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Abstract

Evaluating deep multiagent reinforcement learning
(MARL) algorithms is complicated by stochastic-
ity in training and sensitivity of agent performance
to the behavior of other agents. We propose a meta-
game evaluation framework for deep MARL, by
framing each MARL algorithm as a meta-strategy,
and repeatedly sampling normal-form empirical
games over combinations of meta-strategies result-
ing from different random seeds. Each empirical
game captures both self-play and cross-play fac-
tors across seeds. These empirical games pro-
vide the basis for constructing a sampling distribu-
tion, using bootstrapping, over a variety of game
analysis statistics. We use this approach to eval-
uate state-of-the-art deep MARL algorithms on a
class of negotiation games. From statistics on indi-
vidual payoffs, social welfare, and empirical best-
response graphs, we uncover strategic relation-
ships among self-play, population-based, model-
free, and model-based MARL methods. We also
investigate the effect of run-time search as a meta-
strategy operator, and find via meta-game analysis
that the search version of a meta-strategy generally
leads to improved performance.

1 Introduction
Evaluating complex AI algorithms requires careful attention
to stochastic factors. Deep reinforcement learning (RL) al-
gorithms in particular are subject to randomness within the
algorithm and the operational environment, and variations
with choices of hyperparameters and initial conditions. It is
conventional to address these uncertainties in part by aggre-
gating results across multiple runs [Bellemare et al., 2013;
Machado et al., 2018]. Deep multiagent RL (MARL) algo-
rithms present these issues, and additional challenges due to
agent interactions. Evaluating performance against humans
has been one source of compelling demonstrations [Silver et
al., 2016; Vinyals et al., 2019; Wurman et al., 2022; Perolat
et al., 2022], but this approach is limited by the range of tasks
for which human expertise exists, and the cost of engaging
it when it is available. Generally speaking, we lack evalua-

tion protocols for comparing different MARL methods in a
statistically principled way.

In purely adversarial (i.e., two-player zero-sum) environ-
ments, distance to Nash equilibrium may be a sufficient met-
ric [Brown et al., 2020; Schmid et al., 2023], as all equilib-
ria are interchangeably optimal. More generally, where there
are multiple equilibria or where we do not necessarily expect
equilibrium behavior, the metrics for MARL performance
may be less clear. In collaborative domains, global team re-
turn is the common objective [Foerster et al., 2018; Rashid
et al., 2020], however complex learning dynamics may lead
agents using the same MARL algorithm to equilibria of dis-
tinct machine conventions in different runs [Hu et al., 2020].

We seek an approach to evaluating deep MARL in
general-sum domains. We propose a meta-game evaluation
framework (§5), which frames MARL algorithms as meta-
strategies: mapping games and random seeds to joint poli-
cies. We sample seed combinations to generate meta-game
instances, from which we compute evaluation metrics of in-
terest based on game-theoretic solution concepts. Through
resampling and bootstrap techniques, we generate a statisti-
cal characterization of algorithm performance in these games.
Our contributions:

• The meta-game evaluation framework.
• A new search algorithm for imperfect information

games, Gumbel Information-Set Monte-Carlo Tree
Search (§6), based on the recent development of Gumbel
AlphaZero [Danihelka et al., 2022].

• Extensive experiments on state-of-the-art MARL algo-
rithms (§7.2) on a class of negotiation games (§7.1), il-
lustrating the framework and providing new evidence re-
garding the algorithms studied.

2 Related Work
While evaluating single-agent deep RL algorithms is well-
studied [Henderson et al., 2018; Jordan et al., 2020; Agar-
wal et al., 2021], there are relatively few works that consider
evaluation principles for deep MARL [Gronauer and Diepold,
2022]. Typically, agents are evaluated against a selected set
of background opponents or emergent behaviors in certain
contexts [Lowe et al., 2017; Leibo et al., 2021]. Other work
has defined evaluation protocols for cooperative settings [Pa-
poudakis et al., 2020; Gorsane et al., 2022], where a global
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team reward is well-defined. Our scenario falls into the agent-
vs-agent category of Balduzzi et al. [2018], who argue for the
necessity of comprehensively considering the possible joint
interactions.

Kiekintveld and Wellman [2008] employed a concept of
meta-games for evaluating general game-playing methods. In
their setting, meta-strategies map normal-form game specifi-
cations to strategy choices. Treutlein et al. [2021] construct
label-free coordination (LFC) games among instances of a
cooperative MARL algorithm, in order to study zero-shot co-
ordination [Hu et al., 2020]. LFC games are a kind of meta-
game in our sense, as they take dynamic game descriptions
(Dec-POMDPs) as input.

Bootstrapping is a non-parametric statistical approach that
constructs sampling distributions for any specified statistic
by resampling from the original dataset [Davison and Hink-
ley, 1997]. Bootstrapping techniques have been applied in
machine learning methods such as aggregating decision-tree
models [Breiman, 1996]. Wiedenbeck et al. [2014] applied
the bootstrap for statistical analysis of game-theoretic models
estimated from simulations.

3 Game Theory Preliminaries
A normal-form representation of a game G consists of a
player set N = {1, . . . , N}, and for each player i ∈ N
a pure strategy space Πi and a utility function ui : Π → R.
Π = Π1 × · · · × ΠN is the joint pure strategy space. A
mixed strategy σi ∈ ∆(Πi) for player i defines a probability
distribution over that player’s pure strategy space. Player i’s
payoff for choosing σi while others play σ−i = (σj)j ̸=i is
given by expectation over the respective mixtures: ui(σ) =
Eπi∼σi,π−i∼σ−i [u(πi, π−i)].

The regret of player i who plays σi when others are play-
ing σ−i is REGRETi(σi, σ−i) = maxπ′

i∈Πi
ui(π

′
i, σ−i) −

ui(σi, σ−i). A Nash equilibrium (NE) is a mixed
strategy profile σ such that nobody has positive regret:
∀i. REGRETi(σi, σ−i) = 0. As a measure of approximation
to NE, we define SUMREGRET(σ) =

∑
i REGRETi(σi, σ−i).

If a game is known to be symmetric, we can reduce its
normal-form description complexity. Formally, in a symmet-
ric game, players share the same strategy space Π1 = · · · =
ΠN = Π , and utility function u1 = · · · = uN = u. Further-
more, each player’s utility is permutation-invariant to other
players’ strategies. For symmetric games we overload Π to
refer to the common individual strategy space, rather than the
joint space. In a symmetric profile, every player adopts the
same (generally mixed) strategy. Solutions in symmetric pro-
files are guaranteed to exist in relevant settings [Nash, 1951;
Cheng et al., 2004; Hefti, 2017], and are generally preferred
absent any basis for breaking symmetry [Kreps, 1990].

Also given symmetry, let u(σ′,σ) be the expected payoff
of a player when it chooses a strategy σ′ ∈ ∆(Π ) while the
other N − 1 play the same mixed strategy σ ∈ ∆(Π ). We
thus have REGRET(σ′, σ) = maxπ′∈Π u(π′,σ) − u(σ′,σ).
A symmetric NE strategy σ satisfies REGRET(σ, σ) = 0.

An extensive-form game (EFG) representation goes be-
yond normal form to include temporal and information struc-
ture. Effectively, an EFG defines a dynamical system (usu-

ally visualized by a tree) with a world state or history h that
is not necessarily fully observable by every player. At each
state h, starting with the initial state h0, there is a single
player τ(h) ∈ N ∪ {c}, where c is the chance player, des-
ignated to select an action a ∈ A(h). The chance player
chooses according to a fixed random policy. Player i ∈ N
chooses according to its information state/set, si(h), which
comprises the information that i has observed at h. Often
si(h) is represented by a concatenation of public and private
action-observation histories. Following action a, the world
transits to h′ = ha until a terminal state z ∈ Z is reached.
Then each player i ∈ N receives a utility ui(z) as a func-
tion of z. A behavioral strategy or policy, πi, of player i is a
mapping from i’s infostates to distributions over actions. For
EFGs we overload Πi to refer to the set of behavioral strate-
gies of player i. A joint behavioral strategy profile π thus
induces a probability distribution over the terminal states and
we define ui(π) as the expected payoff for player i under this
distribution. In this paper, we consider EFGs with perfect
recall, that is, information sets si(h) distinguish all actions
i had taken to reach h. A consequence is that any mixed
strategy σi ∈ ∆(Πi) is payoff-equivalent to some behavioral
strategy πi ∈ Πi [Aumann, 1964].

4 Multiagent Training Algorithms
We define a multiagent training algorithm (MATA) M as
a stochastic procedure that produces a policy profile π =
M(G,Θ, ω) for an EFG. In general, the input EFG G can-
not be tractably represented as an explicit game tree. Instead,
we assume the game is given in the form of a black-box sim-
ulator that the algorithm can exercise by submitting actions
and receiving observations and rewards. Θ is the set of hy-
perparameters of the algorithm, and ω is a random seed. If G
is symmetric, then it is often natural to constrain the output
π to be likewise symmetric (i.e., single policy to be played
by all). More generally, π is a policy profile. For the Alp-
haZero MATA, for example, G could be represented by a Go
simulator, and Θ would include the learning rate schedule and
neural architecture. The output profile π specifies Go-playing
policies for white and black, respectively.

A MATA is effectively a form of meta-strategy: a proce-
dure that given a game G, generates a strategy profile for G.
We can employ the MATA to play from the perspective of any
particular player i, simply by selecting the ith element π(i) of
the output profile.

A key issue for analysis of MATAs is uncertainty in strat-
egy generation. It has been well observed (e.g., by Hu et al.
[2020]) that a MATA with the same G and Θ but different ω
may generate policies with vastly different strategic behav-
iors. For example, in a negotiation game, different runs of a
MATA may lead to strategies that adopt distinct offering con-
ventions. In the present work, we assume the hyperparame-
ters Θm for each MATAMm have been fixed, so the uncer-
tainty in behavior of a training algorithm is fully captured by
the random seeds. Note that there is always discretion about
what one considers a distinct MATAM versus a parametric
variation, so it is possible to bring choice among hyperparam-
eter settings within the scope of our analysis framework.



5 Meta-Game Evaluation Framework
Given M different MATAs {(M1,Θ1), . . . , (MM ,ΘM )}
with associated hyperperameters, how can we evaluate their
relative performance with respect to a given game G? View-
ing the MATAs simply as game-solvers, we could focus on
measures of their effectiveness in deriving a solution—for
example, time and accuracy of convergence to Nash equi-
librium. Viewing the MATAs’ role as generating strategies
to play a game, however, requires a different focus that con-
siders the interaction with other strategy generators. This is
particularly salient for games that have a multiplicity of so-
lutions (the general case), or for which the operable solution
concept may be open to question. Consequently, we propose
to analyze competing MATAs by framing their interaction as
itself a game. As MATAs are meta-strategies, we refer to this
approach as a meta-game evaluation framework.

As noted above, we are particularly concerned with uncer-
tainty in the results of multiagent training. In analysis of the
MATA meta-game, therefore, we aim to characterize the im-
plications of this uncertainty in probabilistic form.

5.1 Empirical Game-Theoretic Analysis
Our approach employs empirical game-theoretic analysis
(EGTA), a methodology for reasoning about games through
agent-based simulation [Tuyls et al., 2020; Wellman, 2016].
EGTA aligns with our assumption that the game of interest
G is defined by a black-box simulator. In the typical fram-
ing, EGTA operates by estimating an empirical game model
in normal form over an enumerated strategy set. The enu-
merated strategies are a small selection from the full strategy
space of the extensive game represented by the simulator.

We employ EGTA with respect to an N -player game of in-
terest G, and strategies defined by the output of MATAs. The
meta-game is likewise over N players, and is symmetric re-
gardless of whether G is symmetric or not. Let π̂m denote the
output from MATA m, for instance π̂m = Mm(G,Θm, ω):
the result from running the MATA on G for a particular ran-
dom seed. We also allow that π̂m be an aggregate of pol-
icy profiles from multiple random seeds. From these MATA-
generated profiles Π̂ = {π̂1, . . . , π̂M}, we construct an em-
pirical meta-gameMG(Π̂ ) over policy space Π̂ as follows.

If the base game G is symmetric, then the π̂m are single-
player policies, and we estimate the meta-game utility func-
tion by the standard EGTA approach of simulating profiles
over Π̂ . If G is not symmetric, then each π̂ ∈ Π̂ is an
N -player profile for G. Simulating a meta-game profile
(π̂1, . . . , π̂N ) of these base-game profiles entails first assign-
ing the π̂ to players, according to a random permutation perm
drawn uniformly from the N ! possibilities. Then it simulates
a play where player i of MG plays π̂i(perm(i)) as if it is
player perm(i) in G. This construction also corresponds to
an EFG beginning with a root chance node that uniformly
chooses among N ! different outcomes, each followed by a
copy of the original EFG with player indices permuted.

Symmetry of the meta-game reflects a view that, for multi-
agent training, developing effective strategies for each of the
player positions is equally important. If this were not the case,
or if one wished to perform an analysis of the differential ef-

fectiveness of various MATAs from the perspectives of dif-
ferent players or roles, a non-symmetric (or role-symmetric)
meta-game model could be constructed instead.

5.2 Meta-Game Evaluation Procedure
Just as single-agent RL algorithms are statistically evalu-
ated by return performance across different random seeds,
we can analyze strategic properties among MATAs across
different combinations of seeds. Let X denote statistics
characterizing the strategic properties of interest (discussed
below). Given an N -player game G and parametrized
MATAs {(M1,Θ1), . . . , (MM ,ΘM )}, our evaluation pro-
cedure comprises of the following steps:

1. Select a finite set of seeds Ωm for each MATA m. Gen-
erate π̂m(ω) =Mm(G,Θm, ω) for each ω ∈ Ωm.

2. For each m, uniformly sample |Ωm| seeds from
Ωm with replacement, yielding the sequence
(ω1, . . . , ω|Ωm|). Let π̂m be a profile that that is
payoff-equivalent to a uniform mixture over the multiset
{π̂m(ω1), . . . , π̂

m(ω|Ωm|)}.

3. Given Π̂ = {π̂1, . . . , π̂M}, estimate the symmetric em-
pirical meta-gameMG(Π̂ ) as described in §5.1.

4. Compute the statistics-of-interest X fromMG(Π̂ )

5. Repeat Steps 2 through 4. Estimated profile payoffs
should be memoized for reuse across iterations. Ob-
tain an empirical distribution of X and report statistical
properties of X .

One way to understand this evaluation procedure is to view
each MATA as a mixed strategy, selecting policies uniformly
over the possible random seeds. The “ground-truth” meta-
game represents an expectation over the results of this ran-
domization. The empirical meta-game estimates this from fi-
nite samples Ωm. By resampling from these seeds at hand,
Step 2 constructs multiple empirical games among MATAs,
from which we construct sampling distributions over X us-
ing bootstrapping.

There are a variety of choices for statistics X to gather.
The only requirement is that X can be computed from
the information in a normal-form game model. For exam-
ple, one possible metric on MATA performance is uniform-
score: average payoff against a uniform distribution over
other MATAs. Such scores have been employed in a vari-
ety of contexts, however putting equal weight on the possible
counterparts is questionable, as they are not equally relevant
[Balduzzi et al., 2018].

An alternative proposed by Jordan et al. [2007] is NE-
regret: REGRET(π, σ∗), where σ∗ is a symmetric mixed
equilibrium ofMG(Π̂ ). The motivation for this measure is
that it focuses on behavior against rational opponents. Per-
formance against obviously flawed opponents should carry
much less weight, as they are less likely to be encountered in
practice, all else equal.1 For games with multiple equilibria,

1If however there is some basis to expect opponents who are
flawed or boundedly rational in some particular way, then by all
means it would make sense to measure regret with respect to a solu-
tion concept capturing that basis.



however, NE-regret is sensitive to the choice of solutions σ∗.
This sensitivity is inherent to situations with multiple equilib-
ria, but it can still be helpful to adopt a focal equilibrium to
reduce ambiguity in analysis. Balduzzi et al. [2018] proposed
Nash averaging, which is essentially NE-regret with respect
to the max-entropy equilibrium. The intuition for preferring
to evaluate with respect to higher-entropy solutions is that
they reflect diversity, and thus reward robustness to a wide
range of rational opponents.

5.3 Max-Entropy Nash Equilibrium
Computing max-entropy NE is hard in general, but practi-
cally feasible to approximate for bi-matrix games of modest
size. We adapt the mixed-integer programming formulation
of Sandholm et al. [2005]:

min
σ∗

∑
π∈Π̂

σ∗(π) log σ∗(π)

s.t. ∀π ∈ Π̂ . uπ =
∑
π′∈Π̂

σ∗(π′)u(π,π′),

u∗ ≥ uπ, u∗ − uπ ≤ Ubπ, σ∗(π) ≤ 1− bπ,

σ∗(π) ≥ 0,
∑
π

σ∗(π) = 1, bπ ∈ {0, 1},

(1)
with real variables σ∗(π), uπ , binary variables bπ for each
strategy π, and an equilibrium payoff real variable u∗. U is
the maximum difference across payoffs. The variables bπ in-
dicate whether strategy π is outside the equilibrium support.
That is, bπ = 1 iff σ∗(π) = 0. Otherwise uπ = u∗: strate-
gies in the support have the same payoff. The details of our
implementation are in App. A.

Although max-entropy NE is not generally unique, it
narrows the possibilities considerably compared to uncon-
strained (approximate or exact) NE.

6 Search as a Meta-Strategy Operator
Many MATAs produce a policy network p that maps directly
from an infostate to a distribution over actions in a forward
pass for every player. Recent work has found that leverag-
ing computation at run-time and adding search to p can im-
prove performance in large EFG domains [Silver et al., 2018;
Brown et al., 2020; Schmid et al., 2023]. As a case study for
our meta-game evaluation framework, we apply it to investi-
gate the effect of search as a general policy improver.

Toward that end, we propose a heuristic search method
for large EFGs based on information-set MCTS (IS-MCTS)
[Cowling et al., 2012] and Gumbel AlphaZero [Danihelka et
al., 2022]. Alg. 1 presents the procedure, Gumbel IS-MCTS,
in detail. Parameterized by a policy net p and a value net v,
Gumbel IS-MCTS conducts multiple passes over the game-
tree guided by v and p at an input infostate s, and outputs an
action a for decision-making. We can apply this procedure
to a variety of underlying MATAs, as a meta-strategy oper-
ator: transformingM toM′ (with additional hyperparame-
ters like simulation budget). The meta-strategyM′ in effect
adds run-time search to the output policy p of M. Unlike
AlphaZero—which uses the same MCTS method for training

Algorithm 1 Gumbel IS-MCTS

1: function Gumbel-Search(s, v,p)
2: ∀(s, a). R(s, a)← 0, C(s, a)← 0

3: ∀a ∈ A(s). sample g(a) ∼ Gumbel(0), Â ← A(s)
4: repeat
5: Sample a world state: h ∼ Pr(h | s,p)
6: while do
7: if h is terminal then
8: r ← payoffs of players Break
9: else if i ≜ τ(h) is chance then

10: a← sample according to chance
11: else if si(h) not in search tree then
12: Add si(h) to search tree
13: r ← v(si(h)). Break
14: else if si(h) is root node s then
15: a, Â ← one step of sequential halving (Alg. 3)

based on GS (s, a) and remaining actions in Â
16: else
17: Select a according to Eq.(3) in App. B.2.
18: end if
19: h← ha
20: end while
21: for (si, a) in this trajectory do
22: Increment R(si, a) by ri, C(si, a) by 1.
23: end for
24: until num sim simulations done
25: return Action a that remains in Â
26: end function

and run-time, with meta-strategy operators we can explore a
variety of MATAs as training-time methods which produce
v and p for search at test-time [Sokota et al., 2024] (details
in §7.2).

Just like MCTS, IS-MCTS incrementally builds and tra-
verses a search tree and aggregates statistics such as visit
counts C(s, a) and aggregated values R(s, a) for visited
(s, a) pairs. During each simulation of the search (line 5),
a world state is sampled from a posterior belief Pr(h | s,p)
assuming the opponents played according to p prior to s. In
our test domains, Pr(h | s,p) can be computed exactly via
Bayes’s rule, where in larger domains, using particle filtering
[Silver and Veness, 2010] or deep generative models [Hu et
al., 2021; Li et al., 2023] to approximate Pr(h | s,p) are
possible. Further technical details are provided in App. B.

The key feature of Gumbel IS-MCTS is how it selects ac-
tions at the search nodes. At the beginning of the search
(line 3), a Gumbel random variable, g(a), is sampled i.i.d.
for each legal action a of the root, for later use in action se-
lection. At the root (line 15), the algorithm treats each legal
action as an arm of a stochastic bandit, and uses a sequential-
halving algorithm [Pepels et al., 2014] (Alg. 3) to distribute
the simulation budget. Sequential-halving algorithms usu-
ally are designed for minimizing the simple regret [Bubeck
et al., 2009], which is the regret at the last-iteration action
recommendation. By contrast, UCB-style algorithms are usu-
ally designed for minimizing the accumulated regret during
an online learning process. For a game-playing search algo-
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Figure 1: Example start of sequential bargaining game instance.

rithm, minimizing simple regret makes more sense in terms
of producing a single optimal action at a decision point.

We assign to each arm a a Gumbel score GS (s, a) =
g(a) + logit p(s, a) + G(q̂(s, a)). The second term is the
logit of a produced by p, and the third term is a monotone
transformation of the action value q̂(s, a), which is estimated
by R(s, a), C(s, a), and v. The intuition is that a high q̂(s, a)
value indicates a direction for policy improvement. Indeed,
the improved policy Imp(p)(s, a) ≜ SoftMax(logit p(s, a)+
G(q̂(s, a))) provably achieves higher expected values Dani-
helka et al. [2022, App. B]. The forms of G and q̂ is detailed
in App. B.1.

Adding Gumbel noise g(a) implements the “Gumbel top-
K-trick”: deterministically selecting the top K actions ac-
cording to GS (s, a) is equivalent to sampling K actions from
Imp(p)(s, a) without replacement [Huijben et al., 2022].
The Gumbel score induces a low-variance non-deterministic
action selection of the root node during the sequential halv-
ing process, which encourages exploration while distributing
the simulation budget toward actions likely to yield higher
expected values.

At a non-root node (line 17), an action is selected to mini-
mize the discrepancy between Imp(p) and the produced vis-
ited frequency (details in App. B.2). At the end of the search,
Gumbel IS-MCTS outputs the action a that survives the se-
quential halving procedure.

7 Evaluation Study
7.1 Domain: Alternating Negotiation
We test our MATAs and evaluation framework in the con-
text of a two-player negotiation game. The particular version
we study, called “Deal-or-No-Deal” (DoND) by Lewis et al.
[2017], is a family of two-player negotiation games where
the players alternate proposals to divide a pool of resources:
three different goods available in various amounts. At the
start of the game, quantities of goods in the pool and players’
private valuations for units of each good are sampled from a
known distribution. The valuation distribution is constrained
to fix a constant value for both players of the aggregate pool:
c · w1 = c · w2 = 10. For example, in Fig. 1, the pool of
goods can be represented as c = [1, 2, 3]. The negotiation
proceeds through alternating proposals for dividing the re-
sources. In this example, player 1 first proposes o1 = [1, 2, 0]
for itself which entails o2 = c − o1 = [0, 0, 3] for player 2.
Player 2 rejects and proposes a counter-offer, to which 1 may
either agree or continue bargaining. For a particular game
parametrization Barg(T, ε, γ), the game ends if either (1) a
deal is made, (2) a maximum number of rounds T is reached,
or (3) chance decides to terminate the game, which happens at
every round with probability ε. If an agreement (o1,o2) was

reached at the tth round, player i receives payoff γtwi · oi.
Otherwise both players receive zero payoff.

DoND is a family of challenging general-sum environ-
ments with imperfect information. Players have a common
interest in reaching a deal (and quickly, for γ < 1), and the
different ways of dividing the pool have different total value.
In our studies, we sample configurations uniformly from a
database of 6796 published by Lewis et al. [2017]. This leads
to prohibitive complexity: a game with T = 10 has O(1011)
infosets for every player, which is intractable for enumeration
(detailed in App. G), and grows exponentially with T .

7.2 Benchmark Algorithms
Our meta-game evaluation considers the following M = 17
MATAs. These algorithms represent a comprehensive set
of state-of-the-art MARL algorithms, including methods us-
ing self-play based training, population based training, and
model-free and model-based approaches. Details are below
and in App. D.

Independent/Multiagent PPO (IDPPO/MAPPO)
Both IDPPO and MAPPO train policy and value nets using
self-play trajectories by minimizing the trust-region clipped
loss [Schulman et al., 2017] using the generalized advantage
estimator (GAE) [Mnih et al., 2016]. Value nets are trained
by minimizing L2 loss from the targets produced by GAEs.
In IDPPO each player maintains its own policy and value nets
whereas in MAPPO [Yu et al., 2022] players share the same
neural nets.

Regularized Nash Dynamics (R-NaD) and NFSP
Both R-NaD [Perolat et al., 2021] and Neural Fictitious Self-
Play (NFSP) [Heinrich and Silver, 2016] are self-play model-
free MARL algorithms originally designed for purely adver-
sarial settings. R-NaD has recently shown success in pro-
ducing human-level agents in Stratego [Perolat et al., 2022],
where it iteratively trains policy nets by minimizing NeuRD
loss [Hennes et al., 2020] and value nets using the V-Trace
estimator [Espeholt et al., 2018] on a sequence of regularized
games. NFSP mimics the classic fictitious play algorithm
[Heinrich and Silver, 2016] by alternating between training a
supervised learning net that summarizes historical plays and
training a DQN policy that serves as a best response.

Policy Space Response Oracles (PSRO) and FCP
PSRO [Lanctot et al., 2017] and Fictitious Co-Play (FCP)
[Strouse et al., 2021] are two population-based MARL al-
gorithms. PSRO is an EGTA method that iteratively adds
policies that are best responses to the current solution. We
use max-entropy Nash as the solution concept (solving an
asymmetric version of (1)), and PPO as the best-response
method. We consider two ways of extracting the final agents:
(i) PSRO: using the final-iteration solution and (ii) PSRO-
LAST: using the final-iteration best-response policies. FCP
has notably demonstrated success in collaborating with hu-
mans from scratch [Strouse et al., 2021]. FCP builds a pop-
ulation by picking policies of different skill levels on multi-
ple self-play runs, and trains final best responses against such
populations. Our implementation of FCP uses IDPPO to gen-
erate self-play runs, picks the agents based on social welfare,
and uses PPO as the best-response method.



Gumbel Search and Vanilla AlphaZero-style Search
We include the following variants of Gumbel IS-MCTS:
(i) G-Search: Using Gumbel IS-MCTS for both training the
networks (Alg. 4) at training time and conducting search at
test time. (ii) G-Search-PN: Using search at training time,
but only policy net without search at test time. (iii) G-
Search-IDPPO: Using IDPPO to train the policy and value
nets, based on which Gumbel IS-MCTS executes test-time
search. (iv) G-Search-MAPPO and (v) G-Search-R-NaD are
similarly defined. In addition, we implement an extension
of the original AlphaZero-style MCTS to IS-MCTS. The
differences between this search method (Alg. 2 in App. C)
and Gumbel IS-MCTS are in the mechanisms for explo-
ration (e.g., Dirichlet noise) and action selection (e.g., PUCT)
within the search tree. We include (vi) VA-Search: Using
this search for both training time and test time, and (vii) VA-
Search-PN: similarly defined as (ii).

Heuristic Strategies
We further include the following baseline bargaining strate-
gies: (i) Uniform, which uniformly samples among all le-
gal actions at each decision point. (ii) Tough, which never
agrees, and always proposes uniformly among offers that
maximize its own payoff. (iii) Soft, which always agrees,
or uniformly proposes among all offers if it is the first-mover.

7.3 Experimental Setup
All methods are implemented within the programming model
of OpenSpiel [Lanctot et al., 2019]. Each MATA that involves
neural training uses models of approximately equal size (e.g.,
number of layers, hidden nodes). The neural net inputs are
likewise the same across all MATAs, and include complete
history information (i.e., losslessly represent infosets) for the
DoND game. For procedures that involve self-play or RL
training we employ roughly the same number of training tra-
jectories. For all search methods we use 200 simulations per
call. We fine-tuned the learning rates based on SUMREGRET
performance. Most of the MATAs reliably produce approxi-
mate equilibria. Details are in App. E.

We set |Ωm| = 10, m ∈ {1, . . . ,M}. To simplify the
evaluation procedure, we pre-compute an empirical payoff
matrix covering every policy pair: (π̂m

1 (ω), π̂m′

2 (ω′)), for
m,m′ ∈ {1, . . . ,M}, ω and ω′ among the seeds sampled
for Mm and Mm′

, respectively. For each payoff entry we
run 2× 104 simulations to compute the expected payoff. We
then sample and analyze 106 M ×M empirical meta-games
from this matrix, per Steps 2–4 of §5.2, to obtain distributions
over the statistics of interest.

7.4 Results
We test all 17 MATAs on two DoND instances: Barg(10, 0,
1) and Barg(30, 0.125, 0.935). The two settings are qualita-
tively different. The latter includes discounting and per-round
ending probability, incentivizing the players to find and agree
on a good deal in early rounds. Without these factors, the
first game reduces to an ultimatum-game-like environment.
Meta-game statistics are reported in Tables 1 and 2.

In addition to NE-Regret and uniform scores, we also re-
port a statistic we term the NE-Nash-Bargaining-Score (NE-

NBS). The NE-NBS for MATA m in an empirical game is
defined as the utility-product between πm and an opponent
strategy σ∗: u(πm,σ∗) · u(σ∗,πm). Here σ∗ is a max-
entropy Nash computed by (1). This statistic is intended to
measure the effectiveness of an agent in achieving high social
welfare and fairness with a rational opponent.

From the tables we can see that while there is positive
correlation between NE-Regret Scores and Uniform Scores,
NE-Regret Scores are better at identifying the most robust
MATAs: the rankings of the top four MATAs in NE-regret
scores are the same for both environments, and from the em-
pirical distribution plots in App. F we can see G-Search-R-
NaD and G-Search consistently produce strategies that are se-
lected in a max-entropy equilibrium support with high prob-
ability. By contrast uniform-score comparisons can be dis-
torted by non-salient success against weak strategies. It
is also interesting to note positive correlation between NE-
Regret and NE-NBS. This reflects the non-zero-sum nature
of these environments.

The performance of search-based agents is especially note-
worthy. Three of the top four MATAs employ search at test
time. All search methods are stronger than their policy net
counterparts, confirming that IS-MCTS is a policy-improver
in imperfect information games. We hypothesize that this
is because a search-based algorithm is usually a better re-
sponder to its policy network counterpart, while both behave
strategically similarly against other methods. The relative
strength among search-based algorithms mirrors that of their
policy-net counterparts. In both environments, G-Search and
VA-Search are among the top four. This suggests that using
search at training time is compatible with the same search at
test time, and produces better policy and value nets compared
with other methods.

We notice some algorithms behave qualitatively differ-
ently in these two environments. We found FCP consistently
produces collaborative strategies with rather high agreement
probability. This may explain its better performance in the
second environment, which encourages settling a deal in early
rounds. Likewise, Soft achieves higher individual scores
and NE-NBS in the second environment. By contrast, while
Tough achieves better individual performance than Soft in the
ultimatum game, it is still worse than all learning methods, as
shown by its terrible NE-NBS values for both environments.

Another interesting view is provided by best-response
graphs. In a best-response graph for a game instance, strate-
gies are vertices, and there is a directed edge (m1 → m2) iff
m2 = argmaxm′ u(πm′

,πm1). We generate an aggregate
graph for a MATA meta-game by recording the frequency of
such edges in the sampled empirical games. These are shown
for the two game settings in Fig. 2.

The empirical best-response graphs support several obser-
vations. First, many MATA vertices such as IDPPO and
MAPPO have self-edges with non-negligible frequencies.
This is consistent with previous observations that self-play
MARL algorithms are likely to produce agents that overfit to
themselves [Hu et al., 2020]. However, self-edges do not nec-
essarily suggest poor generalization performances. For ex-
ample, G-Search-NaD has a self-edge with a high probability
in both environments, but still performs the best. Self-edges



MATA Name NE-Regret-Score Uniform-Score NE-NBS MATA Name NE-Regret-Score Uniform-Score NE-NBS
G-Search-R-NaD 0.002±0.020 6.158±0.040 44.010±0.794 MAPPO 0.721±0.059 5.602±0.035 32.832±0.818

G-Search 0.010±0.046 6.215±0.015 44.345±0.496 IDPPO 0.766±0.133 5.645±0.050 30.240±2.051
R-NaD 0.045±0.043 5.977±0.027 42.008±0.738 NFSP 0.806±0.050 5.766±0.014 36.534±0.721

VA-Search 0.092±0.023 6.074±0.029 40.836±0.551 VA-Search-PN 0.843±0.071 5.570±0.026 36.540±0.717
G-Search-MAPPO 0.354±0.047 6.038±0.027 37.808±0.962 FCP 1.116±0.096 5.804±0.013 38.665±1.092

PSRO-LAST 0.414±0.051 5.890±0.026 39.187±0.762 Tough 1.801±0.093 4.017±0.031 6.581±0.137
PSRO 0.417±0.055 5.904±0.022 38.288±0.873 Soft 3.189±0.098 3.773±0.013 27.023±0.855

G-Search-IDPPO 0.480±0.062 6.088±0.031 36.385±1.317 Uniform 4.274±0.062 2.391±0.004 11.980±0.494
G-Search-PN 0.575±0.048 5.811±0.013 42.174±0.493

Table 1: Results for Barg(10, 0, 1), with 95% confidence intervals. MATAs are listed in increasing order of NE-Regret.

MATA Name NE-Regret-Score Uniform-Score NE-NBS MATA Name NE-Regret-Score Uniform-Score NE-NBS
G-Search-R-NaD 0.000±0.001 6.147±0.013 43.681±0.497 PSRO 0.488±0.056 5.688±0.052 39.851±0.728

G-Search 0.005±0.033 6.078±0.019 43.198±0.545 G-Search-MAPPO 0.729±0.095 5.656±0.056 32.983±0.994
R-NaD 0.045±0.010 6.121±0.012 44.072±0.417 IDPPO 0.749±0.059 5.504±0.042 36.350±0.685

VA-Search 0.075±0.023 6.058±0.014 42.605±0.610 PSRO-LAST 0.906±0.213 5.391±0.161 35.723±2.119
G-Search-PN 0.294±0.019 5.833±0.016 42.285±0.448 MAPPO 1.135±0.144 5.306±0.086 31.878±1.378

FCP 0.360±0.026 5.864±0.013 43.321±0.265 Soft 1.918±0.018 4.352±0.011 35.990±0.267
VA-Search-PN 0.412±0.033 5.668±0.014 40.314±0.325 Uniform 4.161±0.031 2.370±0.007 12.562±0.211

NFSP 0.421±0.011 5.786±0.014 39.151±0.481 Tough 4.542±0.082 2.685±0.025 2.270±0.097
G-Search-IDPPO 0.450±0.038 5.820±0.019 36.997±0.432

Table 2: Results for Barg(30, 0.125, 0.935), with 95% confidence intervals. MATAs are listed in increasing order of NE-Regret.

persist even after applying search as policy-improver at test
time. For example, there are self-edges for G-Search-IDPPO
and G-Search-MAPPO. This may suggest that there are cer-
tain strategic correlations between a search agent and its pol-
icy net counterpart. Interestingly, we also observe certain
self-edge probabilities for PSRO and PSRO-LAST, which are
normally regarded as population-based training methods. It
could be that the equilibria selected at each iteration introduce
correlations between different players. By contrast, NFSP
and FCP are two MATAs without strong self-edges; both use
a uniform distribution for opponent modeling, which may re-
duce the correlation between player positions.

Edges across MATAs illuminate strategic interaction struc-
ture. Tough is unsurprisingly the best response to Soft. G-
Search-NaD is a strong attractor in both graphs, as G-Search
is in the first. Sometimes a search-based MATA is a best re-
sponse to its policy-net counterpart, as illustrated by R-NaD
to G-Search-R-NaD, and VA-Search-PN to VA-Search. This
could also explain why MATAs such as G-Search-PN and
VA-Search-PN do not have apparent self-edges.
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Figure 2: Empirical best-response graphs for Barg(10, 0, 1) and
Barg(30, 0.125, 0.935).

8 Conclusion
We propose a meta-game evaluation framework for MARL in
general-sum environments. Our approach is analogous to the
evaluation process for single-agent RL, effectively aggregat-
ing the strategic analysis procedures across possible worlds
defined by different seed combinations. We illustrated the
method by constructing a meta-game model over a compre-
hensive set of multiagent training algorithms using deep RL
on a class of negotiation games. The meta-game analysis
evaluated the algorithms in multiple ways, most prominently
through max entropy NE-regret ranking and the structure of
best-response graphs. Bootstrap statistics provide a basis for
assessing uncertainty in evaluation results.

Experimental results support several interesting observa-
tions about Gumbel IS-MCTS as a meta-strategy operator,
especially regarding the value of search at both training time
and test time, and on patterns of strategic interactions among
the algorithms.

A key feature of our evaluation framework is the flexibil-
ity to investigate a variety of statistics of interest through a
carefully structured process. Future work will focus on un-
derstanding the robustness of alternative measures that can
be employed for algorithm assessment through meta-games,
and developing effective tools for statistical analysis.
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A Max-Entropy Nash
In practice, it might be expensive to directly optimize the objective, due to the nonlinearity of the entropy function. We instead
optimize a piecewise linear approximation of the objective. We have the following result.
Theorem 1. Given ϵ > 0, an ϵ-maximum-entropy symmetric Nash can be solved by a mixed-integer linear program based
on (1) with an additional O(|Π̂ |2/ϵ) linear constraints.

A.1 Proof of Theorem 1
Proof. The idea is to transform (1) into the following mixed-integer linear program:

min
σ∗

∑
π∈Π̂

γπ

s.t. ∀π ∈ Π̂ ,

∀k ∈ [K], γπ ≥ lk(σ
∗(π))

uπ =
∑
π′∈Π̂

σ∗(π)u(π,π′)

u∗ ≥ uπ

u∗ − uπ ≤ Ubπ

σ(π) ≤ 1− bπ

σ∗(π) ≥ 0∑
π

σ∗(π) = 1

bπ ∈ {0, 1}

(2)

Where lk(x) = f( k
K ) +

f( k+1
K )−f( k

K )
1
K

(x − f( k
K )) is the k-th piecewise linear segment of the function f(x) = x log x,

for a total of K segments. Denote the convex envelope of all these K segments as l(x). The additional constraints are
γπ ≥ lk(σ

∗(π)). When we solve (2) exactly, one of these K inequalities will be satisfied at equality.
Let f(x∗) be the minimum of f and l(x′) be the minimum of the piecewise approximation. Then if |f − l|∞ < ϵ, we can see

that f(x∗) ≥ l(x∗)− ϵ ≥ l(x′)− ϵ. Then x′ is an ϵ-optimal solution of f .
Then to achieve an ϵ-optimal solution of (1) we need to choose some K, such that |f − l|∞ < ϵ

|Π̂ | .

For the segment Ik = [ km , k+1
m ], by elementary calculus we can find g(k) = maxx∈Ik |x log x − lk(x)| = k+1

eK (1 + 1
k )

k −
k(k+1)

K log(1 + 1
k ). This happens when x = k+1

eK

(
1 + 1

k

)k
.

We will now prove

g′(k) =
e+

((
1 + 1

k

)k
(1 + k)− e(1 + 2k)

)
log
(
1 + 1

k

)
eK

< 0

To show this, by arranging the numerator, we need to show that(
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e
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1 +

1
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)k
))
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1 +
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Then when k ≥ 7
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(
1 +

1

k

)
>

(
k +

1

2

)
log

(
1 +

1

k

)
Let h(k) =

(
k + 1

2

)
log
(
1 + 1

k

)
. Then h′(k) = log

(
1 + 1

k

)
− 1

2k −
1

2(k+1) h′′(k) = − 1
k(k+1) + 1

2k2 + 1
2(k+1)2 > 0.

Therefore h′(k) increases. And since limk→∞ h′(k) = 0 we can deduce h′(k) < 0. Therefore h(k) is decreasing. And since
limk→∞ h(k) = 1 we can see that h(k) > 1. Therefore the we have proved g′(k) < 0 for k ≥ 7 is decreasing. It is easy to
verify it also holds for k < 7. So g(k) achieves maximum 1

eK when k = 0.

Then we have when K =
⌊
|Π̂ |
eϵ

⌋
+ 1, we can obtain an ϵ-optimal maximum entropy Nash by solving (2) with additional

K · (|Π |) = O
(

|Π̂ |2
ϵ

)
linear constraints.

A.2 Setup
We use GUROBI [Gurobi Optimization, LLC, 2023] as the solver. In our experiments we always solve for a 0.05-optimal
max-entropy Nash.

B Details of Gumbel IS-MCTS
B.1 Value Estimation
When C(s, a) > 0, we simply let q̂(s, a) = R(s,a)

C(s,a) . When C(s, a) = 0, following [Danihelka et al., 2022], we let

q̂(s, a) =
1

1 +
∑

b C(s, b)

v(s, a) +

∑
b C(s, b)∑

b:C(s,b)>0 p(s, b)

∑
b:C(s,b)>0

R(s, b)

C(s, b)
p(s, b)


as an estimator. And we use G(q̂(s, a)) = c2(c1 +maxb C(s, b))q̂(s, a), for some c1, c2 > 0.

B.2 Action Selection at Non-Root Nodes
At a non-root node, an action is selected to minimize the discrepancy between Imp(p) and the produced visited frequency:

argmin
a

∑
b

(
Imp(p)(si, b)−

C(si, b) + 1{a = b}
1 +

∑
c C(si, c)

)2

(3)

C Algorithms Pseudocode
C.1 Vanilla AlphaZero Search
Pseudocode presented as Alg. 2.

C.2 Sequential Halving
Pseudocode presented as Alg. 3.

C.3 Self-play based Training
Pseudocode presented as Alg. 4.

D Hyperparameters
D.1 Input Representation
We use the infostate tensor in OpenSpiel [Lanctot et al., 2019] as the representation of infostate. In Bargaining games, this
includes information (1) which player the current agent is playing (2) pool configuration (3) the player’s own private valuation
(4) the current round number.



Algorithm 2 Vanilla AlphaZero-styled IS-MCTS

1: function VA-Search(s, v,p)
2: ∀(s, a), R(s, a) = 0, C(s, a) = 0.
3: ∀a ∈ A(s), sample d(a) ∼ Dirichlet(α)
4: for iter = 1, . . . , num sim do
5: Sample a world state: h ∼ Pr(h | s,p)
6: while do
7: if h is terminal then
8: r ← payoffs of players. Break
9: else if i ≜ τ(h) is chance then

10: a← sample according to chance
11: else if si(h) not in search tree then
12: Add si(h) to search tree.
13: r ← v(si(h)). Break
14: else if si(h) is root node s then

15: a← argmaxa
R(si,a)
C(si,a)

+ cpuct((1− ϵ)p(s, a) + ϵd(a))

√
C(si,a)

1+
∑

b C(si,b)
.

16: else
17: a← argmaxa

R(si,a)
C(si,a)

+ cpuctp(s, a)

√
C(si,a)

1+
∑

b C(si,b)

18: end if
19: h← ha
20: end while
21: for (si, a) in this trajectory do
22: R(si, a) += ri, C(si, a) += 1
23: end for
24: end for
25: return Action a = argmaxC(s, a), (During training) a policy target that is the normalized visited count of s.
26: end function

D.2 PPO Algorithms
We use the same PPO hyperparameters for every place when it is used. See Table 3. For single-agent PPO and IDPPO, the PPO
algorithm trains policy nets by minimizing the clipped loss Et

[
min

(
πθ(at|st)
πold(at|st) Ât, clip

(
πθ(at|st)
πold(at|st) , 1 + ϵ, 1− ϵ

)
Ât

)]
, where

At is estimated by generalized advantage estimation (GAE) [Schulman et al., 2016]. Value nets are updated by minimizing L2
loss from the value targets produced by GAE. For MAPPO, the loss is simply the summation of individual PPO losses of every
player.

D.3 R-NaD
We fine-tuned the learning rate to be 1e-3, the total number of game trajectories to be around 1e6. Others are the same as the
default hyperparameters in OpenSpiel [Lanctot et al., 2019].

D.4 NFSP
See Table 4.

D.5 PSRO
See Table 5.

D.6 FCP
See Table 6

D.7 Gumbel Search
See Table 7.

D.8 VA Search
See Table 8.



Algorithm 3 Sequential Halving

1: function Seq-Hal(Â,K)
2: Maintain a static variable epoch across different calls of this function, initialized as 0
3: if epoch == 0 then
4: Â ←K actions with largest g(a) + logit p(s, a)
5: epoch += 1
6: end if
7: a← an action that has not been visited ⌊ sim num

K

2epoch−1 log2 K
⌋ times at current epoch in Â

8: if All actions in Â have been visited ⌊ sim num
K

2epoch−1 log2 K
⌋ times in current epoch then

9: Â ← Top ⌊ K
2epoch

⌋ actions in Â based on g(a) + logit p(s, a) +G(q̂(s, a))
10: epoch← epoch+ 1
11: end if
12: return a, Â.
13: end function

Hyperparameter Name Values
Learning rate 2e− 4
Optimizer Adam
Batch size 16
Number of minibatch 4
Number of updates per epoch 10
Number of steps per PPO trajectory 64
Number of game trajectories in total 1e6
Entropy weight 0.01
Clipped parameter ϵ 0.2
GAE lambda 0.95
RL discount factor 1
Torso for policy nets [256, 256]
Torso for value nets [256, 256]

Table 3: Hyper-parameters for PPO.

E SUMREGRET Results
All SUMREGRETs are estimated using PPO as a best response method. The results are reported across three random seeds.

E.1 Barg(10, 0, 1)
See Figures 3.

E.2 Barg(30, 0.125, 0.935)
See Figures 4.

F Empirical Distribution of REGRET

F.1 Barg(10, 0, 1)
See Figures 5.

F.2 Barg(30, 0.125, 0.935)
See Figures 6

G Approximate Size of Deal or No Deal
To estimate the size of Deal or No Deal, we first verified that there are 142 unique preference vectors per player. Then, we
generated 10,000 simulations of trajectories using uniform random policy, computing the average branching factor (number of
legal actions per player at each state) as b ≈ 23.5.

Since there are 142 different information states for player 1’s first decision, about 142bb player 1’s second decision, etc.
leading to 142(1+b2+b4+b8) ≈ 13.2×1012 information states. Similarly, player 2 has roughly 142(1+b1+b3+b5+b7) =
5.63× 1011 information states.



Algorithm 4 Self-Play Training for Search Methods

1: function Self-Play-Train(G)
2: Initialize v,v′,p,p′

3: Dv = {}, Dp = {}
4: for iter = 1, . . . , num epoch do
5: h← Initial state h0 of G
6: while do
7: if h is terminal then
8: r ← payoffs of players Break
9: else if i ≜ τ(h) is chance then

10: a← sample according to chance
11: else
12: a, π ← SEARCH(si(h),v

′,p′)
13: Dp ← Dp ∪ {(si(h), π)}, π is the visiting frequency during search
14: end if
15: h← ha
16: end while
17: for si in this trajectory do
18: Dv ← Dv ∪ {si, ri}
19: end for
20: v,p← UPDATE(Dv, Dp)
21: Replace parameters of v′,p′ with the latest parameters of v,p periodically.
22: end for
23: return v,p
24: end function

Hyperparameter Name Values
RL network Learning rate 0.01
DQN buffer size 217

SL network learning rate 0.01
Optimizer Adam
Batch size 256
Number of game trajectories in total 1e6
Torso for RL net [256, 256]
Torso for SL net [256, 256]

Table 4: Hyper-parameters for NFSP.

Hyperparameter Name Values
Number of PSRO iterations 32
best-response method PPO
Number of game trajectories to train each BR 1e6
Meta-strategy solver Max-entropy Nash

Table 5: Hyper-parameters for PSRO.

Hyperparameter Name Values
Number of self-play runs 32
Number of checkpoint strategies considered per run 100
Strategies picked each run The first one, the last one, and the one that just achieves half of the social welfare of the last one
Self-play method IDPPO
best-response method PPO

Table 6: Hyper-parameters for FCP.



Hyperparameter Name Values
Learning rate 2e− 4
Optimizer SGD
Batch size 256
Max buffer size 217

c1 50
c2 0.1
sim num 200
K 16
Network delayed period 1000
Number of game trajectories in total 1e6
Torso for PVN [256, 256]

Table 7: Hyper-parameters for Gumbel Search.

Hyperparameter Name Values
Learning rate 1e− 3
Optimizer SGD
Batch size 256
Max buffer size 217

cpuct 20
sim num 200
Dirichlet α 1

|A| · 1
ϵ 0.25
Network delayed period 1000
Number of game trajectories in total 1e6
Torso for PVN [256, 256]

Table 8: Hyper-parameters for VA Search.
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Figure 3: SUMREGRET of Barg(10, 0, 1)
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Figure 4: SUMREGRET of Barg(30, 0.125, 0.935)
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Figure 5: Empirical Distribution of NE-Regret of Barg(10, 0, 1)
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Figure 6: Empirical Distribution of NE-Regret of Barg(30, 0.125, 0.935)
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