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THERMODYNAMIC FORMALISM OF COUNTABLY GENERATED
SELF-AFFINE SETS

ANTTI KAENMAKI AND IAN D. MORRIS

ABSTRACT. In this article, we further develop the thermodynamic formalism of affine
iterated function systems with countably many transformations by showing the exis-
tence and extending earlier characterisations of the equilibrium states of finite affine

iterated function systems to the countably

infinite case. As an application, under mild

conditions, we prove that the affinity dimension of a countable affine iterated function
system is equal to the supremum of the affinity dimensions of its finite subsystems.
We deduce corollaries concerning the Hausdorff dimension of countably generated self-
affine sets in dimensions 1, 2, and 3 satisfying mild deterministic assumptions and in
arbitrary dimension with generic translations.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Background. An iterated function system acting on R? is defined to be a collection
(T})iez of transformations 7;: R% — RY which are contracting with respect to some fixed
norm || - ||| on R%, uniformly with respect to i € Z, such that the fixed points of T; form a
bounded set. In this article the set Z, which we call the index set for the iterated function
system (7;);cz, will always be a nonempty set which is either finite or countably infinite.
Since the transformations 7; contract uniformly with respect to i € Z, the mapping
A+ U;ez Ti(A) defined on nonempty compact subsets of R? is strictly contractive in
Hausdorff distance. Therefore, by Banach’s contraction mapping theorem, there exists
a unique nonempty compact set K C R? which satisfies

K = Ti(K). (1.1)
1€T
The set K is called the attractor of the iterated function system (7;);cz.

If the index set Z is finite, then it is classical (and easily demonstrated) that the
attractor K is characterised by the following property: a point z € R% belongs to K if
and only if it is a limit point of (T});ez, that is, there exists (i,)°; € ZV such that for
every v € R? we have

lim T;, 0---0T; (v) = . (1.2)

n—oo
In the countably infinite case, using the facts that the transformations 7; contract uni-
formly with respect to ¢ € Z and the fixed points of T; form a bounded set, it is not
difficult to show that for every (i,)%; € IV there exists an associated limit point z € R?
satisfying (1.2) for all v € R%. The union

x= U lim T 0.+ 0T, (v) (1.3)

(in)S2, €IN
of all limit points is called the limit set of the iterated function system (7;);cz. It is
easy to see that the attractor K is the closure of the limit set X, which also satisfies the
equation (1.1) but which in general need not be compact.

As an example, let us consider an iterated function system (z + (i + )~ 1);en acting
on (0,1)!. This countably infinite system arises from continued fraction expansions, and
its limit set X as defined in (1.3) is precisely the set of all irrational numbers in the unit
interval. The attractor K in this case is the unit interval, so the limit set better reflects
the dynamical properties of the system. We are therefore interested in the limit set of
an iterated function system, i.e. the set of all points € R% which arise as limits of the
form (1.2) for a given (7;);cz. It is worthwhile to emphasize that in this example the
limit set is not topologically closed.

Throughout this article we will be concerned with the situation in which every trans-
formation 7 is invertible and affine, having the form 7T;(x) = A;x +v; for some invertible
linear map A4; € GLg4(R) and vector v; € R?, and we will describe such iterated func-
tion systems simply as affine iterated function systems. The limit set X of an affine
iterated function system is conventionally called a self-affine set as it consists of affine

1Strictly speaking this example does not define an iterated function system on (0, 1) since the map
fi(z) =1/(i+=x) is not contracting for ¢ = 1, but this point of detail may be circumvented by considering
the larger system of maps (fi o f;);5=1 which is uniformly contracting.
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images of itself. In this article we will prefer to say that a set is a finitely generated self-
affine set if it is the attractor of an affine iterated function system with a finite index
set and an infinitely generated self-affine set if it is the limit set of an affine iterated
function system with a countably infinite index set. The dimension theory of finitely
generated self-affine sets, and study of the natural measures on finitely generated self-
affine sets, has been very substantially developed in the last two decades in works such
as [1-9,11,13,13-17,19,22-26, 29, 30, 32, 33,36-38]. In this article, we will be concerned
with the extension of these results to infinitely generated self-affine sets, continuing a
project which was initiated in [25]. We will be particularly interested in extending the
thermodynamic formalism of finitely generated self-affine sets to the case of infinitely
generated self-affine sets, and in the approximation of infinitely generated self-affine sets
by their finitely generated self-affine subsets. In this respect the present work parallels
the now-classic article [27] which extended the theory of conformal iterated function
systems from the finitely-generated to the infinitely-generated context in an analogous
manner.

1.2. Singular value pressure. In this article we let || - || denote the Euclidean norm
on R? and its induced operator norm on d x d real matrices. We denote the set of all
real d x d matrices by My(R). If || -|| is any norm on R? then the same symbol will
likewise be used to denote the corresponding operator norm on My(R). We recall that
the singular values of A € My(R) are defined to be the non-negative square roots of the
eigenvalues of the positive-semidefinite matrix AT A and are denoted o1(A),...,04(A)
in non-increasing order. The identities o1(A) = ||A| and T, 0:(A) = |det A] for all
A € My(R) are standard, as is the identity o4(A) = ||[A71||7! in the case where A is
invertible. We now recall some further definitions arising in [12]. For each A € My(R)
and s > 0 we define the singular value function by

)= 01(A) 05 (A)ors (A)~ls) if0 < s <d,

|| det A4, if 5> d.
Note that o4(A)* < ¢*(A4) = ||A|]° for all 0 < s < 1 and 04(A4)® < ¢*(A) < ||A||® for
all s > 1. The inequality ¢*(AB) < ¢*(A)p*(B) was demonstrated in [12] to hold for

all A, B € My(R). Given a finite or countably infinite tuple A = (A;);er € GLg(R)? of
invertible matrices, we define for each s > 0 the pressure of A at s by setting

S

©°(A

.1
P(A,s) = nh_)rrgo - log Z ©* (A -+ Ay, € (—00, ). (1.4)
(i1,0emsin) ET™
The sequence (a,)52 1, where
ap=log Y (A Ay,

(31 yeeeyin ) EL™

satisfies the subadditivity property aptm < an + @y, for all n,m > 1 as a consequence
of the aforementioned inequality. If every a,, is finite (as is necessarily the case when 7
is a finite set) this property suffices to guarantee the existence of the limit (1.4) as an
element of [—o00, 00) by the classical subadditivity lemma of Fekete. On the other hand
when some of the terms a,, are allowed to equal co the existence of the limit is no longer
guaranteed by subadditivity alone and additional arguments are needed. (For example,
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if b, = 1 for even n and b, = oo for odd n then the sequence (b,,)>2; is subadditive but
the sequence (b,/n)%2; is not convergent.) We will see in Lemma 2.2 below that the
limit (1.4) always exists in (—o0, 0] and is equal to the infimum of the same sequence.

In the case where Z is finite it is well-established that s — P(A,s) is a continuous
function [0,00) — R and satisfies P(A,0) = log #Z. If additionally sup;c7 [|4if| < 1
for some norm || || on R? then the function is additionally strictly decreasing with
lims_,o0 P(A,s) = —oo and as such it has a unique zero. In the case where 7 is infinite,
on the other hand, the situation is slightly more subtle. Let A = (4;)iczr € GLg(R)?
where 7 is either finite or countably infinite. We define the finiteness threshold of the
pressure to be the quantity

Op =inf{s > 0: P(A,s) < oo}
if 7 is infinite, and 05 = 0 if Z is finite. We also write
Ipn={s>0: P(A,s) € R} C [0a,0).

A tuple A = (A;)ier € GLg(R)T will be called irreducible if there is no nonzero proper
subspace V C R? such that A;V =V for every i € Z; otherwise A is reducible. We also
say that A is completely reducible if in some basis the matrices in A are block-diagonal
with irreducible blocks of the same size; see Section 4 for further details. Our first main
result describes the behaviour of the pressure functional s — P(A, s):

Theorem 1.1. Let A = (4;)ier € GLy(R)Z, where T is either finite or countably infinite.
Then the following four assertions hold:

(i) The set In is equal to either [Op,00) or (Op,00), and satisfies the alternative char-
acterisation
In = {5 > 0: Z@S(Ai) < oo}
1€l
In particular, if T is finite then we have Zp = [0, 00).
(ii) The pressure function s — P(A,s) defined on Fa is continuous, and is convex
when restricted to the intervals [k, k 4+ 1] N Fa for all k € {0,...,d — 1} and when
restricted to the interval [d,00) N Za. In particular, if P(A,0a) < oo, then

lim P(A,s) = P(A,0a).
Sl/eA

(7ii) For all s € Sp we have
P(A,s) =sup{P((Ai)icy,s): J is a nonempty finite subset of I}

and if A is completely reducible then the above relation holds for every s = 0.

(i) Let ||-|| be any norm on R? and define k = —logsupcz |Aill. Then we have
P(A,s+t) < P(A,s)—kt foralls € Zp andt > 0. In particular, if sup;c7 ||| Al < 1,
then k > 0 and s — P(A,s) is strictly decreasing with lims_,o, P(A,s) = —oc0.

Clauses (i) and (iv) of Theorem 1.1 are direct and straightforward to prove, and
we present the proofs without delay in Section 2. But the proofs of (ii) and (iii) are
surprisingly involved and they are presented in Section 5.1 which further depends on
the results of Section 6. Those parts of (ii) and (iii) which deal with the endpoint case
s = Op € Fp are particularly involved. In Remark 5.4, we show that the assumption
P(A,0a) < oo in (ii) is required for the right-continuity of the pressure at 0. If the
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tuple A consists only of a constant multiple of orthogonal matrices (or, more generally,
the transformations T; are conformal and satisfy the bounded distortion property), then
the corresponding theorem is much simpler and it is proved in [27, Proposition 3.3].

If for some norm ||- || on R? we have sup;7 || Ai]| < 1, we define the upper affinity
dimension of A = (A;)icz to be the quantity
dim,g A = inf{s > 0: P(A,s) <0} (1.5)

and the lower affinity dimension of A to be the quantity
dim,g A = sup {di—maﬂ?(Ai)iejl J is a nonempty finite subset of I} . (1.6)
It is readily checked that
max{fp,dim,s A} < dim.g A. (1.7)

Indeed, since the infimum is monotone with respect to inclusion, we necessarily have 05 <
dimag A. If s > dimug A and J C T is any nonempty finite set then by a straightforward
examination of the definition of the pressure we have P((4;)ic7,s) < P(A,s) < 0 and
it follows that dimag(4;)ics < s. Thus dim,z A < s for all s > dimag A and hence,
dim, g A < dimg A as required.

If dim,g A = dim,g A, then we denote the common value by dim,g A and call it the
affinity dimension of A. The following result is obtained as a corollary of Theorem 1.1
and we present its proof in Section 5.1.

Proposition 1.2. Let A = (A;)ier € GL4(R)%, where T is either finite or countably
infinite, be such that sup;cz || Ai]| < 1 for some norm ||- || on RY. If at least one of the
following four assumptions,

(i) 0 < P(A,dim,g A) < oo,

(ii) Oa < dim,g A,

(iii) A is completely reducible,

(iv) T is finite,
holds, then dim,g A = dim,g A.

The situation in which dim, g A @agA thus requires that @aﬂA = fa, and
this can be realised both with P(A,dimu,g A) = oo and with P(A,dimag A) < 0, as is
demonstrated by the following proposition which will be proved in Section 5.1:

Proposition 1.3. For all o, € (0,1) and v € (8,1] there exists a tuple of matrices
A = (Ay)ien € GL2(R)Y such that sup;ey || Ail < o and

dimaﬂsA =p< Y= Oa = dimug A.
Furthermore, A may be chosen such that P(A, 6p) is either negative or infinite, as desired.

If the tuple A consists only of constant multiples of orthogonal matrices then the
strict inequality dim,g A < dimag A cannot hold; this follows from the fact that such a
tuple is necessarily completely reducible, but follows also from the antecedent result [27,
Theorem 3.15] (which also applies if the transformations T; are assumed only to be
conformal transformations with an appropriate bounded distortion property). As such
the outcome dim, g A < dim,g A demonstrated in Proposition 1.3 is a phenomenon which



6 ANTTI KAENMAKI AND IAN D. MORRIS

is specific to the case of non-conformal infinite iterated function systems, and which has
to the best of our knowledge not previously been remarked.

1.3. Equilibrium states. Our second major result is a complete description of the
equilibrium states of ¢* with respect to the full shift over a countable alphabet. This
result extends the description given in the finite-alphabet case in [9]. Whereas in the
finite-alphabet case the existence of at least one equilibrium state follows from a weak*
compactness argument (see [23]), in the countable-alphabet case no general existence
results were previously known.

The collection of all Borel probability measures on ZV will be denoted by M(ZV). We
let My (Z") denote the set of all o-invariant measures in M(ZV), where o: IV — T is
the left shift taking (i), into (ix);2,. Here and hereafter we denote i = i1---4, =
(ig)P_y €T i =iyig--- = (ig)3y € IV, jln = j1--jn for all j € IV, and [i] = {j €
IV: §], =i} c IN for all i € Z™. The set [i] is called a cylinder set at level n whenever
i €Z" We also write 7% = [J,, >, Z".

Let 1 € M, (ZV), A = (A;)iez € GLg(R)Z, and s > 0 be such that sup;cz ¢*(4;) < oc.
Recall that the singular value function ¢® satisfies p*(A) < ||A||* for all A € GL4(R).
Therefore, sup;cr ||4;i|| < oo implies sup;c7 ¢®(A4;) < oo for all s > 0. We define the
energy of A at s > 0 with respect to u € My (ZV) by setting

_ 3 1 S . S
ApAss) = lim — | log*(Ay), ) dp(1) € [—o0,log SUp (4], (1.8)
where A; = A;, -+ A;, forall i =iy -4, € Z". We will see in Lemma 3.1(i) below that
the limit (1.8) exists in [—o0, log sup;c7 ¢*(A4;)] and is equal to the infimum of the same
sequence.
For ;1 € M(ZV) and a finite Borel partition P of ZV we define the Shannon entropy
by
H(p,P) =~ u(C)log u(C) € [0, #P/e]. (1.9)
CeP
Here we adopt the usual convention according to which Olog0 = 0. Recall that the
n-level refinement of the partition P, denoted by ;‘:_01 o~ '(P), is the collection of sets
of the form ﬂ?;ol O'_i(Cji), where Cj, € P. Note that the refinements are finite Borel
partitions of ZN. We write

n—1

h(p,P) = lim lH(M, \/ ai(P)) € [0, 00)

i=0
and define the Kolmogorov-Sinai entropy of u € My(ZV) by setting
h(p) = sup{h(u,P): P is a finite Borel partition of Z"'} € [0, c0]. (1.10)

We will see in Lemma 3.2(i) below that the limit h(u, P) always exists in [0, 00) and is
equal to the infimum of the same sequence.

The following proposition shows how these quantities are related to the pressure. We
postpone its proof until Section 5.2.
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Proposition 1.4. Let A = (A;)icz € GLy(R)T and s = 0 be such that sup;cz ¢*(4;) <
oo, where T is either finite or countably infinite. If i € My (IN) is such that h(p) < oo
or Au,A,s) > —oo, then

B() + A A, 5) < P(A,5).

If 4 € My(ZV) is such that h(p) < oo or A(u, A, s) > —oo, then we say that p is an
o’ -equilibrium state for A if it satisfies

h(u) + A(p, A, s) = P(A, s).

If 7 is finite, then the existence of an ¢*-equilibrium state is proved in [23] and their
complete description is given in [9]. The next theorem extends this information into
the countably infinite case by completely classifying the structure of the family of all
@*-equilibrium states. A tuple A = (4;)ier € GLg(R)? is strongly irreducible if there
does not exist a finite collection V of nonzero proper subspaces of R? such that 4;V =V
for every i € Z. A strongly irreducible tuple is clearly irreducible. Given A = (A;);ez €
GL4(R)Z, we define A"* to be the tuple (AM¥);cz, where AM: AFRY — AFRY is the
induced invertible linear map.

Theorem 1.5. Let A = (4;)icz € GLy(R) be such that sup;cz ¢°(A;) < oo, where T is
either finite or countably infinite. If s € Za, then

P(A,s) = sup{h(p) + A(u, A, 5): € Mo (ZV) is such that h(u) < oo}.

Furthermore, if s > 0p, then the following three assertions hold:

(i) If s > d then there is a unique @°-equilibrium state for A and it is a Bernoulli
measure.

(ii) If s € (0,d) N 7Z then the number of distinct ergodic p®-equilibrium states for A is
at least one and is not more than (‘sj) If A" is irreducible then there is a unique
% -equilibrium state for A, and if additionally A is strongly irreducible then this
unique equilibrium state is mizing.

(iii) If s € (0,d) \ Z then the number of distinct ergodic ©*-equilibrium states for A is
at least one and is not more than (L(sij) ([Zﬁ). If one of AN and AMNST s irreducible
and the other is strongly irreducible then there is a unique ©*®-equilibrium state for
A, and if both are strongly irreducible then this unique equilibrium state is mizing.

In all cases every equilibrium state is fully supported on IV.

The proof of the theorem is given in Section 5.2 which further relies on the results of
Section 6. The ergodic equilibrium states admit a precise description which is essentially
identical to that given in [9] and which will be given in detail later. The following result
is a consequence of the fact that equilibrium states are always fully supported:

Proposition 1.6. Let A = (A;)ie; € GLg(R)T where T is either finite or countably
infinite. Then the following two assertions hold:
(i) For every s > Oa, if J is a nonempty proper subset of I, then P((4;)icr,s) <
P(A,s).
(ii) If there exists a morm || - || on R? such that sup;ez || Al < 1, and if Oa < dimug A,
then dimag(A;)icr < dimag A for every nonempty proper subset J of L.
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1.4. Self-affine sets. The third class of results proved in this article present some ap-
plications to the dimension theory of infinitely generated self-affine sets. Let (T});ez be
an affine iterated function system acting on R?. Recall that every transformation T} is
invertible and affine, having the form T;(x) = A;x + v; for some invertible linear map
A; € GLy4(R) and translation vector v; € R% Denote the associated self-affine set by
X c R% We are interested in determining dimy X, the Hausdorff dimension of X. We
use the convention that whenever we speak about a self-affine set, then it is automati-
cally accompanied with a tuple of affine maps which defines it. Write 73 =T;, 0---0T;,
for all i =43 ---4,. Relying on (1.1), the self-affine set X can naturally be covered by
the sets Ti(B), where B is a ball containing X. The singular value function ¢*(A;)
represents a measurement of the s-dimensional volume of the image of the Euclidean
unit ball under 7. For example, in the planar case, the set T;(B) can be covered by one
ball of radius o;1(A;) diam(B) or by O(o1(A;i)/02(A;1)) balls of radius 09(A;) diam(B).
This motivates the study of the limiting behavior of sums >; .7+ ¢*(A;) and hence, the
pressure P(A,s) of A = (A;)ier € GLg(R)Z. In particular, Theorem 1.1(iii) introduces a
way to approximate the dimension of infinitely generated self-affine sets by their finitely
generated self-affine subsets.

The first proposition is a rather standard covering argument and it generalises the
classical estimate [12, Proposition 5.1] into the infinitely generated case. All the results
announced below will be proved in Section 5.3.

Proposition 1.7. Let X C R¢ be a self-affine set. Then dimp X < dimag A.

Let || - || be a norm on the vector space of affine maps from R? into itself. We say
that X satisfies the exponential separation condition if for every finite J C Z there exists
cg > 0such that ||T; —Tj|| > ¢ for all n > 1 and distinct i, j € J". It is not difficult to
see that the self-affine set X satisfies exponential separation when the defining iterated
function system generates a free semigroup and is defined by algebraic parameters (i.e.
when T; # Tj for all distinct i,j € Z* and all the entries of A; and v; are algebraic
numbers).

The remaining theorems introduce sufficient conditions for the Hausdorff dimension
of the self-affine set equal the affinity dimension. Furthermore, in such cases Proposition
1.6(ii) translates into a result that removing one of the defining affine maps results in
a strict reduction of the Hausdorff dimension, a property which was previously demon-
strated for finite affine iterated function systems in [9,24]. The following result gener-
alises the seminal theorem [18, Corollary 1.2] into the infinitely generated case. As affine
maps acting on the real line are similarities, the self-affine sets on R are often called
self-similar.

Theorem 1.8. Let X C R be a self-similar set satisfying the exponential separation
condition. Then dimpg X = min{1, dim,g A}.

We say that the self-affine set X satisfies the fized point condition if the maps T; in
the defining affine iterated function system do not have a common fixed point. Further-
more, we say that A = (A;)iezr € GLd(R)I is proximal if there exist i, io,... € I*
and ajg,ag,... € R such that the sequence (ayA;,)n>1 converges to a rank one linear
transformation. In the case where A is additionally irreducible, this is equivalent to
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the existence of i € 7* such that A; has a simple leading eigenvalue. The next theo-
rem generalises both [19, Theorem 1.1] and [2, Theorem 1.1], whose proofs are based
on [4, Theorem 2.3| and [34, Theorem 1.1], into the infinitely generated case.

Theorem 1.9. Let X C R? be a self-affine set satisfying the fized point condition and
the exponential separation condition such that the associated matriz tuple A is strongly
irreducible and prozimal. Then dimpg X = min{2, dim,g A}.

Recall that X satisfies the strong open set condition if there exists a nonempty bounded
open set U C R? intersecting X such that ;7 T;(U) C U with disjoint union. By [2,
§6.2], the strong open set condition implies the exponential separation. The following
theorem generalises [33, Theorem 1.5], whose proof rely on [36, Theorem 1.9] and [13,
Theorem 1.4], into the infinitely generated case.

Theorem 1.10. Let X C R? be a self-affine set satisfying the strong open set condi-
tion such that the associated matriz tuple A is strongly irreducible and prorimal. Then
dimpg X = min{3, dim,g A}.

In the following result, which generalises [25, Theorem B], the self-affine sets X, are
parametrised by the tuples of associated translation vectors v = (v;)icz € (R%)%. Define
Q = (0,1]%)* and note that by Kolmogorov extension theorem Q supports a natural
probability measure Lq = (Ed’[o’l]d)l- , where £% is the Lebesgue measure on R?.

Theorem 1.11. Let X, C R be a self-affine set such that the associated matriz tuple
A = (A;)ier satisfies supez |4 < 3. Then dimy X, > min{d, dim,z A} for Lq-almost
all v e Q.

Under any of the assumptions (i)—(iv) in Proposition 1.2, the above theorem improves
into dimy X, = min{d, dim,g A} for Lq-almost all v € Q. Recalling Proposition 1.3, it
would be interesting to know if in the context of Theorem 1.11 there exist infinitely gen-
erated self-affine sets X with dimpg X < dimag A. If not, then Proposition 1.3 shows that
there are infinitely generated self-affine sets X with dimpy U 77 is finite X7 < dimp X.

2. EXISTENCE AND FINITENESS OF PRESSURE

In this section, we collect some elementary properties of the pressure P(A,s) for
countably infinite affine iterated function systems. In particular, we prove the clauses
(i) and (iv) in Theorem 1.1. Without further mentioning, we use notation concerning
words introduced in Section 1.3. We begin with a fundamental lemma concerning the
sequence used to define the pressure.

Lemma 2.1. Let T be countably infinite, A = (A;)ier € GLg(R)Z, and s > 0. If
Siez ¢ (Ai) < oo, then for everyn > 1 the series Y ;czn ¢'(As) converges uniformly on
[s,00).

Proof. Suppose that Y ;.7 ¢*(A;) < oo and define Tt = {i € Z: ¢*(4;) > 1} and
I~ ={ieI:¢%(A;) < 1}. Since by hypothesis > ;7 ¢*(4;) < oo, the set ZT is finite.
For all © € T~ we have

Ofs) (Al)s < (ps(Ai) <1, ifo
\detAi\ <1, if s
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and hence,

ta LPS(A) "s](A ) s (Az s ifo<t<d,
(AZ) < t— max{s d} .
©%(A;)| det A < p¥(4;), ift>d

for all t > s. Let € > 0 and choose a finite set J C Z such that 3,cp\ 7 ¢ (4;) <e. It
follows directly that if t > s, then

Yo PA) = D> )< )] A< )] PP(A) <e
i€T\(ZT+UT) i€T-\J i€T-\J i€eT\T

We have proved that Y;.7 ¢'(A;) converges uniformly on [s,o00) and this proves the
lemma in the case n = 1.
To show the general case, observe first that if A, B € GL4(R), then, by a well-known
inequality,
¢*(AB) < ¢°(A)¢*(B); (2.1)

for example, see [24, §3.4]. If n > 1, then by summing we get

> e < (E o) (o). (2:2)

iezntl iezn i€l
Therefore, since Y ~; c7n ¢*(Ai) < (e ¢°(Ai))" by a simple induction, the convergence
of > ;c7¢*(A;) immediately implies the convergence of >°;c7» ¢*(A;), and the result
follows by applying the above arguments to Z" in place of Z. O

The following lemma verifies the existence of the pressure defined in (1.4) and proves
Theorem 1.1(i).

Lemma 2.2. Let A = (A;)icz € GLg(R)? where T is either finite or countably infinite.
Then the following three assertions hold:

(i) For every s = 0 the limit
P(A,s) = hm —log Z o ( = inf —log Z ©°( (2.3)

n>1
iezn n iezn

exists in (—oo, 00] and is finite if and only if Y ;c7 ¢°(A;) < oo is finite. In partic-
ular
In={s>0: P(A,s) <oo}= {s > 0: Z@S(Ai) < oo}
1€l
(ii) The set Fn is equal to either (Op,00) or [Oa,00).
(tit) For every n > 1 the function s — > ;c7n ©°(A;i) defined on Fp is continuous.
Proof. Recall that if Z is finite, then 65 = 0 and .#5 = [0,00). To prove the claims, we
first observe that if A, B € GLd( ) and s > 0, then (2.1) implies ¢*(A4) = ¢*(ABB™!) <
©*(AB)¢*(B™1). Smce ©*(B™Y) < 01(B71)* = 04(B)~*, we thus get
¢*(A)oa(B)® < ¢*(AB).

The inequality

(2 em)(Soutar) < X o (2.4)

ieZn €L iegn+i
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for all n > 1 follows immediately by summation.

A simple induction using (2.2) shows that if ;.7 ¢*(A;) is finite, then > c7n ¢®(4;) <
(Xier °(Ay))" < oo for all n > 1; on the other hand if >7,.7 ¢*(A;) is infinite then a
similar induction using (2.4) implies that Y, 7n» ¢*(A;z) is infinite for every n > 1. We
conclude that the sequence in (2.3) is either finite for every n > 1 or infinite for every
n > 1. In the former case the existence of the limit (2.3) and its identity with the claimed
infimum follow from the subadditivity lemma; in the latter case the same properties fol-
low trivially since the sequence is identically equal to co. We have proved (i). Applying
this result together with Lemma 2.1 we see that

I = U [s,00)
S€<¢A
and this is equal to either (6a,00) or [fa,o0) depending respectively on whether or not
Op € Ia, which yields (ii).
For every n > 1, by Lemma 2.1 the series > ;.7» ¢*(A;) converges uniformly with

respect to s on closed subintervals of .#5. As the function s +— ¢*(A;) is continuous for
every i € 7%, this implies that each of the function

S Z ©°(A
ieln
is continuous on .#5 proving (iii). O

With elementary methods, we see that the pressure is always decreasing in s and, if
7 is finite, also continuous. In fact, the following lemma proves Theorem 1.1(iv).

Lemma 2.3. Let T be finite or countably infinite, || -|| be any norm on R, and A =
(A))ier € GLg(R)T be bounded. Then P(A,s +t) < P(A,s) + Ct for all s € Ip and
all t > 0, where C' = logsup;cr || Aill|l. Furthermore, if T is finite then s — P(A,s) is
continuous on [0, 00).

Proof. Let K > 0 be a constant such that K—1|lv]| < |Jv]| < K]|lv|| for all v € R?, let
s € Fp be arbitrary and let ¢ > 0. Using Lemma 2.2(i ) we have for all n > 1
exp (nP(A, s +1)) Z oA Z | Az ||* < Ke™¢ Z ©*(A
iezn iezn iezn

and the inequality P(A s+1t) < P(A s) + Ct follows easily. If 7 is finite then clearly

Z <p8+t Z ©°( ) > (mmad "t Z ©°(

ieln ieln iezn
and so
P(A7 s+ t) Z P(A7 S) + thg ml%_l Ud(Ai)
1€
for all s € #a and t > 0. The continuity of s — P(A,s) for finite Z follows. O

To finish this section, let us verify the easy part of Theorem 1.1(ii) by showing that
the pressure is convex between two consecutive integers.

Lemma 2.4. Let T be finite or countably infinite and let A = (A;)ier € GLg(R)T. Then
the function s — P(A,s) is convex on [k,k + 1] N Fa for all k € {0,...,d — 1} and is
also convex on [d,00) N Ia.
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Proof. We will prove the case of convexity on [k, k + 1] N #a; the case [d,00) N Ap is
similar and left to the reader. Fix k € {0,...,d — 1} and ¢ € (0,1) and take s1,s2 €
[k, k + 1] N (6a, 00) such that s; < s9. Since |s1| = [s2] — 1= [tsa + (1 —t)s1] =k, we
have

(ptsz-i-(l—t)sl (Ai) _ (0'1(141) . Uk(Ai)Uk+1(Ai)S2_k)t
(01 (Ay) - op(Ay)opr (A3) )
= @82(Ai)t@s1 (Ai)l—t

for all 1 € Z" and n > 1. Therefore, by Hoélder’s inequality with Holder conjugates
p=1/tand ¢ =1/(1—1),

Z SDtSQJr(lft)sl(Ai) < <Z ¢52(Ai)>t< Z SDSl(Ai)>

iezn ieln ieln

1-t

for all n > 1. The claim follows directly by taking the logarithm, dividing by n, and
passing to the limit. O

Let A = (A;)ier € GLg(R)? where Z is either finite or countably infinite. If Z is finite,
then Lemma 2.3 shows the continuity of s — P(A,s) on [0,00). Proving the continuity
when Z is countably infinite is more involved and is not fully addressed until in Section
5. The elementary results stated in this section give some information in this direction.
At first, as a convex funtion defined on an open set is continuous, Lemma 2.4 implies
that s — P(A,s) is continuous on open intervals (0,1) N (O, 0),...,(d—1,d) N (fa, ),
and (d,00) N (fa, 00).

For each n > 1, by Lemma 2.2(iii) we see that the function

1
s —log 3 9"(As)
iein
is continuous on .#5. Recalling (2.3), it follows that s — P(A, s) is upper semi-continuous
on S as it is the pointwise infimum of a sequence of continuous functions on that domain.
In particular, we have
limsup P(A,t) < P(A,s)
t1s

for all s € (6a,00). If there exists a norm |- || on R? such that sup, [|A4;]| < 1, then
s+— P(A,s) is decreasing by Lemma 2.3 and, in particular, we have

liInginf P(A,t) = P(A,)s)

for all s € (Aa,00). Therefore, the function s — P(A, s) is in this case left-continuous at
points in {1,...,d} N (fa,00). The task in Section 5 is thus to prove the right-continuity
at 0a and in {1,...,d} N (fa, o).

3. PRELIMINARIES ON ENERGY AND ENTROPY

In this section, we examine the behaviour of the energy and entropy. Our first lemma
verifies the basic properties of the energy. Recall that the singular value function ¢*
is submultiplicative. We state the lemma for general submultiplicative potentials as we
will later define the energy also for other functions. The lemma shows that the energy
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A(p, A, s) defined in (1.8) exists in [—o0, sup;c7log ¢*(A;)] and is equal to the infimum
of the same sequence over n.

Lemma 3.1. Let T be either finite or countably infinite set and v: T* — (0,00) be such
that (i) < ¥(1)¥(3) for all 1, € T* and sup;cz (i) < co. Then the following two
assertions hold:

(i) For each pn € My (IV) the limit
1
Alp,v) = lim — | log9(iln)dp(i)

exists in [—oo,log sup;cz ¥ (7)] and is equal to infr>1 L [rvlog(iln) du(i).
(i) The map i+ A(u,v) defined on My (V) is upper semzcontmuous

Proof. Write M = sup;c7 %(i). By the submultiplicativity of ¢ and the o-invariance of
, we have

[ o8 (i) duli) < [ 1og(iln) du(i) + | logu(e™ k) dp(s)

(3.1)
- /IN 10g (4]m) dpu(i) + /IN log 9(i[,) dpu(i).

In particular, we have

[ Jog (il du(a) < [ o (i) du(s) +log M
and therefore,
1
- [ log (il du(s) < log 11
n JIn

for all n > 1. It also follows that if [,nlog(i],)du(i) = —oo for some n, then
Jrvlog ¥(ilm) du(i) = —oo for all m > n. Hence, the limit A(u, ) exists in [—oo, log M]
and is equal to the infimum of the same sequence over n by the subadditivity (3.1) as
claimed in (i). Since the map p — [ log ¢ (i],) dpu(i) is continuous for all n € N, we see
that p — A(, ) is an infimum of continuous functions and the assertion (ii) follows. [

Our second lemma verifies the existence of the entropy defined in (1.10). If Z is finite,
then ZN is compact and the existence of the entropy and its basic properties follow
immediately from [10]. To extend the results to case where Z is countably infinite, we
rely on the ultrametric structure of the non-compact set Z. Let P and Q be either
finite or countably infinite Borel partitions of ZV, extend the definition of the Shannon
entropy (1.9) to countably infinite partitions, and set

(o
H.P1Q) = X2 DI ( 7P € 0,47
for all u € M(ZM).

Lemma 3.2. Let T be cither finite or countably infinite set and P be either finite or
countably infinite Borel partition of IV. Then the following two assertions hold:
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(i) For each pn € M,(IV) the limit

h(p,P) = lim H( \/o'i(’P))

n—oo N,
=0

n— 1

exists in [0,00], is equal to inf,>1 2 H(u, /7=y 0~ (P)), and is finite if P is finite.
Furthermore, either all terms of thzs sequence are finite, or all are infinite.

(ii) If Q is either finite or countably infinite Borel partition of IV, then for each p €
M (IN) we have

h(p, P) < h(p, Q) + H(n, P | Q).
In particular, if each set in P is a union of sets in Q, then h(u,P) < h(u, Q).
Proof. Let P and Q both be either finite or countably infinite Borel partitions of ZV.

Recall that P Vv Q is the collection of sets of the form C' N D, where C € P and D € Q.
Note that

w( CﬂD (CﬁD)
H(p, PQ) + H(p, Q I;Qﬂ C;) (D)
— > u(D)log u(D) (3.2)
DeQ
- _ Z Z u(CND)logu(CND)=H(u,PVQ)
DeQCeP

and hence, H(u, Q) < H(u, PV Q) and
H(p,P)=H(p, PV Q) — H(u, Q| P)
H(p, PV Q) =H(p, Q)+ H(p,P|Q),

where, while calculating, we assume the quantities finite and then observe that the
claimed inequality holds also when any of the quantities is infinite. In particular, if each
set in @ is a union of sets in P, then trivially PV @ = P and

H(p, Q) < H(u, PV Q) =H(u,P). (3.4)

If R is either finite or countably infinite Borel partition of ZN such that each set in R
is a union of sets in Q, then Jensen’s inequality on the concave function z +— —xlogx
implies

(3.3)

w(CND). wCnD)

wu(D
P10 = Y 3 wE) Y M- mml%ﬂw>)

CeP EeR peo 1
wu( C N D cnD
<D > uE < ) d &) )) (3.5)
CEP EeR pea K

MwﬂE)OMwﬂE)
w(E) 5 u(E)

=H(u,P|R).

== wkE) ),

EER cep
Note that choosing R = {Z} above gives H(u, P | Q) < H(u,P) and therefore, by (3.2),

H(p, PV Q) < H(p,P)+ H(p, Q). (3.6)
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Furthermore, if R is either finite or countably infinite Borel partition of ZN, then it
follows from (3.2) and (3.5) that

H(u,PVQIR)=H(u,PVQVR)—H(u,QVR)+H(u, QVR) - H(u,R)
=H(p,P|QVR)+ H(u, Q|R) < H(u,P|R) + H(u, 2| R),

where, while calculating, we assume the quantities finite and then observe that the

(3.7)

claimed inequality holds also when any of the quantities is infinite. Write P" = /1 01 o~ YP)
and note that P"1" = v\l g=i(py = Py o7™(PM). By (3.6) and the o-

invariance of u, we get
H(p, P™) < H(p, P™) + H(p, o™ (P")) = H(u, P™) + H (1, P)

for all m,n > 1. Since each set in P" is a union of sets in P"*!, we see that, by (3.4),
(M,P") is increasing with respect to n. Therefore, by the subadditivity, the limit
limy, o0 = H (11, P™) exists in [0, o0], equals the infimum inf,>; < H(u, P"), and either all
terms of this sequence are finite, or all are infinite. The claim ( ) follows.
To prove the claim (ii), we first note that, as u is o-invariant, (3.2) implies

H(p,0™"(P)|07(Q)) = H(n,0 ' (P) Vo~ (Q) — H(u,0~(Q))
= H(u,PVQ)—H(u, Q) =H(u,P|Q)
for all i > 1. Write Q" = /!’ 07%(Q) and observe that, by (3.3), (3.7), (3.5), and (3.8),

(3.8)

n—1
H(p, P") < H(p, Q") + H(u, P" | Q") < H(p, Q") + Y H(u,0 ' (P)| Q")
=0
n—1
H(p, Q")+ Y H(u,o '(P)[07(Q)) = H(n, Q") +nH(u,P| Q).
1=0

Dividing by n before letting n — oo, the assertion (i) shows that h(u, P) < h(u, Q) +
H(u,P| Q). If each set in P is a union of sets in Q, then trivially PV Q = Q and

H(p,P|Q) =H(u,PVQ)—H(p Q) =0 by (3.2). 0
For each nonempty subset J of Z let

7. QUi e JYU{IN T}, HINT #0,
{{i}: i e T}, fZ\NT =0
be a partition of Z and let
Py = {U[i]: I ezj}
i€l
be a Borel partition of ZVN. Note that if J is finite, then P is a finite partition. If
i = (ig)?_; € I", then the corresponding cylider is [i] = {j € IV: j|, = i}. We
extend this definition as follows: If I = I --- I, = (I)j_, € T, then the corresponding
generalized cylinder is
= U U i1

1€l in€ln
Note that for each I = I ---I,, € I} there is i =iy ---i, € I" such that I, = {i;} for
all k € {1,...,n} and [I] = [i]. Notice that Ps = {[I]: I € T} and, since Z" and all
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the first level cylinders [i] are open and closed, the partition P consists of sets which
are open and closed. The n-level refinement of the partition P is

n—1
\/ o7 (Py) ={[1): 1 € T}%} (3.9)
i=0

for all nonempty subsets J of Z. In particular, \/7- 0~ (Pz) = {[i]: i € Z"}. Since

o is continuous, the set o~%([I]) is open and closed for all I € Z7 and i > 1. Since [I],
where I € 77, is a finite intersection of such sets, we conclude that all the generalized

cylinders are open and closed. Let p € M, (Z") and observe that, by (3.9) and Lemma
3.2(i), we have

h(p, Py) = —,}gr;og > w([1)) log p([1])

Iely
1 (3.10)
= inf —— > pu([1]) log u([T]) € [0, 00)
"z 1€T7
for all nonempty finite subsets J of Z and, in particular,
h(p, Pr) = —,}grolog Zﬂu ) log u([1])
et (3.11)
= ffifl_ﬁ EXI;M )log u([1]) € [0, 00).

Note that if p is a Bernoulli measure, then h(u, Pz) = H(u, Pr).

Lemma 3.3. Let Z be either finite or countably infinite set and J be a nonempty finite
subset of . Then the map ju+ h(u,Ps) defined on My (IV) is upper semicontinuous.

Proof. Let € M, (ZY) and (14)$2; be a sequence of measures in M, (Z") such that
i — @ in the weak* topology and fix € > 0. By (3.10), let n € N be such that

13
—— Z w([1])log (1)) < A(p, Py) + 5 (3.12)
IEI"

Since the generalized cylinders [I] are open and closed, the weak* convergence of the
sequence (py )72, implies p([I]) — p([I]) for all T € Z7%. Hence, by (3.10), the continuity
of z — —xlogx on [0, 1], and (3 12), there exists ky € N such that

h(ug,Pr) < —— Z px([1]) log g ([T])
IGI”
g
—— Z ([T log u([T]) + 5 < h(p, Py) + &
IEI”

for all £ > ko. It follows that limsup;_,.o h(uk, P7) < h(u, P7) and the claim follows.
U

The following example recalls [21, Remark 3.11] and shows that if Z is countably
infinite, then the map p ~ h(u, Pz) defined on M, (ZV) is not upper semicontinuous.
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Ezample 3.4. In this example, we exhibit a sequence (ux)72; of measures in M, (Z),
where T is countably infinite, such that j, — pu € My (ZV) in the weak* topology and

lim sup h(pg, Pz) > h(p, Pr).

k—o0

Let pui be the Bernoulli measure obtained from the probability vector

1 1 1 1
1— 0,0,...
( logk’ klogk klogk’ klogh )

where the term m appears k times. Note that pp — 1 in the weak™ topology, where

81 is the Dirac mass at 111--- € ZN. As gy, is Bernoulli, we have

1 1 1 1
h —H — —(1— —)log(1— —k 1
(ps Pr) (> P1) ( logk‘) Og( 10gk) k;logk: & Llog k

1 1 1
=—(1- log k) (1_logk) ogk ©logk " log klogk_}l

as k — oo. Since h(d1,Pz) = H(d1,Pz) = 0, we conclude that limy_, h(ug, Pz) =1 >
0 = h(61,Pz) as wished.

The partitions Pz can be used to define the entropy. Recall that, by Lemma 3.2(i),
h(p,P7) € [0,00) for all 4 € M, (ZV) whenever J is a nonempty finite subset of Z.

Lemma 3.5. Let T be either finite or countably infinite set. For each p € My (IV) we
have h(p) = sup{h(u, P7): J is a finite subset of T}.

Proof. Let 1 € My (ZV). Since trivially sup{h(u, P7): J is a finite subset of T} < h(u),
it suffices to prove that h(u) < sup{h(u,Py): J is a finite subset of Z}. Fix a finite
Borel partition P and € > 0. It is enough to show that there exists a finite subset J of
7 such that

h(u, P) < h(p, Pr) +¢. (3.13)

Write P = {C},...,C,} and choose 0 < § < 1/e such that —p*§logd < £/2 and, relying

on uniform continuity,
P P

_ZyilOgyi\ lelogxz‘i‘_
i=1 =1

for all z;,y; € [0,1] with z; —§ < y; < x; + 0. Since ZV is complete and separable and
is a Borel probability measure on ZV, there are compact sets K1, ... K, C N such that
K; C Cyand u(C;\K;) < 0/(p+1) foralli € {1,...,p}. Let n = min;,; dist(K;, K;) > 0
and choose m > 1 such that diam([i]) < n/2 for all i € Z™. Since the union of K;’s
is compact, it can be covered by ﬁnltely many m-level cylinders. In other words, there
exists a finite collection {i* = ¥ ...k ¥ < 7™ such that U?_, K; C Ui_ 1[’“] We
may assume that each [i¥] intersects U K The choice of m > 1 now guarantees that
for every k there exists unique ¢ such that [i*] N K; # 0. Choose a finite subset J C T
so large that all of these m-level cylinders [i¥] appear as generalized m-level cylinders,
ie. {if}---{ik} e I for all k € {1,...,¢}. Define

D= |J [i"

[141NK 40
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for all i € {1,...,p — 1} and D, = I\ Uf:llDl We see that D = {Dy,...,D,}
is a partition of ZV such that for every i € {l,...,p} we have K; C D; and D; is a
union of elements in P77 =\, oL 07 (P7), i.e. generalized cylinders [I] with I € 7.
Furthermore,

w(Ci\ D;) + p(Di \ Ci) < p(Ci \ Ki) + p(Di \ K;)

§ p
<0 Ki)gé
(U

(3.14)

By Lemma 3.2(ii), we have
h(p, P) < h(p, D) + H(p, P | D).

Therefore, in order to obtain (3.13), it suffices to show that h(u, D)

H(p,P|D) < e. Recall that, by (3.2), H(u, P|D) = H(u, PVD)— H
we have pu(D;) — 6 < p(C; N D;) < p(D;) + 6 for all 4 and p(C; N D)
whenever i # j. Therefore, by the choice of § > 0, we have

NT
S

H(u,P VD)= Z,uCﬂD)log,u(C N D;)
t,j=1

p
= —> u(CiN Dy)log u(C; N Dy) = > u(C; N D;)log u(Ci N Dy)
i=1 i#j

< H(u, D) + 5 — p*0logd < H(u, D) +<

and hence, H(u, P | D) < e. Furthermore, by Lemma 3.2(ii), we have

n—1

1. D) < b, Pp) = lim (. \/ o7(P))

n—oo n
=0

n+m-—1 1
= 1 n+m—1 h
Jim_ . Sp—— H(p, P ) = h(u,P7)

and the proof is finished. O

If the index set Z is finite, then Lemma 3.5, (3.10), and Lemma 3.2(i) imply the
well-known fact that

h(p) = h(p, Pr). (3.15)

FEzample 3.6. In this example, we demonstrate that in the countable infinite case we
can have h(u) < h(u, Pr). Hence the entropy cannot in general be defined by using the
finest partition given by the first level cylinders as in the finite case. Let Z be countably
infinite and 1 € M, (ZV). Write

— > ul[i]) log u([1])
ieln

for all n > 1 and recall that, by Lemma 3.2(i), either all terms of the sequence (a,)>2,;
are finite, or all are infinite. Note that, by Lemmas 3.2(ii) and 3.5, we have

h(p) < h(p, Pr). (3.16)
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To illustrate that h(u,Pr) does not in general give us a good definition for the entropy
in the countable case, we construct a measure y € M, (ZV) for which

h(p) =0 < oo = h(u, Pr1). (3.17)
Let Z= N\ {1} and §; be the Dirac mass at iii--- € Z". Define
0;
B= CZ PR
= i(log1)
where the constant c is chosen such that ¢ ;74 1(logi)™2 = 1. Since p is a linear

combination of ergodic measures on the compact set (Z U {oo})Y each of which has zero
entropy, it follows from [40, Theorem 8.1] that h(x) = 0. On the other hand,

logi + 2loglogi — logc
Z w([i]) log p([7]) = ¢ Z iflog )2 = 00.
€T i€T (log

Therefore, as all terms in the sequence (a,)32; are either finite or infinite, we have
a, = oo for all n € N and (3.17) holds.

The following lemma shows that the strict inequality h(u) < h(u,Pr) is possible only
when h(u,Pr) = oo. Under the assumption h(u, Pr) < oo the entropy can equivalently
be defined by using the finest partition given by the first level cylinders.

Lemma 3.7. Let T be either finite or countably infinite set and p € My (IN). If
h(p, Pz) < oo, then

h(w) = h(n, Pr).

Proof. By Lemmas 3.2(ii) and 3.5, we have h(u) < h(u,Pr). Therefore, it suffices to
prove that for every £ > 0 there exists a finite subset J of Z such that h(u,Pr) <
h(p,Ps) +e. Fix e > 0 and recall that, by Lemma 3.2(ii),

h(p, Pr) < h(p, Pg) + H(p, Pr | Pyg).

It is thus enough to show that H(u,Pr|Py) < . Since h(u,Pz) < oo, Lemma 3.2(i)
implies that — ;7 p([i]) log p([i]) < oo. Let J be a finite subset of Z such that

—2ien\g #([1]) log pu([i]) < e. Then

B WD )
H(uPr|Ps) = IEXI:j D2 =am ()

o (G I (0))
/W“7R§@<nvmlﬂmnjn

S Z w([4]) log p([7]) + Z u([i]) log n([Z\ J1)

1€I\T 1€I\T
- Y w(li)log u([i]) < e
1€I\T

as required. O
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4. REDUCTION TO COMPLETELY REDUCIBLE MATRICES

In this section, we verify an important reduction according to which, to study the
pressure and equilibrium states, it suffices to work with completely reducible matrices.
This reduction serves as a basis in our analysis.

Let V' be a finite-dimensional real vector space and A C GL(V) an arbitrary subset.
We say that A is reducible if there exists a proper nonzero subspace of V which is
preserved by every element of A. When this is not the case we call A irreducible. We
furthermore say that A is completely reducible if there exists a splitting V = @le Vj such
that AV; = V; for all A € A and j € {1,...,/}, and such that additionally {Aly,: A €
A} C GL(V}) is irreducible for every j € {1,...,¢}. In other words, if A C GL4(R), then
completely reducibility means that the matrices in A are block-diagonal with irreducible
blocks of the same size. Note that irreducibility implies complete reducibility since in
this case we can take £ = 1. By a slight abuse of notation we will say that a tuple
(A;)ier € GL(V)? is reducible, irreducible or completely irreducible if the corresponding
set has the stated property.

The following technical result forms the first step in analysing a countably infinite
affine iterated function system. It extends earlier work of the authors [24, Theorem 5] in
the finite case, and also extends the antecedent result [15, Proposition 1.4] which applies
for finite affine iterated function systems in the parameter range s € (0,1] U [d — 1, 00).
In effect it reduces the study of the pressure and equilibrium states to the case of tuples
which are block diagonalisable with irreducible blocks.

Theorem 4.1. Let T be either finite or countaby infinite and A = (A;);er € GLg(R)L.
Then there exist X € GLy(R), k € N, and positive integers dy, . ..,dy such that we may
write

| o B? - B¥
A= X" ) . X
0 0 --- DB

for alli € T, where each matriz BI*™ is a real matriz with dimensions dy, x dy, and the
family (B&);ez is irreducible for all t € {1,...,k}. If A = (AL);cz is defined by

B o0 .- 0
y 0 B»2 ... 0
i . . .
0O 0 ... DB

for all i € I, then P(A,s) = P(A',s) for all s € Ia and in particular Oa < Oa.
Additionally, for every s € Fa the set of p°-equilibrium states for A is identical to that
of A.

Before going into the proof of Theorem 4.1, let us study further properties of the
singular value function. The following feature of ©® does not seem to have been previously
noted (except in [24, Lemma 6.1] which covers the case k = 2) and we believe it is original
with this article:
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Proposition 4.2. Let dq,...,d, € N and d = Zle dy. If

Bl 0 0 0 Bl pl2 pi3 . Blk

0 B2 0 - 0 0 B»? B» ... p#
M=|0 0 B¥ ... 0| - |0 0 B® .. B¥|

0 0 0 .. DBkt o 0 0 .- B

where BY € Mg,(R) for every t € {1,...,k} and B"*2 € Mg, vq,, (R) for every ti,ts
such that 1 < t1 <ty < k, then

p° (M) < ¢*(M2)
for all s > 0.

Proof. We will first prove the proposition in the case where s is one of the integers 1, ..., d;
the general case can then be easily deduced. For each A € My(R) let A\1(A4),..., \q(A)
denote the absolute values of the eigenvalues of A, listed in non-increasing order. An
inequality due to Weyl (see e.g. [20, Theorem 3.3.2]) asserts that

l ¢
H Ai(4) < H gi(A). (4.1)
i=1 i=1
for all £ € {1,...,d}. For each t € {1,...,k} let B = U,;D,V," be a singular value
decomposition of B, where D; is a diagonal matrix with entries o (B%),..., 04, (B%)
and Uy, V; € O(dy). Define
Uu; 0 0 0 i 0 0 - 0
0 Uz O 0 0o V% 0 --- 0
g_lo o U o, y=|0o 0o W 0
0 0 O U 0 0 0 Vi
and notice that U,V € O(d). We then have
D, U{ B2V, U/B¥V3 --- U BYV,
0 Dy Uy B»Vy ... U, B?V;,
UMy =] 0 0 Ds . U B3V,
0 0 0 .. D

The diagonal matrices of U' M,V are precisely the singular values of the matrices
BY, ..., B** which together form the singular values of Mj; but since U' MV is up-
per triangular its diagonal entries are its eigenvalues, so the eigenvalues of U M,V are
precisely the singular values of M;. On the other hand, the singular values of U M,V
are precisely the singular values of My since the matrices U and V' are orthogonal, and
singular values are invariant with respect to pre- or post-multiplication by an orthogonal



22 ANTTI KAENMAKI AND IAN D. MORRIS

matrix. Thus
¢ 1 1

[[on) =[XUTMV) < [[a:(UTMV) = H oi(Ms)

i=1 1=1 i=1
using (4.1). This yields ¢(M;) < ¢f(Ms) for every integer £ € {1,...,d}, and the case
¢ =0 is also obvious. Now if s = [0,d) let us write s = £+ where £ = |s] and 0 € [0,1).
The identity ¢*(A) = *(A)!0pF1(A)0 for all A € My(R) follows easily from inspection
of the definition of ¢*. We therefore have

P° (M) = " (M) 0 (M)’ < @ (M) 00 (M) = (M)

as required. Since the case s = d was already established this leaves only those cases
where s > d, but in this case we clearly have

P* (M) = (M) < ¢ (Mp)7 = ¢°(My).
The proof is complete. O

We are now ready to prove Theorem 4.1. We remark that the proof is related to the
argument used to show [24, Proposition 6.2] but, from the theoretical point of view, is
significantly simpler as it does not rely on measures.

Proof of Theorem 4.1. Since the inequality
P((A))icz,s) < P((Ai)iez, s)

for all s € Za and therefore also the fact that 65 < 0a follow directly from Proposition
4.2, it suffices to prove the inequality in the other way around. We first observe that if
A, X € GL4(R) and s > 0 then

P*(XTTAX) < " (X" (A)e™(X) < |IXIPIXTHI*9™(4)
and by considering X ' AX in place of A
P*(4) = (XX TTAXX ™) < IXPIX TP (X1 AX).
In particular, if (A4;)iez € GLg(R), X € GLy(R), and s > 0 are specified, then
_ 1 s
‘ log > ¢" (X714 X) — ~log D ¢*(As)

1 _
< log(IX |11 X%
i€eZm ieZn

for every n > 1, and it follows that P((A;)ier,s) = P((X 1A4;X);ez, s) for every s > 0.
By [15, Proposition 1.4], we see that the tuple A is conjugated to a tuple of block
upper-triangular matrices as the first displayed equation in the formulation claims. Fur-
thermore, the above analysis shows that both tuples have the same pressure. Therefore,
it suffices to consider two families (A;);ez and (A});cz, where

B!' B#* ... B BH 0 - 0

0 B2 ... B#* 0 B#? -~ 0

A= . o . Ai=| . . .

0 0o - Bfk 0 0O ... Bkk
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for all i € Z. For each € € (0,1] we define

el 0 - 0
0 &r1* -~ 0
Xg - . . . . )
I |
where I' € Mg, (R) is an identity matrix for every ¢t € {1,...,k}. We have

Bill €BZ-12 L. €k_1Bi1k

0 B222 L €k_2Bi2k
X1'A X, =

0 0 ... DB

for all i € T and therefore, lim. g X7 1A4; X, = A} for every i € U,enZ" It follows that

P | _
P((A))iez,s) = }éfl hrg inf ~log i;ﬂ O (XTTA XL)
P | 1
> hraénf ;Lgfl - log iezzn O (XTTALX)
= 15%1 P((X'AiXo)ier, s) = P((Ai)iez, )

for all s € 2. O

5. CONDITIONAL PROOFS OF THE RESULTS

In this section, conditioned on the following technical result, we prove all the claims
presented in Section 1. The proof of the following result is postponed until Section 6 in
hoping to clarify the presentation as it is more algebraic in flavor.

Theorem 5.1. Let (A;)iez € GLg(R)T be completely reducible where T is either finite
or countably infinite. Then for each integer k € {0,...,d — 1} there exist an integer p
(1), if s =k,

such that
I<p
1<p<(@(1), Fk<s<k+1,

with functions (I)E-l))"“’q)g%): [k, k+ 1] x Z* — (0,00), a constant K > 0, and a finite
set ' C I* such that the following three properties hold:
(i) For every s € [k, k + 1] we have

K'¢%(4;) < max 0V (1) < Ko®*(A;)
Jje{1,...p}

NN

forallieT*.
(it) For every s € [k,k+ 1] and j € {1,...,p} we have

o0 (15) < @Y (1)20)(3) < K max ) (ikj)
€

foralli,jeT*.
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(iii) For every j € {1,...,p} and i € T* the function s — oY) (i) defined on [k, k + 1]
18 continuous.

If s = k and A™* is irreducible then we may take p = 1. We may do so also if s € (k, k-+1]
and both A and ANKTY are jrreducible and at least one of them is strongly irreducible.

The property in (ii) is called quasi-multiplicativity of <I>gj ). Without further mentioning,
this section uses notation and the definitions introduced in Theorem 5.1. We remark
that the upper bound p < ( )(k+1) is unlikely to be sharp. In [24], we conjectured that

the natural lower bound p > (d — k)(z) for s € (k,k+ 1) serves also as an upper bound.

5.1. Behaviour of the pressure. Recall that the clauses (i) and (iv) in Theorem 1.1
were verified already in Section 2. Conditioned on Theorem 5.1, we now prove the
remaining clauses (ii) and (iii). Notice that, by Theorem 4.1, it suffices to work with
completely reducible families of matrices. We also present the proofs for Propositions
1.2 and 1.3.

Let A = (A;)ier € GLg(R)T where T is either finite or countably infinite, let k €
{0,...,d — 1} and let p > 1 and <I>E_1)),... Ep)) be as in Theorem 5.1. For each j €
{1,...,p} and s € [k, k + 1], we define

PY(A,s) = lim —log Z U (5.1)

neen iezn

It follows from Theorem 5.1(i) and Lemma 2.2(i) that Y ;-7 oY) (1) < oo for every j €
{1,...,p} and s € [k, k + 1] N Za, and therefore by subadditivity

pU) _ - (J )
(A, s) 1nf nlog Z O € [—00,00) (5.2)
ieln
for every s € [k, k + 1] N #p, where subadditivity itself follows from Theorem 5.1(ii). In
particular the limit in (5.1) exists. Now, it follows directly from Theorem 5.1(i) that for
every s € [k, k + 1] N .a we have

K1 Z ©°* (A4 Z Z ®U) (i) <p max Z 3V (1) < pK Z ©°(A

iezn j=liezr JE{Lp} T iezn
for every n > 1 and consequently
P(A,s) = max PUY(A,s) (5.3)
je{17"'7p}

for all s € [k, k + 1] N Aa.
Together with Lemmas 2.3 and 2.4, and recalling Theorem 4.1, the following proposi-
tion proves Theorem 1.1(ii) conditioned on Theorem 5.1.

Proposition 5.2. Let A = (A;)ier € GLg(R)Z be completely reducible, where T is
countably infinite. Then the function s — P(A,s) is continuous on Sn. In particular, if
P(A,0p) < oo, then

lim P(A A, 0p).
lim (A,s5) = P(A,0p)
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Proof. Since the determinant is multiplicative, the continuity on [d, 00) is straightforward.
Therefore, we may suppose without loss of generality that fa < d. It is sufficient to show
that s — P(A, s) is continuous on [k, k+1]N.#a for every integer k such that [0 ] < k < d,
so we fix such an integer k for the remainder of the proof and demonstrate the result in
this form. Furthermore, by (5.3), it is enough to prove that the function s — PU)(A, s)
defined on [k, k + 1] N #Zp is continuous for every j € {1,...,p}. We will show in due
course that this function does indeed take real values only, i.e. that it cannot take
the value —oo. We therefore fix such an integer j for the remainder of the proof and
demonstrate the continuity of s — PU)(A, s) on [k, k 4 1] N Fa.

For every n > 1, by Lemma 2.1 the series > ;.7» ¢*(A;) converges uniformly with
respect to s on closed subintervals of [k, k+ 1] N .#Za. In view of Theorem 5.1(i) it follows

that > ;c7n <1>§j )(i) also converges uniformly with respect to s on closed subintervals of

[k, k + 1] N #p. Since by Theorem 5.1(iii) each function s oY )(i) is continuous with
respect to s € [k, k + 1], this implies that each of the functions

s > oW(1)

ieln

is continuous with respect to s € [k, k + 1] N #an. We deduce in particular that s —
PU)(A, s) is an upper semi-continuous function [k, k 4+ 1] N .#p — [—00,00), being the
pointwise infimum of a sequence of continuous functions on that domain.

We next apply quasi-multiplicativity of Theorem 5.1(ii) to show that it is also the
pointwise supremum of a similar sequence of functions, which also serves to demonstrate
that it takes real values only. Let ¢ > 1 be a natural number such that F C U};:1 Tk,
Using Theorem 5.1(ii) for every i, j € Z* we have

d0)(1)0Y)(§) < K max®Y)(ikj) < K max max ®V)(ikj) KZ Z ) (ikj)

kel 1<k<t ek =5
and therefore for every n,m > 1
t
(S ovw)( L o) <x Y ¥ ¥ 3 el
ig€Zn jEI™ k=1%keZk i€In jeI™
¢
kY Y WKy Y Y el
k=11eZntm+k k=1xeTk 1€Zntm
t
<k (T ow)( X evn)<ke) ¥ e,
k=1 “keTk leZntm leznt+m

say, where

ztj(z B (x ) € (0, ) (5.4)

keZk
which depends continuously on s € [k, k + 1] N #p since we have already established

that s — >y c7w <1>§j )(k) is continuous for every natural number k£ . This inequality is
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precisely what is required to demonstrate that the sequence
log (K ()7 Y 20)(0))
iezn
is superadditive for each s € [k, k + 1] N #a. Consequently

PU(A, s) = sup 1 log (}%(S)l Z @gj)(i)) (5.5)

nz1M iezn

for every s € [k, k+1]N.#a. Thus s — PU)(A, s) is also a lower semi-continuous function
[k, k 4+ 1] N Fa — (—00,00) as it is a pointwise supremum of a sequence of continuous
functions and we conclude that it depends continuously on s and takes real values only.
The result follows by recalling (5.3) and the fact that the maximum of finitely many
continuous functions is continuous. (]

Recalling Theorem 4.1, the following proposition proves Theorem 1.1(iii) conditioned
on Theorem 5.1.

Proposition 5.3. Let A = (A;)ier € GLg(R)Z be completely reducible, where T is
countably infinite. Then

P(A,s) = sup{P((4;)icr,s): J is a nonempty finite subset of T}

for all s > 0.

Proof. To simplify notation, we write Q(A,s) = sup{P((4;)ics,s): J is a nonempty
finite subset of Z} € (—o0, 00] for all s > 0. Let s > 0 be such that s € [k, k+1) for some
k€{0,...,d—1}. The case s > d is relatively trivial and is left to the reader. Recalling
(5.3), let j € {1,...,p} be such that P(A,s) = PU(A s). Let (Jn)n>1 be an increasing
sequence of nonempty finite subsets of Z such that Uy, v =7 and F' C Jy°, where
F C Z* is as in Theorem 5.1. Recall that, by (5.2),

p(j)(A7 s) < llog } : (p(sj)(i)
n
iezn

for all n > 1 and, by (5.5),
llog(k(s)l > ‘I’gj)(i)) < PYO((Ai)ieg, ) (5.6)
n
iegy

for all n > 1, where K (s) € (0,00) is as in (5.4). Fix ¢ > 0 and observe that for every
n > 1 we may choose N(n) > 1 such that

, 1 ,

P(J) — — () (1 .

(A;s) —e < - log. En oI (1)
1€JN(n)

Therefore, it follows from (5.6) that
. ) 1 N 1 N
PUN(A,s) — e < PU((A)iegy - 5) + ~log K(5) < Q(A, ) + —log K(s).

By letting n — oo and ¢ | 0, this gives the claim. U
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Conditioned on Theorem 5.1, we have now finished the proof of Theorem 1.1. Let us
next use Theorem 1.1 to show Proposition 1.2 which we repeat below.

Proposition 1.2. Let A = (A;)ier € GLg(R)E, where T is either finite or countably
infinite, be such that sup;cz || Ai]| < 1 for some norm ||- || on RY. If at least one of the
following four assumptions,

(2) 0< P(A,di—maHA) < o0,

(ii) Oa < dim,g A,

(iii) A is completely reducible,

(iv) T is finite,
holds, then dim,g A = dimag A.

Proof. To see that 0 < P(A,_dmaﬂr A) < oo implies dim,g A = dim,g A we argue as
follows. Suppose 0 < P(A,dim,gA) < oo and define k = —log sup;c7 || Ai]| > 0 as in
Theorem 1.1(iv). If J C 7 is any nonempty finite set, applying Theorem 1.1(iv) to

(Ai)iéj we find that
P((A)ieg, dimag A) < P((Ai)ieg, dimgg A) — w(dimag A — dim,g A)
< _K(ﬁaﬂC A-— di—maff A)’

where the inequality P((4i)ie7,dim,gA) < 0 follows from the definition of dim,g A.
Since by hypothesis dim,g A € #p, taking the supremum with respect to J and using
Theorem 1.1(iii) it follows that

0< P(A,ﬁaﬂr A) < —K(ﬁaﬂ A —dim,g A)
and we deduce that dimag A < dim, g A asiquired. If Op < dimag A t_hen by Theorem
1.1(ii) together with the definition (1.5) of dimag A we must have P(A, dimag A) = 0, and,
by recalling Prosposition 5.3, the same reasoning applies when A is completely reducible.
Finally, if A is indexed over a finite set then the supremum (1.6) is trivially attained

by Z itself and it follows that dim.g A = dim,g A whenever A is indexed over a finite
set. U

Finally, let us prove Proposition 1.3 which is repeated below.

Proposition 1.3. For all o, € (0,1) and v € (B,1] there exists a tuple of matrices
A = (A))ien € GL2(R)N such that sup;ey || As|| < o and

dim,g A = 8 < v = 0p = dimg A.
Furthermore, A may be chosen such that P(A, 6p) is either negative or infinite, as desired.

Proof. Fix a, 8 € (0,1) and v € [B,1]. Since ¢ ~— % — 1 is a continuous and surjective
function (0,00) — (0,00), there exists ¢ > 0 such that e’ —1 = o. Observe that then

Z(ae—tk)ﬁ _ Z o—Bk=1) _ Btk _ |

keN keN

1
In the case where we wish to have P(A,fa) = 0o, let us define ay = k™7 for all k£ € N so
that the series ) ;cnaf = > pen®k 7 is finite if and only if s > ~. If on the other hand

we wish to have P(A,0a) < 0 then we choose a, = k:_%(log(k + 1))_% for all £k € N so
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that the sum Y ey al = D pen k_%(log(k + 1))_275 is finite if and only if s > . Finally,

define
etk eag
Ay = < 0 ae tk

for all k € N, where € > 0 is chosen such that supycy [|[Ax| < a.
Let us first show that dim,g A = 3. Define A’ = (A} )ren, where

, etk 0
k= 0 ae tk

for all K € N. If J C N is a nonempty finite set then, by Theorem 4.1, we have
P((Ap)kes,s) = P((A})kes, s) for all s > 0, so it suffices to show that dim,g(A))ren =
j. Since each Aj is conformal we simply have P((A})res,s) = log > ey (ae ™*)* for
every finite set J C N. Since clearly P((A4})re7, ) < 0 = log > en(ae ) = P(A', B)
for all finite sets J C N by the choice of t > 0, we conclude that dim,g(Ag)ren < B-
On the other hand, for every s € (0,3) we have 3 cn(ce )% > 1 and this implies the
existence of a finite set 7 C N such that "¢ 7(ae™™)% > 1, and such a set necessarily
has dimug(Ag)res > s. It follows that dim,g(Ag)reny > s for every s € (0, 3) and this
completes the proof.

Let us next demonstrate that v = 6a and that P(A,6a) is either finite or infinite. By
Theorem 1.1(i), it is sufficient to show that the series Y .cn©*(Ar) = Dpen |4Ak]® is
infinite for all s € [0,7), finite for all s € (v,2], and either finite or infinite at s = 7 as
appropriate. For all s € [0, 2], we have the estimate

e’ Z aj < Z | Ak]]® < Z(?ae_tk +eag)® < Z 2571 (2%afe ™ %)

keN keN keN keN
251 th 1 22" la® 1
_ S— S _—s8 s—1_s s _ s—1_s S
—22 a’e +2 €Zak—est_1+2 EZak,
keN keN keN

where we have used the fact that ||A|| is bounded above by the total of the absolute
values of the entries of A and have also used Holder’s inequality which gives (z + y)* <
2571 (z® + y*) for all z,y > 0. It follows in particular that Yy [|Axl|® is finite if and
only if >, cyaj is finite. The claim follows by the choice of the sequence (aj)ken.
Finally, let us verify that fa = dim.g A. By (1.7), we have 0o < dimagA. If it
was Op < dimag A, then, by Proposition 1.2(ii), we would have dim,g A = dimag A.
This is a contradiction as A is chosen such that dim,g A = § < 6a. Furthermore,
since now we have dim,q A < dim,g A, Proposition 1.2(i) implies that P(A,fa) < 0 or
P(A,0p) = oo. O

Remark 5.4. Let us demonstrate that the assumption P(A,f0a) < oo in Theorem 1.1(ii)
is required for the right-continuity of the pressure at 6a. We begin by choosing in
Proposition 1.3 the tuple A of upper-triangular matrices such that P(A,fa) = oo and
B = 0a. If A’ is the corresponding tuple of diagonal matrices, then the choice of t > 0
in the proof of Proposition 1.3 implies P(A’,64) = 0. As A’ is completely reducible, it
follows from Theorem 4.1 that P(A,s) = P(A',s) for all s € (a,00) and, in particular,

lim P(A,s) = lim P(A',s) = P(A,0a) < P(A,04)
Sl/eA Sl/eA
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as wished.

5.2. Description of the equilibrium states. Let us next verify Proposition 1.4 and
use Theorem 5.1 to prove Theorem 1.5. We also present the proof for Proposition 1.6
which in fact is just a simple application of Theorem 1.5.

Proposition 1.4. Let A = (A;)icz € GLy(R)T and s = 0 be such that sup;cz ¢*(4;) <
oo, where T is either finite or countably infinite. If i € My (IN) is such that h(p) < oo
or Au,A,s) > —oc, then

h(p) + A(u, A, s) < P(A,s).

Proof. Let us first assume that h(p) < oo. If A(u, A, s) = —ooor P(A, s) = oo, then there
is nothing to prove. We may therefore assume that A(u,A,s) > —oo and P(A,s) < oc.
Let J be a nonempty finite subset of Z and write P% = " }toi(Ps). Note that
h(p,P7) < oo. Fix n > 1 and for each C' € PY choose jo € I" such that

/C log ¢*(A;),) du(i) < p(C) log o*(Ay.). (5.7)

Recall that the elements of P% = {[I]: I € Z%} are unions of the elements in {[i]: i €
I"}. Therefore, we may choose jo € Z™ such that [jo| C C and the choice C' — j¢
is necessarily injective. By applying Lemma 3.2(i), Lemma 3.1, (5.7), and Jensen’s
inequality on logarithm, we get

s Pa) + A ) < 5 (P + [ loger (4y,) dula))

Z 1(C) log LPS(AJ'C)

cepn )

1 S 1 S
< ~log 9 (Aj.) < —log > ©°(As).
CePL iezn

1
n
1

<
n

The proof follows by letting n — oo, noticing that the choice of the finite set J C 7 is
free, and recalling the definition of the pressure from (1.4) and the characterisation of
the entropy in Lemma 3.5.

Let us then assume that A(u,A,s) > —oo. If h(u) < oo, then we are in the situation
we already have covered. We may thus assume that h(u) = co. Then for every M > 0
there is a nonempty finite subset J of Z such that M < h(u, Ps) < oo by Lemma 3.2(i).
But now we are again in the situation we have studied. It follows from the first part of
the proof that

1
M+ A, A, 5) < b, Py) + A As5) < —log D ¢"(As).
i€z
By letting n — oo and then M — oo, we see that P(A,s) = oo and the proof is
complete. O

Let A = (A;)ier € GLg(R)? be such that sup;c7 ¢*(4;) < oo, where T is either finite
or countably infinite, and u € M,(Z"). For each k € {1,...,d — 1}, s € [k, k + 1], and



30 ANTTI KAENMAKI AND IAN D. MORRIS
jeA{l,...,p}, we define

; .1 N (s .
A (A, s) = lim - | 1og @) (i) du(i) € (=00, log K sup ¢*(4,)]
and notice that, by recalling Theorem 5.1(i)—(ii) and Lemma 3.1, these quantities are
well-defined and are equal to the infima of the same sequence over n. Furthermore, if u
is ergodic, then, by Theorem 5.1(i) together with the subadditive ergodic theorem, we
have

, 1 .
max AV (u A s)= max lim = log®VY (i
j€{1,....p} G ) Je{l,..,pt o n 825 (i) (5.8)
.1 sfal N .
= lim ~log@®(iln) = Alw, A, 5)
where the limit is taken almost everywhere with respect to u. We also define for each
s € lkk+ 1N Fp and j € {1,...,p} the measure-theoretical pressure of A at s with

respect to u by setting

() §) = lim + i)lo % 0
PV (1, A, s) Jﬁwngﬂu([ leg pn([1])

The main advantage in using the measure-theoretical pressure is that it can have a finite
value even if h(u, Pr) = oo and AW (u, A, s) = —oo. The following lemma verifies the
existence of the limit PY)(y, A, s).

Lemma 5.5. Let A = (A;)icz € GLg(R)E, where T is either finite or countably infinite.
If s € Fp, then the following two assertions hold:

(i) For each pn € My (IV) the limit

. . 1 Mo <I>gj)(i)
P (u, A, s) ,}%ooni;p”([ lce (i)

. () (5
exists in [—oo, PU)(A,s)] and is equal to inf,>, LS ez p([i]) log q:jg[i(}l)). In par-

ticular, the map p — PY)(u, A, s) defined on My (IN) is upper semicontinuous.
(i) If 1 € My (IV) is such that h(p, Pr) < oo or AU (u, A, s) > —oo, then

PO (p, A, 5) = h(p) + A9 (i, A, 5).
Proof. Fix j € {1,...,p} and write

B 99 ()
ap = iez:;n 1([1]) log e

for all n > 1. Since s € #p, the submultiplicativity of @gj) given by Theorem 5.1(ii)
together with Theorem 5.1(i) and Lemma 2.2(i) show that

> a0 < (o0 <x(Tern) <o (5.9

ieln 1€l i€l
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for all n > 1. Therefore, by Jensen’s inequality on the concave function z — —xlogx,
we have

- o7 (1) () (5
i%;n““”)(k’g ! gg;fs (J)>
) . ) /s )
) ) Yy @57 Q) | () Xgezn @5 ()
-2 zﬂn 293 >( W e )

_( 2 ”([i])) log( > u([i])) — 0

ieln iezn

and hence, a,, <log) ;7 @S)( ) < oo for all n > 1. In particular, dividing by n before
letting n — oo shows that PU)(u, A, s) < PU)(A, s) provided that the limit PU)(u, A, s)

exists. To show that PU )(,u, A, s) exists, observe that, by the submultiplicativity of @g ),
Jensen’s inequality on the concave function z — —x log x and the o-invariance of y imply

(J) (4) (G) (s
i 00wl el
Armn < >0 > wu(lis))log PEn) > w([i]) log G

ieZm jeIn icTm

_ 5 a0 p(a) () -
Zz: D 2, il <u<[-1><b<”<-> gu([i]><1>£”<j>) (510

<3 @é”(j)( Pl o 5~ 10 )

(4
jezn iezm ®57(j)  iezm @

for all m,n > 1. It follows that if a,, = —oo for some n > 1, then a,, = —oo for all m > n.
Hence, the limit PY)(yu, A, s) exists in [— oo,P(J)(A,s)] and is equal to the infimum of
the same sequence over n by the subadditivity (5.10) as claimed in (i). Since the map

o= > e (1)) log 5([.(])) is continuous for all n € N, we see that p — PU) (1, A, s) is
an infimum of continuous functions and the claim (i) follows.

To show the assertion (ii), notice first that the assumption s € #a necessarily implies
sup;ez ¢°(Ai) < oo since Y;e7 ¢°(A;) < 0o by (5.9). Therefore the energy AW (1, A, s)
defined in (1.8) exists in [—oo,log K sup;c7 ¢*(A;)] by Lemma 3.1(i). Let us first assume
that AU) (i, A, s) > —oo in which case

—00 < A(J (1, A, 8) / log <I>(J Z w([ log@)(J (1)
1€I”

for all n > 1 again by Lemma 3.1(i). By the assertion (i), there exists ng > 1 such that

(1)(])() )
—Z,u M([l]) < PY(u,Ays) +1 < o0

ieZln

for all n > ng. Thus,
h(p, Pr) < PO (p, A, 5) + 1= A9 (1, A, 5) < o0
and Lemma 3.7 shows that P (u, A, s) = h(p) + AW (i, A, 5).
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Let us then assume that h(u,Pz) < oo in which case, by Lemma 3.7, there exists
ng > 1 such that

—Zu )log u([i]) < h(p) +1 < oo
iezn

for all n > ng. If AU )(,u, A,s) > —oo, then we are in the situation already covered above.
Therefore, it suffices to show that A(j)(u,A,s) = —oo implies P(j)(u,A,s) = —o0. To
that end, suppose that P(j)(u7 A,s) > —oo in which case

(@) (5
o 28 (1)

—o0 < PO, A, s) < w(|
ZE S

for all n > 1 by the assertion (i). It is now evident that AU (u, A, s) = PY(u,A,s) —
h(p, Pz) > —oo. The proof of (ii) is now finished by recalling Lemma 3.7. O

Let us now turn to prove Theorem 1.5. As the assertion in Theorem 1.5(i) can be
treated by existing methods, we will cover it in the next lemma.

Lemma 5.6. Let A = (A;)icz € GL4(R)T be such that sup;cz ||Ail| < oo, where T is
either finite or countably infinite. If s > Op and s > d, then there is a unique @*-
equilibrium state for A and it is a Bernoulli measure.

Proof. Since the singular value function in this regime is a power of a determinant and
the determinant is multiplicative, the result follows from [27, §3] and [39, §2]. O

Conditioned on Theorem 5.1, the following proposition proves all the remaining claims
in Theorem 1.5 which do not assume irreducibility. The proof in the countably infinite
case is more complicated than in the finite case as we cannot rely on the upper semiconti-
nuity of the entropy. Showing even the existence of an ¢*-equilibrium state requires more
delicate approach. The idea in the proof is to use the fact that for each j € {1,...,p}
the quasi-multiplicativity of <I>gj ) implies the existence of a unique pl) € M (TV) for
which P (u0) A, s) = PU)(A,s). Then, by proving h(p'),Pr) < oo and considering
only pressure maximising indices j € {1,...,p}, Lemmas 5.5(ii) and 3.7 show that p()
is an p®-equilibrium state.

Proposition 5.7. Let A = (A;)icz € GLg(R)? be such that supez ||Ai| < oo, where T
is either finite or countably infinite, and p > 1 as in Theorem 5.1. If s € Zp, then

P(A,5) = sup{h(p) + A(u, A, 5): € My (ZV) is such that h(u) < oo}.

Furthermore, if s > Oa, then the number of distinct ergodic ©*-equilibrium states p for
A is at least one and is not more than p. Finally, all the equilibrium states are fully
supported on IN.

Proof. Recalling Theorem 4.1, we may assume that A = (4;);er € GLg(R)? is completely
reducible. Fix s € Fx and 57 € {1,...,p}, let I C Z* be as in Theorem 5.1, and
notice that, by Theorem 5.1(ii), the function o). v - (0,00) is quasimultiplicative.
Note that, by (5.5) and (5.3), we have —oo < PU((4A)ics,s) < P(A,s) < oo. It
follows from [25, Proposition 3.4] that there exists a constant C' > 1 such that for every
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nonempty finite subset J of Z with F' C J* there is a measure ,ug) € MU(ZN) supported
on JN for which

EAE)

clg —— <
exp(—nPU)((A)ies,s))Y) (1)

(5.11)

for all i € J". Note that h(,ug)) = h(ﬂg),’])j) < o0 by (3.15) and Lemma 3.2(i).
Therefore, (5.11) gives

AD (P, A, 5) = PO ((Aieg.s) — h(u) > —c. (5.12)
Therefore, by (5.3) and Proposition 5.3,
sup  {h(pl) + AP A= sup max PO((A)ieg.s)
Jkgefli’s“fir;i}te JCT is finite k€{1,....p}

= sup P((Al)leja 5) = P(Aa 5)‘
JCZ is finite

Since, by Theorem 5.1(i) and Proposition 1.4,
h(uF) + AD(uF A s) < h(uF) + AuF A s) < P(A,s),
we have shown that
P(A, s) = sup{h(p) + A, A, 5): € Mo (ZV) and h(p) < 0o}

as claimed.

Since s € Zp, [25, Theorem 3.5] guarantees the existence of a fully supported measure
1) € My (ZV) which is an accumulation point of {ug): J is a nonempty finite subset
of Z such that F' C J*} in the weak™ topology and satisfies

ol g pED <C (5.13)
eXp(—nP(j)(A,s))(I)gj)(i)

for all i € Z". By [25, Theorem 3.6], we see that p) is ergodic. Furthermore, [25,
Lemmas 3.7 and 3.8] show that 19 is the unique ergodic measure satisfying

]D(J')(A7 s) = P(j)(u(j)7A, s).
Since, by Lemma 5.5(i) and (5.3),
PO A s) < max PP () A s) < max PH(A s) = P(A,s),

ke{l,....p} ke{l,...,p}
there are at least one and not more than p distinct indices j € {1,...,p} for which
P(A,s) = max PW® (L0 A s). (5.14)
ke{l,...,p}

To finish the proof it suffices to show that if s > 0, then
h(p), Pr) < oo (5.15)
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for all j € {1,...,p}. Indeed, if this was the case, then Lemma 5.5(ii) and (5.8) would
show that

max P® 9 A s) =h(u)+ max AP (LD A, s)
ke{l,....p} ke{l,...,p}
= h(u)) + AV A, s)
for s > O and (5.14) finishes the proof. To prove (5.15), fix j € {1,...,p} and notice
that, by Lemma 3.2(i), it suffices to show

=" 1D ([a]) log 1V ([i]) < o0

i€l

when Z is countably infinite. Since s > fa, we have PU)(A,s) < oo by (5.3) and
there is 6 > 0 such that s —d > 0a and [s] = [s — §]. By Lemma 2.2(i), we have
Sier ¢° 70 (A;) < oo. Since o4 (4)° < ¢*(4;) and Y7 9°(4;) < oo by Lemma 2.1,
there exists a finite set K C Z such that

—log p*(A;) < —slog oy (Ai) < oy (Ai)f‘s

and

j 1
C’KefP(J)(A’s)gos(Ai) < -

for all i € Z\ K, where C' > 1 is as in (5.13) and K > 0 is as in Theorem 5.1. Therefore,
as ¢°(A;) < apS*‘S(Ai)J[S] (Ai)‘s, we see that
= Y (A logpt(A) < DD @ (A)0< Y ¢?
i€T\K i€T\K i€T\K

Since the function z — —xlogz is increasing on [0, %], we get by recalling (5.13) and
Theorem 5.1(1) that

— 3 WO log pD([i)) < = Y CKe PV A (4) log CRe P A9 (4))
1€T\K ISIAV
< CKe‘P(j)(AvS)< > ¢ (A) log 0 (Ay)
1€T\K

+ (P(j)(A, s) —log CK) Z gos(Ai)) < 00
ieT\K

and hence, — ;o7 19 ([i]) log uV)([i]) < oo as wished. The proof is finished. O

The next proposition proves all the remaining claims in Theorem 1.5 which assume
irreducibility and hence, also finishes the proof of Theorem 1.5 under the assumption of
Theorem 5.1.

Proposition 5.8. Let A = (A;)icz € GLg(R)? be such that supez ||Ai| < oo, where T
is either finite or countably infinite. If s > O, then the following two assertions hold:
(i) If s € (0,d) N Z and A" is irreducible then there is a unique ©*-equilibrium state
for A, and if additionally A" is strongly irreducible then this unique equilibrium
state is mizring.
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(i) If s € (0,d) \ Z and one of A’5! and AMN#1 is irreducible and the other is strongly
irreducible then there is a unique p°-equilibrium state for A, and if both are strongly
irreducible then this unique equilibrium state is mizing.

Proof. We only prove the assertion (ii) as the proof of (i) is similar and slightly eas-
ier. Write k = |s|. If one of A"¥ and AM*+1) is irreducible and the other is strongly
irreducible then the first claim follows immediately from [24, Theorem 3]. Let us thus
assume that both A" and AMK+D are strongly irreducible. Let p € My (ZV) be the
unique ®-equilibrium state for A. Recall that, by (5.13), (5.3), and Theorem 5.1(i),
is ergodic and it satisfies

-1 p([i])
CT s exp(—nP(A,s))p*(A;) <€ (5-16)

for all 1 € Z™.

Define A, = (Aj)iezn for each n > 1. We claim that AN* and AnETY are both
strongly irreducible for each n > 1. To see this, suppose for a contradiction that there
is a finite collection of nonzero subspaces Uy, ..., U, C A*R? which is preserved by A,Alk ,
say. Since A is strongly irreducible the set {A{*U;: k € T*} must be infinite, and this
set is clearly contained in the set {A{*U;: 1 < |i| < n and 1 < j < m} by writing any
arbitrary word k in the form ij where n divides |j| and where 1 < |i| < n. The latter set
is therefore also infinite, so by the pigeonhole principle there exist integers £ € {1,...,n}
and jo € {1,...,m} such that {A{kU;, : |i| = ¢} is infinite; but {(A1*F)"~CAMU;, : |i] =
0} C {AMkU;, : |i| = n} C {U1,..., Uy} is finite, so (A7*)"~¢ acts non-injectively on
subspaces of AFR?, which is impossible since A; is invertible. The claim follows.

Let us show that p is totally ergodic for which we use the argument of [30, Theorem
5(1)]. Let tn: IV — (Z™)N denote the natural identification of elements of IV with
elements of (Z")N given by ¢, ((ix)32,) = (4(k—1)nt1 " * " ikn)j=1, and observe that o ou, =
Ln 0 0" In particular, (i,)sp defines an element of M, ((Z™)N) for every n > 1. By a
straightforward calculation, we see that (¢y,)«p is an ¢*-equilibrium state for A,,. By the

strong irreduciblity of AN and AQ(kH) there exists a unique p*-equilibrium state for A,
and that measure is ergodic with respect to o: (Z")N — (Z™)Y, s0 (1,)+p is ergodic with
respect to o: (Z")N — (Z™)N. This implies via the relation ¢ o t,, = 1, 0 0™ that p is
ergodic with respect to o™: ZN — ZN. Since n is arbitrary this demonstrates that p is
totally ergodic.

By (5.16) and the sub-multiplicativity of the singular value function (2.1), we have

p([ikj]) < Chu([a])u(f)p((5])
for all i,k,j € Z* and, consequently,

p(ENe B ([5) = Y7 w(lixs]) < CHuE)u()
kel

for all n > 1. By arguments ultimately originating with [35, Theorem 2.1] and which
are expressed in language more convenient for our purposes in the proof of [30, Theorem
5(ii)] this inequality together with the total ergodicity shows that u is mixing. O

We remark that [30, Proposition 6] demonstrates that an ¢®-equilibrium state for an
irreducible A is not necessarily mixing when 0 < s < 1. For non-integer parameters
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s € (1,d — 1) it should also be possible to construct examples such that one of AL
and A’s! is irreducible and the other is strongly irreducible, while the equilibrium
state is not mixing. No example with these features has yet been noted explicitly in
the literature, but we believe that such an example could likely be constructed by a
suitable modification of the examples in [32]. In the finite case, the results of [31] extend
Proposition 5.8 to demonstrate that the unique equilibrium state is ¢-mixing and hence
is measurably isomorphic to a Bernoulli shift in its natural extension. It is likely that
this result can also be obtained in the infinite case, but we do not attempt this here.
Finally, let us use Theorem 1.5 to prove Proposition 1.6 which we repeat below.

Proposition 1.6. Let A = (4A;)ic; € GLg(R)T where T is either finite or countably
infinite. Then the following two assertions hold:

(i) For every s > Op, if J is a nonempty proper subset of Z, then P((A;)icr,s) <
P(A,s).

(ii) If there exists a morm || - || on R? such that sup;ez || Al < 1, and if Oa < dimug A,
then dimag(A;)ics < dimag A for every nonempty proper subset J of L.

Proof. If J is a nonempty proper subset of Z then the inequality P((A;)ics,s) < P(A,s)
is clear from the definition of the pressure, so we need only show that P((A;)icr,s) #
P(A,s). By Theorem 1.5, there exists an (p*-equilibrium state u € M, (JY) for (A4;)icr.
It is clear that we may identify u with a measure on ZV which has support equal to J%,
and if P((4;)ic7,s) = P(A,s), this measure satisfies the definition of an ¢*-equilibrium
state for A. Therefore A has an (p*-equilibrium state which is not fully supported on ZV,
contradicting Theorem 1.5. This proves (i).

Now suppose that for some norm [|- || on R? we have sup;c7 || As]| < 1. Since 6p <
dimag A, we see that dim,g A exists by Proposition 1.2(ii). Note that, by the assertion
(i), we have P((A;)ic7,s) < P(A,s) for every s > 6a. By Theorem 1.1(iv) and (ii), the
pressure as a function of s is strictly decreasing and continuous at every s > 6. It
follows that dimag(A;)ies < dimag A which is the claim (ii). O

5.3. Dimension of infinitely generated self-affine sets. In this section, we prove
all the results announced in Section 1.4 by applying Theorem 1.1 which, at this stage,
depends on Theorem 5.1. Let X C R? be a self-affine set and (T3)icz its defining affine
iterated function system associated such that T;(z) = A;z + v; for all z € R? and i € 7.
Write A = (Ai)ieI S GLd(R)I.

Proposition 1.7. Let X C R? be a self-affine set. Then dimp X < dimag A.

Proof. If dimpg X = 0 then there is nothing to prove, so fix 0 < s < dimp X. Choose
k € {0,...,d — 1} so that s € (k,k + 1] and let B C R? be a closed ball such that
T;(B) C B for all i € Z. It follows from the definition of the singular values that for
each i € Z* we may cover T;(B) with at most a constant times

o1(A;) o2(As)  ox(As)
Ok+1(A1) ok1(A1)  op41(As)
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balls of radius oj41(As). Writing J,, = sup;czn ||Ai]| for each n > 1 we thus see that
there exists ¢ > 1 so that

M5, (X) < D0 M3, (Ta(B) < e Y ¢*(As)
iezn iezn
for all n > 1, where H?® is the s-dimensional Hausdorff measure. Since sup,,>; Hj (X) =
H*(X) = o0, it follows that >°;c7n ¢*(A;) > 1foralln > 1large enough. Thus P(A,s) >
0 and, by Theorem 1.1(iv) and the definition (1.5) of the upper affinity dimension,
s < dimag A which finishes the proof. O

If J is a nonempty finite subset of Z, then we denote the self-affine set associated to
the finite affine iterated function system (7;);c7 by X 7. Observe that for any sequence
(Jn)n>1 of finite subsets of 7 we have

o

U Xz C X. (5.17)

n=1
If A= (A)ier € GLg(R)T is strongly irreducible, it does not automatically follow that
there exists a finite a nonempty finite subset J of Z such that (A;);cs is strongly
irreducible: for example, if A = (A, )neny € GLo(R)N where each A, is the matrix corre-
sponding to rotation by 7 /2", then A is strongly irreducible but has no finite subsystem
which is strongly irreducible. To circumvent this problem we use the following result:

Proposition 5.9. Let A = (A;)ier € GLg(R)%, where d < 3 and T is countably infinite,
and suppose that A is proximal and strongly irreducible. Then there exists a finite set
J C T such that (A;)icg is prozimal and strongly irreducible.

The proof of Proposition 5.9 requires the following lemma, which exploits the fact
that proximality together with the failure of strong irreducibility in dimension two or
three implies the existence of an invariant finite set of lines. (This implication becomes
false in dimension four.)

Lemma 5.10. Let A = (A;)ier € GLg(R)E be prozimal and irreducible, where d < 3. If
A is not strongly irreducible then it preserves a union of d one-dimensional subspaces.

Proof. We begin with the more difficult case d = 3. Suppose that A is proximal, irre-
ducible, and not strongly irreducible, in which case it preserves a finite set of proper
subspaces Uy, ..., U,,. We suppose without loss of generality that these subspaces have
the same dimension and we note that m # 1 by irreducibility. If the dimension of
these subspaces is 2 then A also preserves the nonempty, finite collection of all one-
dimensional subspaces of the form U; N Uj, so without loss of generality we suppose that
each of Uy, ...,Up, has dimension 1. If m < 3 then span(U; U ---UU,,) is an invariant
proper subspace of R3, contradicting irreducibility, so to prove the lemma it suffices for
us to show that m cannot be greater than 3.

Suppose for a contradiction that m > 4. Fix a product A; with a simple leading
eigenvalue, let v € R? be a leading eigenvector of A;, and let V be the unique A;-
invariant plane complementary to v. If one of the subspaces U; is not contained in V
and is also not parallel to v, then it is straightforward to verify that lim,_,., AYU is the
leading eigenspace of A; and that {ATU;: n > 1} is infinite, which is a contradiction
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since this set must be a subset of {Uy,...,Uy,}. Suppose instead that every subspace U;
which is not parallel to v is contained in V. Since at most one of these subspaces can
be parallel to v, at least three subspaces must be contained in V. Let Uy,Us,Us C V
and let uy,us, us be nonzero vectors which span these respective spaces. Since V is two-
dimensional the vectors uq, us, ug are linearly dependent. By irreducibility the smallest
A-invariant subspace which contains u; is R itself, and for this to be possible we must
be able to choose a product Aj such that Aju; does not lie in V. By linear dependence
either Ajug or Ajuz also does not lie in V. Thus at least two of the subspaces A;Uq,
AUz and A;Usz are not contained in V, and by the pigeonhole principle at least one
of those two is not parallel to v; but this subspace is necessarily equal to one of the
m subspaces Uy, ...,Up, and this contradicts our supposition. We have arrived at a
contradiction and we conclude that our earlier hypothesis m > 4 was impossible. It
follows that m = 3 and we have proved the lemma in the case d = 3.

The remaining cases are much easier. The case d = 1 is vacuous. In the case d = 2,
suppose that A preserves a finite union of one-dimensional subspaces Uy, ..., U,,, say,
with m # 2. If m < 2 then irreducibility is contradicted, so suppose instead that m > 3.
Let A; have a simple leading eigenvalue and observe that one of the three subspaces
U1, Uy, Us is not an eigenspace of A;, which implies that one of the sets {A7U;: n > 1}
is infinite, a contradiction. The lemma is proved. U

Proof of Proposition 5.9. Choose arbitrarily an increasing sequence of finite sets J; C
Jo C --- whose union is Z. Since A is irreducible and proximal, there exists a product A;
which has a simple leading eigenvalue. Clearly if n is large enough that every symbol of
i belongs to J,, then (A;);c7, is also proximal, so (4;);c7, is proximal for all sufficiently
large n. Let V, denote the set of all nonzero proper subspaces V C R? which are
preserved by (4;)iez,. Clearly each V, is a closed subset of the Grassmannian manifold
of R%, and V,,41 C V, for every n > 1. Any element of Ny—; Vn is an invariant subspace
for A, and since A is irreducible this intersection must be empty, which is only possible
if V, = 0 for all large enough n. We conclude that (A;);cz, is both proximal and
irreducible for all large enough n.

Finally, it is clear that either (A;);c7, is strongly irreducible for all large enough n, or
for every n > 1 it fails to be strongly irreducible. In the latter case, let W,, denote the set
of all (A;)icz,-invariant d-tuples of lines in R%, which is a compact subset of (RP4~1)<,
By Lemma 5.10 the set W, is nonempty for all large enough n, and this implies that it
is nonempty for every n > 1. By a similar compactness argument, (), W, contains a
tuple of d lines (not necessarily all distinct) which are permuted by the matrices in A,
and this contradicts the strong irreducibility of A. We conclude that (A;);c 7, is strongly
irreducible for all large enough n, which proves the lemma. O

Recall now that a strongly irreducible tuple is completely reducible. In view of [18,
Corollary 1.2], [19, Theorem 1.1], [33, Theorem 1.5], and [12, Theorem 5.3], the next
theorem, together with Propositions 1.2, 1.7, and 5.9, proves Theorems 1.8-1.11.

Theorem 5.11. Let X C RY be a self-affine set and (Jn)n>1 be an increasing sequence
of finite subsets of T such that J,—y Jn =T and dimyg X 7, = min{d, dimag(4;)ics, } for
alln > 1. Then dimpg X > min{d,dim, g A}.
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Proof. The monotonicity and the countable stability of the Hausdorff dimension applied
with (5.17), the assumption on the Hausdorff dimension of finitely generated self-affine
subsets, and the definition (1.6) of the lower affinity dimension immediately imply

dimp X > supdimyg X7, = min{d, sup dimag(4;)ic7z, } = min{d, dim,g A}

n>1 n>1

as wished. O

6. ALGEBRAIC ARGUMENTS: PROOF OF THEOREM 5.1

In this section, we prove Theorem 5.1 and hence, also conclude the proofs of Theorems
1.1 and 1.5.

6.1. Linear algebraic groups and the Zariski topology. A function p: GL4(R) —
R is called a polynomial if it maps each matrix A = [aij]gjzl to the same polyno-
mial function of the d? + 1 variables a11,...,a49 and 1/det A. The Zariski topology
on GLg4(R) is then defined to be the smallest topology in which every set of the form
{A € GL4(R): p(A) = 0} is closed. The Zariski topology has the following important
property, called the descending chain condition: if (Z,)52 is a sequence of Zariski-closed
sets such that Z,, 41 C Z, for every n > 1, then (Z,)52; is eventually constant. This
property implies that a set is Zariski closed if and only if it is the intersection of the zero
loci of a finite collection of polynomials.

We recall that if G is a group or semigroup then a representation of G is a homo-
morphism ¢: G — GL(V) for some vector space V over a field K. In this article it will
always be the case that V is finite-dimensional and K is R, although all our results also
hold over the complex field without modification. The representation ¢: G — GL(V')
is called irreducible if the only subspaces of V' which are preserved by every element of
#(Q) are {0} and V; equivalently, ¢ is an irreducible representation if ¢(G) is irreducible
in the sense of Section 4. A representation is called faithful if it is injective. A represen-
tation ¢: G — GL(V) is called semisimple if there exists a splitting V' = @§:1 Vj; such
that each Vj is preserved by every element of ¢(G), and such that additionally each of
the representations ¢;: G — GL(V;) defined by ¢;(g9) = ¢(g)|v; is an irreducible repre-
sentation. One of the simplest examples of a representation which is not semisimple is
the representation R — GL2(R) defined by

o=y 1)

6.2. Key results. We require two fundamental results in order to prove Theorem 5.1,
the first dealing principally with part (i) of that theorem. This result is now standard
in the theory of reductive linear groups.

Proposition 6.1. Let V' be a finite-dimensional real or complex vector space, let T be a
nonempty set, let (A;)icr € GL(V)? be completely reducible, and let £ € {1,...,dim V}.
Then (ALN)ier € GL(A'V)T is completely reducible.

(2

Proof. Let G < GL(V) denote the Zariski closure of the semigroup {A4;: i € Z*}. By
hypothesis the inclusion representation ¢: G — GL(V') is faithful and semisimple, which
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by Clifford’s theorem implies that the restriction of ¢ to GV is also faithful and semisim-
ple. By [28, Theorem 22.42] this implies that G is reductive, hence by [28, Corollary
22.43] every representation from G to a finite-dimensional real vector space is semisim-
ple. In particular the representation G — GL(A‘V) defined by g — ¢/’ is semisimple.
Since (A;)iez is Zariski dense in G, the invariant subspaces of G acting on GL(A‘V)
are precisely the invariant subspaces of (A2);cz, so (A));ez € GL(A“V)T is completely
reducible as required. O

The second result forms the core of Theorem 5.1(ii) and is similar in content to the
results of [9, §4].

Proposition 6.2. Let I' be a semigroup, let K be either R or C, let k > 1 and for each
Jj € A{1,...,k} let V; be a finite-dimensional inner product space over K and ¢;: I' —
GL(V}) a representation. For eachj € {1,...,k} let U; be a nonzero subspace of V; which
has finite orbit under ¢;(I') and has the least possible dimension of any such subspace.

Define

W= (6,0 g T} € T[ GrlY,
7j=1
which is necessarily a finite set. Then there exist a finite set F' C I' and a real number
k > 0 such that for every (W; )] L (W’)] 1 € W we may choose h € F such that for
every gi,g2 € I' we have

165 (91hg2)lw; 1| = Kli6;(91) lwlll| 65 (g2) Iw;
stmultaneously for all j € {1,... k}.

The first proposition is used to show that under the main hypothesis of Theorem 5.1
also the exterior powers of (A;);cz can be block diagonalised with irreducible diagonal
blocks. This allows us to write the singular value function ¢°® directly as a maximum
of potentials arising from restrictions to the blocks. The second proposition is used
to show that these potentials can in turn be written as maxima of finite collections of
quasi-multiplicative potentials. We remark that in [9] it was only possible to say that the
singular value pressure is equal to the maximum of the pressures of potentials arising
from the blocks. Under complete reducibility we can say that the potentials are also
equal.

6.3. Proof of Proposition 6.2. To prove the proposition it is sufficient for us to fix
an arbitrary pair (W])] L (W’)j 1 € W and construct a finite set F’ C I' and real
constant ' > 0 having the claimed properties only with respect to that specific choice
of (W; )] 1 (W]’)?:l € W. We may then define F' to be the union of the finite sets F”
thus constructed for different pairs (W} )] 15 (W’) _1; € W and likewise take k to be
the minimum of the finitely many constants &’ in order to deduce the conclusion of the
proposition. We therefore fix (Wj)le, (W]’ );?:1 € W throughout the proof and prove the
proposition in this simpler form.

Define V = @F_, V; and ¢(h) = @F_, ¢;(h) € GL(V) for all h € T. Let G <
GL(V) denote the Zariski closure of ¢(I') in GL(V) and for every j € {1,...,k} define
a representation v;: G — GL(V;) by setting ¥;(g9) = glv,. We have ¢; = 1; o ¢ for
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every j € {1,...,k} and ¥;: G = GL(V}) is clearly Zariski continuous. We may write G
as the disjoint union of finitely many Zariski-connected components G°, ..., G™ each of
which is an irreducible variety. We let GY denote the unique component which contains
the identity. For each j let Ujl, e U;j denote the orbit of U; under ¢;(I"). For fixed j
the sets

{g eG: ij(g)Uj = UJZ} (6.1)
fori € {1,...,r;} clearly partition G. Each such set is Zariski closed since the condition
¥;(9)U; = U} is equivalent to the statement that t;(g) takes every element of a basis
for U; into the orthogonal complement of a basis for (U ;)L; thus each of these sets is
the common zero locus of some finite collection of polynomial functions of the matrix
entries of g. Since the sets {g € G: ¢;(9)U; = U;} are Zariski closed and partition G,

they are clopen in the Zariski topology and hence each is equal to the union of a finite
collection of connected components of G. The set

{9€G: Wi(9W))jor = W)z} (6.2)

is therefore also equal to the union of a finite collection of connected components of G,
since it is equal to a finite intersection of sets of the form (6.1). Since by definition there
exist hy,he € I' such that (Wj)?zl = (gbj(hl)Uj);?:l and (VV;)?Z1 = (qﬁj(hg)Uj)?:l, the
set (6.2) contains ¢(hohy ') and is therefore nonempty. We conclude that at least one of
the Zariski-connected components of G must be a subset of (6.2).

For the remainder of the proof we fix a component G* of G such that (¢;(9)W;)k_, =
(W;)le for all g € G%, which is possible by the preceding discussion. We claim that if

Jje{l,....k}, u e W, and v € W} with u,v # 0, then the set

{9 € G": (1hj(g)u,v) # 0} (6.3)

is nonempty. Fix j and suppose for a contradiction that the set is empty. In this case

W = span{v;(g)u: g € G'}

defines a vector subspace of WJ’ which contains at least one nonzero vector but does
not contain v. In particular this subspace is a nonzero proper subspace of W]' Since
G°G' = G we moreover have ¥;(g)W = W for every g € G°. If g1, g2 € G belong to the
same component G" of G then gl_lgg € gl_lGr = GV and therefore wj(gl_lgg)W =W, so
1 (g1)W = ¢p(g2)W whenever g; and g2 belong to the same component of G. Therefore
g+ 1j(g)W takes only finitely many values as g varies over G. Hence the set

{¢i(MW: h e T} = {¢;(¢(h))W: h e T} C{;(g)W: g € G}

is finite and we have 0 < dim W < dim WJ’ = dim U;. This contradicts the definition
of U; as a nonzero subspace of V; with finite orbit under ¢;(I') and having the least
dimension among all such subspaces. We conclude that the set (6.3) must be nonempty
as claimed.

Now let u; € W; and v; € W]' be nonzero vectors for each j € {1,...,k}. By the
previous claim the set

{g € G": (j(g)u;,v;) # 0}
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is nonempty for each j, and it is clearly Zariski open. Since G is an irreducible variety
all of its nonempty Zariski open subsets are Zariski dense, so the intersection

k
{9 € G': (i(g)uy,v;) # 0}

j=1

is nonempty and Zariski open. The set {¢(h): h € T'} is by definition Zariski dense
in G, so its intersection with this nonempty open set is nonempty. Hence there exists
h € I' such that (¢;(¢(h))u;,v;) # 0 for every j € {1,...,k}. This means precisely that
(pj(h)uj,vj) # 0 for every j € {1,...,k}.

For each j let Sy, and SWJf denote the unit spheres of W; and W]’ respectively. The pre-

ceding paragraph implies that for every pair ((u;)¥_;, (vj)¥_)) € (Hle Sw;) % (H?Zl SWJ()
there exists h € I" such that (¢;(h)u;,v;) # 0forall j € {1,...,k}. But such an h clearly

also has this property for every ((u;)?zl, (v;)é?:l) € (Hle Sw;) x (H?‘:l SWJ() which is

sufficiently close to ((uj)é‘?:l, (vj)é‘?:l). By the compactness of (H§:1 Sw;) x (H?:1 Sw)
J
it follows that there is a finite set /' C I'" such that

max min (@ (h)ug,vi)| #0

=1 j=1
it follows that the real number

for every ((uj)%_,, (v;)*_;) € ( 9?:1 Sw,) x (H?‘:l Sw). By continuity and compactness
J

K= min min max min |(¢;(h)uj,v;)]
(uj)?:lenle SWj (Uj)leenle SW’, heF ]E{l,...,k}
J

must be strictly positive. By homogeneity it follows that if for every j € {1,...,k} we
let u; € Wj, v; € W]' be arbitrary vectors then there exists h € F' such that

(&5 (h)uj, vi)| = llugl]v;]

simultaneously for every j € {1,...,k}.

Now let g1,92 € T' be arbitrary. For each j € {1,...,k} there exist a unit vector
uj € Wj such that [|¢;(g2)u;| = [|¢;(g2)|w;|| and a unit vector v; € ¢j(gl)W; such that
165 (g1) w5l = 165(91) 1o, guywll = 63 (91)lw:[l. We may therefore choose h € F such
that for all j € {1,...,k} we have

{05 (h)j(92)uj, d(91) 05)| = Kl ds(g2)ulll| 6 (g1) T wjll-
But this implies the inequality
195 (g1hg2)lw; | = 1l (g1hg2)us|l = [(d;(g1)d;(h)dj(g2)uj, vj)l

= {0 ()95 (g2)us, 6 (91) v3)| = Kl (g2)usllll 5 (g1)" w5
= £ll; (g0)lw; 165 (g2) lw

simultaneously for all j € {1,...,k}. The proposition is proved.
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6.4. Applications to quasi-multiplicativity. The following result extends the main
technical tool of [9] to the case of a countably infinite index set Z and also makes explicit
the dependence on the parameters j3;.

Theorem 6.3. Let k > 1, let T be finite or countably infinite, and for each j € {1,...,k}

let V; be a real or complex inner product space and let AU = (Agj))iez € GL(V;)T be
irreducible. For each j € {1,...,k} let {; > 1 denote the smallest possible dimension
of a nonzero subspace of V; which has finite orbit under the action of AU Then there
exist constants k,7 > 0, an integer p > 1, finite sets Wi,..., W), C Hle Grgj(Vj), and
a finite set F' C I* such that for every t € {1,...,p} and all non-negative real numbers
By, Bk = 0 the function

U (i) =  max A(J Bi
0= e %Hu |

and the number g = Z?Zl Bj = 0 satisfy
V(1) < TO @) PO (5) < 577 max WO (ikj) (6.4)
€

foralli,j€T* and

PIT11AY)5 < v (1) < A5 6.5
HH [ S x| HH | (6.5)

Furthermore {; dz’mdes dim Vj for every j € {1,...,k} and the integer p satisfies

dlmV k1

p <  min H H dim V. (6.6)

te{l,...k} je{1,...,k} J

In particular, if AU) is strongly irreducible for at least k — 1 values of j, then p = 1.

Proof. For each j € {1,...,k} choose an ¢;-dimensional subspace U; C V; which has
finite orbit under the action of AY) and let {U jl, cees U;Lj } denote the orbit of U;. Since

span U;Z U ]Z is invariant under A) and has nonzero dimension, by irreducibility it must
equal Vj.
We claim that for each j € {1,...,k} we may write V; as a direct sum of a subset of

the spaces U jl, ey U;Lj . To see this, fix j and let U;l, ey U;mj be elements of the orbit

of U; which form a direct sum U;l e---pU ;mj with m; as large as possible. Since U jl
itself forms a direct sum with a single summand, the set of direct sums among the spaces
U; is nonempty. The set of all such direct sums is clearly also finite and it follows that

m; is well-defined. We wish to show that U; Ueg...@ U, - V;, and to demonstrate this

it is sufficient to show that m;¢; = dim V;. Obviously ¢;m; = dim UZ1 P U;mj
dim Vj, so suppose for a contradiction that m;¢; < dim V;. Since span UZ:1 U} =V we

must be able to choose U;l such that U;»', is not a subspace of U;l G- U;mj, which
implies dim(UJi/ N (U;1 @@ U;mj)) < dim U;l = ¢;. On the other hand we cannot
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have dim(U]Z:, N (U;1 G- B U;mj)) = 0 since then U;l &P U;mj ® U]Z:/ would be a
direct sum with more than m; summands, contradicting the maximality of m;; and if
0< dim(U]’:, ﬂ(U;l ®-- -EBU;-mj )) < ¢; then the subspace U}/ﬂ(Ujl ®-- -EBU;-mj) has finite
orbit under the action of AY) but has dimension strictly between 0 and ¢;, contradicting
the definition of /;. We conclude that the subspace U ;/ cannot exist since there are no

viable possibilities for the dimension of the subspace U ]Zf/ nN{U ]Z '®---U ;mj ) and therefore
the inequality m;f; < dim V; must be false. We conclude that V; is equal to the direct

. o
. . i J
sum of my; spaces U;',...,U; 7.

By permuting the labels of the spaces U JZ if necessary, for the remainder of the proof we
assume without loss of generality that V; = Ujl @ Uj2 DD U]mj for each j € {1,...,k}.
We observe that m;¢; = dim V; and in particular ¢; divides dim V; for each j as required.

By permuting the indices j € {1,...,k} we further assume without loss of generality
that m; = max;eqy . x) m; and therefore
. dim V; k
min = || m;. (6.7)
te{l,...,.k} je{qu} 5 ]1_12
3
We next claim that there exists 71 > 0 such that for every j € {1,...,k} we have
max Blyil|l = n1|| B 6.8
s (1Bl > 78] (68)

for every B € End(V}), where the set End(V) is the collection of all endomorphisms of
V, i.e. the collection of all linear transformations V' — V. Clearly it suffices to prove
this claim individually for each j € {1,...,k} and then take 71 to be the minimum of
the k distinct constants thus obtained. For fixed j it is in turn clearly sufficient to show
that
Bl || =
e 1Blyill = m
for every B € End(V;) with norm ||B|| = 1, and by compactness this will follow if
maxXie(1,...m,} | Bly:| > 0 for every nonzero B € End(Vj). But if max;cqy,.m,y | Bly: |l =
J J

My orri

0 then B must be identically zero on U, U;
V; = span UZm:]1 U ]’ The claim follows.
Define

and is therefore also identically zero on

. k
W = {(U;J);“‘:l: i; € {1,...,n;} for every j € {1,...,k}} C H Gry, (V)
j=1

which is clearly a finite set. Each i € Z* induces a permutation of W by the map

(U;j )?:1 — (A(ij) U;j )le, so we may partition WV into finitely many disjoint sets #1, ..., %
each of which is closed with respect to this action and such that the action of Z* by these
permutations is transitive on each #;. By relabelling 71, ..., #; if necessary, we assume

without loss of generality that

. p
{U)_yrin=1landij € {1,...,m;} forall je{2,....k}}y C U #  (6.9)
t=1
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where p < H?:z m;. This is possible since the former set contains exactly H?:z m;

distinct elements and these clearly must be distributed among no more than H?:Q m; of
the distinct transitivity classes #;. By recalling (6.7), we have now shown (6.6).

To see the final claim of the theorem, suppose that AU) is strongly irreducible for at
least k — 1 values of j. Since £; > 1 is the smallest dimension of a nonzero subspace of
V; which has finite orbit under the action of AU we see that ¢; = dim V; whenever AW)
is strongly irreducible. Therefore dimV;/¢; = 1 for at least k — 1 values of j and (6.6)
gives

as claimed.
Let us next prove (6.5). We first claim that for every ¢ € {1,...,n1} there exists

1, € Z* such that A:(L?Ull = Uj. Indeed, by the definition of U{,..., U there exist
Ki,...,k,, € Z* such that U} = Al((l)Ul for every i € {1,...,n1}. We allow here k; to

be an empty word, in which case Ag) is the identity map. For each ig € {1,...,n1} the

map U{ ~ AS()) Ui induces a permutation of the set {U7, ..., U} and therefore the map

Ui ASL)I,_lUf induces its inverse permutation. We therefore have AS)ASL)I!_IUll =
i0 1

AS)Ul = Uj for each i € {1,...,n;} and the claim follows by taking 1; = k&ML for

each i. Recall that for every ¢t € {1,...,p} and i € Z*,

k
v() = max T 1A w17,
(Wj)§_16%j1_[1 ’

and define also

— ; ; =11 4G y-1) -1
= minomin (JAD AT ),

‘We will show that

k; .
(mm)? TTIAD 1% < max 0O (1)
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for every i € Z*. Given i € Z*, using (6.8) we may choose an integer i € {1,...,my}
such that HA(il)\U;H > 7'1HA(11)H. We then have

k B
TTIAZ N < r AL e H 1A |5

= A AN (a1 IBJHHA(J AD (AP

7j=2

(6.10)
1
(H 1CAD) 12 ) 1AL AL g1 H 49 D)
1) V1B
(H (AD) 712 ) 140 ALy 1 H 4941
where we have used the definition of 1;. Now deﬁne 21 = 1 and, again using (6.8),
choose i, ...,4; such that i; € {1,...,m;} and ||A | S = TlHA(i])A:(L]i)H for each

jed{2,.. k} Combining this property with (6.10) we have

[ 1APW <77 (H [ uﬁﬂ) (H 149401 1)
j=1
‘B(HH AP ) (T 142 1)

7j=1

7j=1

By (6.9), the tuple (U;j)le belongs to some #; such that ¢ € {1,...,p}. Since each

#; is invariant under each of the maps (Wj)§=1 — (Agj )Wj);?:l for j € I*, we have
(A:(L{)U ]Z»j );?:1 € #; also. We conclude that

k
A(ij) B < (mmp) P max max AJ) W 5’-
jl_{ ” H ( ) te{l,....,p} (I/VJ);C 1€ Wt H ” ’ ’ ’

The inequality
max = max 1471w, 1% < TT 149 )1P
te{l,.p} (W))k_ e %H ]‘_‘[

is trivial. Since i was arbitrary we have proved (6.5).

It remains only to prove (6.4), for which we use Proposition 6.2. We note that Z* is
a semigroup with respect to the operation (i, j) — ij, and for each j € {1,...,k} the
map ¢;: Z* — GL(Vj) defined by ¢;(i) = A(ij ) is an irreducible representation. For each
Wy let ((7 j)le € W; be arbitrary and observe that

Vi ={(6;(D)U))f_,: 1 € T}
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since the action of Z* by (i, (WJ) 1) = ((1)W. )] 1 is by definition transitive on %#;.
By Proposition 6.2 there exist for each t € {1,. ..,p} a finite set £} C Z* and a real
number x; > 0 such that for every (W; )] . (W’)] 1 € #; there exists k € F; such that

145 AL AP | = wall AP s 1145w, | (6.11)

for all j € {1,...,k}. Define F = |J)_; F; and k = minge gy, py ke- By (6.11) it follows
easily that for every (W; )] . (W’)] 1 € #; we have

k . .
o 11494249, 15 > 8 (T 14" \W/\ﬂf)(HHA”\ 1”)
j=1

7=1
and by taking the maximum with respect to (W} )] L (W’)] 1 € #; we find that

() By (t) ®) (4
r&aﬁg(\ll (ikj) = w7¥W (1)U (5)

for every i,j € Z* and t € {1,...,p}. On the other hand if ¢ is fixed then for every
i,j € Z* and every (Wj)?':l € #; we clearly have

T 14549 1w, 17 < TLIAD oy, 17 145 s 1
j=1

P
= (L1491 ) (TT 145, 1) < 005005
j=1 i=1

where we have used the fact that (A(] W ) j=1 € #; by the definition of #;. The inequality
v (13) < OO ()w(j)

follows straightforwardly by taking the maximum over (Wj)le € #;. We have estab-
lished (6.4) and the proof of the theorem is complete. O

Let us next extend Theorem 6.3 into the completely reducible case. Observe that
Theorem 5.1 follows immediately from Theorem 6.4. Indeed, by recalling for example [24,
§3.4], we have

P°(A) = ANl Tstmey anTsljs-le]
for all A € GLg(R) and 0 < s < d with the convention that ||[A"°|| = 1. There-
fore, if A = (A;)ier € GLg(R)? is completely reducible, then, by Proposition 6.1, also
Alls)) = (AZ(\LSJ)ZEI € GL(ABIRHT and AUSD = (AZ(\M)ZEI € GL(AFIRDHT are com-
pletely reducible, and Theorem 6.4 shows there exist an integer p such that

dim AR dim AFTRY = () (14), if s > [s],

1 <p<dimAlBIR? = (Lcslj)’ if s =1s],
I<p< 5]

and the functions <I>( ) \I/([?] _ss—|s) LE {1,...,p}, satisfy the claimed properties.
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Theorem 6.4. Let k > 1, let T be finite or countably infinite, and for each j € {1,...,k}
let V; be a real inner product space and let AU) = (AZ(]))zeI = (@”71 B(j”)) el €
GL(V; Y be completely reducible. Then there exist an integer p such that

I<p

k
S <]€{1 Lk} dlmV) HdlmV HdimVj
j=1

with functions \IIE_I)), e \Ifg): [0,00)F x T* — (0,00), constants k,7 > 0, and a finite set
F CT* such that writing 8 = Z?Zl Bj the following three properties hold:
(i) We have

B

5 A(] 5J < A(] 5]
H H ’ te?llax} 51, ﬁk H ’

foralli e T*.
(ii) For everyt € {1,...,p} we have

t .. t t . .
WE (1) S UG WG (0) < Pmax ) (ikj)

foralli,jeT*.
(iii) For everyt € {1,...,p} and i € T* the function (fB1,...,Bk) — \Il(t) 5, (1) defined
on [0,00)* is continuous.

Proof. Let
R={(tr,....ty) EN*:t; € {1,...,r;} forall j € {1,...,k}}

and observe that (Bi(j b ))iez is irreducible for every j € {1,...,k}. Note also that there
exists a splitting V; = @:;:1 Vit such that AiVj,tj = Bi(]’tj)Vj,tj = Vj,. For each v =

(t1,...,tx) € R let \Ilgi,f~)~~75k be the functions associated to irreducible tuples (ng’tj))iez,
j(E){l,...,k}, given by Theorem 6.3. By definition, the functions (f1,...,0k) —
vt

L Ek(i) are clearly continuous proving (iii) and therefore, for the rest of the proof,
we may consider fy,...,Br = 0 being fixed and omit it in notation of \II(Bt ) B

By permuting the indices j € {1,...,k}, we assume without loss of generahty that
minjeqq, . gy 7/ dimV; = 7/ dim Vi For a fixed v = (t1,...,t;) € R, Theorem 6.3
shows that there are at most p, < f;ll dim Vj ¢, many functions U (1) Therefore, the

total number p of functions U(%%) is bounded above by

k—1 k—1 75
p < Z H dim Vit =Tk H Z dim Vit
e j=1 j=1t;=1
g . Tj ko
=3 jl_[l dimV; = (jel{frlunk} T VJ) ]]:[1 dim V;

as claimed.
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For each v = (t1,...,tx) € R, let the constants k, 7. > 0 and the finite set F, C Z* be
as in Theorem 6.3. Define k£ = min.eg ke, 7 = Mingem, 7o, and F = (J,cgz . Observe
that (ii) follows immediately from Theorem 6.3. Since

k ' k ‘
PTLIBY 1% < max  wED() < [T I1BYY 1%
j=1 t€{17~~~7pl‘} ]:1

by Theorem 6.3 and

k k ,
A(-j) Bi _ ngvtj) B;
L1 = e T 01

we have shown (i) and finished the proof. O
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