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Abstract

We present a novel yet simple deep learning approach, called input gradient annealing neu-
ral network (IGANN), for solving stationary Fokker-Planck equations. Traditional methods, such
as finite difference and finite elements, suffer from the curse of dimensionality. Neural network
based algorithms are meshless methods, which can avoid the curse of dimensionality. Moreover, at
low temperature, when directly solving a stationary Fokker-Planck equation with more than two
metastable states in the generalized potential landscape, the small eigenvalue introduces numer-
ical difficulties due to a large condition number. To overcome these problems, we introduce the
IGANN method, which uses a penalty of negative input gradient annealing during the training. We
demonstrate that the IGANN method can effectively solve high-dimensional and low-temperature
Fokker-Planck equations through our numerical experiments.

1 Introduction

Rare events, which refer to processes with timescales far exceeding those accessible by brute force
simulations [3], often arise from high free energy barriers between different meta-stable states, such
as chemical reactions and nucleation during phase transitions—ubiquitous phenomena in physical,
chemical, and biological sciences [37]. Studying rare events constitutes a central aim to elucidating
the transition mechanisms between different meta-stable states, including characterizing the transition
paths and the transition rates. The dynamics of many systems conform to a stochastic differential
equation (SDE) as follows:

dxt = f (xt) dt+
√
2εσ(xt)dWt, (1)

where f : Rd → Rd is the dynamical driving force, σ(x) ∈ Rn×m is the diffusion matrix, Wt ∈ Rm is
an m-dimensional standard Brownian motion, ε typically represents a small quantity that specifies the
noise strength, and this quantity is often directly proportional to the system’s temperature [14]. In
physical systems, the driving force f is a potential force −∇U [16], whereas in many biological systems
with energy inputs, the force is not solely a potential force [30, 29]. High energy barrier implies that
noisy strength ε is very small. In this scenario, we refer to such a system as a low-temperature system.
Then the probability density p(x, t) satisfies the Fokker-Planck equation [26, 29],

∂p(x, t)

∂t
= Lp(x, t) := −∇ · (f(x)p(x, t)− ε∇ · (D(x)p(x, t))), (2)

where L is the Fokker-Planck operator and the matrix D(x) = σ(x)σ(x)T ∈ Rn×n. The invariant
distribution p(x), governed by the stationary Fokker-Planck equation, i.e.,

−∇ · (f(x)p(x, t)− ε∇ · (D(x)p(x, t))) = 0, (3)

is vital for elucidating the transition mechanisms [29, 17].

Traditional grid-based numerical methods, including finite difference [1, 27] and finite element meth-
ods [24, 9], can be used to solve the steady-state Fokker-Planck equation to obtain the invariant
distribution. However, discretizing Eq. (3) over a finite spatial domain incurs exponentially increasing
computational cost as the system dimension increases, limiting applicability of these methods. Further-
more, for systems with multiple meta-stable states, low system temperatures pose numerical challenges
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due to very small non-zero eigenvalues of the Fokker-Planck operator L. These small eigenvalues are
related to the low transition rate between meta-stable states. The small eigenvalues lead to a slow
convergence rate when we solve Eq. (2) or a high condition number of the discretized linear system of
Eq. (3).

The Monte Carlo approaches [12, 4, 5] can be used to overcome the curse of dimensionality. However,
there are difficulties for this type of approaches to collect samples near the transition state. For gradient
systems, i.e., the driving force f(x) is a potential force and the matrixD is isotropic, one can sample the
system by introducing external potentials, such as umbrella sampling [28] and metadynamics [15]. The
invariant distribution can be obtained from the sampled distribution and external potentials. However,
similar approaches cannot be used to find the invariant distribution for non-gradient systems.

Efficiently solving high-dimensional Fokker-Planck equations at low temperature thus remains a chal-
lenge, especially for non-gradient systems. Deep neural networks (DNNs) provide a promising avenue to
solve high-dimensional differential equations [6, 19, 25, 31, 7, 36, 38, 39]. Prior works have incorporated
physical insights into DNNs for specific PDE contexts, including physical-informed neural networks
(PINNs) [6, 25] and variational formulations [31, 36, 23]. Theoretical works have made progress in
understanding the mechanisms underlying deep learning, such as frequency principle of low-frequency
bias [35, 34, 21, 40, 33, 19]. For Fokker-Planck equations, neural network based methods have been
developed by incorporating the normalization condition of the probability density function into loss
functions to avoid trivial solutions [32]; by minimizing the loss to obtain a decomposition of the force
field [18]; or by adding the entropy production rate (EPR) into loss function [41].

Let V = −ε log p(x, t) represent the generalized potential. Instead of solving the original Fokker-Planck
equation, we solve the Fokker-Planck equation in the general potential form, which can be written as

∇V (x)T (f(x)− ε∇ ·D(x) +D(x)∇V (x))− ε∇ · (f(x)− ε∇ ·D(x) +D(x)∇V (x)) = 0. (4)

The reason for this will be explained in the Preliminary section.

In numerical experiments of solving Eq. (4) by a PINN, we find that for a low-temperature Fokker-
Planck equation, although the loss is very small, the learned solution still has a very large difference
with the exact solution. The key reason is that as the temperature goes to zero, there exists a trivial
solution satisfying∇V (x) = 0. In experiments, we find that there are many flat segments in the learned
potential function for low temperature systems, i.e., ∇V (x) = 0. To address this challenge during
training, we introduce an Input Gradient Annealing Neural Network (IGANN), which is penalized by
−∇V (x) in the loss function. This term can avoid the trivial solution with ∇V (x) = 0. To ensure the
learning can converge to the exact solution, this penalty term gradually anneals during the training.
To show the effectiveness of IGANN, we conducted multiple experiments, including high-dimensional
and low-temperature problems, such as an eight-dimensional system with low-temperature of 100kBT
energy barrier.

This paper is structured as follows. Section 2 will review the Fokker-Planck equation and discusses
challenges in numerical simulation, along with related deep learning approaches. Section 3 then de-
lineates our proposed method. Section 4 demonstrates and evaluates the method on gradient and
non-gradient systems. Finally, Section 5 presents conclusions.

2 Preliminary

In this section, we present some preliminary knowledge about the Fokker-Planck equation and offer
explanations for the issues that arise when using traditional numerical methods for solving it.

2.1 Fokker-Planck equation in the generalized potential form

Instead of solving the stochastic differential equation (SDE) (1) to determinate a particle’s trajectory,
we focus on the average behavior of a statistical ensemble of Brownian particles, i.e., the probability
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density function p(x, t), which satisfies the Fokker-Planck equation (FPE) (2). The invariant distri-
bution of the steady-state, denoted as pss(x), satisfies:

∇ · J = 0, (5)

where the probability flux J is defined as J = f(x)pss(x)− ε∇ · (D(x)pss(x)).
Rare event dynamics becomes important only in the following case: the probabilities of visiting

some stable states are not small, and the transition times to escape from some of these stable states
to visit the other states are not too long. Studying rare event dynamics involves three basic goals.
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Figure 1: The generalized potential V (x).

First, determine the probability of visiting each meta-stable state. This is simply the integral of
the steady-state solution of the Fokker-Planck equation within each well. The peak values of the
steady-state probability density function or the potentials within the wells, can roughly provide these
probabilities. The first eigenvalue of the Fokker-Planck operator (denoted as L), is zero and the
corresponding eigenfunction is the steady-state solution. The second eigenvalue of L, corresponding
to the rare event dynamics, is very small (as discussed in the next subsection), and the associated
eigenfunction has opposite signs in the example of two wells. As shown in Fig. 2, this system is
a one-dimensional gradient system with a driving force f = −∇V (x). The generalized potential

V (x) = −x2

2 − x4

4 , with an isotropic matrix D = I, and a noise strength ϵ = 0.02. The generalized
potential V is shown in Fig. 1. Since the second eigenvalue is very small, it is hard to get rid of
the second eigenfunction in the neural network solution of the Eq. (5), because the numerical error
of the solution is usually large but the residual on the LHS of the Eq. (5) is too small. Meanwhile,
the contribution of the second eigenfunction to the neural network solution can significantly change
the heights of the peaks in the probability density function, leading to a large error in estimating the
probabilities of visiting the stable states.
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Figure 2: Eigenfunctions of the zero eigenvalue (left) and the first nonzero (right). Note that the left
one is the steady-state solution of the Fokker-Planck equation up to a normalization constant.

Second, identify the transition mechanism(s) between meta-stable states. This is usually achieved
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by determining the transition path, which can be obtained by solving Eq. (5) using string methods [8]
and other numerical methods.

Third, estimate the transition rate. This is usually obtained either by evaluating the probability
density at the saddle point (the transition point on the transition path) or by calculating the energy
barrier (the energy difference between the steady-state and the saddle point). For a more accurate
estimation, information from the Hessian matrix of the potential V is needed.

Note that the probability density at the saddle point is usually very small (exponentially small).
Thus the neural network solution of the Fokker-Planck equation is not able to characterize the smallness
of the probability density function at the saddle point. This is why it is important to solve the steady-

state Fokker-Planck equation using Eq. (6). let pss(x) = exp
(

−V (x)
ε

)
, lss(x) = f(x) − ε∇ ·D(x) +

D(x)∇V (x), then we have the equation for the generalized potential function V (x):

ε∇ · lss(x)− lss(x) · ∇V (x) = 0. (6)

Alternatively, we can decompose f(x) using the following formulation:

f(x) = −D(x)∇V (x) + ε∇ ·D(x) + lss(x), (7)

where lss(x) satisfies Eq. (6). To illustrate the fundamental principles of the generalized potential
landscape, consider a gradient system with

f(x) = −∇U(x), D = I, (8)

it follows that pss(x) =
1
Z exp

(
−U(x)

ε

)
, implying that the generalized potential V (x) is equivalent to

the driving potential U(x) up to a constant:

V (x) = U(x) + ε logZ. (9)

In biological systems, the generalized potential V (x) is related to the global quasi-potential, which
provides insights into the global behavior of the system [42].

2.2 Limitations of traditional methods

Grid-based methods such as finite difference (FDM) and finite element (FEM) face challenges of
exponential scaling with dimensionality due to spatial discretization, which limits their applicability for
high-dimensional problems. Moreover, a small ε leads to additional challenges in traditional numerical
methods, fundamentally stemming from a very small non-zero eigenvalue.

If we assume that the Fokker-Planck operator possesses a discrete spectrum, then it is characterized
by eigenfunctions p0, p1, p2, . . . , corresponding to distinct eigenvalues λ0, λ1, λ2, . . .. Here, λ0 is the zero
eigenvalue and p0(x) is the steady-state solution. If the system satisfies the detailed balance condition,
the Fokker-Planck operator L can be brought into a self-adjoint operator with real and non-negative
eigenvalues. However, in most cases, L cannot be brought into a self-adjoint form. Under these
circumstances, the first nonzero eigenvalue λ1 is positive while others are complex-valued with a non-
negative real part. [22, 11, 13, 2] In the small noise limit, i.e., ε ≪ 1, λ1 is asymptotically related to
the mean first passage time τ̄ by the following equation:

λ1 ∼
1

τ̄
. (10)

As the value of ε approaches infinitesimally small magnitudes, λ1 decays exponentially fast. For a
visual illustration of how temperature affects this small eigenvalue, let us examine the one-dimensional
system described previously. The computation domain is set to [−2, 2]. The eigenvalues of L can be
computed within this domain using the finite difference method with zero-flux boundary conditions,
i.e., J(x) · n = 0. Twenty eigenvalues are shown in Fig. 3, where, as ε gradually decreases, the second
smallest eigenvalue λ1 approaches zero.

In this scenario, traditional methods face significant challenges. A prevalent strategy to obtain
the invariant measure involves solving the steady-state Fokker-Planck equation. To achieve this, we
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Figure 3: The magnitudes of the first twenty (in ascending order) non-zero eigenvalues of the matrix
A are shown for varying epsilon values. The zero eigenvalue is not shown.

discretize the operator of the Fokker-Planck equation using the finite difference method and specify a
no-flux boundary condition. Subsequently, we obtain the following system of linear equations:

Ap = 0, (11)

accompanied by the normalization condition:∫
Ω

p(x)dx = 1, (12)

where Ω represents the computation domain.
To solve this system of linear equations, it is customary to set a particular element to 1, move the

corresponding column to the right-hand side, and eliminate a row. This process results a new matrix
Ã and a new system of linear equations, given by Ãp = b. Due to the presence of the small eigenvalue
λ1 in the original matrix A, the condition number of the new matrix Ã becomes exceedingly high.
This significantly increases the computational challenges in solving the new system of linear equations.

Monte Carlo approaches, enhanced by sampling methods such as umbrella sampling and meta-
dynamics, are effective for gradient systems, but they are unsuitable for non-gradient systems. In
practical scenarios, where we set the diffusion matrix D(x) to be the identity matrix I and the dimen-
sion of x is very high, it becomes numerically difficult to perform the decomposition by solving the
steady-state Fokker-Planck equation. Instead, one might be just interested in the probability density
function π(ξ), where ξ(x) is a lower-dimensional reaction coordinate.

π(ξ) =
1

Z

∫
Ω

exp

(
−V (x)

ε

)
δ(ξ(x)− ξ)dx. (13)

Since we do not have an explicit solution of V (x) and the integral is in a high dimensional space, we
wish to find π(ξ) using a sampling method. In the subsequent discussion, we will briefly introduce the
umbrella sampling method and discuss its inapplicability to non-gradient systems.

For a gradient system with f(x) = −∇U(x), we introduce an external potential U b(x). Conse-
quently, the dynamical force becomes −∇(U(x) + U b(x)). Thus, the biased density function πb(ξ)
satisfies

πb(ξ) =
1

Zb

∫
exp

(
−U(x) + U b(ξ(x))

ε

)
δ(ξ(x)− ξ)dx

=
1

Zb
exp

(
−U b(ξ)

ε

)∫
exp

(
−U(x)

ε

)
δ(ξ(x)− ξ)dx

=
Z

Zb
exp

(
−U b(ξ)

ε

)
π(ξ).

(14)
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Therefore, the free energy ū(ξ) := −ε log π(ξ) can be calculated from the biased free energy ūb(ξ)

ū(ξ) = ūb(ξ)− U b(ξ) + ε log(
Z

Zb
). (15)

However, when f(x) is not a gradient, namely, l(x) ̸= 0, the situation is different. Originally, we have

f(x) = −∇V (x) + l(x), (16)

l(x) · ∇V (x)− ϵ∇ · l(x) = 0. (17)

When the external potential U b(x) is applied, the decomposition becomes

f(x)−∇U b(ξ(x)) = −∇V b(x) + lb(x), (18)

lb(x) · ∇V b − ϵ∇ · lb(x) = 0, (19)

obviously, we have
V (x) ̸= V b(x)− U b(ξ(x)) := R(x), (20)

denoting T (x) := V (x)−R(x), it satisfies l(x)− lb(x) = ∇T (x). In this case, we have

π(ξ) =
1

Z

∫
exp

(
−V (x)

ε

)
δ(ξ(x)− ξ)dx

=
1

Z
exp

(
U b(ξ)

ε

)∫
exp

(
−V b(x) + T (x)

ε

)
δ(ξ(x)− ξ)dx

=
Zb

Z
exp

(
U b(ξ)

ε

)〈
exp

(
−T (x)

ε

)
δ(ξ(x)− ξ)

〉
b

,

(21)

where ⟨·⟩b denotes the expectation under the biased probability density function. In principle, one
can derive a nonlinear second-order partial differential equation (PDE) for T (x). However, when
the dimension of the dynamical system is high, it becomes impractical to determine T (x) by solving
the PDE of T (x). Consequently, we must find an alternative method to estimate the expectation〈
exp

(
−T (x)

ε

)
δ(ξ(x)− ξ)

〉
b
using the sample data.

3 Input gradient annealing network

To effectively determine the generalized potential governed by the FPE, we employ deep neural net-
works (DNNs) to parameterize the generalized potential V . The least squared loss function is defined
as

L =

∫
Rd

∣∣∇Vθ(x)
T lθ(x)− ε∇lθ(x)

∣∣2 dµ(x), (22)

where lθ(x) = f(x) +D(x)∇Vθ(x) − ε∇ ·D(x), and µ is the probability measure. However, solely
minimizing loss defined in Eq. (22) often fails to recover the exact potential for low temperature
system. As illustrated in Fig. 4 for a 1D system, despite the loss reaching 5e-5, the neural network
poorly approximates the exact potential. Experiments reveal that the gradient of network with respect
to the input x tends to zero locally. Thus, unlike regular penalties, we incorporate a negative term to
prevent vanishing gradients. Specifically, the loss is then given by the following equation:

L =

∫
Rd

∣∣∇Vθ(x)
T lθ(x)− ε∇lθ(x)

∣∣2 dµ(x)− β

d

∫
Rd

|∇Vθ(x)|2 dµ(x). (23)

β is a hyperparameter that decays with each training step, following the update rule β ← β(1−βdecay),
where both the initial value β0 and the decay coefficient βdecay are hyperparameters. The descending
property of β is to ensure the learning towards minimizing the original loss (22) in the final stage of
the training. In all numerical examples, we employ samples from Latin hypercube sampling (LHS)
[20] or from the simulation of SDE (1) to discretize the integral form of the loss function, i.e.,

L =
1

N

N∑
i=1

∣∣∇Vθ(xi)
T lθ(xi)− ε∇lθ(xi)

∣∣2 − 1

N

β

d

N∑
i=1

|∇Vθ(xi)|2 . (24)
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Figure 4: Minimizing the loss function (22).

4 Related works

In this section, we review a related method from Ref. [18], which will be used for comparison. This

work modeled the potential as Vθ(x) = Ṽθ(x) +
∑d

i=1 ρi(xi − ci)
2, where Ṽθ(x) is a neural network,

ρi and ci are learnable parameters, and the residual component l(x) via neural network lθ(x), giving
fθ(x) = −D∇Vθ(x) + lθ(x). Network weights were optimized by minimizing the loss function:

L = Ldyn + λLcon, (25)

where

Ldyn =
1

d

∫
Rd

|f(x)− fθ(x)|2 dµ(x),

Lcon =

∫
Rd

∣∣∇Vθ(x)
T lθ(x)− ε∇ · lθ(x)

∣∣2 dµ(x), (26)

where µ(x) represents a probability measure, Ldyn enforces fθ ≈ f , Lcon imposes constraint (4) on
f decomposition, and λ balances the loss terms. The integrals above in the training process are
approximated by finite sums using data points sampled from the uniform distribution on a bounded
domain, or a mixture of the uniformly sampled data points and those sampled from the numerical
simulation of the SDE (1). For convenience in comparing results, we will refer to this method as the
LLR method.

5 Results

To demonstrate the efficacy of our approach, we apply it to gradient and non-gradient systems across
various temperatures. For the non-gradient systems, we compare our method with the approach
described in [18]. In particular, we apply our method to several examples presented in [18], including the
two metastable states, the biochemical oscillation network, and a ten-dimensional system. Our method
demonstrates good performance in these examples, showing comparable results to those obtained in
[18]. Furthermore, we construct another high energy barrier example to test the robustness of our
method. In this challenging scenario, our method maintains its effectiveness, while the method from
[18] encounters some difficulties in capturing the correct dynamics. In all examples, we utilize four-
layer fully-connected neural networks equipped with the GELU activation function and He uniform
initialization [10]. During the training process, we perform LHS in each epoch or simulate SDE (1) to
obtain samples. We also use a cosine annealing learning rate scheduler. After training, the accuracy
of the predicted potential is evaluated using the relative root mean square error (rRMSE) and relative
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mean absolute error (rMAE):

rRMSE =

√∑N
i=1

1
N (Vθ(xi)− V (xi))2√∑N

i=1 V
2(xi)

, (27)

rMAE =

∑N
i=1

1
N |Vθ(xi)− V (xi)|∑N

i=1 |V (xi)|
, (28)

where Vθ is the learned generalized potential, and V is the analytic solution or the numerical solution
obtained by traditional methods. To facilitate comparison across different cross-sections, both solutions
Vθ and V are shifted so that their minimum values are zero.

5.1 Gradient systems

We demonstrate the effectiveness of our method in a three-dimensional gradient system. The dynamical
driving force is given by:

f : x = (x, y, z)T ∈ R3 → (4 sin(4x), 4 sin(4y), 4 sin(4z))T ∈ R3, (29)

The corresponding dynamical system is:
dx = 4 sin(4x)dt+

√
2εdW x,

dy = 4 sin(4y)dt+
√
2εdW y,

dz = 4 sin(4z)dt+
√
2εdW z,

(30)

where the computation domain is set to [−π
2 ,

π
2 ]× [−π

2 ,
π
2 ]× [−π

2 ,
π
2 ]. For data collection, we gathered

2000 samples per epoch using LHS, and set β = 100 with βdecay = 3× 10−4. For ε = 0.04, considering
the symmetry of the exact potential, we display only the cross-section at z = 0 in Fig. 5. The
quantitative assessment, which includes results for other values of ε, is provided in Table 1. The
results demonstrate good accuracy with very low error.
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Figure 5: The learned potential Vθ compared with true potential for ε = 0.04 (the IGANN prediction
(left), exact potential (middle) and central line y = z = 0 (right).

Table 1: Example ??
rRMSE (IGANN) rMAE (IGANN)

ε = 0.1 1.02% 0.518%
ε = 0.07 0.667% 0.358%
ε = 0.04 0.255% 0.154%

5.2 non-gradient systems

In this section, we demonstrate the efficacy of our method in non-gradient systems.

8



5.2.1 Two-dimensional systems

Two metastable states dynamical system. We consider the following two-dimensional dynamical
system described by {

dx = ( 15x(1− x2) + y(1 + sinx))dt+
√

ε
5dW

x,

dy = (−y + 2x(1− x2)(1 + sinx))dt+
√
2εdW y,

(31)

where the computation domain is set to [−2, 2] × [−3, 3]. We conduct computations for ε = 0.1, 0.05
to show that our IGANN method can perform as well as the LLR method [18]. In this case, a small
coefficient β is sufficient, as larger β values would increase the computational time. For ε = 0.1, we
set β = 5. with βdecay = 4 × 10−4. For ε = 0.05 with βdecay = 4 × 10−4, we set β = 10. The
learned potentials using the IGANN method for ε = 0.1 and ε = 0.05 are illustrated in Fig. 6 and
Fig. 7, together with the finite difference solution. The cross section results and error comparisons are
provided in Table 2.
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Figure 6: The learned potential Vθ compared with true potential for ε = 0.1 (the IGANN prediction
(left), true potential (middle) and central line y = 0 (right).
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Figure 7: The learned potential Vθ compared with true potential for ε = 0.05 (the IGANN prediction
(left), true potential (middle) and central line y = 0 (right).

Table 2: Example 5.2.1 two metastable system
ε = 0.1 (IGANN) ε = 0.05 (IGANN) ε = 0.1 (LLR) ε = 0.05 (LLR)

rRMSE 0.636% 0.66% 1.07% ± 0.43% 1.94% ± 0.84%
rMAE 0.571% 0.605% 1.02% ± 0.4% 1.93% ± 0.9%

Biochemical oscillation network model. For the limit cycle dynamics, the potential landscape
will have a limit-cycle shape when the system temperature is low.{

dx = (κ(α
2+x2

1+x2
1

1+y − ax))dt+
√
2εdW x,

dy = ( κ
τ0
(b− y

1+cx2 ))dt+
√
2εdW y,

(32)
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where κ = 100, α = a = b = 0.1, c = 100, τ0 = 5, we conduct the computation for ε = 0.1. In the
first epoch, we use the LHS to sample 10000 samples in the larger domain [−0.8, 12]× [−0.8, 8], then
we use these samples to simulate the SDE (1) using the Euler-Maruyama scheme, and the resulting
data serves as our training samples. The learning potential is shown in Fig. 8, our IGANN method
can effectively capture the features of the potential landscape, the rRMSE and rMAE are 5.63% and
2.13% respectively. These results are slightly better than the results in Ref [18], where the rRMSE
and rMAE were 8.97%± 2.83% and 6.63%± 1.54%, respectively.
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Figure 8: The learned potential Vθ compared with true potential for ε = 0.1 (the IGANN prediction
(left), exact potential (middle) and central line y = 2 (right).

Synthetic dynamical system example. The dynamical driving force f is constructed in accor-
dance with the given generalized potential V = 3(1− x2)2 + y2 + x and the coefficient ε:

f(x) = ∇× f − 1

ε
∇V (x)× f −∇V (x), (33)

where F = (0, 0, 1)T . At each training epoch, we gather 2000 samples using LHS, and set β = 150
with βdecay = 3 × 10−4. The learned potential Vθ is illustrated in Fig. 9, it almost coincides with
the true solution. In Table 3, we can see that it can learn the generalized potential well for different
coefficients ε.
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Figure 9: The learned potential Vθ compared with true potential for ε = 0.04 (the IGANN prediction
(left), true potential (middle) and central line y = 0 (right).
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Figure 10: The learned potential Vθ using the LLR method with ε = 0.1 (the LLR prediction (left),
true potential (middle) and central line y = 0 (right).

We compare our IGANN method with the LLR method. For the synthetic dynamical system
example, the solution computed using the LLR method [18] can not converge to the exact potential
as illustrated in Fig. 10. The LLR method fails to recover the correct well.

Table 3: Example 5.2.1 self-constructed system
rRMSE (IGANN) rMAE (IGANN)

ε = 0.1 0.135% 0.130%
ε = 0.07 0.611% 0.559%
ε = 0.04 0.309% 0.285%

5.2.2 Three-dimensional systems

For a higher-dimensional non-gradient system, we consider a three-dimensional dynamical system
with the dynamical driving force f constructed according to the given generalized potential V =
3(1− x2)2 + y2 + z2 + x and the coefficient ε:

f(x) = ∇× f − 1

ε
∇V (x)× f −∇V (x). (34)

During training, at each epoch, we gather 2000 samples using LHS. We set β = 40 with βdecay =
2× 10−4 for ε = 0.1, β = 40 with βdecay = 1.5× 10−4 for ε = 0.07, and β = 70 with βdecay = 1× 10−4

for ε = 0.04. We demonstrate the cross-section of the learned potential Vθ in Fig. 11, which almost
coincides with the exact solution. The rRMSE and rMAE errors are provided in Table 4.
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Figure 11: The learned potential Vθ compared with true potential for ε = 0.04 (the IGANN prediction
(left), true potential (middle) and central line y = 0 (right).
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Table 4: Example 5.2.2
rRMSE (IGANN) rMAE (IGANN)

ε = 0.1 1.79% 0.880%
ε = 0.07 2.96% 0.969%
ε = 0.04 2.03% 1.53%

5.2.3 Four-dimensional systems

In this section, we consider the four-dimensional dynamical system. The dynamical driving force f is
constructed according to the Eq. (34), and the generalized potential is V = 3(1−x2)2+y2+z2+ω2+x.
We set β = 150 with βdecay = 2× 10−4 for ε = 0.04. At each training epoch, we collect 2000 samples
with LHS sampling. We show the cross section of the learned potential Vθ in Fig. 12 and Fig. 13. As
can be seen from the pictures, the solution almost coincides with the exact solution.
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Figure 12: The learned potential Vθ compared with true potential for ε = 0.04 (the IGANN prediction
(left), exact potential (middle) and central line y = 0 (right).
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Figure 13: The learned potential Vθ compared with true potential for ε = 0.04 (the IGANN prediction
(left), exact potential (middle) and central line y = 0 (right).

5.2.4 Eight-dimensional systems

In order to demonstrate the ability of our method for high dimension problems, an eight-dimensional
dynamical system is constructed using Eq. (34), the generalized potential V is given by 3(1− x2

1)
2 +∑8

i=2 x
2
i + x:

f(x) = ∇× f − 1

ε
∇V (x)× f −∇V (x) (35)

We set β = 150 with βdecay = 2× 10−4 for ε = 0.04. At each training epoch, we gather 2000 samples
using LHS. We demonstrate the cross-section of the learned potential Vθ in Fig. 14, the upper picture
is the learned solution in different coordinate planes xi − xj by letting other coordinate components
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xk = 0, k ̸= i, j , and the lower picture is the exact solution in the corresponding plane. We can see
the learned solution closely approaches the exact solution. For specific comparison, we present the
solution on different axes xi in Fig. 15, by letting the other coordinate components xj = 0, j ̸= i, the
well can be captured accurately.
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Figure 14: The upper pictures are learned potential Vθ (IGANN) and the lower pictures are exact
potential V for ε = 0.04.
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Figure 15: The learned potential Vθ (IGANN) compared with true potential for ε = 0.04.

5.2.5 Ten-dimensional systems

We also test our method in a ten-dimensional system which is tested by LLR method [18]. The system
is described by

ẋ = Bh
(
B−1x

)
+
√
2ϵBξ, t > 0,

where h(y) = (h1(y), . . . , h10(y))
T
is a vector field with

h2k−1(y) = v1 (y2k−1, y2k) := −y2k−1 + y2k (1 + sin y2k−1)

h2k(y) = v2 (y2k−1, y2k) := −y2k − y2k−1 (1 + sin y2k−1) , 1 ≤ k ≤ 5,

B = [bi,j ] is a 10× 10 matrix given by

bi,j =


0.8, for i = j = 2k − 1, 1 ≤ k ≤ 5
1.25, for i = j = 2k, 1 ≤ k ≤ 5
−0.5, for j = i+ 1, 1 ≤ i ≤ 9
0, otherwise

and coefficient ε = 0.1. We set β = 80 with βdecay = 3× 10−4. At each training epoch, we gather
1× 104 samples using LHS. As shown in Fig. 16, the results obtained by our IGANN method (upper)
are completely consistent with the Ground Truth (lower).
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Figure 16: The learned potential Vθ (IGANN) compared with true potential for ε = 0.1.

6 Conclusion

In this paper, we present the input gradient annealing neural network method, which is simple yet
effective regardless of the temperature of the dynamical system. This method can help compute the
exact solution by adding a negative penalty term in the loss function. We examine its effectiveness in
various examples, including gradient systems and non-gradient systems across different temperatures.
In all examples, numerical solutions agree well with the reference solutions. Furthermore, this method
does not require any prior knowledge of the free energy landscape or the force field, enabling us to
study low-temperature systems.
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