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THERMODYNAMIC FORMALISM OF COUNTABLY GENERATED

SELF-AFFINE SETS

ANTTI KÄENMÄKI AND IAN D. MORRIS

Abstract. In this article, we further develop the thermodynamic formalism of affine
iterated function systems with countably many transformations by showing the exis-
tence and extending earlier characterisations of the equilibrium states of finite affine
iterated function systems to the countably infinite case. As an application, under mild
conditions, we prove that the affinity dimension of a countable affine iterated function
system is equal to the supremum of the affinity dimensions of its finite subsystems.
We deduce corollaries concerning the Hausdorff dimension of countably generated self-
affine sets in dimensions 1, 2, and 3 satisfying mild deterministic assumptions and in
arbitrary dimension with generic translations.
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1. Introduction and statement of results

1.1. Background. An iterated function system acting on R
d is defined to be a collection

(Ti)i∈I of transformations Ti : Rd → R
d which are contracting with respect to some fixed

norm ||| · ||| on R
d, uniformly with respect to i ∈ I, such that the fixed points of Ti form a

bounded set. In this article the set I, which we call the index set for the iterated function
system (Ti)i∈I , will always be a nonempty set which is either finite or countably infinite.
Since the transformations Ti contract uniformly with respect to i ∈ I, the mapping
A 7→

⋃

i∈I Ti(A) defined on nonempty compact subsets of R
d is strictly contractive in

Hausdorff distance. Therefore, by Banach’s contraction mapping theorem, there exists
a unique nonempty compact set K ⊂ R

d which satisfies

K =
⋃

i∈I

Ti(K). (1.1)

The set K is called the attractor of the iterated function system (Ti)i∈I .
If the index set I is finite, then it is classical (and easily demonstrated) that the

attractor K is characterised by the following property: a point x ∈ R
d belongs to K if

and only if it is a limit point of (Ti)i∈I , that is, there exists (in)∞
n=1 ∈ IN such that for

every v ∈ R
d we have

lim
n→∞

Ti1 ◦ · · · ◦ Tin(v) = x. (1.2)

In the countably infinite case, using the facts that the transformations Ti contract uni-
formly with respect to i ∈ I and the fixed points of Ti form a bounded set, it is not
difficult to show that for every (in)∞

n=1 ∈ IN there exists an associated limit point x ∈ R
d

satisfying (1.2) for all v ∈ R
d. The union

X =
⋃

(in)∞
n=1∈IN

lim
n→∞

Ti1 ◦ · · · ◦ Tin(v) (1.3)

of all limit points is called the limit set of the iterated function system (Ti)i∈I . It is
easy to see that the attractor K is the closure of the limit set X, which also satisfies the
equation (1.1) but which in general need not be compact.

As an example, let us consider an iterated function system (x 7→ (i+ x)−1)i∈N acting
on (0, 1)1. This countably infinite system arises from continued fraction expansions, and
its limit set X as defined in (1.3) is precisely the set of all irrational numbers in the unit
interval. The attractor K in this case is the unit interval, so the limit set better reflects
the dynamical properties of the system. We are therefore interested in the limit set of
an iterated function system, i.e. the set of all points x ∈ R

d which arise as limits of the
form (1.2) for a given (Ti)i∈I . It is worthwhile to emphasize that in this example the
limit set is not topologically closed.

Throughout this article we will be concerned with the situation in which every trans-
formation Ti is invertible and affine, having the form Ti(x) = Aix+vi for some invertible
linear map Ai ∈ GLd(R) and vector vi ∈ R

d, and we will describe such iterated func-
tion systems simply as affine iterated function systems. The limit set X of an affine
iterated function system is conventionally called a self-affine set as it consists of affine

1Strictly speaking this example does not define an iterated function system on (0, 1) since the map
fi(x) = 1/(i+x) is not contracting for i = 1, but this point of detail may be circumvented by considering
the larger system of maps (fi ◦ fj)∞

i,j=1 which is uniformly contracting.
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images of itself. In this article we will prefer to say that a set is a finitely generated self-
affine set if it is the attractor of an affine iterated function system with a finite index
set and an infinitely generated self-affine set if it is the limit set of an affine iterated
function system with a countably infinite index set. The dimension theory of finitely
generated self-affine sets, and study of the natural measures on finitely generated self-
affine sets, has been very substantially developed in the last two decades in works such
as [1–9,11,13,13–17,19,22–26,29,30,32,33,36–38]. In this article, we will be concerned
with the extension of these results to infinitely generated self-affine sets, continuing a
project which was initiated in [25]. We will be particularly interested in extending the
thermodynamic formalism of finitely generated self-affine sets to the case of infinitely
generated self-affine sets, and in the approximation of infinitely generated self-affine sets
by their finitely generated self-affine subsets. In this respect the present work parallels
the now-classic article [27] which extended the theory of conformal iterated function
systems from the finitely-generated to the infinitely-generated context in an analogous
manner.

1.2. Singular value pressure. In this article we let ‖ · ‖ denote the Euclidean norm
on R

d and its induced operator norm on d × d real matrices. We denote the set of all
real d × d matrices by Md(R). If ||| · ||| is any norm on R

d then the same symbol will
likewise be used to denote the corresponding operator norm on Md(R). We recall that
the singular values of A ∈ Md(R) are defined to be the non-negative square roots of the
eigenvalues of the positive-semidefinite matrix A⊤A and are denoted σ1(A), . . . , σd(A)

in non-increasing order. The identities σ1(A) = ‖A‖ and
∏d

i=1 σi(A) = | detA| for all
A ∈ Md(R) are standard, as is the identity σd(A) = ‖A−1‖−1 in the case where A is
invertible. We now recall some further definitions arising in [12]. For each A ∈ Md(R)
and s > 0 we define the singular value function by

ϕs(A) =

{

σ1(A) · · · σ⌊s⌋(A)σ⌈s⌉(A)s−⌊s⌋, if 0 6 s 6 d,

| detA|
s
d , if s > d.

Note that σd(A)s 6 ϕs(A) = ‖A‖s for all 0 6 s 6 1 and σd(A)s 6 ϕs(A) 6 ‖A‖s for
all s > 1. The inequality ϕs(AB) 6 ϕs(A)ϕs(B) was demonstrated in [12] to hold for
all A,B ∈ Md(R). Given a finite or countably infinite tuple A = (Ai)i∈I ∈ GLd(R)I of
invertible matrices, we define for each s > 0 the pressure of A at s by setting

P (A, s) = lim
n→∞

1

n
log

∑

(i1,...,in)∈In

ϕs(Ai1 · · ·Ain) ∈ (−∞,∞]. (1.4)

The sequence (an)∞
n=1, where

an = log
∑

(i1,...,in)∈In

ϕs(Ai1 · · ·Ain),

satisfies the subadditivity property an+m 6 an + am for all n,m > 1 as a consequence
of the aforementioned inequality. If every an is finite (as is necessarily the case when I
is a finite set) this property suffices to guarantee the existence of the limit (1.4) as an
element of [−∞,∞) by the classical subadditivity lemma of Fekete. On the other hand
when some of the terms an are allowed to equal ∞ the existence of the limit is no longer
guaranteed by subadditivity alone and additional arguments are needed. (For example,
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if bn = 1 for even n and bn = ∞ for odd n then the sequence (bn)∞
n=1 is subadditive but

the sequence (bn/n)∞
n=1 is not convergent.) We will see in Lemma 2.2 below that the

limit (1.4) always exists in (−∞,∞] and is equal to the infimum of the same sequence.
In the case where I is finite it is well-established that s 7→ P (A, s) is a continuous

function [0,∞) → R and satisfies P (A, 0) = log #I. If additionally supi∈I |||Ai||| < 1

for some norm ||| · ||| on R
d then the function is additionally strictly decreasing with

lims→∞ P (A, s) = −∞ and as such it has a unique zero. In the case where I is infinite,
on the other hand, the situation is slightly more subtle. Let A = (Ai)i∈I ∈ GLd(R)I

where I is either finite or countably infinite. We define the finiteness threshold of the
pressure to be the quantity

θA = inf {s > 0: P (A, s) < ∞}

if I is infinite, and θA = 0 if I is finite. We also write

IA = {s > 0: P (A, s) ∈ R} ⊆ [θA,∞).

A tuple A = (Ai)i∈I ∈ GLd(R)I will be called irreducible if there is no nonzero proper
subspace V ⊂ R

d such that AiV = V for every i ∈ I; otherwise A is reducible. We also
say that A is completely reducible if in some basis the matrices in A are block-diagonal
with irreducible blocks of the same size; see Section 4 for further details. Our first main
result describes the behaviour of the pressure functional s 7→ P (A, s):

Theorem 1.1. Let A = (Ai)i∈I ∈ GLd(R)I , where I is either finite or countably infinite.
Then the following four assertions hold:

(i) The set IA is equal to either [θA,∞) or (θA,∞), and satisfies the alternative char-
acterisation

IA =
{

s > 0:
∑

i∈I

ϕs(Ai) < ∞
}

.

In particular, if I is finite then we have IA = [0,∞).
(ii) The pressure function s 7→ P (A, s) defined on IA is continuous, and is convex

when restricted to the intervals [k, k + 1] ∩ IA for all k ∈ {0, . . . , d − 1} and when
restricted to the interval [d,∞) ∩ IA. In particular, if P (A, θA) < ∞, then

lim
s↓θA

P (A, s) = P (A, θA).

(iii) For all s ∈ IA we have

P (A, s) = sup{P ((Ai)i∈J , s) : J is a nonempty finite subset of I}

and if A is completely reducible then the above relation holds for every s > 0.
(iv) Let ||| · ||| be any norm on R

d and define κ = − log supi∈I |||Ai|||. Then we have
P (A, s+t) 6 P (A, s)−κt for all s ∈ IA and t > 0. In particular, if supi∈I |||Ai||| < 1,
then κ > 0 and s 7→ P (A, s) is strictly decreasing with lims→∞ P (A, s) = −∞.

Clauses (i) and (iv) of Theorem 1.1 are direct and straightforward to prove, and
we present the proofs without delay in Section 2. But the proofs of (ii) and (iii) are
surprisingly involved and they are presented in Section 5.1 which further depends on
the results of Section 6. Those parts of (ii) and (iii) which deal with the endpoint case
s = θA ∈ IA are particularly involved. In Remark 5.4, we show that the assumption
P (A, θA) < ∞ in (ii) is required for the right-continuity of the pressure at θA. If the
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tuple A consists only of a constant multiple of orthogonal matrices (or, more generally,
the transformations Ti are conformal and satisfy the bounded distortion property), then
the corresponding theorem is much simpler and it is proved in [27, Proposition 3.3].

If for some norm ||| · ||| on R
d we have supi∈I |||Ai||| < 1, we define the upper affinity

dimension of A = (Ai)i∈I to be the quantity

dimaff A = inf{s > 0: P (A, s) < 0} (1.5)

and the lower affinity dimension of A to be the quantity

dimaff A = sup
{

dimaff(Ai)i∈J : J is a nonempty finite subset of I
}

. (1.6)

It is readily checked that

max{θA,dimaff A} 6 dimaff A. (1.7)

Indeed, since the infimum is monotone with respect to inclusion, we necessarily have θA 6

dimaff A. If s > dimaff A and J ⊆ I is any nonempty finite set then by a straightforward
examination of the definition of the pressure we have P ((Ai)i∈J , s) 6 P (A, s) < 0 and
it follows that dimaff(Ai)i∈J 6 s. Thus dimaff A 6 s for all s > dimaff A and hence,
dimaff A 6 dimaff A as required.

If dimaff A = dimaff A, then we denote the common value by dimaff A and call it the
affinity dimension of A. The following result is obtained as a corollary of Theorem 1.1
and we present its proof in Section 5.1.

Proposition 1.2. Let A = (Ai)i∈I ∈ GLd(R)I , where I is either finite or countably
infinite, be such that supi∈I |||Ai||| < 1 for some norm ||| · ||| on R

d. If at least one of the
following four assumptions,

(i) 0 6 P (A,dimaff A) < ∞,
(ii) θA < dimaff A,

(iii) A is completely reducible,
(iv) I is finite,

holds, then dimaff A = dimaff A.

The situation in which dimaff A < dimaff A thus requires that dimaff A = θA, and
this can be realised both with P (A,dimaff A) = ∞ and with P (A,dimaff A) < 0, as is
demonstrated by the following proposition which will be proved in Section 5.1:

Proposition 1.3. For all α, β ∈ (0, 1) and γ ∈ (β, 1] there exists a tuple of matrices
A = (Ai)i∈N ∈ GL2(R)N such that supi∈N ‖Ai‖ < α and

dimaff A = β < γ = θA = dimaff A.

Furthermore, A may be chosen such that P (A, θA) is either negative or infinite, as desired.

If the tuple A consists only of constant multiples of orthogonal matrices then the
strict inequality dimaff A < dimaff A cannot hold; this follows from the fact that such a
tuple is necessarily completely reducible, but follows also from the antecedent result [27,
Theorem 3.15] (which also applies if the transformations Ti are assumed only to be
conformal transformations with an appropriate bounded distortion property). As such
the outcome dimaff A < dimaff A demonstrated in Proposition 1.3 is a phenomenon which
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is specific to the case of non-conformal infinite iterated function systems, and which has
to the best of our knowledge not previously been remarked.

1.3. Equilibrium states. Our second major result is a complete description of the
equilibrium states of ϕs with respect to the full shift over a countable alphabet. This
result extends the description given in the finite-alphabet case in [9]. Whereas in the
finite-alphabet case the existence of at least one equilibrium state follows from a weak∗

compactness argument (see [23]), in the countable-alphabet case no general existence
results were previously known.

The collection of all Borel probability measures on IN will be denoted by M(IN). We
let Mσ(IN) denote the set of all σ-invariant measures in M(IN), where σ : IN → IN is
the left shift taking (ik)∞

k=1 into (ik)∞
k=2. Here and hereafter we denote i = i1 · · · in =

(ik)n
k=1 ∈ In, i = i1i2 · · · = (ik)∞

k=1 ∈ IN, j|n = j1 · · · jn for all j ∈ IN, and [i] = {j ∈
IN : j|n = i} ⊂ IN for all i ∈ In. The set [i] is called a cylinder set at level n whenever
i ∈ In. We also write I∗ =

⋃

n>1 In.

Let µ ∈ Mσ(IN), A = (Ai)i∈I ∈ GLd(R)I , and s > 0 be such that supi∈I ϕ
s(Ai) < ∞.

Recall that the singular value function ϕs satisfies ϕs(A) 6 ‖A‖s for all A ∈ GLd(R).
Therefore, supi∈I ‖Ai‖ < ∞ implies supi∈I ϕ

s(Ai) < ∞ for all s > 0. We define the
energy of A at s > 0 with respect to µ ∈ Mσ(IN) by setting

Λ(µ,A, s) = lim
n→∞

1

n

∫

IN

logϕs(Ai|n) dµ(i) ∈ [−∞, log sup
i∈I

ϕs(Ai)], (1.8)

where Ai = Ai1 · · ·Ain for all i = i1 · · · in ∈ In. We will see in Lemma 3.1(i) below that
the limit (1.8) exists in [−∞, log supi∈I ϕ

s(Ai)] and is equal to the infimum of the same
sequence.

For µ ∈ M(IN) and a finite Borel partition P of IN we define the Shannon entropy
by

H(µ,P) = −
∑

C∈P

µ(C) log µ(C) ∈ [0,#P/e]. (1.9)

Here we adopt the usual convention according to which 0 log 0 = 0. Recall that the
n-level refinement of the partition P, denoted by

∨n−1
i=0 σ

−i(P), is the collection of sets

of the form
⋂n−1

i=0 σ
−i(Cji

), where Cji
∈ P. Note that the refinements are finite Borel

partitions of IN. We write

h(µ,P) = lim
n→∞

1

n
H

(

µ,
n−1
∨

i=0

σ−i(P)

)

∈ [0,∞)

and define the Kolmogorov-Sinai entropy of µ ∈ Mσ(IN) by setting

h(µ) = sup{h(µ,P) : P is a finite Borel partition of IN} ∈ [0,∞]. (1.10)

We will see in Lemma 3.2(i) below that the limit h(µ,P) always exists in [0,∞) and is
equal to the infimum of the same sequence.

The following proposition shows how these quantities are related to the pressure. We
postpone its proof until Section 5.2.
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Proposition 1.4. Let A = (Ai)i∈I ∈ GLd(R)I and s > 0 be such that supi∈I ϕ
s(Ai) <

∞, where I is either finite or countably infinite. If µ ∈ Mσ(IN) is such that h(µ) < ∞
or Λ(µ,A, s) > −∞, then

h(µ) + Λ(µ,A, s) 6 P (A, s).

If µ ∈ Mσ(IN) is such that h(µ) < ∞ or Λ(µ,A, s) > −∞, then we say that µ is an
ϕs-equilibrium state for A if it satisfies

h(µ) + Λ(µ,A, s) = P (A, s).

If I is finite, then the existence of an ϕs-equilibrium state is proved in [23] and their
complete description is given in [9]. The next theorem extends this information into
the countably infinite case by completely classifying the structure of the family of all
ϕs-equilibrium states. A tuple A = (Ai)i∈I ∈ GLd(R)I is strongly irreducible if there
does not exist a finite collection V of nonzero proper subspaces of Rd such that AiV = V
for every i ∈ I. A strongly irreducible tuple is clearly irreducible. Given A = (Ai)i∈I ∈
GLd(R)I , we define A

∧k to be the tuple (A∧k
i )i∈I , where A∧k

i : ∧k
R

d → ∧k
R

d is the
induced invertible linear map.

Theorem 1.5. Let A = (Ai)i∈I ∈ GLd(R)I be such that supi∈I ϕ
s(Ai) < ∞, where I is

either finite or countably infinite. If s ∈ IA, then

P (A, s) = sup{h(µ) + Λ(µ,A, s) : µ ∈ Mσ(IN) is such that h(µ) < ∞}.

Furthermore, if s > θA, then the following three assertions hold:

(i) If s > d then there is a unique ϕs-equilibrium state for A and it is a Bernoulli
measure.

(ii) If s ∈ (0, d) ∩ Z then the number of distinct ergodic ϕs-equilibrium states for A is

at least one and is not more than
(d

s

)

. If A
∧s is irreducible then there is a unique

ϕs-equilibrium state for A, and if additionally A
∧s is strongly irreducible then this

unique equilibrium state is mixing.
(iii) If s ∈ (0, d) \ Z then the number of distinct ergodic ϕs-equilibrium states for A is

at least one and is not more than
( d

⌊s⌋

)( d
⌈s⌉

)

. If one of A
∧⌊s⌋ and A

∧⌈s⌉ is irreducible

and the other is strongly irreducible then there is a unique ϕs-equilibrium state for
A, and if both are strongly irreducible then this unique equilibrium state is mixing.

In all cases every equilibrium state is fully supported on IN.

The proof of the theorem is given in Section 5.2 which further relies on the results of
Section 6. The ergodic equilibrium states admit a precise description which is essentially
identical to that given in [9] and which will be given in detail later. The following result
is a consequence of the fact that equilibrium states are always fully supported:

Proposition 1.6. Let A = (Ai)i∈I ∈ GLd(R)I where I is either finite or countably
infinite. Then the following two assertions hold:

(i) For every s > θA, if J is a nonempty proper subset of I, then P ((Ai)i∈J , s) <
P (A, s).

(ii) If there exists a norm ||| · ||| on R
d such that supi∈I |||Ai||| < 1, and if θA < dimaff A,

then dimaff(Ai)i∈J < dimaff A for every nonempty proper subset J of I.
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1.4. Self-affine sets. The third class of results proved in this article present some ap-
plications to the dimension theory of infinitely generated self-affine sets. Let (Ti)i∈I be
an affine iterated function system acting on R

d. Recall that every transformation Ti is
invertible and affine, having the form Ti(x) = Aix + vi for some invertible linear map
Ai ∈ GLd(R) and translation vector vi ∈ R

d. Denote the associated self-affine set by
X ⊂ R

d. We are interested in determining dimHX, the Hausdorff dimension of X. We
use the convention that whenever we speak about a self-affine set, then it is automati-
cally accompanied with a tuple of affine maps which defines it. Write Ti = Ti1 ◦ · · · ◦Tin

for all i = i1 · · · in. Relying on (1.1), the self-affine set X can naturally be covered by
the sets Ti(B), where B is a ball containing X. The singular value function ϕs(Ai)
represents a measurement of the s-dimensional volume of the image of the Euclidean
unit ball under Ti. For example, in the planar case, the set Ti(B) can be covered by one
ball of radius σ1(Ai) diam(B) or by O(σ1(Ai)/σ2(Ai)) balls of radius σ2(Ai) diam(B).
This motivates the study of the limiting behavior of sums

∑

i∈In ϕs(Ai) and hence, the

pressure P (A, s) of A = (Ai)i∈I ∈ GLd(R)I . In particular, Theorem 1.1(iii) introduces a
way to approximate the dimension of infinitely generated self-affine sets by their finitely
generated self-affine subsets.

The first proposition is a rather standard covering argument and it generalises the
classical estimate [12, Proposition 5.1] into the infinitely generated case. All the results
announced below will be proved in Section 5.3.

Proposition 1.7. Let X ⊂ R
d be a self-affine set. Then dimHX 6 dimaff A.

Let ‖ · ‖ be a norm on the vector space of affine maps from R
d into itself. We say

that X satisfies the exponential separation condition if for every finite J ⊆ I there exists
cJ > 0 such that ‖Ti −Tj‖ > cn

J for all n > 1 and distinct i, j ∈ J n. It is not difficult to
see that the self-affine set X satisfies exponential separation when the defining iterated
function system generates a free semigroup and is defined by algebraic parameters (i.e.
when Ti 6= Tj for all distinct i, j ∈ I∗ and all the entries of Ai and vi are algebraic
numbers).

The remaining theorems introduce sufficient conditions for the Hausdorff dimension
of the self-affine set equal the affinity dimension. Furthermore, in such cases Proposition
1.6(ii) translates into a result that removing one of the defining affine maps results in
a strict reduction of the Hausdorff dimension, a property which was previously demon-
strated for finite affine iterated function systems in [9, 24]. The following result gener-
alises the seminal theorem [18, Corollary 1.2] into the infinitely generated case. As affine
maps acting on the real line are similarities, the self-affine sets on R are often called
self-similar.

Theorem 1.8. Let X ⊂ R be a self-similar set satisfying the exponential separation
condition. Then dimHX = min{1,dimaff A}.

We say that the self-affine set X satisfies the fixed point condition if the maps Ti in
the defining affine iterated function system do not have a common fixed point. Further-
more, we say that A = (Ai)i∈I ∈ GLd(R)I is proximal if there exist i1, i2, . . . ∈ I∗

and α1, α2, . . . ∈ R such that the sequence (αnAin)n>1 converges to a rank one linear
transformation. In the case where A is additionally irreducible, this is equivalent to
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the existence of i ∈ I∗ such that Ai has a simple leading eigenvalue. The next theo-
rem generalises both [19, Theorem 1.1] and [2, Theorem 1.1], whose proofs are based
on [4, Theorem 2.3] and [34, Theorem 1.1], into the infinitely generated case.

Theorem 1.9. Let X ⊂ R
2 be a self-affine set satisfying the fixed point condition and

the exponential separation condition such that the associated matrix tuple A is strongly
irreducible and proximal. Then dimHX = min{2,dimaff A}.

Recall thatX satisfies the strong open set condition if there exists a nonempty bounded
open set U ⊂ R

d intersecting X such that
⋃

i∈I Ti(U) ⊂ U with disjoint union. By [2,
§6.2], the strong open set condition implies the exponential separation. The following
theorem generalises [33, Theorem 1.5], whose proof rely on [36, Theorem 1.9] and [13,
Theorem 1.4], into the infinitely generated case.

Theorem 1.10. Let X ⊂ R
3 be a self-affine set satisfying the strong open set condi-

tion such that the associated matrix tuple A is strongly irreducible and proximal. Then
dimHX = min{3,dimaff A}.

In the following result, which generalises [25, Theorem B], the self-affine sets Xv are
parametrised by the tuples of associated translation vectors v = (vi)i∈I ∈ (Rd)I . Define
Q = ([0, 1]d)I and note that by Kolmogorov extension theorem Q supports a natural
probability measure LQ = (Ld|[0,1]d)I , where Ld is the Lebesgue measure on R

d.

Theorem 1.11. Let Xv ⊂ R
d be a self-affine set such that the associated matrix tuple

A = (Ai)i∈I satisfies supi∈I ‖Ai‖ <
1
2 . Then dimHXv > min{d,dimaff A} for LQ-almost

all v ∈ Q.

Under any of the assumptions (i)–(iv) in Proposition 1.2, the above theorem improves
into dimHXv = min{d,dimaff A} for LQ-almost all v ∈ Q. Recalling Proposition 1.3, it
would be interesting to know if in the context of Theorem 1.11 there exist infinitely gen-
erated self-affine sets X with dimHX < dimaff A. If not, then Proposition 1.3 shows that
there are infinitely generated self-affine sets X with dimH

⋃

J ⊂I is finite XJ < dimHX.

2. Existence and finiteness of pressure

In this section, we collect some elementary properties of the pressure P (A, s) for
countably infinite affine iterated function systems. In particular, we prove the clauses
(i) and (iv) in Theorem 1.1. Without further mentioning, we use notation concerning
words introduced in Section 1.3. We begin with a fundamental lemma concerning the
sequence used to define the pressure.

Lemma 2.1. Let I be countably infinite, A = (Ai)i∈I ∈ GLd(R)I, and s > 0. If
∑

i∈I ϕ
s(Ai) < ∞, then for every n > 1 the series

∑

i∈In ϕt(Ai) converges uniformly on
[s,∞).

Proof. Suppose that
∑

i∈I ϕ
s(Ai) < ∞ and define I+ = {i ∈ I : ϕs(Ai) > 1} and

I− = {i ∈ I : ϕs(Ai) < 1}. Since by hypothesis
∑

i∈I ϕ
s(Ai) < ∞, the set I+ is finite.

For all i ∈ I− we have
{

σ⌈s⌉(Ai)
s 6 ϕs(Ai) < 1, if 0 6 s < d,

| detAi| < 1, if s > d,
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and hence,

ϕt(Ai) 6

{

ϕs(Ai)σ⌈s⌉(Ai)
t−s 6 ϕs(Ai), if 0 6 t < d,

ϕs(Ai)| detAi|
t−max{s,d}

d 6 ϕs(Ai), if t > d

for all t > s. Let ε > 0 and choose a finite set J ⊂ I such that
∑

i∈I\J ϕs(Ai) < ε. It
follows directly that if t > s, then

∑

i∈I\(I+∪J )

ϕt(Ai) =
∑

i∈I−\J

ϕt(Ai) 6
∑

i∈I−\J

ϕs(Ai) 6
∑

i∈I\J

ϕs(Ai) < ε.

We have proved that
∑

i∈I ϕ
t(Ai) converges uniformly on [s,∞) and this proves the

lemma in the case n = 1.
To show the general case, observe first that if A,B ∈ GLd(R), then, by a well-known

inequality,

ϕs(AB) 6 ϕs(A)ϕs(B); (2.1)

for example, see [24, §3.4]. If n > 1, then by summing we get

∑

i∈In+1

ϕs(Ai) 6

(

∑

i∈In

ϕs(Ai)

)(

∑

i∈I

ϕs(Ai)

)

. (2.2)

Therefore, since
∑

i∈In ϕs(Ai) 6 (
∑

i∈I ϕ
s(Ai))

n by a simple induction, the convergence
of
∑

i∈I ϕ
s(Ai) immediately implies the convergence of

∑

i∈In ϕs(Ai), and the result
follows by applying the above arguments to In in place of I. �

The following lemma verifies the existence of the pressure defined in (1.4) and proves
Theorem 1.1(i).

Lemma 2.2. Let A = (Ai)i∈I ∈ GLd(R)I where I is either finite or countably infinite.
Then the following three assertions hold:

(i) For every s > 0 the limit

P (A, s) = lim
n→∞

1

n
log

∑

i∈In

ϕs(Ai) = inf
n>1

1

n
log

∑

i∈In

ϕs(Ai) (2.3)

exists in (−∞,∞] and is finite if and only if
∑

i∈I ϕ
s(Ai) < ∞ is finite. In partic-

ular

IA = {s > 0: P (A, s) < ∞} =
{

s > 0:
∑

i∈I

ϕs(Ai) < ∞
}

.

(ii) The set IA is equal to either (θA,∞) or [θA,∞).
(iii) For every n > 1 the function s 7→

∑

i∈In ϕs(Ai) defined on IA is continuous.

Proof. Recall that if I is finite, then θA = 0 and IA = [0,∞). To prove the claims, we
first observe that if A,B ∈ GLd(R) and s > 0, then (2.1) implies ϕs(A) = ϕs(ABB−1) 6
ϕs(AB)ϕs(B−1). Since ϕs(B−1) 6 σ1(B−1)s = σd(B)−s, we thus get

ϕs(A)σd(B)s
6 ϕs(AB).

The inequality
(

∑

i∈In

ϕs(Ai)

)(

∑

i∈I

σd(Ai)s

)

6
∑

i∈In+1

ϕs(Ai) (2.4)
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for all n > 1 follows immediately by summation.
A simple induction using (2.2) shows that if

∑

i∈I ϕ
s(Ai) is finite, then

∑

i∈In ϕs(Ai) 6
(
∑

i∈I ϕ
s(Ai))

n < ∞ for all n > 1; on the other hand if
∑

i∈I ϕ
s(Ai) is infinite then a

similar induction using (2.4) implies that
∑

i∈In ϕs(Ai) is infinite for every n > 1. We
conclude that the sequence in (2.3) is either finite for every n > 1 or infinite for every
n > 1. In the former case the existence of the limit (2.3) and its identity with the claimed
infimum follow from the subadditivity lemma; in the latter case the same properties fol-
low trivially since the sequence is identically equal to ∞. We have proved (i). Applying
this result together with Lemma 2.1 we see that

IA =
⋃

s∈IA

[s,∞)

and this is equal to either (θA,∞) or [θA,∞) depending respectively on whether or not
θA ∈ IA, which yields (ii).

For every n > 1, by Lemma 2.1 the series
∑

i∈In ϕs(Ai) converges uniformly with
respect to s on closed subintervals of IA. As the function s 7→ ϕs(Ai) is continuous for
every i ∈ I∗, this implies that each of the function

s 7→
∑

i∈In

ϕs(Ai)

is continuous on IA proving (iii). �

With elementary methods, we see that the pressure is always decreasing in s and, if
I is finite, also continuous. In fact, the following lemma proves Theorem 1.1(iv).

Lemma 2.3. Let I be finite or countably infinite, ||| · ||| be any norm on R
d, and A =

(Ai)i∈I ∈ GLd(R)I be bounded. Then P (A, s + t) 6 P (A, s) + Ct for all s ∈ IA and
all t > 0, where C = log supi∈I |||Ai|||. Furthermore, if I is finite then s 7→ P (A, s) is
continuous on [0,∞).

Proof. Let K > 0 be a constant such that K−1‖v‖ 6 |||v||| 6 K‖v‖ for all v ∈ R
d, let

s ∈ IA be arbitrary and let t > 0. Using Lemma 2.2(i) we have for all n > 1

exp (nP (A, s+ t)) 6
∑

i∈In

ϕs+t(Ai) 6
∑

i∈In

‖Ai‖tϕs(Ai) 6 KentC
∑

i∈In

ϕs(Ai)

and the inequality P (A, s+ t) 6 P (A, s) + Ct follows easily. If I is finite then clearly
∑

i∈In

ϕs+t(Ai) >
∑

i∈In

ϕs(Ai)σd(Ai)t
> (min

i∈I
σd(Ai))

nt
∑

i∈In

ϕs(Ai)

and so
P (A, s+ t) > P (A, s) + t log min

i∈I
σd(Ai)

for all s ∈ IA and t > 0. The continuity of s 7→ P (A, s) for finite I follows. �

To finish this section, let us verify the easy part of Theorem 1.1(ii) by showing that
the pressure is convex between two consecutive integers.

Lemma 2.4. Let I be finite or countably infinite and let A = (Ai)i∈I ∈ GLd(R)I . Then
the function s 7→ P (A, s) is convex on [k, k + 1] ∩ IA for all k ∈ {0, . . . , d − 1} and is
also convex on [d,∞) ∩ IA.
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Proof. We will prove the case of convexity on [k, k + 1] ∩ IA; the case [d,∞) ∩ IA is
similar and left to the reader. Fix k ∈ {0, . . . , d − 1} and t ∈ (0, 1) and take s1, s2 ∈
[k, k + 1] ∩ (θA,∞) such that s1 < s2. Since ⌊s1⌋ = ⌈s2⌉ − 1 = ⌊ts2 + (1 − t)s1⌋ = k, we
have

ϕts2+(1−t)s1(Ai) =
(

σ1(Ai) · · · σk(Ai)σk+1(Ai)s2−k
)t

·
(

σ1(Ai) · · · σk(Ai)σk+1(Ai)s1−k
)1−t

= ϕs2(Ai)tϕs1(Ai)1−t

for all i ∈ In and n > 1. Therefore, by Hölder’s inequality with Hölder conjugates
p = 1/t and q = 1/(1 − t),

∑

i∈In

ϕts2+(1−t)s1(Ai) 6

(

∑

i∈In

ϕs2(Ai)

)t(
∑

i∈In

ϕs1(Ai)

)1−t

for all n > 1. The claim follows directly by taking the logarithm, dividing by n, and
passing to the limit. �

Let A = (Ai)i∈I ∈ GLd(R)I where I is either finite or countably infinite. If I is finite,
then Lemma 2.3 shows the continuity of s 7→ P (A, s) on [0,∞). Proving the continuity
when I is countably infinite is more involved and is not fully addressed until in Section
5. The elementary results stated in this section give some information in this direction.
At first, as a convex funtion defined on an open set is continuous, Lemma 2.4 implies
that s 7→ P (A, s) is continuous on open intervals (0, 1) ∩ (θA,∞), . . . , (d− 1, d) ∩ (θA,∞),
and (d,∞) ∩ (θA,∞).

For each n > 1, by Lemma 2.2(iii) we see that the function

s 7→
1

n
log

∑

i∈In

ϕs(Ai)

is continuous on IA. Recalling (2.3), it follows that s 7→ P (A, s) is upper semi-continuous
on IA as it is the pointwise infimum of a sequence of continuous functions on that domain.
In particular, we have

lim sup
t↑s

P (A, t) 6 P (A, s)

for all s ∈ (θA,∞). If there exists a norm ||| · ||| on R
d such that supi |||Ai||| 6 1, then

s 7→ P (A, s) is decreasing by Lemma 2.3 and, in particular, we have

lim inf
t↑s

P (A, t) > P (A, s)

for all s ∈ (θA,∞). Therefore, the function s 7→ P (A, s) is in this case left-continuous at
points in {1, . . . , d}∩ (θA,∞). The task in Section 5 is thus to prove the right-continuity
at θA and in {1, . . . , d} ∩ (θA,∞).

3. Preliminaries on energy and entropy

In this section, we examine the behaviour of the energy and entropy. Our first lemma
verifies the basic properties of the energy. Recall that the singular value function ϕs

is submultiplicative. We state the lemma for general submultiplicative potentials as we
will later define the energy also for other functions. The lemma shows that the energy
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Λ(µ,A, s) defined in (1.8) exists in [−∞, supi∈I logϕs(Ai)] and is equal to the infimum
of the same sequence over n.

Lemma 3.1. Let I be either finite or countably infinite set and ψ : I∗ → (0,∞) be such
that ψ(ij) 6 ψ(i)ψ(j) for all i, j ∈ I∗ and supi∈I ψ(i) < ∞. Then the following two
assertions hold:

(i) For each µ ∈ Mσ(IN) the limit

Λ(µ,ψ) = lim
n→∞

1

n

∫

IN

logψ(i|n) dµ(i)

exists in [−∞, log supi∈I ψ(i)] and is equal to infn>1
1
n

∫

IN logψ(i|n) dµ(i).

(ii) The map µ 7→ Λ(µ,ψ) defined on Mσ(IN) is upper semicontinuous.

Proof. Write M = supi∈I ψ(i). By the submultiplicativity of ψ and the σ-invariance of
µ, we have

∫

IN

logψ(i|m+n) dµ(i) 6

∫

IN

logψ(i|m) dµ(i) +

∫

IN

logψ(σmi|n) dµ(i)

=

∫

IN

logψ(i|m) dµ(i) +

∫

IN

logψ(i|n) dµ(i).
(3.1)

In particular, we have
∫

IN

logψ(i|n+1) dµ(i) 6

∫

IN

logψ(i|n) dµ(i) + logM

and therefore,
1

n

∫

IN

logψ(i|n) dµ(i) 6 logM

for all n > 1. It also follows that if
∫

IN logψ(i|n) dµ(i) = −∞ for some n, then
∫

IN logψ(i|m) dµ(i) = −∞ for all m > n. Hence, the limit Λ(µ,ψ) exists in [−∞, logM ]
and is equal to the infimum of the same sequence over n by the subadditivity (3.1) as
claimed in (i). Since the map µ 7→

∫

IN logψ(i|n) dµ(i) is continuous for all n ∈ N, we see
that µ 7→ Λ(µ,ψ) is an infimum of continuous functions and the assertion (ii) follows. �

Our second lemma verifies the existence of the entropy defined in (1.10). If I is finite,
then IN is compact and the existence of the entropy and its basic properties follow
immediately from [10]. To extend the results to case where I is countably infinite, we
rely on the ultrametric structure of the non-compact set IN. Let P and Q be either
finite or countably infinite Borel partitions of IN, extend the definition of the Shannon
entropy (1.9) to countably infinite partitions, and set

H(µ,P | Q) =
∑

D∈Q

µ(D)H

(

µ|D
µ(D)

,P

)

∈ [0,#P/e]

for all µ ∈ M(IN).

Lemma 3.2. Let I be either finite or countably infinite set and P be either finite or
countably infinite Borel partition of IN. Then the following two assertions hold:
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(i) For each µ ∈ Mσ(IN) the limit

h(µ,P) = lim
n→∞

1

n
H

(

µ,
n−1
∨

i=0

σ−i(P)

)

exists in [0,∞], is equal to infn>1
1
n
H(µ,

∨n−1
i=0 σ

−i(P)), and is finite if P is finite.
Furthermore, either all terms of this sequence are finite, or all are infinite.

(ii) If Q is either finite or countably infinite Borel partition of IN, then for each µ ∈
Mσ(IN) we have

h(µ,P) 6 h(µ,Q) +H(µ,P | Q).

In particular, if each set in P is a union of sets in Q, then h(µ,P) 6 h(µ,Q).

Proof. Let P and Q both be either finite or countably infinite Borel partitions of IN.
Recall that P ∨ Q is the collection of sets of the form C ∩ D, where C ∈ P and D ∈ Q.
Note that

H(µ,P | Q) +H(µ,Q) = −
∑

D∈Q

µ(D)
∑

C∈P

µ(C ∩D)

µ(D)
log

µ(C ∩D)

µ(D)

−
∑

D∈Q

µ(D) log µ(D)

= −
∑

D∈Q

∑

C∈P

µ(C ∩D) log µ(C ∩D) = H(µ,P ∨ Q)

(3.2)

and hence, H(µ,Q) 6 H(µ,P ∨ Q) and

H(µ,P) = H(µ,P ∨ Q) −H(µ,Q | P)

6 H(µ,P ∨ Q) = H(µ,Q) +H(µ,P | Q),
(3.3)

where, while calculating, we assume the quantities finite and then observe that the
claimed inequality holds also when any of the quantities is infinite. In particular, if each
set in Q is a union of sets in P, then trivially P ∨ Q = P and

H(µ,Q) 6 H(µ,P ∨ Q) = H(µ,P). (3.4)

If R is either finite or countably infinite Borel partition of IN such that each set in R
is a union of sets in Q, then Jensen’s inequality on the concave function x 7→ −x log x
implies

H(µ,P | Q) =
∑

C∈P

∑

E∈R

µ(E)
∑

D∈Q
D⊂E

µ(D)

µ(E)

(

−
µ(C ∩D)

µ(D)
log

µ(C ∩D)

µ(D)

)

6
∑

C∈P

∑

E∈R

µ(E)

(

−
∑

D∈Q
D⊂E

µ(C ∩D)

µ(E)
log

µ(C ∩D)

µ(E)

)

= −
∑

E∈R

µ(E)
∑

C∈P

µ(C ∩ E)

µ(E)
log

µ(C ∩ E)

µ(E)
= H(µ,P | R).

(3.5)

Note that choosing R = {IN} above gives H(µ,P | Q) 6 H(µ,P) and therefore, by (3.2),

H(µ,P ∨ Q) 6 H(µ,P) +H(µ,Q). (3.6)
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Furthermore, if R is either finite or countably infinite Borel partition of IN, then it
follows from (3.2) and (3.5) that

H(µ,P ∨ Q | R) = H(µ,P ∨ Q ∨ R) −H(µ,Q ∨ R) +H(µ,Q ∨ R) −H(µ,R)

= H(µ,P | Q ∨ R) +H(µ,Q | R) 6 H(µ,P | R) +H(µ,Q | R),
(3.7)

where, while calculating, we assume the quantities finite and then observe that the
claimed inequality holds also when any of the quantities is infinite. Write Pn =

∨n−1
i=0 σ

−i(P)

and note that Pm+n = Pm ∨
∨m+n−1

i=m σ−i(P) = Pm ∨ σ−m(Pn). By (3.6) and the σ-
invariance of µ, we get

H(µ,Pm+n) 6 H(µ,Pm) +H(µ, σ−m(Pn)) = H(µ,Pm) +H(µ,Pn)

for all m,n > 1. Since each set in Pn is a union of sets in Pn+1, we see that, by (3.4),
H(µ,Pn) is increasing with respect to n. Therefore, by the subadditivity, the limit
limn→∞

1
n
H(µ,Pn) exists in [0,∞], equals the infimum infn>1

1
n
H(µ,Pn), and either all

terms of this sequence are finite, or all are infinite. The claim (i) follows.
To prove the claim (ii), we first note that, as µ is σ-invariant, (3.2) implies

H(µ, σ−i(P) |σ−i(Q)) = H(µ, σ−i(P) ∨ σ−i(Q)) −H(µ, σ−i(Q))

= H(µ,P ∨ Q) −H(µ,Q) = H(µ,P | Q)
(3.8)

for all i > 1. Write Qn =
∨n−1

i=0 σ
−i(Q) and observe that, by (3.3), (3.7), (3.5), and (3.8),

H(µ,Pn) 6 H(µ,Qn) +H(µ,Pn | Qn) 6 H(µ,Qn) +
n−1
∑

i=0

H(µ, σ−i(P) | Qn)

6 H(µ,Qn) +
n−1
∑

i=0

H(µ, σ−i(P) |σ−i(Q)) = H(µ,Qn) + nH(µ,P | Q).

Dividing by n before letting n → ∞, the assertion (i) shows that h(µ,P) 6 h(µ,Q) +
H(µ,P | Q). If each set in P is a union of sets in Q, then trivially P ∨ Q = Q and
H(µ,P | Q) = H(µ,P ∨ Q) −H(µ,Q) = 0 by (3.2). �

For each nonempty subset J of I let

IJ =

{

{{i} : i ∈ J } ∪ {I \ J }, if I \ J 6= ∅,

{{i} : i ∈ J }, if I \ J = ∅

be a partition of I and let

PJ =

{

⋃

i∈I

[i] : I ∈ IJ

}

be a Borel partition of IN. Note that if J is finite, then PJ is a finite partition. If
i = (ik)n

k=1 ∈ In, then the corresponding cylider is [i] = {j ∈ IN : j|n = i}. We
extend this definition as follows: If I = I1 · · · In = (Ik)n

k=1 ∈ In
J , then the corresponding

generalized cylinder is

[I] =
⋃

i1∈I1

· · ·
⋃

in∈In

[i1 · · · in].

Note that for each I = I1 · · · In ∈ In
I there is i = i1 · · · in ∈ In such that Ik = {ik} for

all k ∈ {1, . . . , n} and [I] = [i]. Notice that PJ = {[I] : I ∈ IJ } and, since IN and all
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the first level cylinders [i] are open and closed, the partition PJ consists of sets which
are open and closed. The n-level refinement of the partition PJ is

n−1
∨

i=0

σ−i(PJ ) = {[I] : I ∈ In
J } (3.9)

for all nonempty subsets J of I. In particular,
∨n−1

i=0 σ
−i(PI) = {[i] : i ∈ In}. Since

σ is continuous, the set σ−i([I]) is open and closed for all I ∈ IJ and i > 1. Since [I],
where I ∈ In

J , is a finite intersection of such sets, we conclude that all the generalized

cylinders are open and closed. Let µ ∈ Mσ(IN) and observe that, by (3.9) and Lemma
3.2(i), we have

h(µ,PJ ) = − lim
n→∞

1

n

∑

I∈In
J

µ([I]) log µ([I])

= inf
n>1

−
1

n

∑

I∈In
J

µ([I]) log µ([I]) ∈ [0,∞)
(3.10)

for all nonempty finite subsets J of I and, in particular,

h(µ,PI) = − lim
n→∞

1

n

∑

i∈In

µ([i]) log µ([i])

= inf
n>1

−
1

n

∑

i∈In

µ([i]) log µ([i]) ∈ [0,∞].
(3.11)

Note that if µ is a Bernoulli measure, then h(µ,PI) = H(µ,PI).

Lemma 3.3. Let I be either finite or countably infinite set and J be a nonempty finite
subset of I. Then the map µ 7→ h(µ,PJ ) defined on Mσ(IN) is upper semicontinuous.

Proof. Let µ ∈ Mσ(IN) and (µk)∞
k=1 be a sequence of measures in Mσ(IN) such that

µk → µ in the weak∗ topology and fix ε > 0. By (3.10), let n ∈ N be such that

−
1

n

∑

I∈In
J

µ([I]) log µ([I]) 6 h(µ,PJ ) +
ε

2
. (3.12)

Since the generalized cylinders [I] are open and closed, the weak∗ convergence of the
sequence (µk)∞

k=1 implies µk([I]) → µ([I]) for all I ∈ In
J . Hence, by (3.10), the continuity

of x 7→ −x log x on [0, 1], and (3.12), there exists k0 ∈ N such that

h(µk,PJ ) 6 −
1

n

∑

I∈In
J

µk([I]) log µk([I])

6 −
1

n

∑

I∈In
J

µ([I]) log µ([I]) +
ε

2
6 h(µ,PJ ) + ε

for all k > k0. It follows that lim supk→∞ h(µk,PJ ) 6 h(µ,PJ ) and the claim follows.
�

The following example recalls [21, Remark 3.11] and shows that if I is countably
infinite, then the map µ 7→ h(µ,PI) defined on Mσ(IN) is not upper semicontinuous.
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Example 3.4. In this example, we exhibit a sequence (µk)∞
k=1 of measures in Mσ(IN),

where I is countably infinite, such that µk → µ ∈ Mσ(IN) in the weak∗ topology and

lim sup
k→∞

h(µk,PI) > h(µ,PI).

Let µk be the Bernoulli measure obtained from the probability vector
(

1 −
1

log k
,

1

k log k
,

1

k log k
, . . . ,

1

k log k
, 0, 0, . . .

)

,

where the term 1
k log k

appears k times. Note that µk → δ1 in the weak∗ topology, where

δ1 is the Dirac mass at 111 · · · ∈ IN. As µk is Bernoulli, we have

h(µk,PI) = H(µk,PI) = −
(

1 −
1

log k

)

log
(

1 −
1

log k

)

− k
1

k log k
log

1

k log k

= −
(

1 −
1

log k

)

log
(

1 −
1

log k

)

−
1

log k
log

1

log k
+

1

log k
log k → 1

as k → ∞. Since h(δ1,PI) = H(δ1,PI) = 0, we conclude that limk→∞ h(µk,PI) = 1 >
0 = h(δ1,PI) as wished.

The partitions PJ can be used to define the entropy. Recall that, by Lemma 3.2(i),
h(µ,PJ ) ∈ [0,∞) for all µ ∈ Mσ(IN) whenever J is a nonempty finite subset of I.

Lemma 3.5. Let I be either finite or countably infinite set. For each µ ∈ Mσ(IN) we
have h(µ) = sup{h(µ,PJ ) : J is a finite subset of I}.

Proof. Let µ ∈ Mσ(IN). Since trivially sup{h(µ,PJ ) : J is a finite subset of I} 6 h(µ),
it suffices to prove that h(µ) 6 sup{h(µ,PJ ) : J is a finite subset of I}. Fix a finite
Borel partition P and ε > 0. It is enough to show that there exists a finite subset J of
I such that

h(µ,P) 6 h(µ,PJ ) + ε. (3.13)

Write P = {C1, . . . , Cp} and choose 0 < δ < 1/e such that −p2δ log δ 6 ε/2 and, relying
on uniform continuity,

−
p
∑

i=1

yi log yi 6 −
p
∑

i=1

xi log xi +
ε

2

for all xi, yi ∈ [0, 1] with xi − δ 6 yi 6 xi + δ. Since IN is complete and separable and µ
is a Borel probability measure on IN, there are compact sets K1, . . . ,Kp ⊂ IN such that
Ki ⊂ Ci and µ(Ci \Ki) < δ/(p+1) for all i ∈ {1, . . . , p}. Let η = mini6=j dist(Ki,Kj) > 0
and choose m > 1 such that diam([i]) < η/2 for all i ∈ Im. Since the union of Ki’s
is compact, it can be covered by finitely many m-level cylinders. In other words, there
exists a finite collection {ik = ik1 · · · ikm}ℓ

k=1 ⊂ Im such that
⋃p

i=1Ki ⊆
⋃ℓ

k=1[ik]. We

may assume that each [ik] intersects
⋃p

i=1Ki. The choice of m > 1 now guarantees that
for every k there exists unique i such that [ik] ∩Ki 6= ∅. Choose a finite subset J ⊆ I
so large that all of these m-level cylinders [ik] appear as generalized m-level cylinders,
i.e. {ik1} · · · {ikm} ∈ Im

J for all k ∈ {1, . . . , ℓ}. Define

Di =
⋃

[ik]∩Ki 6=∅

[ik]
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for all i ∈ {1, . . . , p − 1} and Dp = IN \
⋃p−1

i=1 Di. We see that D = {D1, . . . ,Dp}
is a partition of IN such that for every i ∈ {1, . . . , p} we have Ki ⊆ Di and Di is a
union of elements in Pm

J =
∨m−1

i=0 σ−i(PJ ), i.e. generalized cylinders [I] with I ∈ Im
J .

Furthermore,

µ(Ci \Di) + µ(Di \ Ci) 6 µ(Ci \Ki) + µ(Di \Ki)

6
δ

p+ 1
+ µ

(

IN \
p
⋃

i=1

Ki

)

6 δ.
(3.14)

By Lemma 3.2(ii), we have

h(µ,P) 6 h(µ,D) +H(µ,P | D).

Therefore, in order to obtain (3.13), it suffices to show that h(µ,D) 6 h(µ,PJ ) and
H(µ,P | D) 6 ε. Recall that, by (3.2), H(µ,P | D) = H(µ,P ∨ D) −H(µ,D). By (3.14),
we have µ(Di) − δ 6 µ(Ci ∩Di) 6 µ(Di) + δ for all i and µ(Ci ∩ Dj) 6 µ(Ci \ Di) 6 δ
whenever i 6= j. Therefore, by the choice of δ > 0, we have

H(µ,P ∨ D) = −
p
∑

i,j=1

µ(Ci ∩Dj) log µ(Ci ∩Dj)

= −
p
∑

i=1

µ(Ci ∩Di) log µ(Ci ∩Di) −
∑

i6=j

µ(Ci ∩Dj) log µ(Ci ∩Dj)

6 H(µ,D) +
ε

2
− p2δ log δ 6 H(µ,D) + ε

and hence, H(µ,P | D) 6 ε. Furthermore, by Lemma 3.2(ii), we have

h(µ,D) 6 h(µ,Pm
J ) = lim

n→∞

1

n
H

(

µ,
n−1
∨

i=0

σ−i(Pm
J )

)

= lim
n→∞

n+m− 1

n

1

n+m− 1
H(µ,Pn+m−1

J ) = h(µ,PJ )

and the proof is finished. �

If the index set I is finite, then Lemma 3.5, (3.10), and Lemma 3.2(i) imply the
well-known fact that

h(µ) = h(µ,PI). (3.15)

Example 3.6. In this example, we demonstrate that in the countable infinite case we
can have h(µ) < h(µ,PI). Hence the entropy cannot in general be defined by using the
finest partition given by the first level cylinders as in the finite case. Let I be countably
infinite and µ ∈ Mσ(IN). Write

an = −
∑

i∈In

µ([i]) log µ([i])

for all n > 1 and recall that, by Lemma 3.2(i), either all terms of the sequence (an)∞
n=1

are finite, or all are infinite. Note that, by Lemmas 3.2(ii) and 3.5, we have

h(µ) 6 h(µ,PI). (3.16)
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To illustrate that h(µ,PI) does not in general give us a good definition for the entropy
in the countable case, we construct a measure µ ∈ Mσ(IN) for which

h(µ) = 0 < ∞ = h(µ,PI). (3.17)

Let I = N \ {1} and δi be the Dirac mass at iii · · · ∈ IN. Define

µ = c
∑

i∈I

δi

i(log i)2
,

where the constant c is chosen such that c
∑

i∈I i
−1(log i)−2 = 1. Since µ is a linear

combination of ergodic measures on the compact set (I ∪ {∞})N each of which has zero
entropy, it follows from [40, Theorem 8.1] that h(µ) = 0. On the other hand,

a1 = −
∑

i∈I

µ([i]) log µ([i]) = c
∑

i∈I

log i+ 2 log log i− log c

i(log i)2
= ∞.

Therefore, as all terms in the sequence (an)∞
n=1 are either finite or infinite, we have

an = ∞ for all n ∈ N and (3.17) holds.

The following lemma shows that the strict inequality h(µ) < h(µ,PI) is possible only
when h(µ,PI) = ∞. Under the assumption h(µ,PI) < ∞ the entropy can equivalently
be defined by using the finest partition given by the first level cylinders.

Lemma 3.7. Let I be either finite or countably infinite set and µ ∈ Mσ(IN). If
h(µ,PI) < ∞, then

h(µ) = h(µ,PI).

Proof. By Lemmas 3.2(ii) and 3.5, we have h(µ) 6 h(µ,PI). Therefore, it suffices to
prove that for every ε > 0 there exists a finite subset J of I such that h(µ,PI) 6

h(µ,PJ ) + ε. Fix ε > 0 and recall that, by Lemma 3.2(ii),

h(µ,PI) 6 h(µ,PJ ) +H(µ,PI | PJ ).

It is thus enough to show that H(µ,PI | PJ ) 6 ε. Since h(µ,PI) < ∞, Lemma 3.2(i)
implies that −

∑

i∈I µ([i]) log µ([i]) < ∞. Let J be a finite subset of I such that
−
∑

i∈I\J µ([i]) log µ([i]) 6 ε. Then

H(µ,PI | PJ ) = −
∑

I∈IJ

µ([I])
∑

i∈I

µ([I] ∩ [i])

µ([I])
log

µ([I] ∩ [i])

µ([I])

= −µ([I \ J ])
∑

i∈I\J

µ([i])

µ([I \ J ])
log

µ([i])

µ([I \ J ])

= −
∑

i∈I\J

µ([i]) log µ([i]) +
∑

i∈I\J

µ([i]) log µ([I \ J ])

6 −
∑

i∈I\J

µ([i]) log µ([i]) 6 ε

as required. �
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4. Reduction to completely reducible matrices

In this section, we verify an important reduction according to which, to study the
pressure and equilibrium states, it suffices to work with completely reducible matrices.
This reduction serves as a basis in our analysis.

Let V be a finite-dimensional real vector space and A ⊆ GL(V ) an arbitrary subset.
We say that A is reducible if there exists a proper nonzero subspace of V which is
preserved by every element of A. When this is not the case we call A irreducible. We
furthermore say that A is completely reducible if there exists a splitting V =

⊕ℓ
j=1 Vj such

that AVj = Vj for all A ∈ A and j ∈ {1, . . . , ℓ}, and such that additionally {A|Vj
: A ∈

A} ⊆ GL(Vj) is irreducible for every j ∈ {1, . . . , ℓ}. In other words, if A ⊆ GLd(R), then
completely reducibility means that the matrices in A are block-diagonal with irreducible
blocks of the same size. Note that irreducibility implies complete reducibility since in
this case we can take ℓ = 1. By a slight abuse of notation we will say that a tuple
(Ai)i∈I ∈ GL(V )I is reducible, irreducible or completely irreducible if the corresponding
set has the stated property.

The following technical result forms the first step in analysing a countably infinite
affine iterated function system. It extends earlier work of the authors [24, Theorem 5] in
the finite case, and also extends the antecedent result [15, Proposition 1.4] which applies
for finite affine iterated function systems in the parameter range s ∈ (0, 1] ∪ [d − 1,∞).
In effect it reduces the study of the pressure and equilibrium states to the case of tuples
which are block diagonalisable with irreducible blocks.

Theorem 4.1. Let I be either finite or countaby infinite and A = (Ai)i∈I ∈ GLd(R)I .
Then there exist X ∈ GLd(R), k ∈ N, and positive integers d1, . . . , dk such that we may
write

Ai = X−1













B11
i B12

i · · · B1k
i

0 B22
i · · · B2k

i
...

...
. . .

...
0 0 · · · Bkk

i













X

for all i ∈ I, where each matrix Bt1t2
i is a real matrix with dimensions dt1 × dt2 and the

family (Btt
i )i∈I is irreducible for all t ∈ {1, . . . , k}. If A

′ = (A′
i)i∈I is defined by

A′
i =











B11
i 0 · · · 0
0 B22

i · · · 0
...

...
. . .

...
0 0 · · · Bkk

i











for all i ∈ I, then P (A, s) = P (A′, s) for all s ∈ IA and in particular θA′ 6 θA.
Additionally, for every s ∈ IA the set of ϕs-equilibrium states for A is identical to that
of A

′.

Before going into the proof of Theorem 4.1, let us study further properties of the
singular value function. The following feature of ϕs does not seem to have been previously
noted (except in [24, Lemma 6.1] which covers the case k = 2) and we believe it is original
with this article:
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Proposition 4.2. Let d1, . . . , dk ∈ N and d =
∑k

t=1 dt. If

M1 =

















B11 0 0 · · · 0
0 B22 0 · · · 0
0 0 B33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bkk

















, M2 =

















B11 B12 B13 · · · B1k

0 B22 B23 · · · B2k

0 0 B33 · · · B3k

...
...

...
. . .

...
0 0 0 · · · Bkk

















,

where Btt ∈ Mdt
(R) for every t ∈ {1, . . . , k} and Bt1t2 ∈ Mdt1 ×dt2

(R) for every t1, t2
such that 1 6 t1 < t2 6 k, then

ϕs(M1) 6 ϕs(M2)

for all s > 0.

Proof. We will first prove the proposition in the case where s is one of the integers 1, . . . , d;
the general case can then be easily deduced. For each A ∈ Md(R) let λ1(A), . . . , λd(A)
denote the absolute values of the eigenvalues of A, listed in non-increasing order. An
inequality due to Weyl (see e.g. [20, Theorem 3.3.2]) asserts that

ℓ
∏

i=1

λi(A) 6
ℓ
∏

i=1

σi(A). (4.1)

for all ℓ ∈ {1, . . . , d}. For each t ∈ {1, . . . , k} let Btt = UtDtV
⊤

t be a singular value
decomposition of Btt, where Dt is a diagonal matrix with entries σ1(Btt), . . . , σdt

(Btt)
and Ut, Vt ∈ O(dt). Define

U =

















U1 0 0 · · · 0
0 U2 0 · · · 0
0 0 U3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Uk

















, V =

















V1 0 0 · · · 0
0 V2 0 · · · 0
0 0 V3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Vk

















and notice that U, V ∈ O(d). We then have

U⊤M2V =

















D1 U⊤
1 B

12V2 U⊤
1 B

13V3 · · · U⊤
1 B

1kVk

0 D2 U⊤
2 B

23V3 · · · U⊤
2 B

2kVk

0 0 D3 · · · U⊤
3 B

3kVk
...

...
...

. . .
...

0 0 0 · · · Dk

















.

The diagonal matrices of U⊤M2V are precisely the singular values of the matrices
B11, . . . , Bkk, which together form the singular values of M1; but since U⊤M2V is up-
per triangular its diagonal entries are its eigenvalues, so the eigenvalues of U⊤M2V are
precisely the singular values of M1. On the other hand, the singular values of U⊤M2V
are precisely the singular values of M2 since the matrices U and V are orthogonal, and
singular values are invariant with respect to pre- or post-multiplication by an orthogonal
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matrix. Thus

ℓ
∏

i=1

σi(M1) =
ℓ
∏

i=1

λi(U
⊤M2V ) 6

ℓ
∏

i=1

σi(U
⊤M2V ) =

ℓ
∏

i=1

σi(M2)

using (4.1). This yields ϕℓ(M1) 6 ϕℓ(M2) for every integer ℓ ∈ {1, . . . , d}, and the case
ℓ = 0 is also obvious. Now if s = [0, d) let us write s = ℓ+ δ where ℓ = ⌊s⌋ and δ ∈ [0, 1).
The identity ϕs(A) = ϕℓ(A)1−δϕℓ+1(A)δ for all A ∈ Md(R) follows easily from inspection
of the definition of ϕs. We therefore have

ϕs(M1) = ϕℓ(M1)1−δϕℓ+1(M1)δ
6 ϕℓ(M2)1−δϕℓ+1(M2)δ = ϕs(M2)

as required. Since the case s = d was already established this leaves only those cases
where s > d, but in this case we clearly have

ϕs(M1) = ϕd(M1)
s
d 6 ϕd(M2)

s
d = ϕs(M2).

The proof is complete. �

We are now ready to prove Theorem 4.1. We remark that the proof is related to the
argument used to show [24, Proposition 6.2] but, from the theoretical point of view, is
significantly simpler as it does not rely on measures.

Proof of Theorem 4.1. Since the inequality

P ((A′
i)i∈I , s) 6 P ((Ai)i∈I , s)

for all s ∈ IA and therefore also the fact that θA′ 6 θA follow directly from Proposition
4.2, it suffices to prove the inequality in the other way around. We first observe that if
A,X ∈ GLd(R) and s > 0 then

ϕs(X−1AX) 6 ϕs(X−1)ϕs(A)ϕs(X) 6 ‖X‖s‖X−1‖sϕs(A)

and by considering X−1AX in place of A

ϕs(A) = ϕs(XX−1AXX−1) 6 ‖X‖s‖X−1‖sϕs(X−1AX).

In particular, if (Ai)i∈I ∈ GLd(R), X ∈ GLd(R), and s > 0 are specified, then
∣

∣

∣

∣

1

n
log

∑

i∈In

ϕs(X−1AiX) −
1

n
log

∑

i∈In

ϕs(Ai)

∣

∣

∣

∣

6
1

n
log(‖X‖s‖X−1‖s)

for every n > 1, and it follows that P ((Ai)i∈I , s) = P ((X−1AiX)i∈I , s) for every s > 0.
By [15, Proposition 1.4], we see that the tuple A is conjugated to a tuple of block

upper-triangular matrices as the first displayed equation in the formulation claims. Fur-
thermore, the above analysis shows that both tuples have the same pressure. Therefore,
it suffices to consider two families (Ai)i∈I and (A′

i)i∈I , where

Ai =













B11
i B12

i · · · B1k
i

0 B22
i · · · B2k

i
...

...
. . .

...
0 0 · · · Bkk

i













, A′
i =











B11
i 0 · · · 0
0 B22

i · · · 0
...

...
. . .

...
0 0 · · · Bkk

i










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for all i ∈ I. For each ε ∈ (0, 1] we define

Xε =











εI1 0 · · · 0
0 ε2I2 · · · 0
...

...
. . .

...
0 0 · · · εkIk











,

where It ∈ Mdt
(R) is an identity matrix for every t ∈ {1, . . . , k}. We have

X−1
ε AiXε =













B11
i εB12

i · · · εk−1B1k
i

0 B22
i · · · εk−2B2k

i
...

...
. . .

...
0 0 · · · Bkk

i













for all i ∈ I and therefore, limε↓0X
−1
ε AiXε = A′

i for every i ∈
⋃

n∈N In. It follows that

P ((A′
i)i∈I , s) = inf

n>1
lim inf

ε↓0

1

n
log

∑

i∈In

ϕs(X−1
ε AiXε)

> lim inf
ε↓0

inf
n>1

1

n
log

∑

i∈In

ϕs(X−1
ε AiXε)

= lim
ε↓0

P ((X−1
ε AiXε)i∈I , s) = P ((Ai)i∈I , s)

for all s ∈ IA. �

5. Conditional proofs of the results

In this section, conditioned on the following technical result, we prove all the claims
presented in Section 1. The proof of the following result is postponed until Section 6 in
hoping to clarify the presentation as it is more algebraic in flavor.

Theorem 5.1. Let (Ai)i∈I ∈ GLd(R)I be completely reducible where I is either finite
or countably infinite. Then for each integer k ∈ {0, . . . , d − 1} there exist an integer p
such that

{

1 6 p 6
(d

k

)

, if s = k,

1 6 p 6
(d

k

)( d
k+1

)

, if k < s 6 k + 1,

with functions Φ
(1)
(·) , . . . ,Φ

(p)
(·) : [k, k + 1] × I∗ → (0,∞), a constant K > 0, and a finite

set F ⊂ I∗ such that the following three properties hold:

(i) For every s ∈ [k, k + 1] we have

K−1ϕs(Ai) 6 max
j∈{1,...,p}

Φ(j)
s (i) 6 Kϕs(Ai)

for all i ∈ I∗.
(ii) For every s ∈ [k, k + 1] and j ∈ {1, . . . , p} we have

Φ(j)
s (ij) 6 Φ(j)

s (i)Φ(j)
s (j) 6 K max

k∈F
Φ(j)

s (ikj)

for all i, j ∈ I∗.
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(iii) For every j ∈ {1, . . . , p} and i ∈ I∗ the function s 7→ Φ
(j)
s (i) defined on [k, k + 1]

is continuous.

If s = k and A
∧k is irreducible then we may take p = 1. We may do so also if s ∈ (k, k+1]

and both A
∧k and A

∧(k+1) are irreducible and at least one of them is strongly irreducible.

The property in (ii) is called quasi-multiplicativity of Φ
(j)
s . Without further mentioning,

this section uses notation and the definitions introduced in Theorem 5.1. We remark
that the upper bound p 6

(d
k

)( d
k+1

)

is unlikely to be sharp. In [24], we conjectured that

the natural lower bound p > (d− k)
(d

k

)

for s ∈ (k, k + 1) serves also as an upper bound.

5.1. Behaviour of the pressure. Recall that the clauses (i) and (iv) in Theorem 1.1
were verified already in Section 2. Conditioned on Theorem 5.1, we now prove the
remaining clauses (ii) and (iii). Notice that, by Theorem 4.1, it suffices to work with
completely reducible families of matrices. We also present the proofs for Propositions
1.2 and 1.3.

Let A = (Ai)i∈I ∈ GLd(R)I where I is either finite or countably infinite, let k ∈

{0, . . . , d − 1} and let p > 1 and Φ
(1)
(·) , . . . ,Φ

(p)
(·) be as in Theorem 5.1. For each j ∈

{1, . . . , p} and s ∈ [k, k + 1], we define

P (j)(A, s) = lim
n→∞

1

n
log

∑

i∈In

Φ(j)
s (i). (5.1)

It follows from Theorem 5.1(i) and Lemma 2.2(i) that
∑

i∈I Φ
(j)
s (i) < ∞ for every j ∈

{1, . . . , p} and s ∈ [k, k + 1] ∩ IA, and therefore by subadditivity

P (j)(A, s) = inf
n>1

1

n
log

∑

i∈In

Φ(j)
s (i) ∈ [−∞,∞) (5.2)

for every s ∈ [k, k + 1] ∩ IA, where subadditivity itself follows from Theorem 5.1(ii). In
particular the limit in (5.1) exists. Now, it follows directly from Theorem 5.1(i) that for
every s ∈ [k, k + 1] ∩ IA we have

K−1
∑

i∈In

ϕs(Ai) 6
p
∑

j=1

∑

i∈In

Φ(j)
s (i) 6 p max

j∈{1,...,p}

∑

i∈In

Φ(j)
s (i) 6 pK

∑

i∈In

ϕs(Ai)

for every n > 1 and consequently

P (A, s) = max
j∈{1,...,p}

P (j)(A, s) (5.3)

for all s ∈ [k, k + 1] ∩ IA.
Together with Lemmas 2.3 and 2.4, and recalling Theorem 4.1, the following proposi-

tion proves Theorem 1.1(ii) conditioned on Theorem 5.1.

Proposition 5.2. Let A = (Ai)i∈I ∈ GLd(R)I be completely reducible, where I is
countably infinite. Then the function s 7→ P (A, s) is continuous on IA. In particular, if
P (A, θA) < ∞, then

lim
s↓θA

P (A, s) = P (A, θA).
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Proof. Since the determinant is multiplicative, the continuity on [d,∞) is straightforward.
Therefore, we may suppose without loss of generality that θA < d. It is sufficient to show
that s 7→ P (A, s) is continuous on [k, k+1]∩IA for every integer k such that ⌊θA⌋ 6 k < d,
so we fix such an integer k for the remainder of the proof and demonstrate the result in
this form. Furthermore, by (5.3), it is enough to prove that the function s 7→ P (j)(A, s)
defined on [k, k + 1] ∩ IA is continuous for every j ∈ {1, . . . , p}. We will show in due
course that this function does indeed take real values only, i.e. that it cannot take
the value −∞. We therefore fix such an integer j for the remainder of the proof and
demonstrate the continuity of s 7→ P (j)(A, s) on [k, k + 1] ∩ IA.

For every n > 1, by Lemma 2.1 the series
∑

i∈In ϕs(Ai) converges uniformly with
respect to s on closed subintervals of [k, k+ 1]∩IA. In view of Theorem 5.1(i) it follows

that
∑

i∈In Φ
(j)
s (i) also converges uniformly with respect to s on closed subintervals of

[k, k + 1] ∩ IA. Since by Theorem 5.1(iii) each function s 7→ Φ
(j)
s (i) is continuous with

respect to s ∈ [k, k + 1], this implies that each of the functions

s 7→
∑

i∈In

Φ(j)
s (i)

is continuous with respect to s ∈ [k, k + 1] ∩ IA. We deduce in particular that s 7→
P (j)(A, s) is an upper semi-continuous function [k, k + 1] ∩ IA → [−∞,∞), being the
pointwise infimum of a sequence of continuous functions on that domain.

We next apply quasi-multiplicativity of Theorem 5.1(ii) to show that it is also the
pointwise supremum of a similar sequence of functions, which also serves to demonstrate
that it takes real values only. Let t > 1 be a natural number such that F ⊆

⋃t
k=1 Ik.

Using Theorem 5.1(ii) for every i, j ∈ I∗ we have

Φ(j)
s (i)Φ(j)

s (j) 6 K max
k∈F

Φ(j)
s (ikj) 6 K max

16k6t
max
k∈Ik

Φ(j)
s (ikj) 6 K

t
∑

k=1

∑

k∈Ik

Φ(j)
s (ikj)

and therefore for every n,m > 1

(

∑

i∈In

Φ(j)
s (i)

)(

∑

j∈Im

Φ(j)
s (j)

)

6 K
t
∑

k=1

∑

k∈Ik

∑

i∈In

∑

j∈Im

Φ(j)
s (ikj)

= K
t
∑

k=1

∑

l∈In+m+k

Φ(j)
s (l) = K

t
∑

k=1

∑

k∈Ik

∑

l∈In+m

Φ(j)
s (kl)

6 K
t
∑

k=1

(

∑

k∈Ik

Φ(j)
s (k)

)(

∑

l∈In+m

Φ(j)
s (l)

)

6 K̂(s)
∑

l∈In+m

Φ(j)
s (l),

say, where

K̂(s) = K
t
∑

k=1

(

∑

k∈Ik

Φ(j)
s (k)

)

∈ (0,∞) (5.4)

which depends continuously on s ∈ [k, k + 1] ∩ IA since we have already established

that s 7→
∑

k∈Ik Φ
(j)
s (k) is continuous for every natural number k . This inequality is
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precisely what is required to demonstrate that the sequence

log

(

K̂(s)−1
∑

i∈In

Φ(j)
s (i)

)

is superadditive for each s ∈ [k, k + 1] ∩ IA. Consequently

P (j)(A, s) = sup
n>1

1

n
log

(

K̂(s)−1
∑

i∈In

Φ(j)
s (i)

)

(5.5)

for every s ∈ [k, k+1]∩IA. Thus s 7→ P (j)(A, s) is also a lower semi-continuous function
[k, k + 1] ∩ IA → (−∞,∞) as it is a pointwise supremum of a sequence of continuous
functions and we conclude that it depends continuously on s and takes real values only.
The result follows by recalling (5.3) and the fact that the maximum of finitely many
continuous functions is continuous. �

Recalling Theorem 4.1, the following proposition proves Theorem 1.1(iii) conditioned
on Theorem 5.1.

Proposition 5.3. Let A = (Ai)i∈I ∈ GLd(R)I be completely reducible, where I is
countably infinite. Then

P (A, s) = sup{P ((Ai)i∈J , s) : J is a nonempty finite subset of I}

for all s > 0.

Proof. To simplify notation, we write Q(A, s) = sup{P ((Ai)i∈J , s) : J is a nonempty
finite subset of I} ∈ (−∞,∞] for all s > 0. Let s > 0 be such that s ∈ [k, k+1) for some
k ∈ {0, . . . , d− 1}. The case s > d is relatively trivial and is left to the reader. Recalling
(5.3), let j ∈ {1, . . . , p} be such that P (A, s) = P (j)(A, s). Let (JN )N>1 be an increasing
sequence of nonempty finite subsets of I such that

⋃

N>1 JN = I and F ⊆ J ∗
1 , where

F ⊂ I∗ is as in Theorem 5.1. Recall that, by (5.2),

P (j)(A, s) 6
1

n
log

∑

i∈In

Φ(j)
s (i)

for all n > 1 and, by (5.5),

1

n
log

(

K̂(s)−1
∑

i∈J n
N

Φ(j)
s (i)

)

6 P (j)((Ai)i∈JN
, s) (5.6)

for all n > 1, where K̂(s) ∈ (0,∞) is as in (5.4). Fix ε > 0 and observe that for every
n > 1 we may choose N(n) > 1 such that

P (j)(A, s) − ε <
1

n
log

∑

i∈J n
N(n)

Φ(j)
s (i).

Therefore, it follows from (5.6) that

P (j)(A, s) − ε < P (j)((Ai)i∈JN(n)
, s) +

1

n
log K̂(s) 6 Q(A, s) +

1

n
log K̂(s).

By letting n → ∞ and ε ↓ 0, this gives the claim. �
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Conditioned on Theorem 5.1, we have now finished the proof of Theorem 1.1. Let us
next use Theorem 1.1 to show Proposition 1.2 which we repeat below.

Proposition 1.2. Let A = (Ai)i∈I ∈ GLd(R)I , where I is either finite or countably
infinite, be such that supi∈I |||Ai||| < 1 for some norm ||| · ||| on R

d. If at least one of the
following four assumptions,

(i) 0 6 P (A,dimaff A) < ∞,
(ii) θA < dimaff A,

(iii) A is completely reducible,
(iv) I is finite,

holds, then dimaff A = dimaff A.

Proof. To see that 0 6 P (A,dimaff A) < ∞ implies dimaff A = dimaff A we argue as
follows. Suppose 0 6 P (A,dimaff A) < ∞ and define κ = − log supi∈I |||Ai||| > 0 as in
Theorem 1.1(iv). If J ⊆ I is any nonempty finite set, applying Theorem 1.1(iv) to
(Ai)i∈J we find that

P ((Ai)i∈J ,dimaff A) 6 P ((Ai)i∈J ,dimaff A) − κ(dimaff A − dimaff A)

6 −κ(dimaff A − dimaff A),

where the inequality P ((Ai)i∈J ,dimaff A) 6 0 follows from the definition of dimaff A.
Since by hypothesis dimaff A ∈ IA, taking the supremum with respect to J and using
Theorem 1.1(iii) it follows that

0 6 P (A,dimaff A) 6 −κ(dimaff A − dimaff A)

and we deduce that dimaff A 6 dimaff A as required. If θA < dimaff A then by Theorem
1.1(ii) together with the definition (1.5) of dimaff A we must have P (A,dimaff A) = 0, and,
by recalling Prosposition 5.3, the same reasoning applies when A is completely reducible.
Finally, if A is indexed over a finite set then the supremum (1.6) is trivially attained
by I itself and it follows that dimaff A = dimaff A whenever A is indexed over a finite
set. �

Finally, let us prove Proposition 1.3 which is repeated below.

Proposition 1.3. For all α, β ∈ (0, 1) and γ ∈ (β, 1] there exists a tuple of matrices
A = (Ai)i∈N ∈ GL2(R)N such that supi∈N ‖Ai‖ < α and

dimaff A = β < γ = θA = dimaff A.

Furthermore, A may be chosen such that P (A, θA) is either negative or infinite, as desired.

Proof. Fix α, β ∈ (0, 1) and γ ∈ [β, 1]. Since t 7→ eβt − 1 is a continuous and surjective
function (0,∞) → (0,∞), there exists t > 0 such that eβt − 1 = αβ . Observe that then

∑

k∈N

(αe−tk)β =
∑

k∈N

e−βt(k−1) − e−βtk = 1.

In the case where we wish to have P (A, θA) = ∞, let us define ak = k− 1
γ for all k ∈ N so

that the series
∑

k∈N a
s
k =

∑

k∈N k
− s

γ is finite if and only if s > γ. If on the other hand

we wish to have P (A, θA) < 0 then we choose ak = k− 1
γ (log(k + 1))− 2

γ for all k ∈ N so
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that the sum
∑

k∈N a
s
k =

∑

k∈N k
− s

γ (log(k + 1))− 2s
γ is finite if and only if s > γ. Finally,

define

Ak =

(

αe−tk εak

0 αe−tk

)

for all k ∈ N, where ε > 0 is chosen such that supk∈N ‖Ak‖ < α.
Let us first show that dimaff A = β. Define A

′ = (A′
k)k∈N, where

A′
k =

(

αe−tk 0
0 αe−tk

)

for all k ∈ N. If J ⊂ N is a nonempty finite set then, by Theorem 4.1, we have
P ((Ak)k∈J , s) = P ((A′

k)k∈J , s) for all s > 0, so it suffices to show that dimaff(A′
k)k∈N =

β. Since each A′
k is conformal we simply have P ((A′

k)k∈J , s) = log
∑

k∈J (αe−tk)s for

every finite set J ⊂ N. Since clearly P ((A′
k)k∈J , β) < 0 = log

∑

k∈N(αe−tk)β = P (A′, β)
for all finite sets J ⊂ N by the choice of t > 0, we conclude that dimaff(Ak)k∈N 6 β.
On the other hand, for every s ∈ (0, β) we have

∑

k∈N(αe−tk)s > 1 and this implies the

existence of a finite set J ⊂ N such that
∑

k∈J (αe−tk)s > 1, and such a set necessarily
has dimaff(Ak)k∈J > s. It follows that dimaff(Ak)k∈N > s for every s ∈ (0, β) and this
completes the proof.

Let us next demonstrate that γ = θA and that P (A, θA) is either finite or infinite. By
Theorem 1.1(i), it is sufficient to show that the series

∑

k∈N ϕ
s(Ak) =

∑

k∈N ‖Ak‖s is
infinite for all s ∈ [0, γ), finite for all s ∈ (γ, 2], and either finite or infinite at s = γ as
appropriate. For all s ∈ [0, 2], we have the estimate

εs
∑

k∈N

as
k 6

∑

k∈N

‖Ak‖s
6
∑

k∈N

(2αe−tk + εak)s
6
∑

k∈N

2s−1(2sαse−stk + εsas
k)

=
∑

k∈N

22s−1αse−stk + 2s−1εs
∑

k∈N

as
k =

22s−1αs

est − 1
+ 2s−1εs

∑

k∈N

as
k,

where we have used the fact that ‖A‖ is bounded above by the total of the absolute
values of the entries of A and have also used Hölder’s inequality which gives (x+ y)s 6

2s−1(xs + ys) for all x, y > 0. It follows in particular that
∑

k∈N ‖Ak‖s is finite if and
only if

∑

k∈N a
s
k is finite. The claim follows by the choice of the sequence (ak)k∈N.

Finally, let us verify that θA = dimaff A. By (1.7), we have θA 6 dimaff A. If it
was θA < dimaff A, then, by Proposition 1.2(ii), we would have dimaff A = dimaff A.
This is a contradiction as A is chosen such that dimaff A = β < θA. Furthermore,
since now we have dimaff A < dimaff A, Proposition 1.2(i) implies that P (A, θA) < 0 or
P (A, θA) = ∞. �

Remark 5.4. Let us demonstrate that the assumption P (A, θA) < ∞ in Theorem 1.1(ii)
is required for the right-continuity of the pressure at θA. We begin by choosing in
Proposition 1.3 the tuple A of upper-triangular matrices such that P (A, θA) = ∞ and
β = θA. If A

′ is the corresponding tuple of diagonal matrices, then the choice of t > 0
in the proof of Proposition 1.3 implies P (A′, θA) = 0. As A

′ is completely reducible, it
follows from Theorem 4.1 that P (A, s) = P (A′, s) for all s ∈ (θA,∞) and, in particular,

lim
s↓θA

P (A, s) = lim
s↓θA

P (A′, s) = P (A′, θA) < P (A, θA)
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as wished.

5.2. Description of the equilibrium states. Let us next verify Proposition 1.4 and
use Theorem 5.1 to prove Theorem 1.5. We also present the proof for Proposition 1.6
which in fact is just a simple application of Theorem 1.5.

Proposition 1.4. Let A = (Ai)i∈I ∈ GLd(R)I and s > 0 be such that supi∈I ϕ
s(Ai) <

∞, where I is either finite or countably infinite. If µ ∈ Mσ(IN) is such that h(µ) < ∞
or Λ(µ,A, s) > −∞, then

h(µ) + Λ(µ,A, s) 6 P (A, s).

Proof. Let us first assume that h(µ) < ∞. If Λ(µ,A, s) = −∞ or P (A, s) = ∞, then there
is nothing to prove. We may therefore assume that Λ(µ,A, s) > −∞ and P (A, s) < ∞.
Let J be a nonempty finite subset of I and write Pn

J =
∨n−1

i=0 σ
−i(PJ ). Note that

h(µ,PJ ) < ∞. Fix n > 1 and for each C ∈ Pn
J choose jC ∈ In such that

∫

C
logϕs(Ai|n) dµ(i) 6 µ(C) logϕs(AjC

). (5.7)

Recall that the elements of Pn
J = {[I] : I ∈ In

J } are unions of the elements in {[i] : i ∈
In}. Therefore, we may choose jC ∈ In such that [jC ] ⊂ C and the choice C 7→ jC

is necessarily injective. By applying Lemma 3.2(i), Lemma 3.1, (5.7), and Jensen’s
inequality on logarithm, we get

h(µ,PJ ) + Λ(µ,A, s) 6
1

n

(

H(µ,Pn
J ) +

∫

IN

logϕs(Ai|n) dµ(i)

)

6
1

n

∑

C∈Pn
J

µ(C) log
ϕs(AjC

)

µ(C)

6
1

n
log

∑

C∈Pn
J

ϕs(AjC
) 6

1

n
log

∑

i∈In

ϕs(Ai).

The proof follows by letting n → ∞, noticing that the choice of the finite set J ⊆ I is
free, and recalling the definition of the pressure from (1.4) and the characterisation of
the entropy in Lemma 3.5.

Let us then assume that Λ(µ,A, s) > −∞. If h(µ) < ∞, then we are in the situation
we already have covered. We may thus assume that h(µ) = ∞. Then for every M > 0
there is a nonempty finite subset J of I such that M 6 h(µ,PJ ) < ∞ by Lemma 3.2(i).
But now we are again in the situation we have studied. It follows from the first part of
the proof that

M + Λ(µ,A, s) 6 h(µ,PJ ) + Λ(µ,A, s) 6
1

n
log

∑

i∈In

ϕs(Ai).

By letting n → ∞ and then M → ∞, we see that P (A, s) = ∞ and the proof is
complete. �

Let A = (Ai)i∈I ∈ GLd(R)I be such that supi∈I ϕ
s(Ai) < ∞, where I is either finite

or countably infinite, and µ ∈ Mσ(IN). For each k ∈ {1, . . . , d − 1}, s ∈ [k, k + 1], and
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j ∈ {1, . . . , p}, we define

Λ(j)(µ,A, s) = lim
n→∞

1

n

∫

IN

log Φ(j)
s (i|n) dµ(i) ∈ [−∞, logK sup

i∈I
ϕs(Ai)]

and notice that, by recalling Theorem 5.1(i)–(ii) and Lemma 3.1, these quantities are
well-defined and are equal to the infima of the same sequence over n. Furthermore, if µ
is ergodic, then, by Theorem 5.1(i) together with the subadditive ergodic theorem, we
have

max
j∈{1,...,p}

Λ(j)(µ,A, s) = max
j∈{1,...,p}

lim
n→∞

1

n
log Φ(j)

s (i|n)

= lim
n→∞

1

n
logϕs(i|n) = Λ(µ,A, s)

(5.8)

where the limit is taken almost everywhere with respect to µ. We also define for each
s ∈ [k, k + 1] ∩ IA and j ∈ {1, . . . , p} the measure-theoretical pressure of A at s with
respect to µ by setting

P (j)(µ,A, s) = lim
n→∞

1

n

∑

i∈In

µ([i]) log
Φ

(j)
s (i)

µ([i])
.

The main advantage in using the measure-theoretical pressure is that it can have a finite
value even if h(µ,PI) = ∞ and Λ(j)(µ,A, s) = −∞. The following lemma verifies the

existence of the limit P (j)(µ,A, s).

Lemma 5.5. Let A = (Ai)i∈I ∈ GLd(R)I , where I is either finite or countably infinite.
If s ∈ IA, then the following two assertions hold:

(i) For each µ ∈ Mσ(IN) the limit

P (j)(µ,A, s) = lim
n→∞

1

n

∑

i∈In

µ([i]) log
Φ

(j)
s (i)

µ([i])
.

exists in [−∞, P (j)(A, s)] and is equal to infn>1
1
n

∑

i∈In µ([i]) log Φ
(j)
s (i)

µ([i]) . In par-

ticular, the map µ 7→ P (j)(µ,A, s) defined on Mσ(IN) is upper semicontinuous.

(ii) If µ ∈ Mσ(IN) is such that h(µ,PI) < ∞ or Λ(j)(µ,A, s) > −∞, then

P (j)(µ,A, s) = h(µ) + Λ(j)(µ,A, s).

Proof. Fix j ∈ {1, . . . , p} and write

an =
∑

i∈In

µ([i]) log
Φ

(j)
s (i)

µ([i])

for all n > 1. Since s ∈ IA, the submultiplicativity of Φ
(j)
s given by Theorem 5.1(ii)

together with Theorem 5.1(i) and Lemma 2.2(i) show that

∑

i∈In

Φ(j)
s (i) 6

(

∑

i∈I

Φ(j)
s (i)

)n

6 Kn

(

∑

i∈I

ϕs(Ai)

)n

< ∞ (5.9)
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for all n > 1. Therefore, by Jensen’s inequality on the concave function x 7→ −x log x,
we have

∑

i∈In

µ([i])

(

log
Φ

(j)
s (i)

µ([i])
− log

∑

j∈In

Φ(j)
s (j)

)

=
∑

i∈In

Φ
(j)
s (i)

∑

j∈In Φ
(j)
s (j)

(

−
µ([i])

∑

j∈In Φ
(j)
s (j)

Φ
(j)
s (i)

log
µ([i])

∑

j∈In Φ
(j)
s (j)

Φ
(j)
s (i)

)

6 −

(

∑

i∈In

µ([i])

)

log

(

∑

i∈In

µ([i])

)

= 0

and hence, an 6 log
∑

i∈In Φ
(j)
s (i) < ∞ for all n > 1. In particular, dividing by n before

letting n → ∞ shows that P (j)(µ,A, s) 6 P (j)(A, s) provided that the limit P (j)(µ,A, s)

exists. To show that P (j)(µ,A, s) exists, observe that, by the submultiplicativity of Φ
(j)
s ,

Jensen’s inequality on the concave function x 7→ −x log x and the σ-invariance of µ imply

am+n − am 6
∑

i∈Im

∑

j∈In

µ([ij]) log
Φ

(j)
s (i)Φ

(j)
s (j)

µ([ij])
−
∑

i∈Im

µ([i]) log
Φ

(j)
s (i)

µ([i])

=
∑

j∈In

Φ(j)
s (j)

∑

i∈Im

µ([i])

(

−
µ([ij])

µ([i])Φ
(j)
s (j)

log
µ([ij])

µ([i])Φ
(j)
s (j)

)

6
∑

j∈In

Φ(j)
s (j)

(

−
∑

i∈Im

µ([ij])

Φ
(j)
s (j)

log
∑

i∈Im

µ([ij])

Φ
(j)
s (j)

)

= an

(5.10)

for all m,n > 1. It follows that if an = −∞ for some n > 1, then am = −∞ for all m > n.
Hence, the limit P (j)(µ,A, s) exists in [−∞, P (j)(A, s)] and is equal to the infimum of
the same sequence over n by the subadditivity (5.10) as claimed in (i). Since the map

µ 7→
∑

i∈In µ([i]) log Φ
(j)
s (i)

µ([i]) is continuous for all n ∈ N, we see that µ 7→ P (j)(µ,A, s) is

an infimum of continuous functions and the claim (i) follows.
To show the assertion (ii), notice first that the assumption s ∈ IA necessarily implies

supi∈I ϕ
s(Ai) < ∞ since

∑

i∈I ϕ
s(Ai) < ∞ by (5.9). Therefore the energy Λ(j)(µ,A, s)

defined in (1.8) exists in [−∞, logK supi∈I ϕ
s(Ai)] by Lemma 3.1(i). Let us first assume

that Λ(j)(µ,A, s) > −∞ in which case

−∞ < Λ(j)(µ,A, s) 6
1

n

∫

IN

log Φ(j)
s (i|n) dµ(i) =

1

n

∑

i∈In

µ([i]) log Φ(j)
s (i)

for all n > 1 again by Lemma 3.1(i). By the assertion (i), there exists n0 > 1 such that

1

n

∑

i∈In

µ([i]) log
Φ

(j)
s (i)

µ([i])
6 P (j)(µ,A, s) + 1 < ∞

for all n > n0. Thus,

h(µ,PI) 6 P (j)(µ,A, s) + 1 − Λ(j)(µ,A, s) < ∞

and Lemma 3.7 shows that P (j)(µ,A, s) = h(µ) + Λ(j)(µ,A, s).
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Let us then assume that h(µ,PI) < ∞ in which case, by Lemma 3.7, there exists
n0 > 1 such that

1

n

∑

i∈In

µ([i]) log µ([i]) 6 h(µ) + 1 < ∞

for all n > n0. If Λ(j)(µ,A, s) > −∞, then we are in the situation already covered above.

Therefore, it suffices to show that Λ(j)(µ,A, s) = −∞ implies P (j)(µ,A, s) = −∞. To

that end, suppose that P (j)(µ,A, s) > −∞ in which case

−∞ < P (j)(µ,A, s) 6
1

n

∑

i∈In

µ([i]) log
Φ

(j)
s (i)

µ([i])

for all n > 1 by the assertion (i). It is now evident that Λ(j)(µ,A, s) = P (j)(µ,A, s) −
h(µ,PI) > −∞. The proof of (ii) is now finished by recalling Lemma 3.7. �

Let us now turn to prove Theorem 1.5. As the assertion in Theorem 1.5(i) can be
treated by existing methods, we will cover it in the next lemma.

Lemma 5.6. Let A = (Ai)i∈I ∈ GLd(R)I be such that supi∈I ‖Ai‖ < ∞, where I is
either finite or countably infinite. If s > θA and s > d, then there is a unique ϕs-
equilibrium state for A and it is a Bernoulli measure.

Proof. Since the singular value function in this regime is a power of a determinant and
the determinant is multiplicative, the result follows from [27, §3] and [39, §2]. �

Conditioned on Theorem 5.1, the following proposition proves all the remaining claims
in Theorem 1.5 which do not assume irreducibility. The proof in the countably infinite
case is more complicated than in the finite case as we cannot rely on the upper semiconti-
nuity of the entropy. Showing even the existence of an ϕs-equilibrium state requires more
delicate approach. The idea in the proof is to use the fact that for each j ∈ {1, . . . , p}

the quasi-multiplicativity of Φ
(j)
s implies the existence of a unique µ(j) ∈ Mσ(IN) for

which P (j)(µ(j),A, s) = P (j)(A, s). Then, by proving h(µ(j),PI) < ∞ and considering

only pressure maximising indices j ∈ {1, . . . , p}, Lemmas 5.5(ii) and 3.7 show that µ(j)

is an ϕs-equilibrium state.

Proposition 5.7. Let A = (Ai)i∈I ∈ GLd(R)I be such that supi∈I ‖Ai‖ < ∞, where I
is either finite or countably infinite, and p > 1 as in Theorem 5.1. If s ∈ IA, then

P (A, s) = sup{h(µ) + Λ(µ,A, s) : µ ∈ Mσ(IN) is such that h(µ) < ∞}.

Furthermore, if s > θA, then the number of distinct ergodic ϕs-equilibrium states µ for
A is at least one and is not more than p. Finally, all the equilibrium states are fully
supported on IN.

Proof. Recalling Theorem 4.1, we may assume that A = (Ai)i∈I ∈ GLd(R)I is completely
reducible. Fix s ∈ IA and j ∈ {1, . . . , p}, let F ⊂ I∗ be as in Theorem 5.1, and

notice that, by Theorem 5.1(ii), the function Φ
(j)
s : I∗ → (0,∞) is quasimultiplicative.

Note that, by (5.5) and (5.3), we have −∞ < P (j)((Ai)i∈J , s) 6 P (A, s) < ∞. It
follows from [25, Proposition 3.4] that there exists a constant C > 1 such that for every
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nonempty finite subset J of I with F ⊂ J ∗ there is a measure µ
(j)
J ∈ Mσ(IN) supported

on J N for which

C−1
6

µ
(j)
J ([i])

exp(−nP (j)((Ai)i∈J , s))Φ
(j)
s (i)

6 C (5.11)

for all i ∈ J n. Note that h(µ
(j)
J ) = h(µ

(j)
J ,PJ ) < ∞ by (3.15) and Lemma 3.2(i).

Therefore, (5.11) gives

Λ(j)(µ
(j)
J ,A, s) = P (j)((Ai)i∈J , s) − h(µ

(j)
J ) > −∞. (5.12)

Therefore, by (5.3) and Proposition 5.3,

sup
J ⊆I is finite

k∈{1,...,p}

{h(µ
(k)
J ) + Λ(k)(µ

(k)
J ,A, s)} = sup

J ⊆I is finite
max

k∈{1,...,p}
P (k)((Ai)i∈J , s)

= sup
J ⊆I is finite

P ((Ai)i∈J , s) = P (A, s).

Since, by Theorem 5.1(i) and Proposition 1.4,

h(µ
(j)
J ) + Λ(j)(µ

(j)
J ,A, s) 6 h(µ

(j)
J ) + Λ(µ

(j)
J ,A, s) 6 P (A, s),

we have shown that

P (A, s) = sup{h(µ) + Λ(µ,A, s) : µ ∈ Mσ(IN) and h(µ) < ∞}

as claimed.
Since s ∈ IA, [25, Theorem 3.5] guarantees the existence of a fully supported measure

µ(j) ∈ Mσ(IN) which is an accumulation point of {µ
(j)
J : J is a nonempty finite subset

of I such that F ⊂ J ∗} in the weak∗ topology and satisfies

C−1
6

µ(j)([i])

exp(−nP (j)(A, s))Φ
(j)
s (i)

6 C (5.13)

for all i ∈ In. By [25, Theorem 3.6], we see that µ(j) is ergodic. Furthermore, [25,

Lemmas 3.7 and 3.8] show that µ(j) is the unique ergodic measure satisfying

P (j)(A, s) = P (j)(µ(j),A, s).

Since, by Lemma 5.5(i) and (5.3),

P (j)(µ(j),A, s) 6 max
k∈{1,...,p}

P (k)(µ(j),A, s) 6 max
k∈{1,...,p}

P (k)(A, s) = P (A, s),

there are at least one and not more than p distinct indices j ∈ {1, . . . , p} for which

P (A, s) = max
k∈{1,...,p}

P (k)(µ(j),A, s). (5.14)

To finish the proof it suffices to show that if s > θA, then

h(µ(j),PI) < ∞ (5.15)
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for all j ∈ {1, . . . , p}. Indeed, if this was the case, then Lemma 5.5(ii) and (5.8) would
show that

max
k∈{1,...,p}

P (k)(µ(j),A, s) = h(µ(j)) + max
k∈{1,...,p}

Λ(k)(µ(j),A, s)

= h(µ(j)) + Λ(µ(j),A, s)

for s > θA and (5.14) finishes the proof. To prove (5.15), fix j ∈ {1, . . . , p} and notice
that, by Lemma 3.2(i), it suffices to show

−
∑

i∈I

µ(j)([i]) log µ(j)([i]) < ∞

when I is countably infinite. Since s > θA, we have P (j)(A, s) < ∞ by (5.3) and
there is δ > 0 such that s − δ > θA and ⌈s⌉ = ⌈s − δ⌉. By Lemma 2.2(i), we have
∑

i∈I ϕ
s−δ(Ai) < ∞. Since σ⌈s⌉(Ai)

s 6 ϕs(Ai) and
∑

i∈I ϕ
s(Ai) < ∞ by Lemma 2.1,

there exists a finite set K ⊂ I such that

− logϕs(Ai) 6 −s log σ⌈s⌉(Ai) 6 σ⌈s⌉(Ai)
−δ

and

CKe−P (j)(A,s)ϕs(Ai) <
1

e
for all i ∈ I \ K, where C > 1 is as in (5.13) and K > 0 is as in Theorem 5.1. Therefore,
as ϕs(Ai) 6 ϕs−δ(Ai)σ⌈s⌉(Ai)

δ , we see that

−
∑

i∈I\K

ϕs(Ai) logϕs(Ai) 6
∑

i∈I\K

ϕs(Ai)σ⌈s⌉(Ai)
−δ 6

∑

i∈I\K

ϕs−δ(Ai) < ∞.

Since the function x 7→ −x log x is increasing on [0, 1
e
], we get by recalling (5.13) and

Theorem 5.1(i) that

−
∑

i∈I\K

µ(j)([i]) log µ(j)([i]) 6 −
∑

i∈I\K

CKe−P (j)(A,s)ϕs(Ai) logCKe−P (j)(A,s)ϕs(Ai)

6 CKe−P (j)(A,s)
(

−
∑

i∈I\K

ϕs(Ai) logϕs(Ai)

+ (P (j)(A, s) − logCK)
∑

i∈I\K

ϕs(Ai)

)

< ∞

and hence, −
∑

i∈I µ
(j)([i]) log µ(j)([i]) < ∞ as wished. The proof is finished. �

The next proposition proves all the remaining claims in Theorem 1.5 which assume
irreducibility and hence, also finishes the proof of Theorem 1.5 under the assumption of
Theorem 5.1.

Proposition 5.8. Let A = (Ai)i∈I ∈ GLd(R)I be such that supi∈I ‖Ai‖ < ∞, where I
is either finite or countably infinite. If s > θA, then the following two assertions hold:

(i) If s ∈ (0, d) ∩ Z and A
∧s is irreducible then there is a unique ϕs-equilibrium state

for A, and if additionally A
∧s is strongly irreducible then this unique equilibrium

state is mixing.
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(ii) If s ∈ (0, d) \ Z and one of A
∧⌊s⌋ and A

∧⌈s⌉ is irreducible and the other is strongly
irreducible then there is a unique ϕs-equilibrium state for A, and if both are strongly
irreducible then this unique equilibrium state is mixing.

Proof. We only prove the assertion (ii) as the proof of (i) is similar and slightly eas-
ier. Write k = ⌊s⌋. If one of A

∧k and A
∧(k+1) is irreducible and the other is strongly

irreducible then the first claim follows immediately from [24, Theorem 3]. Let us thus

assume that both A
∧k and A

∧(k+1) are strongly irreducible. Let µ ∈ Mσ(IN) be the
unique ϕs-equilibrium state for A. Recall that, by (5.13), (5.3), and Theorem 5.1(i), µ
is ergodic and it satisfies

C−1
6

µ([i])

exp(−nP (A, s))ϕs(Ai)
6 C (5.16)

for all i ∈ In.
Define An = (Ai)i∈In for each n > 1. We claim that A

∧k
n and A

∧(k+1)
n are both

strongly irreducible for each n > 1. To see this, suppose for a contradiction that there
is a finite collection of nonzero subspaces U1, . . . , Um ⊂ ∧k

R
d which is preserved by A

∧k
n ,

say. Since A
∧k is strongly irreducible the set {A∧k

i U1 : k ∈ I∗} must be infinite, and this
set is clearly contained in the set {A∧k

i Uj : 1 6 |i| 6 n and 1 6 j 6 m} by writing any
arbitrary word k in the form ij where n divides |j| and where 1 6 |i| 6 n. The latter set
is therefore also infinite, so by the pigeonhole principle there exist integers ℓ ∈ {1, . . . , n}
and j0 ∈ {1, . . . ,m} such that {A∧k

i Uj0 : |i| = ℓ} is infinite; but {(A∧k
1 )n−ℓA∧k

i Uj0 : |i| =

ℓ} ⊆ {A∧k
i Uj0 : |i| = n} ⊆ {U1, . . . , Um} is finite, so (A∧k

1 )n−ℓ acts non-injectively on

subspaces of ∧k
R

d, which is impossible since A1 is invertible. The claim follows.
Let us show that µ is totally ergodic for which we use the argument of [30, Theorem

5(i)]. Let ιn : IN → (In)N denote the natural identification of elements of IN with
elements of (In)N given by ιn((ik)∞

k=1) = (i(k−1)n+1 · · · ikn)∞
k=1, and observe that σ ◦ ιn =

ιn ◦ σn. In particular, (ιn)∗µ defines an element of Mσ((In)N) for every n > 1. By a
straightforward calculation, we see that (ιn)∗µ is an ϕs-equilibrium state for An. By the

strong irreduciblity of A
∧k
n and A

∧(k+1)
n there exists a unique ϕs-equilibrium state for An

and that measure is ergodic with respect to σ : (In)N → (In)N, so (ιn)∗µ is ergodic with
respect to σ : (In)N → (In)N. This implies via the relation σ ◦ ιn = ιn ◦ σn that µ is
ergodic with respect to σn : IN → IN. Since n is arbitrary this demonstrates that µ is
totally ergodic.

By (5.16) and the sub-multiplicativity of the singular value function (2.1), we have

µ([ikj]) 6 C4µ([i])µ([k])µ([j])

for all i, k, j ∈ I∗ and, consequently,

µ([i] ∩ σ−|i|−n([j])) =
∑

k∈In

µ([ikj]) 6 C4µ([i])µ([j])

for all n > 1. By arguments ultimately originating with [35, Theorem 2.1] and which
are expressed in language more convenient for our purposes in the proof of [30, Theorem
5(ii)] this inequality together with the total ergodicity shows that µ is mixing. �

We remark that [30, Proposition 6] demonstrates that an ϕs-equilibrium state for an
irreducible A is not necessarily mixing when 0 < s < 1. For non-integer parameters
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s ∈ (1, d − 1) it should also be possible to construct examples such that one of A
∧⌊s⌋

and A
∧⌈s⌉ is irreducible and the other is strongly irreducible, while the equilibrium

state is not mixing. No example with these features has yet been noted explicitly in
the literature, but we believe that such an example could likely be constructed by a
suitable modification of the examples in [32]. In the finite case, the results of [31] extend
Proposition 5.8 to demonstrate that the unique equilibrium state is ψ-mixing and hence
is measurably isomorphic to a Bernoulli shift in its natural extension. It is likely that
this result can also be obtained in the infinite case, but we do not attempt this here.

Finally, let us use Theorem 1.5 to prove Proposition 1.6 which we repeat below.

Proposition 1.6. Let A = (Ai)i∈I ∈ GLd(R)I where I is either finite or countably
infinite. Then the following two assertions hold:

(i) For every s > θA, if J is a nonempty proper subset of I, then P ((Ai)i∈J , s) <
P (A, s).

(ii) If there exists a norm ||| · ||| on R
d such that supi∈I |||Ai||| < 1, and if θA < dimaff A,

then dimaff(Ai)i∈J < dimaff A for every nonempty proper subset J of I.

Proof. If J is a nonempty proper subset of I then the inequality P ((Ai)i∈J , s) 6 P (A, s)
is clear from the definition of the pressure, so we need only show that P ((Ai)i∈J , s) 6=
P (A, s). By Theorem 1.5, there exists an ϕs-equilibrium state µ ∈ Mσ(J N) for (Ai)i∈J .
It is clear that we may identify µ with a measure on IN which has support equal to J N,
and if P ((Ai)i∈J , s) = P (A, s), this measure satisfies the definition of an ϕs-equilibrium
state for A. Therefore A has an ϕs-equilibrium state which is not fully supported on IN,
contradicting Theorem 1.5. This proves (i).

Now suppose that for some norm ||| · ||| on R
d we have supi∈I |||Ai||| < 1. Since θA <

dimaff A, we see that dimaff A exists by Proposition 1.2(ii). Note that, by the assertion
(i), we have P ((Ai)i∈J , s) < P (A, s) for every s > θA. By Theorem 1.1(iv) and (ii), the
pressure as a function of s is strictly decreasing and continuous at every s > θA. It
follows that dimaff(Ai)i∈J < dimaff A which is the claim (ii). �

5.3. Dimension of infinitely generated self-affine sets. In this section, we prove
all the results announced in Section 1.4 by applying Theorem 1.1 which, at this stage,
depends on Theorem 5.1. Let X ⊂ R

d be a self-affine set and (Ti)i∈I its defining affine
iterated function system associated such that Ti(x) = Aix+ vi for all x ∈ R

d and i ∈ I.
Write A = (Ai)i∈I ∈ GLd(R)I .

Proposition 1.7. Let X ⊂ R
d be a self-affine set. Then dimHX 6 dimaff A.

Proof. If dimHX = 0 then there is nothing to prove, so fix 0 < s < dimHX. Choose
k ∈ {0, . . . , d − 1} so that s ∈ (k, k + 1] and let B ⊂ R

d be a closed ball such that
Ti(B) ⊆ B for all i ∈ I. It follows from the definition of the singular values that for
each i ∈ I∗ we may cover Ti(B) with at most a constant times

σ1(Ai)

σk+1(Ai)

σ2(Ai)

σk+1(Ai)
· · ·

σk(Ai)

σk+1(Ai)
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balls of radius σk+1(Ai). Writing δn = supi∈In ‖Ai‖ for each n > 1 we thus see that
there exists c > 1 so that

Hs
δn

(X) 6
∑

i∈In

Hs
δn

(Ti(B)) 6 c
∑

i∈In

ϕs(Ai)

for all n > 1, where Hs is the s-dimensional Hausdorff measure. Since supn>1 Hs
δn

(X) =
Hs(X) = ∞, it follows that

∑

i∈In ϕs(Ai) > 1 for all n > 1 large enough. Thus P (A, s) >
0 and, by Theorem 1.1(iv) and the definition (1.5) of the upper affinity dimension,
s 6 dimaff A which finishes the proof. �

If J is a nonempty finite subset of I, then we denote the self-affine set associated to
the finite affine iterated function system (Ti)i∈J by XJ . Observe that for any sequence
(Jn)n>1 of finite subsets of I we have

∞
⋃

n=1

XJn ⊆ X. (5.17)

If A = (Ai)i∈I ∈ GLd(R)I is strongly irreducible, it does not automatically follow that
there exists a finite a nonempty finite subset J of I such that (Ai)i∈J is strongly
irreducible: for example, if A = (An)n∈N ∈ GL2(R)N where each An is the matrix corre-
sponding to rotation by π/2n, then A is strongly irreducible but has no finite subsystem
which is strongly irreducible. To circumvent this problem we use the following result:

Proposition 5.9. Let A = (Ai)i∈I ∈ GLd(R)I , where d 6 3 and I is countably infinite,
and suppose that A is proximal and strongly irreducible. Then there exists a finite set
J ⊂ I such that (Ai)i∈J is proximal and strongly irreducible.

The proof of Proposition 5.9 requires the following lemma, which exploits the fact
that proximality together with the failure of strong irreducibility in dimension two or
three implies the existence of an invariant finite set of lines. (This implication becomes
false in dimension four.)

Lemma 5.10. Let A = (Ai)i∈I ∈ GLd(R)I be proximal and irreducible, where d 6 3. If
A is not strongly irreducible then it preserves a union of d one-dimensional subspaces.

Proof. We begin with the more difficult case d = 3. Suppose that A is proximal, irre-
ducible, and not strongly irreducible, in which case it preserves a finite set of proper
subspaces U1, . . . , Um. We suppose without loss of generality that these subspaces have
the same dimension and we note that m 6= 1 by irreducibility. If the dimension of
these subspaces is 2 then A also preserves the nonempty, finite collection of all one-
dimensional subspaces of the form Ui ∩Uj, so without loss of generality we suppose that
each of U1, . . . , Um has dimension 1. If m < 3 then span(U1 ∪ · · · ∪ Um) is an invariant
proper subspace of R3, contradicting irreducibility, so to prove the lemma it suffices for
us to show that m cannot be greater than 3.

Suppose for a contradiction that m > 4. Fix a product Ai with a simple leading
eigenvalue, let v ∈ R

3 be a leading eigenvector of Ai, and let V be the unique Ai-
invariant plane complementary to v. If one of the subspaces Ui is not contained in V
and is also not parallel to v, then it is straightforward to verify that limn→∞An

iU is the
leading eigenspace of Ai and that {An

iUi : n > 1} is infinite, which is a contradiction
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since this set must be a subset of {U1, . . . , Um}. Suppose instead that every subspace Ui

which is not parallel to v is contained in V . Since at most one of these subspaces can
be parallel to v, at least three subspaces must be contained in V . Let U1, U2, U3 ⊂ V
and let u1, u2, u3 be nonzero vectors which span these respective spaces. Since V is two-
dimensional the vectors u1, u2, u3 are linearly dependent. By irreducibility the smallest
A-invariant subspace which contains u1 is R

3 itself, and for this to be possible we must
be able to choose a product Aj such that Aju1 does not lie in V . By linear dependence
either Aju2 or Aju3 also does not lie in V . Thus at least two of the subspaces AjU1,
AjU2 and AjU3 are not contained in V , and by the pigeonhole principle at least one
of those two is not parallel to v; but this subspace is necessarily equal to one of the
m subspaces U1, . . . , Um, and this contradicts our supposition. We have arrived at a
contradiction and we conclude that our earlier hypothesis m > 4 was impossible. It
follows that m = 3 and we have proved the lemma in the case d = 3.

The remaining cases are much easier. The case d = 1 is vacuous. In the case d = 2,
suppose that A preserves a finite union of one-dimensional subspaces U1, . . . , Um, say,
with m 6= 2. If m < 2 then irreducibility is contradicted, so suppose instead that m > 3.
Let Ai have a simple leading eigenvalue and observe that one of the three subspaces
U1, U2, U3 is not an eigenspace of Ai, which implies that one of the sets {An

iUi : n > 1}
is infinite, a contradiction. The lemma is proved. �

Proof of Proposition 5.9. Choose arbitrarily an increasing sequence of finite sets J1 ⊆
J2 ⊆ · · · whose union is I. Since A is irreducible and proximal, there exists a product Ai

which has a simple leading eigenvalue. Clearly if n is large enough that every symbol of
i belongs to Jn then (Ai)i∈Jn is also proximal, so (Ai)i∈Jn is proximal for all sufficiently
large n. Let Vn denote the set of all nonzero proper subspaces V ⊂ R

d which are
preserved by (Ai)i∈Jn . Clearly each Vn is a closed subset of the Grassmannian manifold
of Rd, and Vn+1 ⊆ Vn for every n > 1. Any element of

⋂∞
n=1 Vn is an invariant subspace

for A, and since A is irreducible this intersection must be empty, which is only possible
if Vn = ∅ for all large enough n. We conclude that (Ai)i∈Jn is both proximal and
irreducible for all large enough n.

Finally, it is clear that either (Ai)i∈Jn is strongly irreducible for all large enough n, or
for every n > 1 it fails to be strongly irreducible. In the latter case, let Wn denote the set
of all (Ai)i∈Jn-invariant d-tuples of lines in R

d, which is a compact subset of (RPd−1)d.
By Lemma 5.10 the set Wn is nonempty for all large enough n, and this implies that it
is nonempty for every n > 1. By a similar compactness argument,

⋂∞
n=1 Wn contains a

tuple of d lines (not necessarily all distinct) which are permuted by the matrices in A,
and this contradicts the strong irreducibility of A. We conclude that (Ai)i∈Jn is strongly
irreducible for all large enough n, which proves the lemma. �

Recall now that a strongly irreducible tuple is completely reducible. In view of [18,
Corollary 1.2], [19, Theorem 1.1], [33, Theorem 1.5], and [12, Theorem 5.3], the next
theorem, together with Propositions 1.2, 1.7, and 5.9, proves Theorems 1.8–1.11.

Theorem 5.11. Let X ⊂ R
d be a self-affine set and (Jn)n>1 be an increasing sequence

of finite subsets of I such that
⋃∞

n=1 Jn = I and dimHXJn = min{d,dimaff(Ai)i∈Jn} for
all n > 1. Then dimHX > min{d,dimaff A}.
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Proof. The monotonicity and the countable stability of the Hausdorff dimension applied
with (5.17), the assumption on the Hausdorff dimension of finitely generated self-affine
subsets, and the definition (1.6) of the lower affinity dimension immediately imply

dimHX > sup
n>1

dimHXJn = min{d, sup
n>1

dimaff(Ai)i∈Jn} = min{d,dimaff A}

as wished. �

6. Algebraic arguments: Proof of Theorem 5.1

In this section, we prove Theorem 5.1 and hence, also conclude the proofs of Theorems
1.1 and 1.5.

6.1. Linear algebraic groups and the Zariski topology. A function p : GLd(R) →
R is called a polynomial if it maps each matrix A = [aij ]di,j=1 to the same polyno-

mial function of the d2 + 1 variables a11, . . . , add and 1/detA. The Zariski topology
on GLd(R) is then defined to be the smallest topology in which every set of the form
{A ∈ GLd(R) : p(A) = 0} is closed. The Zariski topology has the following important
property, called the descending chain condition: if (Zn)∞

n=1 is a sequence of Zariski-closed
sets such that Zn+1 ⊆ Zn for every n > 1, then (Zn)∞

n=1 is eventually constant. This
property implies that a set is Zariski closed if and only if it is the intersection of the zero
loci of a finite collection of polynomials.

We recall that if G is a group or semigroup then a representation of G is a homo-
morphism φ : G → GL(V ) for some vector space V over a field K. In this article it will
always be the case that V is finite-dimensional and K is R, although all our results also
hold over the complex field without modification. The representation φ : G → GL(V )
is called irreducible if the only subspaces of V which are preserved by every element of
φ(G) are {0} and V ; equivalently, φ is an irreducible representation if φ(G) is irreducible
in the sense of Section 4. A representation is called faithful if it is injective. A represen-
tation φ : G → GL(V ) is called semisimple if there exists a splitting V =

⊕ℓ
j=1 Vj such

that each Vj is preserved by every element of φ(G), and such that additionally each of
the representations φj : G → GL(Vj) defined by φj(g) = φ(g)|Vj

is an irreducible repre-
sentation. One of the simplest examples of a representation which is not semisimple is
the representation R → GL2(R) defined by

φ(t) =

(

1 t
0 1

)

.

6.2. Key results. We require two fundamental results in order to prove Theorem 5.1,
the first dealing principally with part (i) of that theorem. This result is now standard
in the theory of reductive linear groups.

Proposition 6.1. Let V be a finite-dimensional real or complex vector space, let I be a
nonempty set, let (Ai)i∈I ∈ GL(V )I be completely reducible, and let ℓ ∈ {1, . . . ,dim V }.
Then (A∧ℓ

i )i∈I ∈ GL(∧ℓV )I is completely reducible.

Proof. Let G 6 GL(V ) denote the Zariski closure of the semigroup {Ai : i ∈ I∗}. By
hypothesis the inclusion representation ι : G → GL(V ) is faithful and semisimple, which
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by Clifford’s theorem implies that the restriction of ι to G0 is also faithful and semisim-
ple. By [28, Theorem 22.42] this implies that G0 is reductive, hence by [28, Corollary
22.43] every representation from G to a finite-dimensional real vector space is semisim-
ple. In particular the representation G → GL(∧ℓV ) defined by g 7→ g∧ℓ is semisimple.
Since (Ai)i∈I is Zariski dense in G, the invariant subspaces of G acting on GL(∧ℓV )
are precisely the invariant subspaces of (A∧ℓ

i )i∈I , so (A∧ℓ
i )i∈I ∈ GL(∧ℓV )I is completely

reducible as required. �

The second result forms the core of Theorem 5.1(ii) and is similar in content to the
results of [9, §4].

Proposition 6.2. Let Γ be a semigroup, let K be either R or C, let k > 1 and for each
j ∈ {1, . . . , k} let Vj be a finite-dimensional inner product space over K and φj : Γ →
GL(Vj) a representation. For each j ∈ {1, . . . , k} let Uj be a nonzero subspace of Vj which
has finite orbit under φj(Γ) and has the least possible dimension of any such subspace.
Define

W = {(φj(g)Uj)k
j=1 : g ∈ Γ} ⊆

k
∏

j=1

Gr(Vj),

which is necessarily a finite set. Then there exist a finite set F ⊆ Γ and a real number
κ > 0 such that for every (Wj)k

j=1, (W
′
j)k

j=1 ∈ W we may choose h ∈ F such that for
every g1, g2 ∈ Γ we have

‖φj(g1hg2)|Wj
‖ > κ‖φj(g1)|W ′

j
‖‖φj(g2)|Wj

‖

simultaneously for all j ∈ {1, . . . , k}.

The first proposition is used to show that under the main hypothesis of Theorem 5.1
also the exterior powers of (Ai)i∈I can be block diagonalised with irreducible diagonal
blocks. This allows us to write the singular value function ϕs directly as a maximum
of potentials arising from restrictions to the blocks. The second proposition is used
to show that these potentials can in turn be written as maxima of finite collections of
quasi-multiplicative potentials. We remark that in [9] it was only possible to say that the
singular value pressure is equal to the maximum of the pressures of potentials arising
from the blocks. Under complete reducibility we can say that the potentials are also
equal.

6.3. Proof of Proposition 6.2. To prove the proposition it is sufficient for us to fix
an arbitrary pair (Wj)

k
j=1, (W

′
j)k

j=1 ∈ W and construct a finite set F ′ ⊂ Γ and real

constant κ′ > 0 having the claimed properties only with respect to that specific choice
of (Wj)

k
j=1, (W

′
j)k

j=1 ∈ W. We may then define F to be the union of the finite sets F ′

thus constructed for different pairs (Wj)k
j=1, (W

′
j)k

j=1 ∈ W and likewise take κ to be

the minimum of the finitely many constants κ′ in order to deduce the conclusion of the
proposition. We therefore fix (Wj)k

j=1, (W
′
j)k

j=1 ∈ W throughout the proof and prove the
proposition in this simpler form.

Define V =
⊕k

j=1 Vj and φ(h) =
⊕k

j=1 φj(h) ∈ GL(V ) for all h ∈ Γ. Let G 6

GL(V ) denote the Zariski closure of φ(Γ) in GL(V ) and for every j ∈ {1, . . . , k} define
a representation ψj : G → GL(Vj) by setting ψj(g) = g|Vj

. We have φj = ψj ◦ φ for
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every j ∈ {1, . . . , k} and ψj : G → GL(Vj) is clearly Zariski continuous. We may write G
as the disjoint union of finitely many Zariski-connected components G0, . . . , Gm each of
which is an irreducible variety. We let G0 denote the unique component which contains
the identity. For each j let U1

j , . . . , U
rj

j denote the orbit of Uj under φj(Γ). For fixed j
the sets

{g ∈ G : ψj(g)Uj = U i
j} (6.1)

for i ∈ {1, . . . , rj} clearly partition G. Each such set is Zariski closed since the condition
ψj(g)Uj = U i

j is equivalent to the statement that ψj(g) takes every element of a basis

for Uj into the orthogonal complement of a basis for (U i
j)⊥; thus each of these sets is

the common zero locus of some finite collection of polynomial functions of the matrix
entries of g. Since the sets {g ∈ G : ψj(g)Uj = U i

j} are Zariski closed and partition G,
they are clopen in the Zariski topology and hence each is equal to the union of a finite
collection of connected components of G. The set

{g ∈ G : (ψj(g)Wj)k
j=1 = (W ′

j)k
j=1} (6.2)

is therefore also equal to the union of a finite collection of connected components of G,
since it is equal to a finite intersection of sets of the form (6.1). Since by definition there
exist h1, h2 ∈ Γ such that (Wj)

k
j=1 = (φj(h1)Uj)k

j=1 and (W ′
j)

k
j=1 = (φj(h2)Uj)k

j=1, the

set (6.2) contains φ(h2h
−1
1 ) and is therefore nonempty. We conclude that at least one of

the Zariski-connected components of G must be a subset of (6.2).
For the remainder of the proof we fix a component Gi of G such that (ψj(g)Wj)k

j=1 =

(W ′
j)k

j=1 for all g ∈ Gi, which is possible by the preceding discussion. We claim that if

j ∈ {1, . . . , k}, u ∈ Wj , and v ∈ W ′
j with u, v 6= 0, then the set

{g ∈ Gi : 〈ψj(g)u, v〉 6= 0} (6.3)

is nonempty. Fix j and suppose for a contradiction that the set is empty. In this case

W = span{ψj(g)u : g ∈ Gi}

defines a vector subspace of W ′
j which contains at least one nonzero vector but does

not contain v. In particular this subspace is a nonzero proper subspace of W ′
j. Since

G0Gi = Gi we moreover have ψj(g)W = W for every g ∈ G0. If g1, g2 ∈ G belong to the

same component Gr of G then g−1
1 g2 ∈ g−1

1 Gr = G0 and therefore ψj(g−1
1 g2)W = W , so

ψj(g1)W = ψh(g2)W whenever g1 and g2 belong to the same component of G. Therefore
g 7→ ψj(g)W takes only finitely many values as g varies over G. Hence the set

{φj(h)W : h ∈ Γ} = {ψj(φ(h))W : h ∈ Γ} ⊆ {ψj(g)W : g ∈ G}

is finite and we have 0 < dimW < dimW ′
j = dimUj . This contradicts the definition

of Uj as a nonzero subspace of Vj with finite orbit under φj(Γ) and having the least
dimension among all such subspaces. We conclude that the set (6.3) must be nonempty
as claimed.

Now let uj ∈ Wj and vj ∈ W ′
j be nonzero vectors for each j ∈ {1, . . . , k}. By the

previous claim the set

{g ∈ Gi : 〈ψj(g)uj , vj〉 6= 0}
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is nonempty for each j, and it is clearly Zariski open. Since Gi is an irreducible variety
all of its nonempty Zariski open subsets are Zariski dense, so the intersection

k
⋂

j=1

{g ∈ Gi : 〈ψj(g)uj , vj〉 6= 0}

is nonempty and Zariski open. The set {φ(h) : h ∈ Γ} is by definition Zariski dense
in G, so its intersection with this nonempty open set is nonempty. Hence there exists
h ∈ Γ such that 〈ψj(φ(h))uj , vj〉 6= 0 for every j ∈ {1, . . . , k}. This means precisely that
〈φj(h)uj , vj〉 6= 0 for every j ∈ {1, . . . , k}.

For each j let SWj
and SW ′

j
denote the unit spheres ofWj and W ′

j respectively. The pre-

ceding paragraph implies that for every pair ((uj)k
j=1, (vj)k

j=1) ∈ (
∏k

j=1 SWj
)×(

∏k
j=1 SW ′

j
)

there exists h ∈ Γ such that 〈φj(h)uj , vj〉 6= 0 for all j ∈ {1, . . . , k}. But such an h clearly

also has this property for every ((u′
j)k

j=1, (v
′
j)k

j=1) ∈ (
∏k

j=1 SWj
) × (

∏k
j=1 SW ′

j
) which is

sufficiently close to ((uj)k
j=1, (vj)k

j=1). By the compactness of (
∏k

j=1 SWj
) × (

∏k
j=1 SW ′

j
)

it follows that there is a finite set F ⊆ Γ such that

max
h∈F

min
j∈{1,...,k}

|〈φj(h)uj , vj〉| 6= 0

for every ((uj)k
j=1, (vj)k

j=1) ∈ (
∏k

j=1 SWj
) × (

∏k
j=1 SW ′

j
). By continuity and compactness

it follows that the real number

κ = min
(uj)k

j=1∈
∏k

j=1
SWj

min
(vj)k

j=1∈
∏k

j=1
SW ′

j

max
h∈F

min
j∈{1,...,k}

|〈φj(h)uj , vj〉|

must be strictly positive. By homogeneity it follows that if for every j ∈ {1, . . . , k} we
let uj ∈ Wj, vj ∈ W ′

j be arbitrary vectors then there exists h ∈ F such that

|〈φj(h)uj , vj〉| > κ‖uj‖‖vj‖

simultaneously for every j ∈ {1, . . . , k}.
Now let g1, g2 ∈ Γ be arbitrary. For each j ∈ {1, . . . , k} there exist a unit vector

uj ∈ Wj such that ‖φj(g2)uj‖ = ‖φj(g2)|Wj
‖ and a unit vector vj ∈ φj(g1)W ′

j such that

‖φj(g1)T vj‖ = ‖φj(g1)T |φj(g1)W ′
j
‖ = ‖φj(g1)|W ′

j
‖. We may therefore choose h ∈ F such

that for all j ∈ {1, . . . , k} we have

|〈φj(h)φj(g2)uj , φj(g1)T vj〉| > κ‖φj(g2)uj‖‖φj(g1)T vj‖.

But this implies the inequality

‖φj(g1hg2)|Wj
‖ > ‖φj(g1hg2)uj‖ > |〈φj(g1)φj(h)φj(g2)uj , vj〉|

= |〈φj(h)φj(g2)uj, φj(g1)T vj〉| > κ‖φj(g2)uj‖‖φj(g1)T vj‖

= κ‖φj(g1)|Wj
‖‖φj(g2)|W ′

j
‖

simultaneously for all j ∈ {1, . . . , k}. The proposition is proved.
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6.4. Applications to quasi-multiplicativity. The following result extends the main
technical tool of [9] to the case of a countably infinite index set I and also makes explicit
the dependence on the parameters βi.

Theorem 6.3. Let k > 1, let I be finite or countably infinite, and for each j ∈ {1, . . . , k}

let Vj be a real or complex inner product space and let A
(j) = (A

(j)
i )i∈I ∈ GL(Vj)I be

irreducible. For each j ∈ {1, . . . , k} let ℓj > 1 denote the smallest possible dimension

of a nonzero subspace of Vj which has finite orbit under the action of A
(j). Then there

exist constants κ, τ > 0, an integer p > 1, finite sets W1, . . . ,Wp ⊆
∏k

j=1 Grℓj
(Vj), and

a finite set F ⊂ I∗ such that for every t ∈ {1, . . . , p} and all non-negative real numbers
β1, . . . , βk > 0 the function

Ψ(t)(i) = max
(Wj)k

j=1∈Wt

k
∏

j=1

‖A
(j)
i |Wj

‖βj

and the number β =
∑k

j=1 βj > 0 satisfy

Ψ(t)(ij) 6 Ψ(t)(i)Ψ(t)(j) 6 κ−β max
k∈F

Ψ(t)(ikj) (6.4)

for all i, j ∈ I∗, and

τβ
k
∏

j=1

‖A
(j)
i ‖βj 6 max

t∈{1,...,p}
Ψ(t)(i) 6

k
∏

j=1

‖A
(j)
i ‖βj . (6.5)

Furthermore ℓj divides dim Vj for every j ∈ {1, . . . , k} and the integer p satisfies

p 6 min
t∈{1,...,k}

∏

j∈{1,...,k}
j 6=t

dimVj

ℓj
6

k−1
∏

j=1

dim Vj. (6.6)

In particular, if A
(j) is strongly irreducible for at least k − 1 values of j, then p = 1.

Proof. For each j ∈ {1, . . . , k} choose an ℓj-dimensional subspace Uj ⊆ Vj which has

finite orbit under the action of A
(j) and let {U1

j , . . . , U
nj

j } denote the orbit of Uj. Since

span
⋃nj

i=1 U
i
j is invariant under A

(j) and has nonzero dimension, by irreducibility it must
equal Vj .

We claim that for each j ∈ {1, . . . , k} we may write Vj as a direct sum of a subset of

the spaces U1
j , . . . , U

nj

j . To see this, fix j and let U i1
j , . . . , U

imj

j be elements of the orbit

of Uj which form a direct sum U i1
j ⊕ · · · ⊕ U

imj

j with mj as large as possible. Since U1
j

itself forms a direct sum with a single summand, the set of direct sums among the spaces
U i

j is nonempty. The set of all such direct sums is clearly also finite and it follows that

mj is well-defined. We wish to show that U i1
j ⊕ · · · ⊕U

imj

j = Vj , and to demonstrate this

it is sufficient to show that mjℓj = dimVj . Obviously ℓjmj = dimU i1
j ⊕ · · · ⊕ U

imj

j 6

dimVj , so suppose for a contradiction that mjℓj < dimVj. Since span
⋃nj

i=1 U
i
j = Vj we

must be able to choose U i′

j such that U i′

j is not a subspace of U i1
j ⊕ · · · ⊕ U

imj

j , which

implies dim(U i′

j ∩ (U i1
j ⊕ · · · ⊕ U

imj

j )) < dimU i′

j = ℓj . On the other hand we cannot



44 ANTTI KÄENMÄKI AND IAN D. MORRIS

have dim(U i′

j ∩ (U i1
j ⊕ · · · ⊕ U

imj

j )) = 0 since then U i1
j ⊕ · · · ⊕ U

imj

j ⊕ U i′

j would be a
direct sum with more than mj summands, contradicting the maximality of mj; and if

0 < dim(U i′

j ∩(U i1
j ⊕· · ·⊕U

imj

j )) < ℓj then the subspace U i′

j ∩(U i1
j ⊕· · ·⊕U

imj

j ) has finite

orbit under the action of A
(j) but has dimension strictly between 0 and ℓj , contradicting

the definition of ℓj. We conclude that the subspace U i′

j cannot exist since there are no

viable possibilities for the dimension of the subspace U i′

j ∩(U i1
j ⊕· · ·⊕U

imj

j ) and therefore
the inequality mjℓj < dimVj must be false. We conclude that Vj is equal to the direct

sum of mj spaces U i1
j , . . . , U

imj

j .

By permuting the labels of the spaces U i
j if necessary, for the remainder of the proof we

assume without loss of generality that Vj = U1
j ⊕U2

j ⊕ · · · ⊕U
mj

j for each j ∈ {1, . . . , k}.
We observe that mjℓj = dimVj and in particular ℓj divides dim Vj for each j as required.
By permuting the indices j ∈ {1, . . . , k} we further assume without loss of generality
that m1 = maxj∈{1,...,k}mj and therefore

min
t∈{1,...,k}

∏

j∈{1,...,k}
j 6=t

dim Vj

ℓj
=

k
∏

j=2

mj . (6.7)

We next claim that there exists τ1 > 0 such that for every j ∈ {1, . . . , k} we have

max
i∈{1,...,mj}

‖B|U i
j
‖ > τ1‖B‖ (6.8)

for every B ∈ End(Vj), where the set End(V ) is the collection of all endomorphisms of
V , i.e. the collection of all linear transformations V → V . Clearly it suffices to prove
this claim individually for each j ∈ {1, . . . , k} and then take τ1 to be the minimum of
the k distinct constants thus obtained. For fixed j it is in turn clearly sufficient to show
that

max
i∈{1,...,mj}

‖B|U i
j
‖ > τ1

for every B ∈ End(Vj) with norm ‖B‖ = 1, and by compactness this will follow if
maxi∈{1,...,mj} ‖B|U i

j
‖ > 0 for every nonzero B ∈ End(Vj). But if maxi∈{1,...,mj} ‖B|U i

j
‖ =

0 then B must be identically zero on
⋃mj

i=1 U
i
j and is therefore also identically zero on

Vj = span
⋃mj

i=1 U
i
j . The claim follows.

Define

W = {(U
ij

j )k
j=1 : ij ∈ {1, . . . , nj} for every j ∈ {1, . . . , k}} ⊆

k
∏

j=1

Grℓj
(Vj)

which is clearly a finite set. Each i ∈ I∗ induces a permutation of W by the map

(U
ij

j )k
j=1 7→ (A

(j)
i U

ij

j )k
j=1, so we may partition W into finitely many disjoint sets W1, . . . ,Wq

each of which is closed with respect to this action and such that the action of I∗ by these
permutations is transitive on each Wt. By relabelling W1, . . . ,Wq if necessary, we assume
without loss of generality that

{(U
ij

j )k
j=1 : i1 = 1 and ij ∈ {1, . . . ,mj} for all j ∈ {2, . . . , k}} ⊆

p
⋃

t=1

Wt (6.9)
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where p 6
∏k

j=2mj. This is possible since the former set contains exactly
∏k

j=2mj

distinct elements and these clearly must be distributed among no more than
∏k

j=2mj of
the distinct transitivity classes Wt. By recalling (6.7), we have now shown (6.6).

To see the final claim of the theorem, suppose that A
(j) is strongly irreducible for at

least k − 1 values of j. Since ℓj > 1 is the smallest dimension of a nonzero subspace of

Vj which has finite orbit under the action of A
(j), we see that ℓj = dimVj whenever A

(j)

is strongly irreducible. Therefore dim Vj/ℓj = 1 for at least k − 1 values of j and (6.6)
gives

p 6 min
t∈{1,...,k}

∏

j∈{1,...,k}
j 6=t

dimVj

ℓj
= 1

as claimed.
Let us next prove (6.5). We first claim that for every i ∈ {1, . . . , n1} there exists

li ∈ I∗ such that A
(1)
li
U1

1 = U i
1. Indeed, by the definition of U1

1 , . . . , U
n1
1 there exist

k1, . . . , kn1 ∈ I∗ such that U i
1 = A

(1)
ki
U1 for every i ∈ {1, . . . , n1}. We allow here ki to

be an empty word, in which case A
(1)
ki

is the identity map. For each i0 ∈ {1, . . . , n1} the

map U i
1 7→ A

(1)
ki0
U i

1 induces a permutation of the set {U1
1 , . . . , U

n1
1 } and therefore the map

U i
1 7→ A

(1)

k
n1!−1
i0

U i
1 induces its inverse permutation. We therefore have A

(1)
ki
A

(1)

k
n1!−1
1

U1
1 =

A
(1)
ki
U1 = U i

1 for each i ∈ {1, . . . , nj} and the claim follows by taking li = kik
n1!−1
1 for

each i. Recall that for every t ∈ {1, . . . , p} and i ∈ I∗,

Ψ(t)(i) = max
(Wj)k

j=1∈Wt

k
∏

j=1

‖A
(j)
i |Wj

‖βj ,

and define also

τ2 = min
j∈{1,...,k}

min
i∈{1,...,n1}

(

‖A
(j)
li

‖−1‖(A
(j)
li

)−1‖−1).

We will show that

(τ1τ2)β
k
∏

j=1

‖A
(j)
i ‖βj 6 max

t∈{1,...,p}
Ψ(t)(i)
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for every i ∈ I∗. Given i ∈ I∗, using (6.8) we may choose an integer i ∈ {1, . . . ,m1}

such that ‖A
(1)
i |U i

j
‖ > τ1‖A

(1)
i ‖. We then have

k
∏

j=1

‖A
(j)
i ‖βj 6 τ−β1

1 ‖A
(1)
i |U i

j
‖βj

k
∏

j=2

‖A
(j)
i ‖βj

= τ−β1
1 ‖A

(1)
i A

(1)
li

(A
(1)
li

)−1|U i
j
‖βj

k
∏

j=2

‖A
(j)
i A

(j)
li

(A
(j)
li

)−1‖βj

6 τ−β1
1

( k
∏

j=1

‖(A
(j)
li

)−1‖βj

)

‖A
(1)
i A

(1)
li

|
(A

(1)
li

)−1U i
j

‖βj

k
∏

j=2

‖A
(j)
i A

(j)
li

‖βj

6 τ−β1
1

( k
∏

j=1

‖(A
(j)
li

)−1‖βj

)

‖A
(1)
i A

(1)
li

|U1
1
‖βj

k
∏

j=2

‖A
(j)
i A

(j)
li

‖βj

(6.10)

where we have used the definition of li. Now define i1 = 1 and, again using (6.8),

choose i2, . . . , ik such that ij ∈ {1, ...,mj} and ‖A
(j)
i A

(j)
li

|
U

ij
j

‖ > τ1‖A
(j)
i A

(j)
li

‖ for each

j ∈ {2, . . . , k}. Combining this property with (6.10) we have

k
∏

j=1

‖A
(j)
i ‖βj 6 τ−β

1

( k
∏

j=1

‖(A
(j)
li

)−1‖βj

)( k
∏

j=1

‖A
(j)
i A

(j)
li

|
U

ij
j

‖βj

)

6 τ−β
1

( k
∏

j=1

‖(A
(j)
li

)−1‖βj ‖A
(j)
li

‖βj

)( k
∏

j=1

‖A
(j)
i |

A
(j)
li

U
ij
j

‖βj

)

6 (τ1τ2)−β
k
∏

j=1

‖A
(j)
i |

A
(j)
li

U
ij
j

‖βj .

By (6.9), the tuple (U
ij

j )k
j=1 belongs to some Wt such that t ∈ {1, . . . , p}. Since each

Wt is invariant under each of the maps (Wj)
k
j=1 7→ (A

(j)
j Wj)k

j=1 for j ∈ I∗, we have

(A
(j)
li
U

ij

j )k
j=1 ∈ Wt also. We conclude that

k
∏

j=1

‖A
(j)
i ‖βj 6 (τ1τ2)−β max

t∈{1,...,p}
max

(Wj)k
j=1∈Wt

k
∏

j=1

‖A
(j)
i |Wj

‖βj .

The inequality

max
t∈{1,...,p}

max
(Wj)k

j=1∈Wt

k
∏

j=1

‖A
(j)
i |Wj

‖βj 6

k
∏

j=1

‖A
(j)
i ‖βj

is trivial. Since i was arbitrary we have proved (6.5).
It remains only to prove (6.4), for which we use Proposition 6.2. We note that I∗ is

a semigroup with respect to the operation (i, j) 7→ ij, and for each j ∈ {1, . . . , k} the

map φj : I∗ → GL(Vj) defined by φj(i) = A
(j)
i is an irreducible representation. For each

Wt let (Ûj)k
j=1 ∈ Wt be arbitrary and observe that

Wt = {(φj(i)Ûj)k
j=1 : i ∈ I∗}
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since the action of I∗ by (i, (Wj)k
j=1) 7→ (φj(i)Wj)k

j=1 is by definition transitive on Wt.

By Proposition 6.2 there exist for each t ∈ {1, . . . , p} a finite set Ft ⊂ I∗ and a real
number κt > 0 such that for every (Wj)k

j=1, (W
′
j)k

j=1 ∈ Wt there exists k ∈ Ft such that

‖A
(j)
i A

(j)
k A

(j)
j |Wj

‖ > κt‖A
(j)
i |W ′

j
‖‖A

(j)
j |Wj

‖ (6.11)

for all j ∈ {1, . . . , k}. Define F =
⋃p

t=1 Ft and κ = mint∈{1,...,p} κt. By (6.11) it follows

easily that for every (Wj)k
j=1, (W

′
j)k

j=1 ∈ Wt we have

max
k∈F

k
∏

j=1

‖A
(j)
i A

(j)
k A

(j)
j |Wj

‖βj > κβ

( k
∏

j=1

‖A
(j)
i |W ′

j
‖βj

)( k
∏

j=1

‖A
(j)
j |Wj

‖βj

)

and by taking the maximum with respect to (Wj)k
j=1, (W

′
j)k

j=1 ∈ Wt we find that

max
k∈F

Ψ(t)(ikj) > κβΨ(t)(i)Ψ(t)(j)

for every i, j ∈ I∗ and t ∈ {1, . . . , p}. On the other hand if t is fixed then for every
i, j ∈ I∗ and every (Wj)k

j=1 ∈ Wt we clearly have

k
∏

j=1

‖A
(j)
i A

(j)
j |Wj

‖βj 6

k
∏

j=1

‖A
(j)
i |

A
(j)
j

Wj
‖βj ‖A

(j)
j |Wj

‖βj

=

( k
∏

j=1

‖A
(j)
i |

A
(j)
j

Wj
‖βj

)( k
∏

j=1

‖A
(j)
j |Wj

‖βj

)

6 Ψ(t)(i)Ψ(t)(j)

where we have used the fact that (A
(j)
j Wj)

k
j=1 ∈ Wt by the definition of Wt. The inequality

Ψ(t)(ij) 6 Ψ(t)(i)Ψ(t)(j)

follows straightforwardly by taking the maximum over (Wj)k
j=1 ∈ Wt. We have estab-

lished (6.4) and the proof of the theorem is complete. �

Let us next extend Theorem 6.3 into the completely reducible case. Observe that
Theorem 5.1 follows immediately from Theorem 6.4. Indeed, by recalling for example [24,
§3.4], we have

ϕs(A) = ‖A∧⌊s⌋‖⌈s⌉−s‖A∧⌈s⌉‖s−⌊s⌋

for all A ∈ GLd(R) and 0 6 s < d with the convention that ‖A∧0‖ = 1. There-
fore, if A = (Ai)i∈I ∈ GLd(R)I is completely reducible, then, by Proposition 6.1, also

A
(⌊s⌋) = (A

∧⌊s⌋
i )i∈I ∈ GL(∧⌊s⌋

R
d)I and A

(⌈s⌉) = (A
∧⌈s⌉
i )i∈I ∈ GL(∧⌈s⌉

R
d)I are com-

pletely reducible, and Theorem 6.4 shows there exist an integer p such that






1 6 p 6 dim ∧⌊s⌋
R

d =
( d

⌊s⌋

)

, if s = ⌊s⌋,

1 6 p 6 dim ∧⌊s⌋
R

d dim ∧⌈s⌉
R

d =
( d

⌊s⌋

)( d
⌈s⌉

)

, if s > ⌊s⌋,

and the functions Φ
(t)
s = Ψ

(t)
⌈s⌉−s,s−⌊s⌋, t ∈ {1, . . . , p}, satisfy the claimed properties.
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Theorem 6.4. Let k > 1, let I be finite or countably infinite, and for each j ∈ {1, . . . , k}

let Vj be a real inner product space and let A
(j) = (A

(j)
i )i∈I = (

⊕rj

tj=1B
(j,tj)
i )i∈I ∈

GL(Vj)I be completely reducible. Then there exist an integer p such that

1 6 p 6
(

min
j∈{1,...,k}

rj

dim Vj

)

k
∏

j=1

dimVj 6

k
∏

j=1

dim Vj

with functions Ψ
(1)
(·) , . . . ,Ψ

(p)
(·) : [0,∞)k × I∗ → (0,∞), constants κ, τ > 0, and a finite set

F ⊂ I∗ such that writing β =
∑k

j=1 βj the following three properties hold:

(i) We have

τβ
k
∏

j=1

‖A
(j)
i ‖βj 6 max

t∈{1,...,p}
Ψ

(t)
β1,...,βk

(i) 6
k
∏

j=1

‖A
(j)
i ‖βj

for all i ∈ I∗.
(ii) For every t ∈ {1, . . . , p} we have

Ψ
(t)
β1,...,βk

(ij) 6 Ψ
(t)
β1,...,βk

(i)Ψ
(t)
β1,...,βk

(j) 6 κ−β max
k∈F

Ψ
(t)
β1,...,βk

(ikj)

for all i, j ∈ I∗.

(iii) For every t ∈ {1, . . . , p} and i ∈ I∗ the function (β1, . . . , βk) 7→ Ψ
(t)
β1,...,βk

(i) defined

on [0,∞)k is continuous.

Proof. Let

R = {(t1, . . . , tk) ∈ N
k : tj ∈ {1, . . . , rj} for all j ∈ {1, . . . , k}}

and observe that (B
(j,tj)
i )i∈I is irreducible for every j ∈ {1, . . . , k}. Note also that there

exists a splitting Vj =
⊕rj

tj=1 Vj,tj
such that AiVj,tj

= B
(j,tj)
i Vj,tj

= Vj,tj
. For each r =

(t1, . . . , tk) ∈ R let Ψ
(r,t)
β1,...,βk

be the functions associated to irreducible tuples (B
(j,tj)
i )i∈I ,

j ∈ {1, . . . , k}, given by Theorem 6.3. By definition, the functions (β1, . . . , βk) 7→

Ψ
(r,t)
β1,...,βk

(i) are clearly continuous proving (iii) and therefore, for the rest of the proof,

we may consider β1, . . . , βk > 0 being fixed and omit it in notation of Ψ
(r,t)
β1,...,βk

.

By permuting the indices j ∈ {1, . . . , k}, we assume without loss of generality that
minj∈{1,...,k} rj/dim Vj = rk/dim Vk. For a fixed r = (t1, . . . , tk) ∈ R, Theorem 6.3

shows that there are at most pr 6
∏k−1

j=1 dimVj,tj
many functions Ψ(r,t). Therefore, the

total number p of functions Ψ(r,t) is bounded above by

p 6
∑

r∈R

k−1
∏

j=1

dim Vj,tj
= rk

k−1
∏

j=1

rj
∑

tj=1

dimVj,tj

= rk

k−1
∏

j=1

dimVj =
(

min
j∈{1,...,k}

rj

dim Vj

)

k
∏

j=1

dimVj

as claimed.
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For each r = (t1, . . . , tk) ∈ R, let the constants κr, τr > 0 and the finite set Fr ⊂ I∗ be
as in Theorem 6.3. Define κ = minr∈R κr, τ = minr∈R τr, and F =

⋃

r∈R Fr. Observe
that (ii) follows immediately from Theorem 6.3. Since

τβ
k
∏

j=1

‖B
(j,tj)
i ‖βj 6 max

t∈{1,...,pr}
Ψ(r,t)(i) 6

k
∏

j=1

‖B
(j,tj)
i ‖βj

by Theorem 6.3 and
k
∏

j=1

‖A
(j)
i ‖βj = max

r∈R

k
∏

j=1

‖B
(j,tj)
i ‖βj ,

we have shown (i) and finished the proof. �
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