just need to compute the element of C(N, k) where xj = k for each j. This
is

∞
∑

j=1

k

N j
=

k

N − 1
.

This completes the proof.

4.2.2 A note on the Brunn-Minkowski inequality

For the example we construct for the Lyusternik region, we will need to know the equality conditions for the
Brunn Minkowski inequality.

Theorem 4.2 (The Brunn-Minkowski-Lyusternik inequality). Let A and B be non-empty, compact sets in
Rn. Then

|A+B|
1
n ≥ |A|

1
n + |B|

1
n ,

where equality holds if and only if exactly one of the following properties hold:

1. |A+B| = 0.

2. Exactly one of the sets A and B has positive measure; the other is a point.

3. The sets A and B are homothetic convex bodies (in the case n = 1, this means that A and B are both
intervals of positive measure).

It follows that if A1, A2 are compact in Rn such that |A1 + A2| > 0 and |A2| = 0, then |A1 + A2|
1
n =

|A1|
1
n + |A2|

1
n if and only if A2 is a point and A1 is a compact set with positive measure.

Aside from the reference given in the introduction, we refer to [11] for a detailed overview of the Brunn-
Minkowski inequality, and [5] where a proof of the equality conditions can be found for the case where the
sets are compact, but not necessarily convex.
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4.2.3 The Lyusternik region is not closed

We will show how the fractal set we just defined can be used to characterize a small piece of the Lyusternik
region, and show that one of the defining volume inequalities must be a strict inequality, showing that Λn(m)
is not closed when m ≥ 3. For clarity, note that we will be associating a function vA ∈ Λn(3) with the vector

(0, |A1|, |A2|, |A3|, |A1 +A2|, |A1 +A3|, |A2 +A3|, |A1 +A2 +A3|);

i.e. we choose the most natural ordering of the volumes of sumsets.

Theorem 4.3. Let 0 < α13 ≤ α23 < α123, and let n ≥ 1 be an integer. Then

(0, 0, 0, 0, 0, α13, α23, α123) ∈ Λn(3).

Moreover, for any α > 0,
(0, 0, 0, 0, 0, α, α, α) /∈ Λn(3),

which implies that Λn(m) is not a closed set for any m ≥ 3.

Proof. We begin by proving this for n = 1. Let 1 ≤ a < b. We will prove that there exist compact
sets B1, B2, B3 such that |Bj | = 0 for each j ∈ [3], |B1 + B2| = 0, |B1 + B3| = 1, |B2 + B3| = a, and
|B1+B2+B3| = b. Choose integers k1, k2 and N such that k1+ k2 = N − 1, 2k1 < N − 1, and k1

N−1 + a < b.
Since 1 ≤ a there exists qa ∈ N and ra ∈ [0, 1) such that a = qa + ra. Since b > a there exists qa ∈ N and
rb ∈ [0, 1) such that b = qba+ rba. Define

B1 = C(N, k1) ∪

qb−1
⋃

j=0

{ja} ∪ {qba+ rba− a},

B2 =

qa−1
⋃

j=0

({j}+ C(N, k1)) ∪ ({qa + ra − 1}+ C(N, k1)),

B3 = C(N, k2).

We immediately see that |Bj | = 0 for each j ∈ [3], Since 2k1 < N − 1, we have |B1 + B2| = 0. Also, since
k1 + k2 = N − 1 and C(N,N − 1) = [0, 1] we have

|B1 +B3| = |C(N, k1 + k2)| = 1,

|B2 +B3| =

∣

∣

∣

∣

∣

∣

qa−1
⋃

j=0

[j, j + 1] ∪ [qa + ra − 1, qa + ra]

∣

∣

∣

∣

∣

∣

= |[0, a]| = a.

For the sum of all three sets first note that by the above computation, B2 +B3 = [0, a]. Then

|B1 +B2 +B3| = |B1 + [0, a]|

=

∣

∣

∣

∣

∣

∣

[0, a+ diam(C(N, k1))] ∪

qb−1
⋃

j=0

[ja, ja+ a] ∪ [qba+ rba− a, b]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

[

0, a+
k1

N − 1

]

∪ [0, b]

∣

∣

∣

∣

= |[0, b]| = b.

Now, let 0 < α13 ≤ α23 < α123. By what was just shown, there exist compact sets B1, B2 and B3 such that
|Bj | = 0 for each j ∈ [3], |B1 +B2| = 0, and |B1 +B3| = 1, |B2 +B3| = α−1

13 α23, |B1 +B2 +B3| = α−1
13 α123.

Now define Aj := α13Bj . With this choice, we have for any S ⊆ [3] that

∣

∣

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

∣

∣

= α13

∣

∣

∣

∣

∣

∑

i∈S

Bi

∣

∣

∣

∣

∣

.

31



It follows that
(0, 0, 0, 0, 0, α13, α23, α123) ∈ Λ1(3).

Now, suppose that n ≥ 2. Assuming that 1 ≤ a < b, it follows that 1 ≤ a
1
n < b

1
n . Using the one-

dimensional case described above, there exist compact sets B
(n)
i in R such that |B

(n)
i | = 0, |B

(n)
1 +B

(n)
2 | = 0,

|B
(n)
1 +B

(n)
3 | = 1, |B

(n)
2 +B

(n)
3 | = a

1
n , and |B

(n)
1 +B

(n)
2 +B

(n)
3 | = b

1
n . Now, define the sets Bi in Rn by

Bi :=

n
∏

j=1

B
(n)
i = B

(n)
i × · · · ×B

(n)
i .

Then |Bi| = |B
(n)
i |n. It follows that |B1 + B2| = 0, |B1 + B3| = 1, |B2 + B3| = a, and |B1 + B2 +B3| = b.

The rest of the proof goes the same as the case of dimension n = 1 except we instead define Ai := α
1
n

13Bi.
Then we see that

(0, 0, 0, 0, 0, α13, α23, α123) ∈ Λn(3).

Finally, suppose there exists α > 0 for which (0, 0, 0, 0, 0, α, α, α) ∈ Λn(3). Then there exist compact sets
A1, A2, A3 in Rn such that |Aj | = 0 for each j ∈ [3], and |A1 +A3| = |A2 +A3| = α and |A1 +A2+A3| = α.

In particular, we have |A1 + (A2 +A3)|
1
n = |A1|

1
n + |A2 +A3|

1
n . By the equality conditions for the Brunn-

Minkowski-Lyusternik inequality, card(A1) = 1. Then |A1 + A3| = |A3| = 0, which is a contradiction.
Therefore, (0, 0, 0, 0, 0, α, α, α) /∈ Λn(3) for any α > 0. The fact that Λn(3) is not closed now follows from
observing that for each k ≥ 2 we have

(0, 0, 0, 0, 0, 1−
1

k
, 1−

1

k
, 1) ∈ Λn(3),

but the limit of this sequence is
(0, 0, 0, 0, 0, 1, 1, 1) /∈ Λn(3).

In the case that m > 3, just use the method described above to choose the sets A1, A2 and A3, and set
Aj = {0} for each j = 4, . . . ,m.
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