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We investigate whether making the friction spatially dependent introduces quantum effects into the thermal reac-
tion rates for dissipative reactions. We calculate the quantum rates using the numerically exact multi-configuration
time-dependent Hartree (MCTDH) method, as well as the approximate ring-polymer molecular dynamics (RPMD),
ring-polymer instanton (RPI) methods, and classical mechanics. By conducting simulations across a wide range of
temperatures and friction strengths, we can identify the various regimes that govern the reactive dynamics. At high
temperatures, in addition to the spatial-diffusion and energy-diffusion regimes predicted by Kramer’s rate theory, a
(coherent) tunnelling-dominated regime is identified at low friction. At low temperatures, incoherent tunnelling dom-
inates most of Kramer’s curve, except at very low friction when coherent tunnelling becomes dominant. Unlike in
classical mechanics, the bath’s influence changes the equilibrium time-independent properties of the system, leading to
a complex interplay between spatially dependent friction and nuclear quantum effects even at high temperatures. More
specifically, we show that a realistic friction profile can lead to an increase (decrease) of the quantum (classical) rates
with friction within the spatial-diffusion regime, showing that classical and quantum rates display qualitatively differ-
ent behaviours. Except at very low frictions, we find that RPMD captures most of the quantum effects in the thermal
reaction rates.

I. INTRODUCTION

The accurate modelling of chemical rates in dissipative
environments is of fundamental importance to chemistry,
physics, and biology1–3. In many systems, the reactive pro-
cess can be approximated by the time evolution of a reaction
coordinate coupled to a thermalizing and fluctuating environ-
ment. A simple realization of this picture is obtained with
system-bath models, where the system coordinates are cou-
pled to numerous harmonic bath degrees of freedom and the
average dynamics of the system is fully governed by the bath
temperature and the friction kernel4,5. The first step towards
accurate theoretical predictions is thus to ensure that the fric-
tion kernel is an appropriate representation of the underlying
dynamics.

A key assumption often made in constructing system-bath
models is to neglect the influence of the reaction coordinate
on the friction kernel by linearizing the system-bath cou-
pling. However, this approximation proves inaccurate for a
variety of dynamical processes, including simple Lennard-
Jones fluids6,7, proton-transfer reactions in the condensed
phase8, and adsorption at interfaces9. Another interesting in-
stance of position-dependent friction occurs in the dynamics
of atoms and small molecules near metals. In these systems,
the movement of the nuclei can induce non-equilibrium fluc-
tuations of the electrons within the metal, generating (elec-
tronic) frictional forces10–13 that significantly modify the nu-
clear dynamics14,15. This type of spatially-dependent friction
(SDF) is especially relevant when molecules approach inter-
faces, since the frictional force goes from zero in the vacuum

to a finite value at the metal15,16.
Several studies have highlighted significant deviations be-

tween linear and non-linear models17–23. For example, Pollak-
Grabert-Hänggi (PGH) theory has been extended to address
SDF21–23, and Voth and co-workers have developed an effec-
tive Grote-Hynes theory20. In the strong-damping limit, both
approaches calculate an average spatial modification of the
friction coefficient near the barrier top and introduce it in ex-
pressions derived from position-independent theories. In this
way, it has been found that a spatial antisymmetric reaction-
coordinate dependence of the friction profile around the tran-
sition state leads to a negligible modification of chemical re-
action rates24, even when the coupling is strongly non-linear.

In most of these studies, nuclei are considered to be clas-
sical (Newtonian) particles. However, tunnelling and zero-
point energy can change the reaction rate by several orders of
magnitude and fundamentally modify its temperature depen-
dence. It is generally accepted that coupling to a bath dimin-
ishes the magnitude of nuclear quantum effects (NQEs)4,25,
and approximate numerical studies have shown that a SDF can
lead to an enhancement of quantum reaction rates and a reduc-
tion of kinetic isotope effects8. Some of the present authors
reported recently that a SDF profile can steer nuclear tun-
nelling at low temperatures26. Beyond this, however, very lit-
tle work has been done on the effects of SDF on reaction rates.
Most previous work on system-bath models, including formal
analytical approaches2,3 and numerically accurate quantum
calculations27–29, have been limited to position-independent
friction. Thus a systematic study of the interplay of SDF and
quantum dynamics has remained elusive.

In this article, we calculate quantum reaction rates for rep-
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resentative system-bath models with SDF, in regimes rang-
ing from activated hopping to deep tunnelling. We report
numerically exact quantum rates at finite temperatures and
use approximate methods based on imaginary-time path inte-
grals to rationalize the results and elucidate the different rate-
determining mechanisms for quantum and classical rates.

II. THEORY AND METHODS

A. Calculation of Thermal Rate Constants

Let us consider a system that can be divided into a reac-
tant and a product region. The quantum thermal rate constant,
𝑘 (𝑇), of a generic “reactant”→“product” reaction can be ex-
pressed as30–32

𝑘Q (𝑇) = 1
𝑄𝑟 (𝛽) 𝑐fs (𝛽, 𝑡)

����
𝑡>𝜏

, (1)

where 𝛽 = (𝑘𝐵𝑇)−1 is the inverse temperature, 𝑄𝑟 (𝛽) =
Tr[𝑒−𝛽𝐻̂ (1 − ℎ̂)] is the reactant partition function, 𝐻̂ is the
Hamiltonian of the system, and ℎ̂ is the quantum projection
operator onto the product states. The flux-side correlation
function is defined as

𝑐fs (𝛽, 𝑡) = Tr[𝑒−𝛽𝐻̂/2𝐹̂𝑒−𝛽𝐻̂/2 ℎ̂(𝑡)], (2)

where 𝐹̂ = 𝑖
ℏ [𝐻̂, ℎ̂] is the flux operator and ℎ̂(𝑡) =

exp(𝑖𝐻̂𝑡/ℏ) ℎ̂ exp(−𝑖𝐻̂𝑡/ℏ) at time 𝑡.
The 𝑡 > 𝜏 condition in Eq. 1 should be interpreted as the

plateau time by which the correlation function reaches a con-
stant value. The existence of such a plateau requires a well-
defined separation of timescales such that thermal fluctuations
that take particles out of the wells to the barrier top are rare
events in comparison with the rapid short-time dynamics that
relax 𝑐fs (𝛽, 𝑡) to the plateau33. A refined formula for cases
when the free-energy barrier is comparable to 𝑘𝐵𝑇 was de-
rived in Ref. 29 and 34.

B. Multi-configuration time-dependent Hartree

The multi-configuration time-dependent Hartree (MCTDH)
method is a wavefunction method for solving the time-
dependent Schrödinger equation for multidimensional sys-
tems composed of distinguishable particles35–37. It employs
a time-dependent basis to expand optimally (in a variational
sense) the system wave function, |Ψ(𝑡)⟩, and thus mitigate the
exponential scaling problem affecting standard basis set meth-
ods. Specifically, the MCTDH wavefunction takes the form of
a linear combination of products of single-particle functions
(SPFs) |𝜙 (𝑘 )

𝑗 (𝑡)⟩, one for each "mode" 𝑘 ,

|Ψ(𝑡)⟩ =
∑︁
𝐽

𝐴𝐽 (𝑡)
∏
𝑘

|𝜙 (𝑘 )
𝑗𝑘

(𝑡)⟩ , (3)

and both the expansion coefficients 𝐴𝐽 and the SPFs are time-
evolved according to variational equations of motion35–37. In

the above expression 𝐽 = ( 𝑗1, ..., 𝑗𝑘 , ..., 𝑗𝐹) is a multi-index
and 𝑗𝑘 = 1, ..., 𝑛𝑘 labels the SPFs used for the 𝑘 th mode. The
modes represent either single degrees of freedom of the sys-
tem or a group thereof. In the multi-layer extension35–37 of
MCTDH (known as ML-MCTDH) the SPFs are taken to be
high-dimensional and are further expanded in MCTDH form
employing lower-dimensional SPFs, which in turn can be sim-
ilarly expanded. This generates a hierarchical construction, a
"multi-layer tree", which is terminated with low-dimensional
SPFs that are directly expanded on a grid or a basis-set (the
so-called primitive grid). This gives the wavefunction a rather
flexible structure which makes possible the treatment of quan-
tum systems with several hundred degrees of freedom, pro-
vided the Hamiltonian takes a relatively simple form38,39.

ML-MCTDH has been successfully applied to the calcu-
lation of quantum thermal rate constants in condensed-phase
problems26,29,40. In these calculations, the traces appearing in
Eqs. 1, 𝑘Q, and 2, 𝑐fs, are evaluated stochastically. This entails
their replacement with an incoherent sum over a finite num-
ber (typically some hundreds) of representative elements from
the Hilbert space of the system, which are selected stochasti-
cally using an importance sampling technique and later han-
dled with ML-MCTDH. Specifically, the resulting "Monte-
Carlo wavepacket" procedure can be summarized as follows.
In the first step, a sample of pure states {|Φ𝑖⟩}𝑖 is drawn from
the thermal equilibrium state of the (uncoupled) bath, and is
combined with special system states {|𝜙𝜈⟩}𝜈 to form repre-
sentatives of the total system, |Ψ𝐼⟩ = |Φ𝑖⟩ |𝜙𝜈⟩. In the sec-
ond step, the |Ψ𝐼⟩ are propagated in imaginary time using the
full Hamiltonian so that they thermalize at the given tempera-
ture, |Ψ𝛽

𝐼 ⟩ = 𝑒−𝛽𝐻̂/2 |Ψ𝐼⟩. Finally, the |Ψ𝛽
𝐼 ⟩ are propagated in

real-time with the same Hamiltonian, |Ψ𝛽
𝐼 ⟩ → |Ψ𝛽

𝐼 (𝑡)⟩, and
used to compute appropriate expectation values from which
the flux-side correlation function can be easily obtained. Cal-
culation of the reactant partition function proceeds similarly,
and is simpler, since it does not require any real-time prop-
agation. This is the strategy developed by Craig et al. in
Ref. 29, where the interested reader can find the necessary
details. Here, we use mainly the implementation described in
our previous article, Ref. 26, with a few modifications that are
described in Sec. III B.

C. Ring Polymer Molecular Dynamics

Ring polymer molecular dynamics (RPMD) is an approxi-
mation rooted in the (imaginary-time) path integral formula-
tion of quantum mechanics and utilizes a classical time evolu-
tion in an extended ring-polymer phase space to approximate
the effects of quantum thermal fluctuations on the dynamics
of condensed-phase systems41,42.

In the following, we consider the ring polymer Hamiltonian
of an 𝐹 + 1-dimensional system given by

𝐻𝑃 (p, q) =
𝐹∑︁
𝑗=0

𝑃∑︁
𝑘=1



(
𝑝 (𝑘 )
𝑗

)2

2𝑚 𝑗


+𝑈𝑃 (q), (4)
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where

𝑈𝑃 (q) =
𝐹∑︁
𝑗=0

𝑃∑︁
𝑘=1

[
𝑚 𝑗𝜔

2
𝑃

2

(
𝑞 (𝑘 )
𝑗 − 𝑞 (𝑘+1)

𝑗

)2
]
+

𝑃∑︁
𝑘=1

𝑉
(
𝑞 (𝑘 )

0 , 𝑞 (𝑘 )
1 , . . . , 𝑞 (𝑘 )

𝐹

)
.

(5)

and q (𝑘 ) = {𝑞 (𝑘 )
0 , 𝑞 (𝑘 )

1 , . . . , 𝑞 (𝑘 )
𝐹 } represent the positions of

the 𝑘-th ring-polymer bead, q = {q (1) , q (2) , . . . , q (𝑃) } is a
short form denoting all the position coordinates, p(𝑘 ) and p
are similarly defined for the momenta, 𝑚 𝑗 is the mass of the 𝑗-
th degree of freedom, 𝑉 is the potential energy surface (PES),
and 𝜔𝑃 = (𝛽𝑃ℏ)−1, with 𝛽𝑃 = 𝛽/𝑃. The RPMD approxima-
tion to the exact quantum rate constant is given by43,44

𝑘Q (𝑇) ≈ 𝑘RPMD (𝑇) = lim
𝑃→∞

𝑘 (𝑃) (𝑇) = lim
𝑃→∞

1
𝑄 (𝑃)

𝑟

𝑐𝑃fs (𝛽, 𝑡)
����
𝑡>𝜏

,

(6)

where 𝜏 is the plateau time by which 𝑐𝑃fs (𝛽, 𝑡) has become
time-independent. Here, the reactant partition function, 𝑄 (𝑃)

𝑟 ,
is the 𝑃-bead path-integral approximation to its exact quantum
counterpart, and

𝑐𝑃fs (𝑡) =
1

(2𝜋ℏ)𝐹𝑃

∫
dp

∫
dq e−𝛽𝑃𝐻𝑃𝛿[𝑠(q)]𝑣s (𝑞)ℎ[𝑠(q(𝑡)]

(7)

is the ring-polymer flux-side time-correlation function, in
which 𝑠(q) is a dividing surface between reactant and prod-
ucts, 𝑣s is the velocity component orthogonal to 𝑠, and ℎ is a
heaviside step function. The time evolution of q(𝑡) is gener-
ated using the classical equations of motion obtained from the
ring-polymer Hamiltonian of Eq. 4.

The RPMD rate constant, 𝑘RPMD (𝑇), is clearly artificial but
it has a number of important properties which ensure that it
is often a good approximation to the exact quantum rate: it
is exact in the harmonic and classical limits43,44, is indepen-
dent of the position of the dividing surface 𝑠, and if 𝑠 is con-
structed to be invariant under cyclic permutation of the poly-
mer beads, the corresponding RPMD TST rate, 𝑘‡RPMD (𝑇),
(obtained by taking 𝜏 → 0+ in Eq. 6) gives the exact quantum
flux through the dividing surface in the limit 𝑡 → 0+ 45, which
correctly accounts for the dominant effects of instantons in
the deep-tunnelling regime46. If the barrier is symmetric (as
is the case for the systems treated here47), the optimal divid-
ing surface 𝑠(q) is a function of just the ring-polymer centroid
qc = {𝑞𝑐0 , 𝑞𝑐1 , . . . , 𝑞𝑐𝐹 }, which has components

𝑞c
𝑗 =

𝑃∑︁
𝑘=1

𝑞 (𝑘 )
𝑗 , (8)

and in this case 𝑘‡RPMD (𝑇) is identical to the centroid-TST
rate48,49. Because of its computational efficiency, RPMD has
been used to compute rates in complex systems42,50, including
polyatomic gas-phase reactions51–56 and protein rearrange-
ment reactions57.

D. Ring Polymer Instanton Method

The ring polymer instanton (RPI) method46,58 is an efficient
semi-classical method for computing tunnelling rates in the
"deep tunnelling" regime

𝑇 < 𝑇◦
𝑐 =

ℏ𝜔‡

2𝜋
, (9)

in which the saddle point on 𝑈𝑃 (q) is delocalised
into an imaginary-time periodic orbit known as the
"instanton" 59,60 ,61. In the RPI method, the instanton is lo-
cated by running standard saddle-point search algorithms62–64

on 𝑈𝑃 (q). The large computational cost associated with the
sampling procedure is thus replaced by a few geometry opti-
mization and Hessian calculations. The tunnelling rate can be
expressed as60

𝑘 inst (𝑇) = 1
𝑄 (𝑃)

𝑟

1
𝛽𝑃ℏ

√︄
𝐵𝑃 (q̄)

2𝜋𝛽𝑃ℏ2𝑄vib𝑒
−𝑆𝑃 (q̄)/ℏ, (10)

where

𝑆𝑃/ℏ = 𝛽𝑃𝑈𝑃 , (11)

and q̄ is the position vector corresponding to the optimized
instanton geometry, which can be identified as the discretized
version of the Euclidean action with 𝑈𝑃 given by Eq. 5, and

𝐵𝑃 (𝑞) =
𝐹∑︁
𝑖=1

𝑃∑︁
𝑘=1

𝑚𝑖 (𝑞 (𝑘+1)
𝑖 − 𝑞 (𝑘 )

𝑖 )2. (12)

The instanton vibrational partition function, 𝑄vib, is approxi-
mated by

𝑄vib =
∏
𝑘

1
𝛽𝑃ℏ|𝜆𝑘 | , (13)

where 𝜆𝑘 are the non-zero eigenvalues of the ring-polymer
dynamical matrix65.

The RPI method has been successfully applied to systems
containing hundreds of atoms using accurate ab initio po-
tential energy surfaces65–69. The RPI rate 𝑘 inst (𝑇) typically
agrees with the exact quantum rate to within a factor of two60.

III. SIMULATION DETAILS

A. System-Bath Model with position-dependent friction

We consider a system-bath model described by the follow-
ing PES43,70

𝑉 (𝑞; 𝑥1, . . . , 𝑥𝐹) = 𝑉sys (𝑞) +
𝐹∑︁
𝑗=1

𝑚 𝑗𝜔
2
𝑗

2

(
𝑥 𝑗 −

𝑐 𝑗𝑔(𝑞)
𝑚 𝑗𝜔

2
𝑗

)2

,

(14)

where 𝑞 and {𝑥1, . . . , 𝑥𝐹 } correspond to the system and bath
degrees of freedom, respectively, and 𝑉sys refers to the PES of



4

4 2 0 2 4
q (Bohr)

0.0

0.2

0.4

V(
q)

 (e
V)

0

1

2

3

(q
)/

0 

Uniform Symmetric Asymmetric

FIG. 1: Friction profiles for the uniform (solid green line),
symmetric (dashed) and asymmetric (dot-dashed) models of Tab. I,

with the DW1 potential energy (black line).

the system in the absence of a bath. The bath is described by
a spectral density

𝐽 (𝑞, 𝜔) =
(
𝜕𝑔(𝑞)
𝜕𝑞

)2
𝜋

2

𝐹∑︁
𝑗=1

𝑐2
𝑗

𝑚 𝑗𝜔
(𝛿(𝜔 − 𝜔 𝑗 ) + 𝛿(𝜔 + 𝜔 𝑗 )),

(15)

where 𝑔(𝑞) determines the position-dependence of the
system-bath coupling. Equivalently, the system-bath coupling
can be subsumed in a position- and frequency-dependent fric-
tion kernel, 𝜂(𝑞, 𝜆), which is related to the bath spectral den-
sity by

𝜂(𝑞, 𝜆) = 1
𝜋

∫ ∞

−∞
d𝜔

𝐽 (𝑞, 𝜔)
𝜔

𝜆

𝜔2 + 𝜆2 , (16)

and is position-independent when 𝑔(𝑞) = 𝑞. In this work, we
use simple models for 𝑉sys and 𝜂. For 𝑉sys, we use the "DW1"
double-well model of Topaler and Makri70,

𝑉sys (𝑞) = −1
2
𝑚𝜔‡2𝑞2 + 𝑚2𝜔‡4

16𝑉0
𝑞4, (17)

where 𝜔‡ = 500 cm−1, 𝑉0 = 2085 cm−1, and 𝑚 is the mass of
atomic hydrogen. For the system-bath coupling, we use

𝑔(𝑞) = 𝑞 [1 + 𝜖1 exp(−(𝑞/𝛿)2/2) + 𝜖2 tanh(𝑞/𝛿)], (18)

where 𝛿, 𝜖1 and 𝜖2 are positive real numbers. The spectral
density is taken to be Ohmic with an exponential cutoff,

𝐽Ohm (𝑞, 𝜔) =
(
𝜕𝑔(𝑞)
𝜕𝑞

)2
𝜂0𝜔𝑒

−𝜔/𝜔𝑐 , (19)

where 𝜂0 is the Ohmic friction coefficient and 𝜔𝑐 = 500 cm−1

is a frequency cutoff; when 𝑔(𝑞) = 𝑞, 𝐽Ohm (𝑞, 𝜔) reduces

to the position-independent spectral density employed in the
DW1 model of Ref. 70.

The factorization of the spectral density into position-
dependent and frequency-dependent factors, usually referred
to as separable coupling or uniform coupling22,71, assumes
that the dynamical time scale is independent of the value of
the reaction coordinate. This approximation is justified in
most cases since, to lowest order, the system-bath and bath-
bath couplings determine respectively the magnitude and the
timescale of the friction kernel22; it has also been shown nu-
merically to give a good approximation to the electronic fric-
tion in several metals26.

We consider three friction models, one model with
position-independent coupling, and two models with position-
dependent coupling. The model parameters are summarized
in Tab. I. In Fig. 1, we plot the PES and friction coefficients
along with the reaction coordinate. The uniform model has a
constant friction profile and serves as a reference from which
we can evaluate the impact that non-linear couplings (non-
uniform friction) have on the thermal rate. The symmetric
model has a lower friction coefficient in the vicinity of the
transition state and a larger one at the reactant and product
wells. This friction profile resembles a profile recently con-
structed for hydrogen diffusion reactions in metals26 and for a
proton-transfer reaction in liquid methyl chloride8. The asym-
metric model has vanishing friction in the reactant well and
larger friction in the product well, similar to the models em-
ployed by Straus and others18,22.

Model 𝜖1 𝜖2 𝛿
Uniform 0.0 0.0 1.0

Symmetric -1.0 0.0 1.0
Asymmetric 0.0 0.8 0.5

TABLE I: Parameters of the friction models employed in this work.

B. ML-MCTDH Calculations

The ML-MCTDH calculations were implemented using
the Heidelberg package72. Except for the details given be-
low, these calculations followed Ref. 26 (Supplementary In-
formation), which is an implementation of the Monte Carlo
wavepacket strategy of Craig et al.29. The bath was described
with 𝐹 = 50 modes, using the logarithmic discretization of
Ref. 73, and its (uncoupled) thermal equilibrium state was
sampled to extract 𝑛𝐵 = 256 − 512 realizations, for each tem-
perature 𝑇 . These bath states were combined with 𝑛𝑆 system
states to define a running sample of 𝑛𝐵 × 𝑛𝑆 wavepackets, for
each value of the temperature and of the coupling strength.
The resulting 𝐹 + 1 dimensional wavepackets were propa-
gated with ML-MCTDH, in both imaginary and real time, us-
ing a single ML-tree structure. The latter was obtained after
extensive tests at the extremes of the temperature–coupling
strength intervals of interest (see Ref. 26 [Supplementary In-
formation] for details). The choice of the "bare" system states
depends on the type of calculation—whether it is for the reac-
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tant partition function or the flux-side correlation function—
and must be optimized to reduce the overall computational
burden. This choice is particularly crucial for the flux-side
calculation, since the flux operator 𝐹̂ is intrinsically of high-
rank, and could require many states if represented in the usual
spectral form, 𝐹̂ =

∑
𝜈 𝜈 |𝜈⟩ ⟨𝜈 |. The trick29 is to observe that

its Boltzmannized version 𝐹̂𝛽 is of low rank, and therefore
𝐹̂ is better rewritten as 𝐹̂ = 𝑒𝛽𝐻̂𝑆/2𝐹̂𝛽𝑒

𝛽𝐻̂𝑆/2 where 𝐻̂𝑆 is
the system Hamiltonian. Typically, 𝐹̂𝛽 is well represented by
a small number of (time-reversed conjugate) pairs of eigen-
states; in our calculations, 𝑛𝑆 = 2 was found to be suffi-
cient, so that 𝐹̂𝛽 ≈ 𝜈𝛽 |𝜈𝛽⟩ ⟨𝜈𝛽 | − 𝜈𝛽 |𝜈̄𝛽⟩ ⟨𝜈̄𝛽 |, where 𝜈𝛽 is
the largest-magnitude eigen-flux and the bar denotes applica-
tion of time-reversal. The drawback with this approach is that
the reverse imaginary-time propagation needed to define the
system states, |𝜙𝛽⟩ = 𝑒+𝛽𝐻̂𝑆/2 |𝜈𝛽⟩, can be numerically unsta-
ble due to high energy states in 𝐻̂𝑆 which are, however, irrele-
vant for the dynamics. To circumvent this problem, we exploit
𝐹̂𝑒−𝛽𝐻̂𝑆/2 = 𝑒𝛽𝐻̂𝑆/2𝐹̂𝛽 to write 𝜈𝛽 |𝜙𝛽⟩ = 𝐹̂𝑒−𝛽𝐻̂𝑆/2 |𝜈𝛽⟩,
which only requires the numerically stable imaginary-time
propagation 𝑒−𝛽𝐻̂𝑆/2 and the application of the bare flux op-
erator 𝐹̂. This amounts to the following formal manipulation
on the flux operator

𝐹̂ = 𝐹̂𝑒−𝛽𝐻̂𝑆/2𝐹̂−1
𝛽 𝑒−𝛽𝐻̂𝑆/2𝐹̂ (20)

≈
∑︁
𝜈

𝜈−1
𝛽 𝐹̂𝑒−𝛽𝐻̂𝑆/2 |𝜈𝛽⟩ ⟨𝜈𝛽 | 𝑒−𝛽𝐻̂𝑆/2𝐹̂

where the sum is restricted to the largest-magnitude eigenval-
ues of the Boltzmannized flux operator; i.e., 𝐹̂−1

𝛽 is replaced
by the pseudo-inverse of a low-rank approximation of 𝐹̂𝛽 .

C. RPMD, classical and RPI simulations

The RPMD rate constants were computed using the
Bennett-Chandler approach74,75 which is based on the factor-
ization

𝑘RPMD (𝑇) = 𝑘‡RPMD (𝑇 ; 𝑠)𝜅RPMD (𝑇 ; 𝑠), (21)

where 𝜅RPMD (𝑇 ; 𝑠) is the RPMD transmission coefficient51

(i.e. the fraction of trajectories initiated at the dividing sur-
face which remain on the product side at 𝑡 > 𝜏). Note that
𝑘‡RPMD (𝑇 ; 𝑠) and 𝜅RPMD (𝑇 ; 𝑠) depend on the specific choice
of the dividing surface, 𝑠, whereas 𝑘RPMD (𝑇) does not. Un-
less specified otherwise, we take 𝑠(qc) = 𝑞𝑐0 − 𝑞‡0, where 𝑞‡0
is the classical transition state and 𝑞𝑐0 is the projection of the
centroid along the system coordinate, so that 𝑣s = 𝑝𝑐0/𝑚0,
where 𝑝𝑐0 is the momentum conjugate to 𝑞𝑐0 . The terms on the
right-hand side of Eq. 21 can then be written

𝑘‡RPMD (𝑇 ; 𝑠) =
(
𝑘𝐵𝑇

2𝜋𝑚

)1/2 ⟨𝛿(𝑞𝑐0 − 𝑞‡0)⟩
⟨ℎ(𝑞‡0 − 𝑞𝑐0)⟩

, (22)

and

𝜅RPMD (𝑇 ; 𝑠) = 𝜅RPMD (𝑇, 𝑡; 𝑠)
����
𝑡>𝜏

(23)

with

𝜅RPMD (𝑇, 𝑡; 𝑠) =
⟨𝛿(𝑞𝑐0 − 𝑞‡0) (𝑝𝑐0/𝑚)ℎ(𝑞𝑐0 (𝑡) − 𝑞‡0)⟩

⟨𝛿(𝑞𝑐0 − 𝑞‡0) (𝑝𝑐0/𝑚)ℎ(𝑝𝑐0)⟩
, (24)

where ⟨. . . ⟩ denotes the average over the canonical ensem-
ble determined by 𝐻𝑝 (see Eq. 4), and 𝜏 is the plateau time
previously mentioned.

We computed 𝑘‡RPMD by thermodynamic integration51, and
𝜅RPMD by sampling from a thermal distribution with the ring-
polymer centroid pinned at the barrier top. The spectral den-
sity was discretized using the same logarithmic discretization
employed for the ML-MCTDH calculations. A total of 9, 12
and 64 bath modes were required to converge the uniform,
symmetric, and asymmetric models, respectively. We used 16
and 64 beads for the simulations at 300 K and 50 K, respec-
tively.

The classical rate constants 𝑘cl were calculated similarly to
the RPMD rate constants by multiplying the classical TST rate
𝑘‡cl with the transmission coefficient 𝜅cl (𝑡).

The RPI simulations were carried out using the Nichols
saddle-point search algorithm63; the number of replicas and
the number of bath modes were converged to within graphical
accuracy. Note that some of the authors have developed a ver-
sion of the RPI method which includes the bath implicitly76,
but for consistency we used the same explicit (discretized)
bath for the RPI calculations as for the ML-MCTDH and
RPMD calculations.

To facilitate comparison with previous work, we will some-
times present the "transmission coefficients"

𝜅(𝑇) = 𝑘 (𝑇)
𝑘‡ha,cl (𝑇)

, (25)

in place of the quantum, RPMD or classical rate constants
𝑘 (𝑇), where 𝑘‡ha,cl is the harmonic approximation to the clas-
sical TST rate. To avoid confusion in what follows we al-
ways denote the coefficients of Eq. 25 with a bar, to distin-
guish them from the true transmission coefficients, 𝜅RPMD and
𝜅cl, defined as in Eq. 21.

IV. RESULTS

We start by presenting the ML-MCTDH quantum rate con-
stants 𝑘Q (𝑇) as a function of temperature. Figure 2 plots
𝑘Q (𝑇) between 50 K and 300 K for 𝜂0/𝑚𝜔‡ between 0.05
and 2.00; note that the rate is plotted only when the flux-side
correlation function shows a clear plateau. The results for the
uniform friction model are shown in panel a in Fig. 2 along
with the results reported by Topaler and Makri (TM) using the
quasiadiabatic propagator path integral (QUAPI)70. The two
sets of results are in very close agreement. A further com-
parison with reaction rates reported by Craig29 is presented in
Fig. S1 and shows equally good agreement.

The three models show an exponential decrease of the rate
with temperature down to ∼ 100K where some of the simu-
lations with the lowest friction reach a plateau characteristic
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FIG. 2: ML-MCTDH rate constants, 𝑘𝑄 (𝑇), for the three friction
models of Tab. I, for values of the reduced friction from

𝜂0/𝑚𝜔‡=0.05 (blue) to 𝜂0/𝑚𝜔‡=2.00 (pink). Also shown are the
QUAPI results of Ref. 70 (black crosses).

of deep tunnelling. At low temperatures, the rates decrease
monotonically with the increase of friction in all three models,
showing that (as expected) dissipative effects inhibit quantum
tunnelling, irrespective of the friction profile. At high temper-
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FIG. 3: Transmission coefficients 𝜅(𝑇 = 300 K) for the three
friction models, obtained from the corresponding ML-MCTDH,

RPMD and classical rate constants using Eq. 25.

atures, the rates follow a non-monotonic behaviour with vary-
ing friction, characteristic of Kramers-like behaviour1. In the
following Sections, we analyze in more detail the dynamics at
high and low temperatures.
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A. Quantum Effects at High Temperatures

1. Overview

Figure 3a shows the ML-MCTDH results obtained at 300 K
for the uniform friction model. These results are consistent
with previous studies on this system, showing the characteris-
tic Kramers’ turnover1,2 separating the underdamped (energy-
diffusion) and overdamped (spatial-diffusion) regimes. In the
overdamped regime, 𝜂0/𝑚𝜔‡ > 0.6, the rate decreases mono-
tonically with friction since the bath hinders the reactant from
diffusing over the barrier. In the underdamped regime, 0.05
< 𝜂0/𝑚𝜔‡ < 0.3, the rate increases approximately linearly
with the coupling strength since it is proportional to the rate
at which energy can be transferred from the thermal fluctua-
tions of the bath to the reaction coordinate. At even weaker
coupling, there is another (purely quantum) regime, where the
reaction dynamics is dominated by tunnelling such that the
rate decreases with increase of the friction. This behaviour
represents a complete breakdown of the classical rate, which
tends to zero at very weak friction. The quantum rate, by con-
trast, continues to increase as the coupling is reduced towards
zero, until the coupling becomes too weak for 𝑐fs (𝑡) to display
a plateau. The transition from the tunnelling-dominated to the
energy-diffusion regime at 𝜂0/𝑚𝜔‡ = 0.02 is sharp and moves
towards larger values of 𝜂0/𝑚𝜔‡ on decreasing the tempera-
ture (see Fig. S2), thus shrinking the energy-diffusion regime
until it disappears at sufficiently low temperature77. The clas-
sical harmonic TST rate constant 𝑘TST

hc (𝑇) is an approximate
upper bound to the exact classical rate constant; hence a value
of 𝜅(𝑇) > 1 is a clear indication of quantum effects, which, as
expected, become more prominent at lower temperatures (see
Fig. S1). Representative flux-side time-correlation functions
𝑐fs (𝑡) illustrating the dynamics in the three regimes are plotted
in Fig. S3.

Figure 3b shows the ML-MCTDH results for the symmet-
ric friction model. For 𝜂0/𝑚𝜔‡ > 0.4, the rate increases ap-
proximately linearly with 𝜂0/𝑚𝜔‡. This monotonic growth in
the rate with 𝜂0/𝑚𝜔‡ arises because this model has zero fric-
tion in the region of the barrier (see Fig. 1); the addition of a
small amount of friction to the barrier would cause an eventual
turnover of the rate at sufficiently high 𝜂0/𝑚𝜔‡. Nonetheless,
this monotonic growth depicted in Fig. 3b cannot be explained
away as a simple shift of the Kramers’ turnover to higher fric-
tion values; we show below that it is a genuine quantum effect.

Figure 3c shows the ML-MCTDH results for the asymmet-
ric model. The ML-MCTDH calculations were much harder
to converge for this model owing to the small system-bath
coupling in the reactant well; tests suggest that, unlike the
other two models, the ML-MCTDH calculations may not have
fully converged with respect to the number of bath modes78.
Despite these limitations, the ML-MCTDH calculations are
sufficiently well converged to show that the asymmetric model
gives rise to the same three kinetic regimes as the uniform
model. The Kramers’ turnover is shifted to a slightly higher
value of 𝜂0/𝑚𝜔‡ ∼ 0.9, after which there is a much steeper
drop in 𝜅(𝑇) (which may be an artefact of the incomplete
convergence just mentioned). The transition between the

tunnelling-dominated and energy-diffusion regimes occurs at
𝜂0/𝑚𝜔‡ ∼ 0.1, a value five times larger than the one obtained
for the uniform model79.

To interpret the ML-MCTDH results, especially the mono-
tonic growth of the rate with 𝜂0/𝑚𝜔‡ in the symmetric model,
we compare with the results of classical and RPMD calcula-
tions. Figure 3 shows the RPMD rates calculated for the three
models at 300K. For the uniform model, the RPMD simu-
lations are in good agreement with the ML-MCTDH results
in the underdamped and overdamped regimes. The RPMD
calculations were difficult to converge in the tunnelling dom-
inated regime (𝜂0/𝑚𝜔‡ < 0.05), and in any case cannot be
expected to work here, where the dynamics is dominated by
real-time quantum coherence. The classical rates have the
same Kramers’ turnover as the RPMD rates, but are smaller
by roughly a factor of two. The RPMD results for the symmet-
ric model are also in good agreement with the ML-MCTDH
results, showing the same monotonic increase in the rate
with friction for 𝜂0/𝑚𝜔‡ > 0.6; the classical results, how-
ever, do not reproduce this feature, giving instead a plateau
for 𝜂0/𝑚𝜔‡ > 0.6. For the asymmetric model, the RPMD
and ML-MCTDH results differ appreciably. In the under-
damped regime, these differences can be attributed to the ne-
glect by RPMD of real-time coherence and coupling of the
centroid to the Matsubara fluctuation modes80; in the over-
damped regime, while both methods show the same quali-
tative turnover behaviour, their difference is most likely due
to the previously mentioned lack of convergence of the ML-
MCTDH calculations.

2. Analysis of quantum effects

The qualitative differences between the RPMD and classi-
cal rates in Fig. 3 can be analysed in terms of the dynamical
and statistical contributions to the rate defined by Eqs. 21–24,
namely the transmission factors 𝜅(𝑇) and the TST rates 𝑘‡ (𝑇).
We can further factorise the latter into

𝑘‡RPMD (𝑇) =
(
𝑘𝐵𝑇

2𝜋𝑚

)1/2
𝑒−𝛽ΔA

‡
RPMD

⟨𝛿(𝑞𝑐0 − 𝑞0)⟩
⟨ℎ(𝑞‡0 − 𝑞𝑐0)⟩

, (26)

where

ΔA‡
RPMD = ARPMD (𝑞‡0) − ARPMD (𝑞0), (27)

with

ARPMD (𝑞0) = − 1
𝛽

ln ⟨𝛿(𝑞𝑐0 − 𝑞0)⟩ (28)

is the free energy difference needed to move the centroid from
the bottom of the well, 𝑞0, to the barrier top, 𝑞‡0.

The transmission coefficients 𝜅(𝑇) are plotted in Fig. 4, and
the free energy differences ΔA‡

RPMD in Fig. 5. Figure 4 shows
that 𝜅RPMD (𝑇) is very close to 𝜅cl (𝑇) for the uniform and
symmetric models. In other words, there are almost no quan-
tum effects in the recrossing dynamics for these two models
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FIG. 4: Transmission coefficients 𝜅(𝑇 = 300 K), as defined in Eq. 21-24, calculated for the three friction models, using RPMD (red) and
classical MD (blue). Panel (a) also shows the (classical) Grote-Hynes transmission factor81,82 (black dashed line).

over the entire range 𝜂0/𝑚𝜔‡ > 0.05 for which RPMD re-
produces the ML-MCTDH rates (in Fig. 3). The small differ-
ences between 𝜅RPMD (𝑇) and 𝜅cl (𝑇) for the asymmetric model
(Fig. 4c) are perhaps a sign that delocalisation between the
zero friction and high friction halves of the potential affects
the recrossing dynamics.

The strong quantum effects that cause the rates for the
symmetric model to increase monotonically with 𝜂0/𝑚𝜔‡ for
𝜂0/𝑚𝜔‡ > 0.5 (see Fig. 3b) are thus caused by the dependence
of the quantum free-energy gap ΔA‡

RPMD on 𝜂0/𝑚𝜔‡. It is
well known4,76 that the quantum free energy of a system-bath
model depends strongly on 𝜂0/𝑚𝜔‡: the system ring-polymer
modes orthogonal to the centroid couple to their counterparts
in the bath, which increases the effective polymer-spring force
constants, causing the ring polymers to shrink as though the
fluctuations were occurring at an effectively higher tempera-
ture, or as if the system’s mass were increased. Within the
harmonic approximation, and for a bath with Ohmic spectral
density, the free energy of the uniform model at the bottom of
the well is4,76 ,83

ARPMD (𝑞0) =
1
𝛽

ln

[ (𝑃−1)/2∏
𝑙=0

𝜔2
𝑙 + |𝜔𝑙 |𝜂0/𝑚 + (𝜔well)2

]

+𝑉 (𝑞‡0) + consts,
(29)

where 𝜔𝑙 = 2𝜔𝑃 sin( |𝑙 |𝜋/𝑃) are the free ring polymer normal
mode frequencies and 𝜔well is the frequency at the bottom of
the well. The classical limit of Eq. 29 is obtained by taking
𝑃 = 1, and since 𝜔𝑙=0 = 0, the classical free energy is indeed
friction and mass independent. Eq. 29 clearly shows that
A increases monotonically with the increase of friction. This
dependence, which also applies to anharmonic potentials, can
be rationalized in two equivalent ways: either as a renormal-
ization of the system mass or as an increase of the quantum
fluctuations.

In Fig. 5a, the classical and quantum reaction free ener-
gies at 300 K are presented. ΔA‡

RPMD at 𝜂0=0 is smaller than
the classical one due to the zero-point energy at the reactant

well. For finite values of friction, ΔA‡
RPMD keeps approxi-

mately constant for the uniform model, while it decreases (in-
creases) for the symmetric (asymmetric) model. The differ-
ent behaviour between the uniform and non-uniform friction
models is a direct consequence of the increase of quantum free
energy with friction (as approximately described by Eq. 29 us-
ing a local harmonic approximation). While the free energy at
the reactant basin and transition state region increase compa-
rably in the model with uniform friction, due to the shape of
the friction profile in the symmetric model, the free energy at
the reactant well increases more rapidly than at the transition
state for this case. This difference leads to the monotonic de-
crease of the free energy barrier with friction shown in panel
a and schematically represented in panel b. The asymmetric
model presents vanishing friction at the reactant basin and fi-
nite friction at the top of the barrier. An analogous argument
explains the decrease of ΔA‡

RPMD with the increase of fric-
tion observed in this case (see curve in Fig. 5a and sketch in
Fig. 5b).

B. Quantum Effects at Low Temperatures

Another consequence of the dependence of the free energy
on the system-bath coupling is that the instanton cross-over
temperature is reduced below the value of 𝑇◦

𝑐 given in Eq. 9
to76,81,84

𝑇𝑐 (𝜂0) = 𝑇◦
𝑐

[(
𝜂(𝜔0)
2𝑚𝜔‡

)2
+ 1

] 1
2

− 𝜂(𝜔0)
2𝑚𝜔‡ , (30)

where 𝜔0 is the free-energy barrier frequency and the fric-
tion is evaluated at the top of the barrier85. For the DW1
potential, the cross-over temperature reduces from 115 K for
the uncoupled system to 92 K for 𝜂0/𝑚𝜔‡ = 1. The ML-
MCTDH results display a smooth transition between the high-
temperature and low-temperature regimes (see Fig. S2). To
simplify the discussion we focus on the results at 50 K, where
the system remains in the deep tunnelling regime across the
entire range of friction.
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FIG. 5: Analysis of the dependence of the quantum free-energy on
the bath coupling strength 𝜂0/𝑚𝜔‡ at 300 K, showing (a) the

reaction free-energy ΔA‡
RPMD for the three friction models, and (b)

the free-energy at the barrier and in the well, decomposed into
contributions from thermal quantum fluctuations of the pure system
(blue) and the system-bath coupling (pink). ΔV‡ = 𝑉 (𝑞‡) −𝑉 (𝑞0).
Friction contributions are estimated using Eq. 29 and multiplied by

a factor of four to ease visualization.

Figure 6 compares the reaction rates at 50 K using ML-
MCTDH, RPMD, RPI and classical MD. In all models, the
reaction rate decreases with friction in a qualitatively simi-
lar way, in contrast with the high-temperature results. The
Kramers turnover is not present since it is exponentially sup-
pressed with temperature70,86,87. The decrease of the rate with
friction in the symmetric and asymmetric models is less pro-
nounced than for the uniform coupling, suggesting that even
in the deep tunnelling regime, quantum dynamics are particu-
larly sensitive to how the frictional forces change in the vicin-
ity of the barrier top. This difference is also observed in the
centroid-free energies along the reaction pathway (see Fig. S4

in the supporting information).
Since the reaction is dominated by deep tunnelling at

this temperature, the classical rates are orders of magnitude
smaller than the quantum rates. RPI is in excellent agree-
ment with the ML-MCTDH results proving that in the deep-
tunnelling regime, real-time quantum dynamics plays a minor
role, except at vanishing friction strength. RPMD systemat-
ically underestimates the RPI reaction rates, which is typical
for a symmetric reaction barrier, and can be traced back to
the different treatment of the unstable mode, 𝜆0, in RPI and
the harmonic TST version of RPMD88. The ratio between the
RPI and harmonic RPMD-TST rates can be shown to be88

𝛼ℎ (𝛽) = 2𝜋
𝛽ℏ|𝜆0 | , (31)

which for the uniform model varies from 4.1 at 𝜂0/𝑚𝜔‡ = 0.1
to 1.9 at 𝜂0/𝑚𝜔‡ = 1.0.

V. CONCLUSIONS

We have investigated the effects on Kramers’-type reac-
tions of making the friction spatially-dependent. We car-
ried out accurate (ML-MCTDH) and approximate (RPMD,
RPI and classical) simulations on two very different spatially-
dependent friction profiles (called "symmetric" and "asym-
metric"). We find that the spatial dependence introduces
strong quantum effects into the rate constants for both models,
over the full range of friction strengths considered (which, for
a uniform friction strength would encompass the full range of
the Kramers’ curve). However, only at very low overall fric-
tion strengths can these effects be attributed to real-time quan-
tum dynamics. At higher friction strengths, the quantum ef-
fects are found to be static, reflecting the changes in the quan-
tum free-energy profiles that result when the friction is made
spatially-dependent. We also find tentative evidence (from the
tests on the asymmetric profile) that quantum dynamical ef-
fects might play a role in systems with a sharp jump between
low and high friction, but these results are inconclusive (since
we do not know whether the ML-MCTDH calculations have
converged to the exact quantum rates for this friction profile).

Methodologically, these results imply that spatially-
dependent friction models behave similarly to the commonly
used system-bath models (with spatially-independent fric-
tion). Thus at low overall friction, accurate quantum meth-
ods are needed to capture the real-time coherence. Here,
we used the ML-MCTDH method, and hopefully, these re-
sults will be useful to others as benchmarks. We expect
that QUAPI70 could also be straightforwardly modified to
treat spatially-dependent friction, and perhaps also hierarchi-
cal equations of motion (HEOM)89,90. However, once the fric-
tion is large enough to remove most of the real-time coher-
ence (which is still in the energy-diffusion-limited Kramers’
regime) then RPMD is, by construction, able to capture all
the quantum free-energy effects and thus will usually work
well in this regime (except perhaps for friction profiles with
sharp jumps—see above). This is useful to know, as RPMD is
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FIG. 6: Transmission coefficients 𝜅(𝑇 = 50 K) for the three friction
models, obtained from the corresponding ML-MCTDH, RPMD,

and RPI rate constants using Eq. 25. The ‘𝛼ℎ RPMD’ coefficients
were obtained by multiplying the RPMD rate constants by the

𝛼ℎ (𝛽) correction factor of Eq. 31.

typically orders of magnitude cheaper than accurate quantum
methods.

There are a variety of systems which could be modelled
realistically by spatially-dependent friction and which could
thus be treated using the approaches used in this article.

In the low friction regime, we mention in particular optical
cavities91–93 where real-time quantum effects are thought to
be important; at higher frictions, RPMD has already been
used to study the diffusion of light particles in metallic
environments94.
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I. ADDITIONAL FIGURES

In Fig. S1, we compare the transmission factor reported in this work for the uniform friction

model at 300K with results previously reported in the literature by Craig, Wang and Thoss (CTW)1,

and Topaler and Makri (TM)2. The three datasets are in perfect agreement.
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FIG. S1: Comparison of the transmission factors at 300K for the uniform friction model obtained

in this work, by Craig, Wang and Thoss (CTW)1, and by Topaler and Makri (TM)2.

In Fig. S2, we report the transmission factors obtained from multi-layer multi-configuration

time-dependent Hartree (ML-MCTDH) simulations across a wide range of temperatures.

In Fig. S3, we show the flux-side correlation function obtained with ML-MCTDH at represen-

tative friction values at 300K. In all cases, the coherent tunnelling-dominated regime at low friction

can be identified by the presence of oscillation that extends over hundreds of femtoseconds.

In Fig. S4, we present centroid-free energies along the reaction pathway at 50 K. In the cal-

culations of the uniform model, the free energy in the vicinity of the barrier top flattens out for

the lowest friction values, an indication of the ring-polymer delocalization3,4, whereas it remains

fairly parabolic for the largest values of friction. This qualitative change can be traced back to the

appearance of instanton-like geometries at lower friction strengths. Since the cross-over temper-
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FIG. S2: Transmission factors (Eq. 24 in the main text) obtained from the ML-MCTDH

simulations.

atures are 71 K and 53 K for 𝜂0/𝑚𝜔‡ = 0.3 and 𝜂0/𝑚𝜔‡ = 3.0, respectively, at 50 K the system

is only in the deep-tunneling regime for the former case. In the symmetric model calculations, the

changes of the free energy profiles with friction are milder since the instanton geometry expands

across areas of relatively small friction. Similar to what is observed at high temperatures, the

results of the asymmetric model resemble the uniform case.
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FIG. S3: Flux-side correlation function, 𝑐fs(𝑡), obtained with ML-MCTDH at 300K for selected

friction values.
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FIG. S4: Centroid free energy along the reaction pathway at 50K for 𝜂0/𝑚𝜔𝑏=0.3 (blue),

𝜂0/𝑚𝜔𝑏=1.0 (green), and 𝜂0/𝑚𝜔𝑏=3.0 (orange). The classical free energy is depicted by a black

dashed line.

5


