arXiv:2405.00453v1 [cs.CY] 1 May 2024

[L]PREPRINT

Fuzzy Intelligent System for Student Software Project

Evaluation

Anna Ogorodova
Kazakh-British Technical University/School of Information Technology and Engineering, Almaty, 050000, Kazakhstan

E-mail: an_ogorodova@kbtu.kz
ORCIDiD:

Pakizar Shamoi*

Kazakh-British Technical University/School of Information Technology and Engineering, Almaty, 050000, Kazakhstan
E-mail: p.shamoi @kbtu.kz

ORCIDiD: https://orcid.org/0000-0001-9682-0203

*CorrespondingAuthor

Aron Karatayev
Kazakh-British Technical University/School of Information Technology and Engineering, Almaty, 050000, Kazakhstan

E-mail: ar_karatayev@kbtu.kz
ORCIDID:

Received: Date Month, Year; Revised: Date Month, Year; Accepted: Date Month, Year; Published: Date Month, Year

Abstract: Developing software projects allows students to put knowledge into practice and gain teamwork skills. How-
ever, assessing student performance in project-oriented courses poses significant challenges, particularly as the size of
classes increases. The current paper introduces a fuzzy intelligent system designed to evaluate academic software projects
using object-oriented programming and design course as an example. To establish evaluation criteria, we first conducted
a survey of student project teams (n=31) and faculty (n=3) to identify key parameters and their applicable ranges. The
selected criteria—clean code, use of inheritance, and functionality—were selected as essential for assessing the quality
of academic software projects. These criteria were then represented as fuzzy variables with corresponding fuzzy sets.
Collaborating with three experts, including one professor and two course instructors, we defined a set of fuzzy rules for
a fuzzy inference system. This system processes the input criteria to produce a quantifiable measure of project success.
The system demonstrated promising results in automating the evaluation of projects. Our approach standardizes project
evaluations and helps to reduce the subjective bias in manual grading.

IndexTerms: Fuzzy sets and logic, software project evaluation, student performance, automated grading, object-oriented
programming

1. Introduction

Academic software projects are essential for information technology students to gain hands-on experience, real-world
applications, teamwork, and portfolio building. Educational institutions, especially technical universities, often offer
courses that teach programming. These courses require students to undertake projects like developing code to solve
specific problems. While courses like Algorithms and Data Structures or Fundamentals of Programming might use
automated assessments through input and output files, evaluating student performance in project-oriented courses like
Object-oriented programming is more complex due to the diverse nature of project work. Therefore, given the importance
of software projects in an academic environment, evaluation and feedback from teachers are increasingly taking a key
position in education [1].

In general, artificial intelligence (AI) has a lot of potential applications in education, particularly in tutoring, assess-
ment, and personalization [2]. Another important feature of Al in education is the ability to grade students automati-
cally [2]. Providing students with timely and accurate feedback through qualitative assessment improves their learning in
a higher education setting [3].

Assessing student performance in project-oriented courses is a complex task that demands careful attention. As the
number of students in technical programs increases, the instructor’s workload in checking student software projects also
increases. This is due to time constraints, varying levels of student knowledge, limited resources, and the complexity of

Volume (), Issue Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

Increasing num-
ber of students

Instructor work- Variation in student . Subjectivity in
. > > Limited resources > . .
load increase knowledge levels evaluation criteria
Less complete Difficulty in providing Decreased objec- Differences in inter-
project analysis individualized feedback tivity of grades pretation by evaluators
Missed errors, in- Difficulty in analyz- Confusion and un-
complete feedback ing complex projects certainty for students

Difficulty in student
understanding of feedback

v

Decreased motiva-
tion and learning

Fig 1. Flowchart depicting the challenges of evaluating academic software projects

the projects (see Fig. 1). The instructor’s overload can lead to less complete project analysis, missed errors, subjective
grading, or incomplete feedback.

The next problem that may arise when evaluating academic projects is limited resources. As the number of students
increases, the instructor may need more resources to validate software projects, such as grading software or more teaching
assistants. Assuming each project takes 30 minutes, an instructor would need about 150 hours to review 300 projects.
The teacher may also need additional time to provide feedback, assign grades, and communicate with students about
their projects. In addition, with an increased number of students, the instructor will likely encounter a broader range
of comprehension and skill levels [4], which makes it difficult to provide individualized feedback appropriate to each
student’s level of understanding and skill. Delays in feedback can lead to decreased engagement, motivation, and increased
anxiety among students, significantly hindering their learning experience [5].

The problem of software project estimation is a complex issue requiring careful consideration of many factors [6].
Software projects may sometimes need clear objectives that can be easily measured. In an academic context, success
may be defined differently, depending on the project’s goals. For example, a program project may be evaluated on its
technical merit, the student group’s work, communication skills, and knowledge of theoretical material. Each of these
factors requires its own set of evaluation criteria, and they can be challenging to measure objectively. Evaluating a
software project can be subjective, as instructors may have different opinions about what constitutes success or failure [7].
For example, students may consider a project a success if it meets technical requirements. In contrast, faculty may
consider it a success if all team members are equally involved in its development. Particular attention should be paid to
another significant problem, evaluation uncertainty, which arises when more than one expert or evaluator is involved in
the evaluation process. Differences in understanding assessment criteria and subjective views can lead to differences in
final grades, creating confusion and uncertainty for students. It is crucial to develop evaluation criteria consistent with the
project’s goals and consider the context of the academic environment.

In this context, developing a fuzzy intelligent system for evaluating student software projects can address these prob-
lems. Such a system can automate the evaluation process, making it more objective, consistent, and transparent, a kind
of evaluation assistant system (see Fig.2). Developing software is by its nature imprecise [8]. The motivation for using
Fuzzy Logic in this problem is that it can handle ambiguity and uncertainty, incorporate expert knowledge, and combine
multiple criteria into an assessment [9]. In addition, fuzzy logic will allow the system to better adapt to the diversity of
student projects.

This paper introduces an evaluation model for software development projects that utilize fuzzy logic to address the
uncertainty resulting from human subjective perception during decision-making. The main contributions of this study are:

* Identifying the critical criteria for evaluating academic software projects based on survey and real academic projects

* Development of an intelligent system for evaluating software projects, its assessment done by experts.

The structure of the paper is as follows. Section I is this Introduction. Section II presents a thorough analysis of
previous studies of academic project evaluation. Section III describes research methods, including an explanation of the
fuzzy sets and logic that serve as the basis system. The section also covers the data collection procedure and the surveys
used to identify the evaluation criteria. Results are presented in section IV. The study’s conclusions and recommendations
for future improvements are presented in Section V.

2 Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

PROBLEM: Evaluating numerous student Feedback

software projects overwhelms professors,
causing time constraints and compromising
feedback quality.

k Professor

M=% M= I= = %2%
Ea1L| E1L| E81l| &,

L L L [|

Projects

Students
EVALUATION ASSISTANT enhancing the student . ..
project evaluation process by automatic evaluation of xSk giopCiieng
certain project parts and suggesting potential project

weaknesses that further need to be checked by the
professor, e.g., god antipattern, no overloading, etc.

Evaluation
Recommendations

t =y |

|
Professor !

I

= M=% fl= M=
£all) £all) 2alh|" £ 88%

Students

Projects

Fig 2. Idea of evaluation assistant

2. Related Work

The current section provides a review of the existing literature on Al methods (specifically, fuzzy sets and logic) for
evaluating software projects.

Developing assessment strategies and techniques that can facilitate learning and teaching effectively has been the
subject of extensive research [3]. Specifically, Al has been widely applied in education [10].

Several works propose using fuzzy logic theory to evaluate students’ performance [11,12].

The authors used a criterion-based approach to evaluate student projects based on experiments. Students’ work was
graded according to a list of pre-agreed grading criteria developed by instructors in collaboration with students [13]. The
authors allow users to modify the main and sub-criteria and their weights in decision-making systems according to their
evaluation priorities. An objective multi-criteria decision-making system for evaluating the effectiveness and problem-
oriented concepts in education has been proposed [14]. A survey questionnaire consisting of open-ended questions was
also conducted in some studies to see the effectiveness of the study and get feedback.

Another study used fuzzy sets to determine the evaluation criteria and their corresponding weights. The matched
criteria are then used to assess student learning outcomes [15]. The authors propose various criteria, such as acceptability,
number of program classes, test coverage, and effectiveness, to help instructors evaluate program projects according to
the criteria, given the strengths and limitations of the preferred project evaluation model, and to help project evaluators
understand the logic behind different approaches to project evaluation [16]. The problem of assessing students’ academic
performance using the fuzzy logic model has been considered in [17]. Their research was based on assessments such
as grades in lectures, practical classes, students’ independent work, and laboratory work as criteria for academic perfor-
mance. The other study introduced the fuzzy assessment system for distance learning that analyzes student performance,
behavior, and exams [18]. Specification of teaching activity using fuzzy logic was introduced in [19].

Several studies considered the idea of automatic grading of students’ projects [20], [21]. The method for automatically
evaluating and grading student UML diagrams was recently proposed [20]. It employs a Java-based algorithm that pro-
cesses the instructor’s and the student’s solution diagrams, subsequently generating the student’s scores while detecting
mistakes. The other study utilized the hybrid approach, fuzzy logic, and hierarchical linear regression to evaluate students’
performance [21].

Evaluating academic software can be complex and multifaceted. Intelligent systems may need help to handle such
a complex evaluation, especially if multiple criteria must be considered. Some aspects of academic software evaluation,
such as user experience and interface design, are subjective. It can be difficult for an intelligent system to handle subjective
evaluations because they vary from user to user. The fuzzy approach has also been used in an assessment model that builds
upon the VIKOR compromise ranking method and uses the fuzzy multi-criteria decision-making (MCDM) approach to
gauge the success of software development projects [8]. Another study focused on applying the association rules for
project evaluation [22].

A recent work [3] provides a comparative analysis of how Al can improve student learning outcomes through assess-

Volume (), Issue 3

Fuzzy Intelligent System for Student Software Project Evaluation

ment and feedback procedures. The study provides an overview of the most popular Al and ML algorithms for student
success. According to the results, I-FCN outperformed other methods (ANN, XG Boost, SVM, Random Forest, and De-
cision Trees). Fuzzy Logic was not used in this analysis. More recent work by [23] used a hybrid approach (ML models
and fuzzy sets) to evaluate students’ readiness for post-graduation challenges using surveys.

As we see, neural networks, deep learning, random forest, logistic regression, multilayer perceptron, naive Bayes,
support vector machines, decision trees, and fuzzy methods have all been used in studies for the assessment and evaluation
of student performance evaluation in the literature. However, most studies use subjectively defined criteria, and limited
works provide ways to customize these methods to specific courses and experts. Additionally, despite the numerous
research studies on student performance evaluation, only a few works focused on engineering project evaluation.

3. Methods

The creation of an intelligent system is divided into several stages, including data collection, definition of evaluation
criteria, system design, and development. Data collection includes gathering relevant information from academic soft-
ware projects via surveys of students and experts (teachers). Questionnaire responses will be collected and analyzed to
determine key evaluation factors and their importance. The system design phase focuses on defining the architecture and
functionality of the intelligent system. The development phase involves writing code and building the intelligent system.

3.1. Fuzzy Sets and Logic

Fuzzy set theory will be used as the basis for the evaluation model. Lotfi Zadeh introduced fuzzy sets in the 1960s to
represent uncertainty and fuzziness in natural language expressions [24]. Fuzzy sets are used in various applications, such
as decision-making, control systems, pattern recognition, and artificial intelligence. Fuzzy logic allows the representation
of imprecise and uncertain information often found in software project evaluation. Fuzzy sets will be used to define
evaluation criteria and linguistic variables.

3.1.1 Membership Functions and Fuzzy Sets

Fuzzy sets, first introduced by Zadeh [24], allow degrees of membership, which are indicated with a number between
0 and 1. So, in contrast to the pair of numbers {0,1} in Boolean logic, we move to all the numbers in a range [0,1]. This is
called a membership function (MF) and is denoted as 1 4(x) and, in this way, can denote fuzzy sets. MFs are mathematical
techniques for modeling the meaning of symbols by indicating flexible membership to a set. We can use it to represent
uncertain concepts like age, performance, building height, etc. Therefore, MF’s essential function is to convert a crisp
value to a membership level in a fuzzy set.

The shape of the membership function reflects the degree of fuzziness or uncertainty of the set. In this study, we use
triangular and trapezoidal MFs, illustrated in Fig. 3 and Fig. 4. The triangular membership function is defined by three
parameters a, b, and ¢, where a < b < c. It is described by the following piecewise function (1):

T=a fq < g <b,

b—a
,Ulriangular(37§ a, b, C) = i:zj ifo<z< c, (D)
0 otherwise.

This function increases linearly from 0 at x = a to 1 at z = b and decreases back to 0 at x = c.
The trapezoidal membership function is defined by four parameters a, b, ¢, and d, where a < b < ¢ < d. Itis described
by the piecewise function (2).

pa(x) pp ()
AN A
b b c
’ >
a b c T a b c d T
Fig 3. Triangular Membership Function Fig 4. Trapezoidal Membership Function

4 Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

‘g_“ ifa <z <b,
1 ifb <z <eg,
a—z ifec<z <d,

d
0 otherwise.

2

Nlrapezoidal(x; a, ba c, d) =

This function increases linearly from O at x = a to 1 at x = b, stays constant at 1 between x = b and x = ¢, and decreases
back to 0 at x = d.

Representing linguistic terms and hedges, or linguistic expressions that modify other expressions, is a significant
component of the fuzzy set theory framework [25]. A fuzzy set typically represents a linguistic term, and an operation
that changes one fuzzy set into another represents a linguistic modifier or hedge.

3.1.2 Linguistic Variables

According to Zadeh [26], “By a linguistic variable we mean a variable whose values are not numbers but words or
sentences in a natural or artificial language”. For example, following that logic, the label high is considered a linguistic
value of the variable Student Performance. It plays almost the same role as a number but needs to be more precise. The
collection of all linguistic values of a linguistic variable is referred to as a term set.

3.1.3 Fuzzy Hedges

The are two families of modifiers, or hegdes - reinforcing and weakening modifiers.
The hedge "very" represents the reinforcing modifier (3):

tvery (U) = u2 (3)
The second family of modifiers is weakening modifiers. For instance, "more-or-less" hedge (4):

tmore-or-less (U) = \/ﬁ (4)

Furthermore, the "not" hedge is represented as (5):

tnot(u) =1-u (5

Hedges can be applied several times. For example, not very good performance is the example of a combined hedge
consisting of two atomic hedges not and very.

3.1.4 Fuzzy Operations

The a-cut (Alpha cut) is a crisp set that includes all the members of the given fuzzy subset f whose values are not less
thanafor0 < a <1 (6):

fo =A{z: ps(x) = a} (6)

To connect a-cuts and set operations (A and B are fuzzy sets) (7), (8):

(AUB), = A, U Ba, (N
(ANB)y = Ay N B, ®)

3.1.5 Fuzzy Rules

Fuzzy rules control the output variable. A fuzzy rule is a usual if-then rule containing a condition and conclusion.
It has the following form: For example, Rule 15: If Clean code is Low AND Functionality level is High AND Use of
inheritance is Medium THEN Project success is Good.

Fuzzy sets have advantages over classical sets when dealing with complex, uncertain, or subjective data (see Fig. 5).
However, they also have some limitations, such as difficulty defining membership functions and the lack of clear criteria
for set membership.

Volume (), Issue 5

Fuzzy Intelligent System for Student Software Project Evaluation

— Yes/1 S
i T
Is this a successful ompletely True

academic program |—
project?

Boolean Logic

#» No/0 Completely False

—® Verygood/1 Completely True

—» Good/0.75
Is this a successful
ﬁ(ademl_(program |—-—-——# Average/0.5 Fuzzy Logic Partial True
project?
+——» Poor/0.25

Completely False
L—» Verypoor/0 s

Fig 5. Academic performance evaluation using Classical and Fuzzy sets.

In traditional grading systems, grades are given based on a fixed set of criteria, such as running a project with no errors
and solution independence. Instead of giving a student a letter grade based on a fixed percentage, the fuzzy sets approach
can give a grade based on how well the student’s performance meets specific criteria. The instructor must first define the
assessment criteria to use fuzzy sets to assess student performance. These criteria can be defined using linguistic variables
such as "good," "average," and "poor."

To apply these rules to a particular student’s work, it is necessary to determine the extent to which the project falls into
each category. It can be done through various methods, such as self-assessment through questioning, teacher evaluation,
or assessment by specific software analysis tools.

3.2. Data Collection

In this paper, we used two datasets:

* Projects of students. We used source codes of 64 projects done in teams by 2nd-year Kazakh-British Technical
University students of Information Systems major of SITE (school of Information Technology and Engineering).
Each project was implemented by a team consisting of 4 people. Fig. 6 presents some code samples from the
collected dataset.

¢ Students survey data. We obtained data from a survey (discussed later in the subsection Survey) of students who
had completed the Object-Oriented Programming and Design course and three-course instructors. The goal was
to identify the key performance indicators required for evaluating OOP projects. The survey was completed by
32 teams, each consisting of four 2-year SITE students majoring in information systems. The survey included 21
project-related questions. Fig. 7 shows the distribution of the number of classes in the project, Fig. 8 presents
the distribution of the number of lines of code used in the project (based on survey results), and Fig. 9 shows the
distribution of final marks students got for the project.

{
id (String[] args) {

te String name;
String studentId;

String[] studentNames
String[] studentIds =

String[] courseNames = Computer

List<Course> courses;

(String name, String studentId) { [1 courseCapacities = {2, 3};
List<String>[] enrolledStudents = r
enrolledStudents[0] = n <>();
enrolledStudents[1] = n <>();

ame = name;
.studentId = studentId;
ourses = <>();
= John Dc mputer Sc r
(Course course) {
(course.addStudent(this)) {
courses.add(course) ;

enrollStudent(studentNames[0], studentIds[0], courseNames[0], courseCapac

System.out.println(name + has er d in " + course.getName() + " id (String studentName, String studentId, String
Te ITT tr!

e {

System.out.println("Enroll t : + course.getName() + is £
return false;

if (enrolledStudents.size() < courseCapacity) {
enrolledStudents.add(studentName);
System.out.println(studentName + nrolled in " + courseName + "
e {

System.out.println("Enrollment failed: + courseName + is

(a) Example of clean code (b) Example of poorly written code

Fig 6. Sample project code from the dataset of projects.

6 Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

60 6000

50 5000 o -
a0 4000 =l =

30
3000
2000

n B AT TR ARAT A EARL IR

Teams

Number of classes used in the praject
Number of lines of code in the project

Fig 7. Distribution of the number of classes used in the project Fig 8. Distribution of the number of lines of code used in the project

Fig 9. Distribution of the final marks for the project.

100

Mark for the project
M oW e o @ oW @ @
¥ g 5 8 83 2 8 8

=}

3.3. Survey

Various methods can be employed to identify the key fuzzy variables and their corresponding sets, such as surveys,
direct rating methods, or consulting experts. We used a data-driven approach; by analyzing the distribution of data points
(the mean, the median, the standard deviation), we decided on the parameters of membership functions, considering expert
opinions as well. It is a common practice to identify key success factors for a project from a survey (see Fig.10) [27]. So,
in our case, we engaged three experts and conducted a survey among students who had completed the Object-Oriented
Programming and Design course. The objective was to pinpoint the key performance indicators for evaluating OOP
projects. Working collaboratively with these experts, we identified the necessary fuzzy variables, sets, and partitions. 32
teams, each consisting of four 2-year SITE (school of information technology and engineering) students, participated in
the survey. The survey contained 21 project-related questions.

Yy
M~—~—1
Preprocessing Processin
Students Group data from survey into the »> ssing
survey Dataset tables Algorithm
——————
Teacher's N Preprocessing N Comparing results of the

case study Dataset Group data from case study algorithm and expert evaluation

Fig 10. Development of evaluation criteria. Authors use a survey and case analysis with the instructor, and a data set will be compiled to gather
information about the criteria for analysing software projects. The selected criteria will be used to analyze the success of the projects.

Volume (), Issue 7

Fuzzy Intelligent System for Student Software Project Evaluation

Fig. 11 and Fig. 12 illustrate distributions of equal contribution of team members to the project and frequent ways to
communicate with the team while working on the project, respectively.

15

Fig 11.
project

Discord

Offline

Telegram

Microsaft Teams

Partially Yes Mo

Distribution of equal contribution of team members to the Fig 12. Distribution of frequent ways to communicate with team while
working on the project

The questionnaire was designed by course experts. Some of the questions were adapted from the book [28]. The
survey contained the following questions:

Team Leader’s Name: First and last name of the team leader
Number of Classes Used: Number of classes used in the project (e.g., 37)
Number of Meetings: Number of online/offline meetings held during the project (e.g., 6-10).

Communication Method: Main methods of communication used with the team (e.g., Offline, Telegram, Discord,
etc.)

Equal Contribution: Student’s opinion on whether all team members contributed equally (yes/no)
Did you consult with the lecturer or assistants during the project? (yes/no).

How many lines of code are in the project? (e.g., 2000)

How many uncommented lines of code in the project? (e.g., 1800)

How many methods per class on average in the project? (e.g., 10)

How many public methods per class on average in the project? (e.g., 3)

How many public instance variables per class on average in the project? (e.g., 4)

How many parameters per method on average in the project? (e.g., 3)

How many lines of code per method on average in the project? (e.g., 30)

Choose an appropriate distribution of tasks during the project (e.g., The leader took most of the work himself, gave
minor tasks to the team)

On a scale of 0 to 10, rate the team leader’s performance during the project
If you used patterns, what patterns did you use to design the project? (e.g., decorator)

Documentation Creation: Whether certain types of documentation were created (e.g., software requirements speci-
fication document).

Group Communication: Whether a group was created for communication.

Importance to Career: How important the student thinks the project is to their future career.

Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

Table 1. Academic software project characteristics (data from students survey)

Feature Average | Maximum Minimum
Number of classes 29.2 56 10
Number of meetings - More than 15 | 0-5
Number of methods per class - 50-60 3
Number of lines of code 2406.2 5500 130
Number of lines of code per method | - 90 3-7
Mark 82.5 100 56.8
1.0
Classes 0.35 0.16
0.8
Leader Rating - 0.43 0.15
0.6
Importance for Career -
-0.4
Final Mark- 035 0.43
-0.2
Lines of Code - 0.16 0.15
-0.0
& 2 8 : g
() — ol =]
z 5 = g
g
o
[=%
E

Fig 13. Correlation heatmap of project evaluation metrics

As a result, we obtained a dataset containing information about a final Object-Oriented Programming (OOP) project
evaluation, with each row representing a student’s responses. We also extended the dataset with the real marks students
obtained for their project. Table 1 shows the statistics of certain project features explored in the survey.

Fig. 13 presents the correlation heatmap of project evaluation metrics built using numerical data extracted from a
survey. The heatmap palette ranges from light yellow (indicating lower correlation) to deep orange (indicating higher
correlation). The following observations can be made:

* Final Mark and Classes. Moderate positive correlation (0.35). So, having more classes in the project might
be associated with slightly higher final marks, potentially reflecting a more complex project structure with bigger
functionality.

* Final Mark and Leader Rating. Moderate positive correlation (0.43). Effective leadership likely contributes to
better project outcomes.

* Final Mark and Lines of Code. A moderate positive correlation (0.44) suggests that projects with more lines of
code tend to receive higher marks. This might indicate that larger or more complex projects, which require more
code, are viewed favorably in evaluations, assuming the quality of the code is also high.

These correlations reveal how various factors related to project management and execution can influence a project’s
overall evaluation.

3.4. Proposed Methodology

The proposed intelligent system for evaluating academic software projects using a fuzzy inference system is presented
in Fig. 14. Table 2 shows the information about term sets of the input and output variables and their domains. Table 3

Volume (), Issue 9

Fuzzy Intelligent System for Student Software Project Evaluation

Student Project
Source Code

Fetched Criteria

...... </> > Values

Criterion 1 Criterion 2 Criterion n

. . Evaluation
Selected (_Drlterla and Fuzzy Evaluation Results with
Weights Module E .
xplanation
Student

Professor

Fig 14. The Proposed Evaluation Methodology.

1.0 1.0 4
/i — low /
/ medium / \
/ X / \
/ —— high / \
0.8 1 / 0.8 1 / \
/
/ f/ \\
/
/ / \
/ / \
o / 2 0.6
206 / 206 / very low
2 / 4 / low
2 A 2 X — medium
£ / £ / high
£ 04 / 2 044 / — g
/ / \
/ / \
/ // \
024 / 0.2 4 / \
/ / \
/ /
/ / \
/ / \
/ / \
0.0 r r T r " 0.0 f T f Y)
0 20 40 60 80 100 0 20 40 60 80 100
clean_code functionality_level
10 — 1.0 n
/ /
/ / \ /
/ / \ /
/ | \ /
0.8 / 0.8 4 / \
/
/ /
/ /
206 // 2 0.6 /
@ [lw =
3 Y medium 3
£ / —— high £
5} i}
= 04 / £ 0.4
/ \
/ e
021 / 021 / I age
/ / - /
/ /
/ | ~— very good
0.0 y ¥ T T) 0.0 T t — —)
20 40 60 80 100 0 20 40 60 80 100
success

0
use_of_inheritance

Fig 15. Input fuzzy sets for Clean code , Functionality level, Use of inheritance and Output fuzzy sets for Success

provides information about project features selected to assess each fuzzy variable (evaluation criterion). Fig. 15 presents

the membership functions for all fuzzy variables.

We partition the spectrum of possible assessments corresponding to linguistic tags [29]. We have three input variables
describing the project - Clean Code, Functionality Level, Use of Inheritance. The output variable is Project Success (see
Fig. 15). As can be seen, we have 'Low’, '"Medium’, and 'High’ fuzzy sets for Clean Code and Use of Inheritance input
variables, 'Very Low’, "Low’, "Medium’, and 'High’ fuzzy sets for Functionality Level and ’Very Poor’, ’Poor’, ’Average’,

"Good’, and "Very Good’ for the output variable. The linguistic expressions for the fuzzy model’s output variable were

partly adapted from [30].
We use fuzzy rules to build fuzzy relationships between input and output variables. Our fuzzy inference system has 36
fuzzy rules, as shown in Table 4. Fuzzy if-then rules are descriptive and usually created by experts or human knowledge.

Based on the survey responses and instructors’ opinions, fuzzy rules were created to determine the relationship be-
tween the evaluation criteria and the output linguistic variables. We identified these fuzzy evaluation criteria and fuzzy
rules by working collaboratively with one professor and two instructors, paying attention to survey results. These rules
form the basis for evaluating academic software projects (see Table 4).

In a more general case, when it is considered time-consuming to survey experts and students, collecting criteria and

their importance can be done via the system. For example, let C' = {C},Cs, ..., C,,} be the evaluation criteria that an
Volume (), Issue

10

Fuzzy Intelligent System for Student Software Project Evaluation

Table 2. Fuzzy attributes of the fuzzy inference system.

Domain

Fuzzy Variable

Term Set

X=[0,100]

T = {Low, Medium, High}

X=[0,100]

Clean Code
Functionality Level

T = {Very Low, Low, Medium, High}

X=[0,100]

T = {Low, Medium, High}

X=[0,100]

Use of Inheritance

T = {Very Poor, Poor, Average, Good, Very Good}

Project Success

Table 3. The table demonstrates parameters to evaluate the code of software projects

use of inheritance

functionality

use of overriding/overloading

clean code

use of collections

inherited classes

patterns presence

use of own interfaces / build-in

use of polymorphism

number of fields

use of serialization

number of parameters in methods

use of comments
number of own exceptions / build-in

use of comparators
number of methods
number of classes
lines of code

{w1,wa,...w,} are the weights

instructor or professor chooses, e.g., the code clarity, documentation, etc. Then w
(importance) of the corresponding criteria chosen by the course instructor. Next, P = {P;, Ps, ..., P,} are student
projects. L = {Ly, Lo, ..., L,, } represents linguistic variables with the corresponding term set representing its assessment,
a vector of linguistic terms on L; - {High, Average, Low}.
Then, a student project can be evaluated based on weight-based fuzzy rules generation [31], [32]. If the weight is high,

a mark for this criterion is essential. After a case study with professors about their evaluation methods, we concluded that
the most essential criterion greatly influences the final result. For example, we have three criteria - Clean code, The use
of Inheritance, Functionality with respective weights selected by the Professor as, for example, Medium, Low, High. The
code quality score was obtained by summing up all related scores automatically extracted from the source code, including

the number of methods, following naming conventions, etc.

4. Results

4.1. Simulation and Performance Evaluation

1.04 T
\

— low

1.0 1 ——
\ /
\ / medium \)
/ — high /
. 0.8 \ J’ \\

°
Y

°
B
P
Membership
B
=

Membership
1
2

-

0.0
40 60
functionality_level

0.0
40 60 80 100

dean_code

(a) Applying input 61% on Clean code fuzzy set (b) Applying input 74% on Functionality level fuzzy set

o
S
35
3 H
5
3
Membership
o
&
e

o
Y

Membership
°

2
P

— very poor
\ poor
—— average
— good
\ —— very good
0.0
40 60 80
success

0z

0.0
40 60 80 100

use_of inheritance

(c) Applying input 68% on Use of inheritance fuzzy set (d) Aggregated Membership and Result, 63.27%

Fig 16. Simulation Results.

Volume (), Issue

11

Fuzzy Intelligent System for Student Software Project Evaluation

Table 4. Fuzzy rules used in the fuzzy inference system.

Rule | Clean Code | Functionality Level | Use of Inheritance | Project Success
1 High High High Very Good
2 Medium High High Very Good
3 Low High High Good

4 High Medium Medium Good

5 Medium Medium Medium Average

6 Low Medium Medium Average

7 High Low Low Poor

8 Medium Low Low Very Poor
9 Low Low Low Very Poor
10 High Very Low High Average

11 Medium Very Low High Poor

12 Low Very Low High Poor

13 High High Medium Very Good
14 Medium High Medium Good

15 Low High Medium Good

16 High Medium Low Average
17 Medium Medium Low Average

18 Low Medium Low Poor

19 High Low High Average
20 Medium Low High Average
21 Low Low High Poor

22 High Very Low Medium Poor

23 Medium Very Low Medium Poor

24 Low Very Low Medium Very Poor
25 High High Low Good

26 Medium High Low Average
27 Low High Low Poor

28 High Medium High Very Good
29 Medium Medium High Good

30 Low Medium High Average
31 High Low Medium Average
32 Medium Low Medium Average
33 Low Low Medium Poor

34 High Very Low Low Poor

35 Medium Very Low Low Poor

36 Low Very Low Low Very Poor

We can now simulate our fuzzy inference system by specifying the inputs and using defuzzification. For example, let
us consider the following input data and determine the overall project success: The Clean code, Functionality, and Use
of inheritance are 61%, 74%, and 68% respectively. The output membership functions are then mixed with the maximum
operator (fuzzy aggregation). Next, in order to obtain a clear answer, we must do defuzzification, which we accomplish
using the centroid approach. Fuzzy rule-based aggregation yields 63.27 % as the total project success. Fig. 16 shows the
visualized result.

Table 5. Comparing Real Marks and Predicted Marks

Clean Code | Functionality | Use of Inheritance | Proposed method | Real mark
Project 1 100 82 84 92 95
Project 2 67 34 100 64 57
Project 3 100 63 100 91 86

Three instructors from an Object-Oriented Programming (OOP) course were enlisted to assess the proposed fuzzy
intelligence system’s effectiveness. Each instructor evaluated three student projects manually, using predefined evaluation
criteria, and the mean of their evaluation was taken. These evaluations were then compared with assessments conducted
by the fuzzy intelligent system. The results of this comparative analysis are presented in Table 5. The findings indicate that
the fuzzy intelligent system performed robustly, demonstrating promising results that aligned with the manual evaluations
conducted by the course instructors.

4.2. Application Prototype

Fig. 17 shows the layout of a professor evaluation form specifically designed for evaluating software projects. The
professor has to enter data such as course name, personal information, and student data and then upload the code of the
student’s software project into the form. After entering the preliminary data about the software project, the instructor can
select different evaluation criteria with appropriate weights reflecting the importance of each criterion. Ultimately, the
form generates recommendations for evaluating student work based on weighted criteria, simplifying the grading process
and ensuring a fair and objective evaluation of the student’s project that meets educational standards and expectations.

12 Volume (), Issue

Fuzzy Intelligent System for Student Software Project Evaluation

Professor Form Result Form
Evaluation based on specified criteria and their importance
Software Evaluation Form Criterion Form
Fill in the details about the student project Fill in the criteria and their corresponding importance.
Course name
Criterion Importance
Clean code Select -
Instructor name
Functionality level Select v
Use of inheritance Select - Clean code Functionality level

Student ID Very high View details... View details...

High
Medium
Upload software project zip e —
Low
Very low 68%

Use of inheritance Total grade

View details... View details...

Fig 17. Prototype: Project Evaluation Professor Form. Fig 18. Evaluation Report

Such an intelligent system can be integrated with the SonarLint code analyzer as an alternative to manually evaluating
the criteria or taking them from students’ surveys. The system includes a user-friendly interface for entering project data
and evaluating it based on predefined fuzzy rules. It can analyze project source code and provide evaluation results in an
understandable format. Fig. 18 shows the project evaluation final report page prototype.

The proposed system cannot replace the teacher. However, it helps evaluate the project by analyzing the student’s
work based on the given criteria. The user needs to specify the criteria and their weight for evaluation, indicate the
documentation on the project, and upload the project’s source code to get the algorithm’s result. The system analyses the
number of classes in the project, the average length of code in classes, the number of fields and methods, and the use of
access modifiers (private/package/public). Also, with the help of the connected anti-plagiarism service, the system checks
the project’s uniqueness based on the uploaded works and information on the Internet and gives the plagiarism percentage.

5. Conclusion

This paper proposes a novel approach for evaluating software projects in an academic environment. By implementing a
fuzzy intelligent system, we aim to automate the evaluation process, reduce subjective biases, and manage the increasing
instructor workload effectively. We surveyed students and faculty, and the responses helped to identify key evaluation
factors in evaluating academic software projects. The fuzzy system uses predefined criteria - clean code, use of inheritance,
and functionality - transformed into fuzzy sets and employs a fuzzy inference mechanism defined in collaboration with
educational experts. Fuzzy set theory served as the basis for our evaluation model, allowing us to represent imprecise and
subjective information related to project evaluation.

The study results can help academic instructors save time, reduce costs, and improve the quality and efficiency of
evaluating student software projects. In turn, students can get faster feedback on their work and analyze the code of their
software projects.

As for the limitations, the system may not easily adapt to course content or evaluation standards changes without
significantly reconfiguring the fuzzy sets and rules. Another limitation is subjectivity in the criteria definition. The fuzzy
sets partitions depend on experts’ subjective judgments. So, the possible improvement for future works can involve a more
objective method for defining evaluation criteria using data analytics and machine learning to analyze historical project
data. Another improvement we plan is the incorporation of teamwork as an evaluation parameter.

Acknowledgment
The authors thank all students and instructors from the School of Information Technology and Engineering of Kazakh-

British Technical University for their invaluable contribution to this study (survey participation, providing opinions and
recommendations).

Volume (), Issue 13

Fuzzy Intelligent System for Student Software Project Evaluation

References

[1] Shahid Rafig, Ayesha Afzal, and Farrukh Kamran. Exploring the problems in teacher evaluation process and its
perceived impact on teacher performance. Gomal University Journal of Research, 38:482-500, 12 2022.

[2] Victor Gonzilez-Calatayud, Paz Prendes-Espinosa, and Rosabel Roig-Vila. Artificial intelligence for student assess-
ment: A systematic review. Applied Sciences, 11(12), 2021.

[3] Monika Hooda, Chhavi Rana, Omdev Dahiya, Ali Rizwan, and Md Shamim Hossain. Artificial intelligence for
assessment and feedback to enhance student success in higher education. Mathematical Problems in Engineering,
2022:1-19, May 2022.

[4] Ramazan Yilmaz. Problems experienced in evaluating success and performance in distance education: A case study,
2017.

[5] Natasha Angeloska Galevska. Challenges of teachers in the process of evaluation and grading. The Eurasia Proceed-
ings of Educational & Social Sciences (EPESS) The Eurasia Proceedings of Educational& Social Sciences (EPESS),
15, 2019.

[6] Duanning Zhou, Ron C W Kwok, Quan Zhang, and Jian Ma. A new method for student project assessment using
fuzzy sets, 2001.

[7] Nia Amelia, Ade Gafar Abdullah, and Yadi Mulyadi. Meta-analysis of student performance assessment using fuzzy
logic. Indonesian Journal of Science and Technology, 4:74-88, 2019.

[8] Giil¢in Biiyiikozkan and Da Ruan. Evaluation of software development projects using a fuzzy multi-criteria decision
approach. Mathematics and Computers in Simulation, 77:464-475, 05 2008.

[9] Aron Karatayev, Anna Ogorodova, and Pakizar Shamoi. Fuzzy inference system for test case prioritization in
software testing, 2024.

[10] Lijia Chen, Pingping Chen, and Zhijian Lin. Artificial intelligence in education: A review. IEEE Access, 8:75264—
75278, 2020.

[11] Nihan Arslan Namli and Ozan Senkal. Using the fuzzy logic in assessing the programming performance of students.
International Journal of Assessment Tools in Education, pages 701-712, 10 2018.

[12] Nne R Saturday and Friday E Onuodu. Evaluation of students’ performance using fuzzy logic, 2019.

[13] Tracy Adeline Ajol, Shirley Sinatra Gran, Agnes Kanyan, and Siti Farah Lajim. An enhanced systematic student per-
formance evaluation based on fuzzy logic approach for selection of best student award. Asian Journal of University
Education, 16:10-20, 12 2020.

[14] A. Fevzi Baba, F. Melis Cin, and Didem Bakanay. A fuzzy system for evaluating students’ project in engineering
education. Computer Applications in Engineering Education, 20:287-294, 6 2012.

[15] Jian Ma and Duanning Zhou. Fuzzy set approach to the assessment of student-centered learning. Education, IEEE
Transactions on, 43:237 — 241, 06 2000.

[16] Omid Haass and Gustavo Guzman. Understanding project evaluation — a review and reconceptualization, 5 2020.

[17] Alibek Barlybayev, Altynbek Sharipbay, Gulden Ulyukova, Talgat Sabyrov, and Batyrkhan Kuzenbayev. Student’s
performance evaluation by fuzzy logic. volume 102, pages 98—105. Elsevier B.V., 2016.

[18] Beyza Esin Ozseven and Naim Cagman. A novel student performance evaluation model based on fuzzy logic for
distance learning. International Journal of Multidisciplinary Studies and Innovative Technologies, 6:29, 2022.

[19] Andysah Putera and Utama Siahaan. Determination of thesis preceptor and examiner based on specification of
teaching using fuzzy logic, 2015.

[20] Rhaydae Jebli, Jaber El Bouhdidi, and Mohamed Yassin Chkouri. A proposed algorithm for assessing and grad-
ing automatically student uml diagrams. International Journal of Modern Education and Computer Science,
16(1):37-46, February 2024.

14 Volume (), Issue

(21]

(22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

Fuzzy Intelligent System for Student Software Project Evaluation

Dao Thi Thanh Loan, Nguyen Duy Tho, Nguyen Huu Nghia, Vu Dinh Chien, and Tran Anh Tuan. Analyzing stu-
dents’ performance using fuzzy logic and hierarchical linear regression. International Journal of Modern Education
and Computer Science, 16(1):1-10, February 2024.

Tadeusz A. Grzeszczyk. Developing a new project evaluation systems based on knowledge. Foundations of Man-
agement, 5:59-68, 12 2013.

Assylzhan Izbassar, Muragul Muratbekova, Daniyar Amangeldi, Nazzere Oryngozha, Anna Ogorodova, and Pakizar
Shamoi. Intelligent system for assessing university student personality development and career readiness. Procedia
Computer Science, 231:779-785, 2024. 14th International Conference on Emerging Ubiquitous Systems and Per-
vasive Networks / 13th International Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare (EUSPN/ICTH 2023).

L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

Pakizar Shamoi, Atsushi Inoue, and Hiroharu Kawanaka. Modeling aesthetic preferences: Color coordination and
fuzzy sets. Fuzzy Sets and Systems, 395:217-234, 2020. Aggregation Operations.

L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning: i, ii, iii. Inform. Sci.,
8:199-251, 1975.

Nitin Agarwal and Urvashi Rathod. Defining ‘success’ for software projects: An exploratory revelation. Interna-
tional journal of project management, 24(4):358-370, 2006.

T.C. Lethbridge and R. Laganiére. Object-oriented Software Engineering: Practical Software Development Using
UML and Java. McGraw-Hill, 2001.

Pakizar Shamoi, Atsushi Inoue, , and Hiroharu Kawanaka. Fhsi: Toward more human-consistent color representa-
tion. Journal of Advanced Computational Intelligence and Intelligent Informatics, 20(3), 2016.

Shyi-Ming Chen and Chia-Hoang Lee. New methods for students’ evaluation using fuzzy sets. Fuzzy Sets and
Systems, 104(2):209-218, 1999.

Liviu-Cristian Dutu, Gilles Mauris, and Philippe Bolon. A fast and accurate rule-base generation method for mam-
dani fuzzy systems. IEEE Transactions on Fuzzy Systems, 26(2):715-733,2017.

Meenakshi Bansal, Dinesh Grover, and Dhiraj Sharma. Sensitivity association rule mining using weight based fuzzy
logic. Global Journal of Enterprise Information System, 9(2):1-9, 2017.

Authors’ Profiles

Anna Ogorodova earned a B.S. degree in information systems from Kazakh-British Technical University
(KBTU) in Almaty, Kazakhstan in 2022. She is pursuing an M.S. degree in software engineering at the same in-
stitution. Her academic contributions include participation in notable conferences such as KBTU AGSRW 2023,
EUSPN 2023, and IEEE SIST 2024. She has also served as a teaching assistant at KBTU in 2023.

Professionally, she holds a position as a Senior Software Engineer at a prominent state bank in Kazakhstan,
and she mentors Java programming courses. Her research interests are primarily in artificial intelligence and
machine learning, focusing on fuzzy sets and logic.

Pakizar Shamoi received the B.S. and M.S. degrees in information systems from the Kazakh-British Technical
University, Almaty, Kazakhstan, in 2011 and 2013, and the Ph.D. degree in engineering from Mie University,
Tsu, Japan, in 2019. She has 13 years of experience in teaching technical subjects to university students. In her
academic journey, she has held various teaching and research positions at Kazakh-British Technical University,
where she has been serving as a professor in the School of Information Technology and Engineering since Au-
gust 2020. She is the author of 1 book and more than 33 scientific publications. Awards for the best paper at
conferences were received six times. Her research interests include artificial intelligence and machine learning
in general, focusing on fuzzy sets and logic, soft computing, representing and processing colors in computer sys-
tems, natural language processing, computational aesthetics, and human-friendly computing and systems. She
took part in the organization and worked in the org. committee of several international conferences - IFSA-SCIS

2017 Otsu, Japan; SCIS-ISIS 2022, Mie, Japan; EUSPN 2023, Almaty, Kazakhstan. She served as a reviewer at several international
conferences, including IEEE: SIST 2023/2024, SMC 2022, SCIS-ISIS 2022, SMC 2020, ICIEV-IVPR 2019, ICIEV-IVPR 2018.

Volume (), Issue 15

Fuzzy Intelligent System for Student Software Project Evaluation

Dr. Shamoi is an IEEE member and member of the presidium of the Council of Young Scientists of the Academy of Sciences of
Kazakhstan.

Aron Karatayev received a B.S. degree in information systems from the Kazakh-British Technical University,
Almaty, Kazakhstan, in 2022. He is pursuing an M.S. degree in software sngineering at the same university. He
participated in conferences like KBTU AGSRW 2023 and IEEE SIST 2024. He has also served as a teaching
assistant at KBTU in 2023.

Professionally, he is a senior quality assurance engineer at a leading outsourcing company in Kazakhstan.
His research interests include fuzzy logic and sets, software testing, and finance.

16 Volume (), Issue

	Introduction
	Related Work
	Methods
	Fuzzy Sets and Logic
	Membership Functions and Fuzzy Sets
	Linguistic Variables
	Fuzzy Hedges
	Fuzzy Operations
	Fuzzy Rules

	Data Collection
	Survey
	Proposed Methodology

	Results
	Simulation and Performance Evaluation
	Application Prototype

	Conclusion

