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On the damping of spin waves
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We show that, in ideal-spin hydrodynamics, the components of the spin tensor follow damped
wave equations. The damping rate is related to nonlocal collisions of the particles in the fluid,
which enter at first order in ~ in a semi-classical expansion. This rate provides an estimate for
the timescale of spin equilibration and is computed by considering a system of spin-1/2 fermions
subject to a quartic self-interaction. It is found that the relaxation times of the components of the
spin tensor can become very large compared to the usual dissipative timescales of the system. Our
results suggest that the spin degrees of freedom in a heavy-ion collision may not be in equilibrium
by the time of freeze-out, and thus should be treated dynamically.

Introduction — The well-known Barnett effect [1] pre-
dicts that a rotating fluid consisting of particles with non-
vanishing dipole moment becomes polarized along the ro-
tation axis. A similar effect was conjectured to occur in
noncentral heavy-ion collisions, where the large orbital
angular momentum gives rise to a nonvanishing vorticity
of the hot and dense matter created in the collision, which
in turn leads to a nonvanishing polarization of Λ parti-
cles [2–5]. This theoretical prediction was subsequently
discovered experimentally [6–8]. A quantitative explana-
tion of the observed data has initiated many theoretical
investigations in recent years [9–53].

The theoretical computations of the polarization of
particles often neglect the dynamics that cause the align-
ment of the spin and the vorticity. Instead, the spin de-
grees of freedom are assumed to be in equilibrium, such
that the spin tensor of the medium can be expressed
through standard fluid-dynamical gradients, such as vor-
ticity and shear [54–56]. In this way, the polarization
can be described by ordinary hydrodynamics, without
invoking any additional equations of motion. Such a sim-
plification is justified if the timescale of spin alignment
is sufficiently short compared to the other characteristic
time scales in the system. In general, though, this need
not be true, and the evolution of the spin tensor is gov-
erned by the conservation equation of the total angular
momentum, which provides six additional equations to
be solved. A fluid-dynamical theory that incorporates
this conservation law (and possibly additional equations
determining the dissipative spin degrees of freedom) is
referred to as spin hydrodynamics.

The question of whether the timescale governing the
spin-relaxation process is negligibly short is of eminent
importance for the correct computation of the polariza-
tion: If the timescale is long enough for the dynamics
of the spin tensor to play a role in the finally observable
polarization of particles, it is mandatory to include its

evolution in the hydrodynamic treatment of the system.

Recently, several works have taken on the task of com-
puting the spin-relaxation timescale [57–64], with results
depending on the microscopic theory employed. Consid-
ering spin-flip interactions of strange quarks in a quark-
gluon plasma (QGP), Ref. [57] found that the respec-
tive relaxation time is very long compared to the lifetime
of the system. On the other hand, the results of Ref.
[64] suggest that the time scale of spin relaxation for Λ
baryons is on the order of the QGP’s lifetime, necessitat-
ing a dynamical treatment of the spin degrees of freedom.

References [39, 44] computed the timescales on which
the dissipative components of the spin tensor relax to
their so-called Navier-Stokes values, and found them to
be comparable to the standard timescales of dissipative
hydrodynamics, such as, e.g., the relaxation time of the
shear-stress tensor. However, in that work, the relaxation
times of the ideal components of the spin tensor, i.e., the
ones whose dynamics are determined by the conservation
equation of the total angular momentum, have not been
computed. The purpose of this Letter is to provide an
estimate for latter, using quantum kinetic theory.

As has been shown in Refs. [51, 62, 65, 66], the ideal
components of the spin tensor follow wave-type equa-
tions. The damping of the associated spin waves is usu-
ally associated with dissipation, but, as has been dis-
cussed in Refs. [62, 66] in a relaxation-time approxima-
tion of the Boltzmann equation, the inclusion of nonlocal
collisions induces similar effects. In this work, we will
explicitly compute such damping through the nonlocal
collisions occurring at first order in ~ in a semi-classical
expansion, using a scalar four-fermion interaction and
considering the Lorentz-covariant spacetime shifts com-
puted in Ref. [67].

In this work, we set c ≡ kB := 1, but keep the re-
duced Planck constant ~ to indicate the order of quan-
tum effects. The metric tensor is defined as gµν :=
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diag(1,−1,−1,−1). The scalar product of two four-
vectors aµ, bµ is denoted as a·b := aµbµ. The scalar prod-
uct of a four-vector aµ with the vector γµ of Dirac gamma
matrices is written as /a := aµγµ. The antisymmetrization
of a rank-two tensor A is defined as A[µν] := Aµν −Aνµ,
while its symmetrization reads A(µν) := Aµν + Aνµ. We
denote the comoving derivative of a quantity X as Ẋ :=
u · ∂X . The four-velocity uµ is normalized as u · u ≡ 1.
The projector orthogonal to uµ reads ∆µν := gµν−uµuν ,
and a projected vector aµ is denoted by a〈µ〉 := ∆µνaν .
Similarly, the traceless symmetric projector of rank four

reads ∆µν
αβ

:= ∆
(µ
α ∆

ν)
β /2−∆µν∆αβ/3, and we denote pro-

jected tensors by angular brackets, A〈µν〉 := ∆µν
αβA

αβ .
Ideal-spin hydrodynamics — The basic equations of

spin hydrodynamics in the case of an uncharged fluid are
given by the conservation laws for the energy-momentum
tensor as well as the total angular-momentum tensor,

∂µT
µν = 0 , ∂λJ

λµν = 0 . (1)

The total angular-momentum tensor can be decomposed
as Jλµν := Lλµν + ~Sλµν , where Lλµν := T λ[νxµ] is the
tensor of orbital angular momentum and Sλµν is the spin
tensor. Inserting this decomposition, the second conser-
vation law in Eq. (1) takes the form

~∂λS
λµν = T [νµ] . (2)

In the general case of a dissipative fluid, this system of
4 + 6 = 10 equations is not closed, because the energy-
momentum tensor (which does not need to be symmet-
ric) has 16 components, while the spin tensor has 24,
which follows from the antisymmetry in the last two in-
dices, Sλµν = −Sλνµ. The symmetric part of the energy-
momentum tensor can be decomposed as

1

2
T (µν) = εuµuν − P∆µν +Πµν , (3)

where uµ is the four-velocity of the fluid, ε and P de-
note the energy density and pressure in local equilib-
rium, and Πµν collects the dissipative degrees of freedom.
In the case of a conventional ideal fluid, the dissipative
degrees of freedom vanish, Πµν = 0. Furthermore, the
pressure P is not an independent quantity but depends
on ε via an equation of state, P (ε), such that the ideal
energy-momentum tensor is completely characterized by
the four fields {ε, uµ}. Alternatively, since energy den-
sity and pressure in local equilibrium are functions of the
temperature T , the energy-momentum tensor can equiva-
lently be described by the fields {T, uµ}. Thus, in conven-
tional uncharged ideal fluids, the conservation equation
for T µν suffices to describe the fluid evolution. On the
other hand, for a dissipative fluid, one requires additional
equations to determine Πµν .
In a similar manner, we define an ideal-spin fluid as

a fluid for which, for a given energy-momentum tensor,

Eq. (2) fully determines the evolution of the spin ten-
sor. Then, the number of independent components of
the spin tensor Sλµν must reduce to six, which can be
collected into an antisymmetric second-rank tensor Ωµν

called the spin potential. The spin potential is a La-
grange multiplier for total angular momentum, just as
the inverse four-temperature βµ := βuµ, with β := 1/T ,
is the Lagrange multiplier for energy-momentum. The
other 18 independent (and purely dissipative) quantities
in Sλµν are neglected. Note that “ideal” in our definition
refers only to the spin part, since T µν may still contain
dissipative terms, if Πµν 6= 0. The resulting theory of
ideal-spin hydrodynamics consists of Eq. (2), the energy-
momentum conservation equation, plus additional equa-
tions to determine the dissipative quantities in Πµν , but
neglects all dissipative terms in Sλµν . In global thermo-
dynamic equilibrium, Ωµν = ̟µν , with ̟µν := 1

2∂
[νβµ]

being the thermal vorticity.1 In contrast, in ideal-spin
hydrodynamics, the spin potential remains an indepen-
dent variable, which follows an evolution equation.
To leading order, Sλµν is linearly proportional to the

spin potential, such that the tensor decomposition of the
spin tensor reads

Sλµν = AuλΩµν +BuλuαΩ
α[µuν] + CuλΩα[µ∆ν]

α

+DuαΩ
α[µ∆ν]λ + E∆λ

αΩ
α[µuν]

= (A− B − C) uλu[µκν] + Eu[µǫν]λαβuαωβ

+ (A− 2C)uλǫµναβuαωβ +Dκ[µ∆ν]λ , (4)

where the quantities A, . . . , E are functions of the tem-
perature only and we have used the following decompo-
sition of the spin potential

Ωµν = u[µκν] + ǫµναβuαωβ , (5)

with the “electric” and “magnetic” components

κµ := −Ωµνuν , ωµ :=
1

2
ǫµναβuνΩαβ , (6)

respectively. Note that the functional forms of the co-
efficients A, . . . , E in Eq. (4) depend on the underlying
microscopic theory. We will explicitly compute them be-
low in the framework of kinetic theory. Assuming that
the antisymmetric part of the energy-momentum tensor
is also linear in κµ and ωµ, it can be decomposed as (cf.
Refs. [34, 68], and the supplemental material)

T [µν] = −~
2Γ(κ)u[µ

(
κν] + βu̇ν]

)

+ ~
2Γ(ω)ǫµνρσuρ (ωσ + βΩσ) + ~

2Πµν
A , (7)

1 Note that in global equilibrium βµ is a Killing vector, i.e.,

∂(µβν) = 0.
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where Ωµ := 1
2ǫ

µναβuν∇αuβ is the fluid vorticity vector.
Furthermore, Πµν

A = −Πνµ
A contains dissipative correc-

tions, which, in an ideal-spin fluid, are functions of the
standard dissipative degrees of freedom Πµν . Note that,
as the system evolves towards global equilibrium, up to a
factor −β the electric (magnetic) component κµ (ωµ) of
the spin potential approaches the fluid acceleration (the
fluid vorticity), while Πµν

A tends to zero. Then, T [µν] ≡ 0
in global equilibrium. Under these conditions, Eq. (2)
gives rise to the following constraint on the coefficients
A, . . . , E:

B − C −D − β
∂E

∂β
= 0 . (8)

The coefficients Γ(κ) and Γ(ω) are determined by the un-
derlying microscopic theory, see below. In Eq. (7) we
have also assumed that T [µν] is of order ~2, which we will
confirm by an explicit calculation in the kinetic-theory
framework. Up to first order in ~, the conservation equa-
tion for energy and momentum is then simply

∂µT
(µν) ≈ 0 . (9)

Considering Eq. (3), we observe that the spin potential
does not enter this equation. Thus, the evolution of the
fluid fields {T, uµ}, and that of possible dissipative terms
in Πµν , decouples from the evolution of the spin poten-
tial. The latter is solely determined by Eq. (2), which
requires the fluid fields as input.
In the following, we assume the simplest solution to

Eq. (9): a fluid with constant temperature at rest, i.e., a
static background with T = const., uµ = (1,0)µ. Since
the coefficients A, . . . , E and Γ(κ), Γ(ω) are functions of
temperature only, they also become constant.
Wave equations in a static background — In a static

background, all derivatives of the four-velocity and the
temperature vanish, as do the dissipative quantities,
Πµν = Πµν

A = 0. Then, we insert the divergence of Eq.
(4) on the left-hand side of Eq. (2) and Eq. (7) on the
right-hand side. We contract the resulting equation with
uµ and 1

2ǫµναβu
β to find the following equations of mo-

tion for the components of the spin potential,

(A−B − C)κ̇〈µ〉 = Eǫµναβuν∇αωβ + ~Γ(κ)κµ , (10a)

(A− 2C)ω̇〈µ〉 = Dǫµναβuν∇ακβ − ~Γ(ω)ωµ . (10b)

Here we also made use of the fact that ̟µν = 0 in a
fluid at rest. Defining κµ = (0,κ)µ and ωµ = (0,ω)µ,
the equations above can be cast in the form,

τκκ̇+ κ = µκ∇× ω , (11a)

τωω̇ + ω = −µω∇× κ , (11b)

where we defined

τκ := −A−B − C

~Γ(κ)
, µκ := − E

~Γ(κ)
,

τω :=
A− 2C

~Γ(ω)
, µω := − D

~Γ(ω)
. (12)

At this point, it is already apparent that (provided τκ and
τω are positive) both κ and ω follow coupled relaxation-
type equations, with the characteristic timescales given
by τκ and τω. Taking the divergence of Eqs. (11), we find
that the longitudinal components ∇·κ and ∇ ·ω relax to
zero on timescales of τκ and τω , respectively. Note that
this result is consistent with the findings of Ref. [65],
where the relaxation times τκ and τω diverge, such that
the longitudinal components are constant in time.
Let us now consider the dynamics of the transverse

degrees of freedom in the case ∇ · κ = ∇ ·ω = 0. Then,
taking the time derivative of Eqs. (11) we obtain

Ẍ+ aẊ+ bX− c2
s
∆X = 0 , (13)

where X is either κ or ω and where we defined

a :=
τκ + τω
τκτω

, b :=
1

τκτω
, c2

s
:=

µκµω

τκτω
. (14)

Equations (13) constitute damped wave equations. For
a symmetric energy-momentum tensor, Γ(κ) = Γ(ω) = 0,
the coefficients a and b vanish, while c2

s
stays finite. One

thus obtains undamped wave equations as in Ref. [65].
We now Fourier-Laplace transform the wave equations

(13),

X(x, t) =

∫ ∞

0

ds

2π

∫
d3k

(2π)3
X̃(k, s)e−ik·xe−st , (15)

and find the dispersion relations

s± =
1

2τκτω

[
τκ + τω ± i

√
4c2

s
τ2κτ

2
ωk

2 − (τκ − τω)2
]
.

(16)

For wavenumbers k > |τ−1
κ − τ−1

ω |/(2cs), s acquires an
imaginary part and the spin waves propagate, while for
0 ≤ k ≤ |τ−1

κ − τ−1
ω |/(2cs) they only decay. Note that in

the limit k → 0 we have

s+ =
1

max(τω, τκ)
, s− =

1

min(τω , τκ)
, (17)

indicating that s+ dominates the dynamics of the system
at long wavelengths and late times. In the following, we
will explicitly compute τκ and τω using quantum kinetic
theory.
Kinetic theory with scalar interaction — In kinetic the-

ory, the symmetric part of the energy-momentum tensor
and the spin tensor are given by [39, 44] 2

1

2
T (µν) =

∫
dΓkµkνf(x, k, s) , (18a)

Sλµν = − 1

2m

∫
dΓkλǫµναβkαsβf(x, k, s) . (18b)

2 For the sake of brevity we omitted a term that does not con-

tribute to the equations of motion.
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Here, kµ = (k0,k) is the particle’s four-momentum,
where k0 ≡

√
k2 +m2, with m being the particle mass,

and dΓ := dKdS denotes the integration measure in mo-
mentum and spin space, where dK := d3k/[(2π~)3k0],

dS := m/
√
3π2d4s δ(k · s)δ(s · s + 3), cf., e.g., Refs.

[15, 49, 69]. The quantity f(x, k, s) = feq(x, k, s) +
δf(x, k) is the single-particle distribution function, where

feq := e−β·k

(
1− ~

4m
ǫµναβΩµνkαsβ

)
(19)

is the local-equilibrium distribution function for spin-1/2
particles, while δf(x, k) contains dissipative corrections
and, for an ideal-spin fluid, is independent of s. In a static
background, δf(x, k) vanishes and βµ is constant, while
Ωµν can be space-time dependent. Note that, for the sake
of simplicity, we neglect quantum statistics. Inserting the
distribution function (19) into Eq. (18a) and using the
relation

∫
dS s

µ = 0 yields precisely the form (3), with
ε = I20 , P = I21 , Πµν ≡ 0, where we introduced the
thermodynamic integrals [70]

Inq :=
1

(2q + 1)!!

∫
dΓEn−2q

k
(E2

k −m2)qe−βEk . (20)

Here, Ek := u · k is the energy of a particle with three-
momentum k in the fluid rest frame. Similarly, insert-
ing the distribution function (19) into the spin tensor
(18b) and using the relations

∫
dS = 2 and

∫
dS s

µ
s
ν =

−2(gµν − kµkν/m2), we obtain Eq. (4), with the coeffi-
cients

A =
~

4
I10 , B =

~

4m2
I30 , C = D = E = − ~

4m2
I31 ,

(21)
which satisfy the constraint (8). Upon using these results
as well as the relation m2I10 = I30 − 3I31 in the general
expressions (12), we find

τκ =
I31

2m2Γ(κ)
, τω =

I30 − I31
4m2Γ(ω)

, (22)

whereas µκ = τκ/2, µω = µκΓ
(κ)/Γ(ω). We remark at

this point that c2
s
is not affected by T [µν] and agrees with

the result of Ref. [65], if we reduce the latter to classical
statistics.
One can show (cf. supplemental material) that, on a

static background, the antisymmetric part of the energy-
momentum tensor has the form

T [µν] =
1

2

∫
[dΓ]W̃∆[µkν]

(
feq,1feq,2 − feqf

′
eq

)
, (23)

where we defined [dΓ] := dΓ1 dΓ2 dΓ
′ dΓ. Furthermore,

W̃ is the transition amplitude for the scattering of two
particles from a state with momenta k1, k2 and spins
s1, s2 into a state with momenta k, k′ and spins s, s′. Fi-
nally, ∆µ is the spacetime shift, which quantifies the non-
locality of the collision. In Refs. [15, 49, 69], it was found

that such a term, which arises as a first-order correction
in an ~-gradient expansion, can describe the mutual con-
version of orbital and spin angular momentum. The pre-
cise form of the transition amplitude and the nonlocality
depends on the microscopic interaction of the particles
[67].
Inserting Eq. (19) into Eq. (23), the antisymmetric

part of the energy-momentum tensor becomes

T [µν] = − ~

8m

∫
[dΓ]W̃∆[µkν]e−β(Ek+E

k′ )Ω̃αβ

×
(
kα1 s

β
1 + kα2 s

β
2 − kαsβ − k′αs′β

)
, (24)

where we defined Ω̃µν := ǫµναβΩαβ . Then, we can write
it in the form (7), with the coefficients

Γ(κ) :=
1

12m2

∫
[dΓ]W̃m

~
∆[µkν]e−β(Ek+E

k′)uµu
σǫνσαβ

×
(
kαsβ + k′αs′β − kα1 s

β
1 − kα2 s

β
2

)
, (25a)

Γ(ω) :=
1

24m2

∫
[dΓ]W̃m

~
∆[µkν]e−β(Ek+E

k′)∆ρ
µ∆

σ
ν ǫρσαβ

×
(
kαsβ + k′αs′β − kα1 s

β
1 − kα2 s

β
2

)
. (25b)

We remark that, although both Γ(κ) and Γ(ω) diverge as
1/m2 in the limit of small masses, the coefficients (22)
stay finite. Note that, if the collisions are purely local,
i.e., if ∆µ = 0, the energy-momentum tensor is symmet-
ric. Consequently, we then have Γ(κ) = Γ(ω) = 0 and
the spin waves in Eqs. (13) are undamped, which implies
that the damping of the spin waves originates solely from
the nonlocal part of the collision term. The latter drives
the relaxation of the spin potential towards the thermal
vorticity.
Numerical results — We now compute the relaxation

times τκ and τω for a scalar four-fermion interaction,
Lint := G(ψψ)2 (for details, see supplemental material).
In Fig. 1, we show τκ and τω as functions of z := m/T
in units of the relaxation time τπ of the shear-stress
tensor in the 14-moment approximation [70], computed
using the same four-fermion interaction as for τκ, τω.
While τκ is of the same order of magnitude as τπ, τω
exceeds τπ by a factor of ∼ 2 (at z ≈ 0) to ∼ 1960 (at
z ≈ 100). Note that τκ is of the same order of mag-
nitude as the timescales of the dissipative parts of the
spin tensor [39, 44]. However, the relaxation of both κµ

and ωµ, and thus of Ωµν , is dominated by the longest re-
laxation time, see discussion after Eq. (17), which is τω.
For strange quarks in the deconfined phase of strong-
interaction matter, z ≃ 0.5, and τω is about a factor
of four larger than τκ and a factor of two larger than
τπ. In this case, the dynamics of the spin potential oc-
cur on similar timescales as the dissipative processes in
the system, and one would have to solve the full system
of spin-hydrodynamic equations [39, 44] to describe the
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FIG. 1. The relaxation times τκ and τω as functions of z =
m/T in units of the relaxation time of the shear-stress tensor
τπ.

evolution of spin degrees of freedom. On the other hand,
for hyperons in the hadronic phase, we have z ≃ 10, and
the timescale over which the spin potential Ωµν relaxes
to its equilibrium value ̟µν is considerably larger than
the typical dissipative timescales of the system.

Conclusion — The main results of this Letter are the
following three statements: First, in ideal-spin hydrody-
namics, the components of the spin tensor in a static
fluid background follow wave equations, the solutions of
which are damped if the energy-momentum tensor has
a nonvanishing antisymmetric part. Second, if a kinetic
description of the fluid is applicable, the damping rate of
the spin waves can be expressed through integrals over
the nonlocal parts of the collision term. Third, an esti-
mate using a simple four-point interaction shows that the
relaxation time for the spin potential towards its equilib-
rium value varies from timescales of the order of the other
dissipative processes (for z . 1) to timescales which are
orders of magnitude larger (for z ≫ 1).

The implication from the third finding for heavy-ion
phenomenology is the following: Approximating the spin
potential with its Navier-Stokes value, i.e., the thermal
vorticity, is only justified in the high-temperature or
small-mass regime. In a high-energy heavy-ion collision,
the spin potential equilibrates to the thermal vorticity in
a hot QGP with light particles. This explains why the
results of Refs. [54–56] are consistent with the data.

However, in order to obtain a complete description of
the spin degrees of freedom even in high-energy collisions,
one has to treat the spin potential dynamically, at least
as long as the masses of the particles carrying the per-
tinent spin degrees of freedom are of the order of the
temperature of the system. From a computational point
of view, this means solving six additional hydrodynamic

equations (for κµ and ωµ) in the ideal case, and several
more in the dissipative case, as laid out in Refs. [39, 44].
At lower collision energies, on the other hand, we can al-
ready speculate that neglecting the dynamics of the spin
potential is a poor approximation.
Our results agree qualitatively with those of previous

works that computed relaxation times due to collisions
that flip the spin of the particles. This agreement is to
be expected, since this type of collisions corresponds to
the nonlocal parts of the collision term in our setup. Fur-
thermore, compared to the results of Ref. [62], which also
considered nonlocal collisions, the separation of our re-
laxation time scales is larger. We think this difference
can be attributed to the form of the collision integral
and the use of the Lorentz-covariant nonlocal contribu-
tions derived in Ref. [67]. We also point out that there is
no contradiction to the findings of Refs. [39, 44], which
obtained rather short relaxation times for the dissipative
components of the spin tensor. The reason for the differ-
ence is that these quantities relax to their Navier-Stokes
values through local collisions, which include all types
of processes (including those where no spin is flipped)
and constitute the dominant contribution to the collision
term.
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SUPPLEMENTAL MATERIAL

Derivation of Eq. (8)

Here we derive the constraint on the functions A, . . . , E given by Eq. (8) that follows from the fact that the spin
tensor should be conserved in global equilibrium. Acting with ∂λ on the spin tensor in global equilibrium (i.e., where
Ωµν = ̟µν) yields

∂λS
λµν
eq = u̇α̟

α[µuν]
(
B − C − E − β

∂E

∂β

)
+ uα̟

α[µu̇ν]
(
B − C −D − β

∂D

∂β

)
+̟α

[µων]α(D − E) , (26)

where we defined the vorticity ωµν := 1
2∇[µuν] and used that in global equilibrium ∇µuν = ωµν . Employing that in

global equilibrium

̟µν = −βu[µu̇ν] − βωµν , (27)

we find that

̟α
[µων]α = βu̇αu

[µων]α = −u̇αu[µ̟ν]α = −u̇α̟α[µuν] , (28)

whereas uα̟
α[µu̇ν] = 0. Then, the divergence of the spin tensor reads

∂λS
λµν
eq = u̇α̟

α[µuν]
(
B − C −D − β

∂E

∂β

)
, (29)

leading to Eq. (8) in the main text.

The antisymmetric part of the energy-momentum tensor

In this section, we derive the antisymmetric part of the energy-momentum tensor that was used in the main text.
Starting from interacting Dirac fields and employing the Wigner-function formalism, one can show that, to second
order in ~, the conservation equation of the total angular momentum reads [39]

~∂λS
λµν ≡ ~

2
∂λ

∫
dΓkλΣµν

s
f(x, k, s)

=
~

4

∫
[dΓ]W̃Σµν

s

[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)f̃(x+∆′ −∆, k′, s′)f̃(x, k, s)

−f̃(x+∆1 −∆, k1, s1)f̃(x +∆2 −∆, k2, s2)f(x+∆′ −∆, k′, s′)f(x, k, s)
]

≡ T [νµ] , (30)

where we defined Σµν
s

:= − 1
m
ǫµναβkαsβ, f̃ := 1− f (for Fermi-Dirac statistics), and we have employed the Boltzmann

equation [67]. Moreover, we have made use of the “weak-equivalence principle” of Ref. [69] to simplify the collision
term. Furthermore,

W̃ := (2π~)4δ(4)(k + k′ − k1 − k2)m
4Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1

(k1, s1)hβ2γ2
(k2, s2)hδ2α2

(k′, s′)hδ1α1
(k, s) (31a)

https://doi.org/10.1103/PhysRevD.104.016022
https://arxiv.org/abs/2103.04896
https://doi.org/10.1103/PhysRevD.85.114047
https://arxiv.org/abs/1202.4551
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is the transition amplitude [67] and

∆µ
1 := − i~m

3

4W̃
(2π~)4δ(4)(k + k′ − k1 − k2)M

α1α2β1β2Mγ1γ2δ1δ2hβ2γ2
(k2, s2)hδ2α2

(k′, s′)hδ1α1
(k, s) [h(k1, s1), γ

µ]β1γ1
,

(31b)

∆µ
2 := − i~m

3

4W̃
(2π~)4δ(4)(k + k′ − k1 − k2)M

α1α2β1β2Mγ1γ2δ1δ2hβ1γ1
(k1, s1)hδ2α2

(k′, s′)hδ1α1
(k, s) [h(k2, s2), γ

µ]β2γ2
,

(31c)

∆′µ := − i~m
3

4W̃
(2π~)4δ(4)(k + k′ − k1 − k2)M

α1α2β1β2Mγ1γ2δ1δ2hβ1γ1
(k1, s1)hβ2γ2

(k2, s2)hδ1α1
(k, s) [h(k′, s′), γµ]δ2α2

,

(31d)

∆µ := − i~m
3

4W̃
(2π~)4δ(4)(k + k′ − k1 − k2)M

α1α2β1β2Mγ1γ2δ1δ2hβ1γ1
(k1, s1)hβ2γ2

(k2, s2)hδ2α2
(k′, s′) [h(k, s), γµ]δ1α1

(31e)

are the spacetime shifts, with

hαβ(k, s) :=
1

4m
[(1+ γ5/s)(/k +m)]αβ . (32)

The fourth-rank tensors Mαα′α1α2
describe the vertices of the theory. In the case of a scalar four-point interaction,

Lint := G(ψψ)2 with coupling strength G, they are given by

Mαα′α1α2
=

2G

~
(δαα1

δα′α2
− δαα2

δα′α1
) , (33)

leading to the following expressions for the transition rate and the spacetime shift:

W̃ = (2π~)4δ(4)(k + k′ − k1 − k2)
8m4G2

~2
Re [Tr (hh2)Tr (h1h

′)− Tr (hh1h
′h2)] , (34a)

∆µ
1 = (2π~)4δ(4)(k + k′ − k1 − k2)

~

m

4m4G2

~2W̃
Im [Tr (hh2)Tr (h1γ

µh′)− Tr (hh1γ
µh′h2)] , (34b)

∆µ
2 = (2π~)4δ(4)(k + k′ − k1 − k2)

~

m

4m4G2

~2W̃
Im [Tr (hh2γ

µ)Tr (h1h
′)− Tr (hh1h

′h2γ
µ)] , (34c)

∆′µ = (2π~)4δ(4)(k + k′ − k1 − k2)
~

m

4m4G2

~2W̃
Im [Tr (hh2)Tr (h1h

′γµ)− Tr (hh1h
′γµh2)] , (34d)

∆µ = (2π~)4δ(4)(k + k′ − k1 − k2)
~

m

4m4G2

~2W̃
Im [Tr (hγµh2)Tr (h1h

′)− Tr (hγµh1h
′h2)] . (34e)

Here, the traces are taken over Dirac space, and we abbreviated hi := h(ki, si), i = 1, 2, and similarly for h, h′. In

order to obtain Eqs. (34), we have used the fact that W̃ and ∆µ are symmetric under the exchange (k1, s1) ↔ (k2, s2)
under the integral in Eq. (30). Moreover, we have employed that h† = γ0hγ0 as well as the fact that, for the vertices
(33), the identity

γ0αβγ
0
α′β′M∗

ββ′β1β2
γ0β1α1

γ0β2α2
=Mα1α2αα′ (35)

holds.
On the other hand, T [νµ] can be expressed as (cf. Eq. (43a) of Ref. [40]),

T [νµ] =
~

m

∫
d4k

(2π~)4
D[µ

V k
ν] , (36)

where Dµ
V = Re〈: Tr γµC :〉 with the matrix C being the collision term in Dirac space.

Equations (30) and (36) provide us with two equivalent descriptions of the antisymmetric part of the energy-
momentum tensor; in the following, we will use both of them. From Eq. (30) it is clear that T [µν] contains both local
and nonlocal parts, with the latter being proportional to gradients of the involved distribution functions. This suggests
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that the collision term Dµ
V can also be split into local and nonlocal parts (to be specified in Subsec. ). Therefore, we

can write the local part of T [µν] as

T
[µν]
local = −~

4

∫
[dΓ]W̃Σµν

s
(f1f2f̃

′f̃ − f̃1f̃2f
′f)

= − ~

m

∫
d4k

(2π~)4
D[µ

V,localk
ν] , (37)

where we abbreviated f1 := f(x, k1, s1) and similarly for f2, f
′, and f . Note that the second line in this equation

results from Eq. (36). On the other hand, using Eqs. (30) and (36), the nonlocal part is given by

T
[µν]
nonlocal = −~

4

∫
[dΓ]W̃Σµν

s

{(
∆λ

1 −∆λ
) [

(∂λf1)f2f̃
′f̃ − (∂λf̃1)f̃2f

′f
]

+
(
∆λ

2 −∆λ
) [
f1(∂λf2)f̃

′f̃ − f̃1(∂λf̃2)f
′f
]
+
(
∆′λ −∆λ

) [
f1f2(∂λf̃

′)f̃ − f̃1f̃2(∂λf
′)f

]}

= − ~

m

∫
d4k

(2π~)4
D[µ

V,nonlocalk
ν] . (38)

In the next subsections, we will evaluate the local and nonlocal terms separately.

Local part

To evaluate the local term of the antisymmetric part of the energy-momentum tensor, we may use both lines of
Eq. (37), since their equivalence is enforced by the conservation of total angular momentum. It turns out to be
advantageous to explicitly compute the collision term Dµ

V , which (to first order in ~) reads [67]

Dµ
V :=

1

2
ImTr

[
γµ

(
Σ>G< − Σ<G>

)]
− ~

4
ReTr

[
γµ

(
{Σ>, G<}PB − {Σ<, G>}PB

)]
. (39)

Here, Σ≷ are the greater and lesser self-energies, and G≷ are the greater and lesser propagators, respectively. Fur-
thermore, we defined the Poisson bracket of two functions f(x, k) and g(x, k),

{f(x, k), g(x, k)}PB := (∂µf)(∂
µ
k g)− (∂µk f)(∂µg) . (40)

As shown in Ref. [67], we can expand the propagators and self-energies in terms of “quasiclassical” and “gradient”
contributions,

G≷ = G≷
qc +G

≷
∇ , Σ≷ = Σ≷

qc +Σ
≷
∇ . (41)

Since both the gradient and Poisson-bracket contributions involve derivatives of the distribution functions, the required
local part of Dµ

V consists solely of the quasiclassical contributions,

Dµ
V,local :=

1

2
ImTr

[
γµ

(
Σ>

qcG
<
qc − Σ<

qcG
>
qc

)]
. (42)

The quasiclassical propagators can be expressed in terms of the distribution functions f and f̃ as

G<
qc(x, k) = −4mπ~δ(k2 −m2)

∫
dS(k)h(k, s)f(x, k, s) , (43a)

G>
qc(x, k) = 4mπ~δ(k2 −m2)

∫
dS(k)h(k, s)f̃(x, k, s) , (43b)

where we defined the lesser propagator with a different sign as compared to Ref. [67]. The quasiclassical contributions
to the self-energies are

Σ<
qc,αβ(x, k) =

m3

2

∫
dΓ1 dΓ2 dΓ

′(2π~)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

× hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′)f(x, k1, s1)f(x, k2, s2)f̃(x, k
′, s′) (44a)
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and

Σ>
qc,αβ(x, k) = −m

3

2

∫
dΓ1 dΓ2 dΓ

′(2π~)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

× hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′)f̃(x, k1, s1)f̃(x, k2, s2)f(x, k
′, s′) , (44b)

respectively. Here, the indices α, β, . . . are Dirac indices, and the Einstein summation convention is assumed. Inserting
Eqs. (43) and (44) into Eq. (42), we find

Dµ
V,local = −4mπ~δ(k2 −m2)

∫
dΓ1 dΓ2 dΓ

′ dS(k)(2π~)4δ(4)(k + k′ − k1 − k2)Uµ
(
f1f2f̃

′f̃ − f̃1f̃2f
′f
)
, (45)

where we defined

Uµ :=
m3

4
Im [Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′)hβδ(k, s)γ
µ
δα] . (46)

Comparing this expression to Eq. (31e) and employing the identity (35), we find

(2π~)4δ(4)(k + k′ − k1 − k2)Uµ =
1

2~
W̃∆µ . (47)

Upon inserting Eq. (47) into Eq. (45) and subsequently into Eq. (37), we arrive at the result

T
[µν]
local =

1

2

∫
[dΓ]W̃∆[µkν](f1f2f̃

′f̃ − f̃1f̃2f
′f) . (48)

Before proceeding, let us note that the result (48) gives a precise meaning to the total angular momentum as a
collisional invariant. Subtracting the first from the second line of Eq. (37), we find

1

2

∫
[dΓ]W̃

(
∆[µkν] +

~

2
Σµν

s

)
(f1f2f̃

′f̃ − f̃1f̃2f
′f) = 0 , (49)

which allows us to identify the collisional invariant as Jµν := ∆[µkν] + ~

2Σ
µν
s . Indeed, this intuitive form has already

been assumed in Refs. [44, 69], and here we confirmed it rigorously.
In general, the distribution function can be written as f = feq + δf , where

feq := f0

(
1 + f̃0

~

4
Σµν

s
Ωµν

)
+O(~2) (50)

is the local-equilibrium distribution function, with f0 being the Fermi-Dirac distribution. Then, the local part of T [µν]

takes the form

T
[µν]
local ≡ T

[µν]
local,0 + δT

[µν]
local , (51)

where δT
[µν]
local collects the dissipative contributions and is of no further interest for the following. Inserting the local-

equilibrium distribution function and neglecting terms of second order in ~, we obtain

T
[µν]
local,0 =

~

8

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

[µkν]Ωαβ

(
Σαβ

s1
+Σαβ

s2
− Σαβ

s
′ − Σαβ

s

)
. (52)

Nonlocal part

To compute the nonlocal part of T [µν], it is simpler to employ the first and second lines of Eq. (38) rather than the
third one. First, note that we can separate this expression as

T
[µν]
nonlocal = T

[µν]
nonlocal,1 + T

[µν]
nonlocal,2 , (53)
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where we defined

T
[µν]
nonlocal,1 :=

~

4

∫
[dΓ]W̃Σµν

s
∆ · ∂

(
f1f2f̃

′f̃ − f̃1f̃2f
′f
)
, (54a)

T
[µν]
nonlocal,2 := −~

4

∫
[dΓ]W̃Σµν

s

{
∆λ

1

[
(∂λf1)f2f̃

′f̃ − (∂λf̃1)f̃2f
′f
]
+∆λ

2

[
f1(∂λf2)f̃

′f̃ − f̃1(∂λf̃2)f
′f
]

+∆′λ
[
f1f2(∂λf̃

′)f̃ − f̃1f̃2(∂λf
′)f

]
+∆λ

[
f1f2f̃

′(∂λf̃)− f̃1f̃2f
′(∂λf)

]}
. (54b)

We will evaluate these expressions further by neglecting their dissipative contributions as well as terms of higher order

in ~, i.e., we set f = f0, and likewise for f1, f2, and f
′. This immediately implies that T

[µν]
nonlocal,1 = 0. Now, we write

∂λf0 = −f0f̃0kρ∂λβρ = f0f̃0k
ρ (̟λρ − ξλρ) , (55)

where we defined the thermal vorticity and the thermal shear respectively as

̟µν := −1

2
∂[µβν] , ξµν :=

1

2
∂(µβν) . (56)

Upon inserting Eq. (55) into Eq. (54b) we obtain

T
[µν]
nonlocal,2 = −~

4

∫
[dΓ]W̃Σµν

s
f̃0,1f̃0,2f

′
0f0

(
∆α

1 k
β
1 +∆α

2 k
β
2 −∆′αk′β −∆αkβ

)
(̟αβ − ξαβ) . (57)

Renaming integration variables and using that f̃0,1f̃0,2f
′
0f0 = f̃0f̃

′
0f0,1f0,2, we can rewrite this as

T
[µν]
nonlocal,2 = −~

2

∫
[dΓ]W̃f̃0,1f̃0,2f

′
0f0Σ

µν
s

(
∆α

1 k
β
1 −∆αkβ

)
(̟αβ − ξαβ)

= −~

2

∫
[dΓ]W̃f̃0,1f̃0,2f

′
0f0∆

αkβ
(
Σµν

s1
− Σµν

s

)
(̟αβ − ξαβ)

= −~

4

∫
[dΓ]W̃f̃0,1f̃0,2f

′
0f0∆

αkβ
(
Σµν

s1
+Σµν

s2
− Σµν

s
′ − Σµν

s

)
(̟αβ − ξαβ) . (58)

Using the fact that the thermal vorticity is antisymmetric and the thermal shear is symmetric, the most general form
of this integral is

T
[µν]
nonlocal,2 = Xµναβ̟αβ − Y µναβξαβ , (59)

where Xµναβ (Y µναβ) is antisymmetric (symmetric) in α and β. Explicitly, these rank-four tensors read

Xµναβ := −~

8

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

[αkβ]
(
Σµν

s1
+ Σµν

s2
− Σµν

s
′ − Σµν

s

)
, (60a)

Y µναβ := −~

8

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

(αkβ)
(
Σµν

s1
+Σµν

s2
− Σµν

s
′ − Σµν

s

)
. (60b)

Since Xµναβ and Y µναβ depend only on equilibrium quantities, their respective tensor decompositions read

Xµναβ := X1 u
[α∆β][µuν] +X2 g

[β
ρ ∆α][µ∆ν]ρ , (61a)

Y µναβ := Y1 u
(α∆β)[µuν] , (61b)

with scalar functions X1, X2, Y1, which can be obtained from the tensors Xµναβ and Y µναβ by suitable projections,

X1 :=
1

3
uµuβ∆ναX

µναβ , X2 :=
1

12
∆νβ∆µαX

µναβ , (62a)

Y1 := −1

3
uµuβ∆να Y

µναβ . (62b)

From these expressions, it becomes clear that Xµναβ = Xαβµν , whereas there is no such relation for Y µναβ . Therefore,
we can write

T
[µν]
nonlocal,2 = Xαβµν̟αβ − Y µναβξαβ , (63)
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or explicitly

T
[µν]
nonlocal,2 = −~

8

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

[µkν]̟αβ

(
Σαβ

s1
+Σαβ

s2
− Σαβ

s
′ − Σαβ

s

)

+
~

8

∫
[dΓ]W̃f̃0,1f̃0,2f

′
0f0∆

(αkβ)ξαβ
(
Σµν

s1
+Σµν

s2
− Σµν

s
′ − Σµν

s

)
. (64)

Complete expression

Combining Eqs. (52) and (64), we find for the antisymmetric part of the energy-momentum tensor in local equilib-
rium

T
[µν]
0 =

~

8
(Ωαβ −̟αβ)

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

[µkν]
(
Σαβ

s1
+Σαβ

s2
− Σαβ

s
′ − Σαβ

s

)

+
~

8
ξαβ

∫
[dΓ]W̃ f̃0,1f̃0,2f

′
0f0∆

(αkβ)
(
Σµν

s1
+Σµν

s2
− Σµν

s
′ − Σµν

s

)
. (65)

As expected, this only vanishes in global equilibrium, where Ωµν = ̟µν and ξµν = 0. Given the tensor structures at
our disposal, the most general decomposition is

T
[µν]
0 = ~

2Γ(κ)u[µ
(
Ων]α −̟ν]α

)
uα + ~

2Γ(ω)
(
Ω〈µ〉〈ν〉 −̟〈µ〉〈ν〉

)
+ ~

2Γ(a)u[µξν]αuα , (66)

where we defined the coefficients

Γ(κ) := −2
X1

~2
=

1

12~
uµuβ∆να

∫
[dΓ]W̃ f̃1,0f̃2,0f

′
0f0∆

[µkν]
(
Σαβ

s1
+Σαβ

s2
− Σαβ

s
′ − Σαβ

s

)
, (67a)

Γ(ω) := −4
X2

~2
=

1

24~
∆νβ∆µα

∫
[dΓ]W̃ f̃1,0f̃2,0f

′
0f0∆

[µkν]
(
Σαβ

s1
+Σαβ

s2
− Σαβ

s
′ − Σαβ

s

)
, (67b)

Γ(a) := 2
Y1
~2

=
1

12~
uµuβ∆να

∫
[dΓ]W̃ f̃1,0f̃2,0f

′
0f0∆

(αkβ)
(
Σµν

s1
+Σµν

s2
− Σµν

s
′ − Σµν

s

)
. (67c)

However, note that

ξ〈ν〉αuα =
1

2

[
∇ν(βuα) + ∆ν

λ∂
α(βuλ)

]
uα =

1

2
(∇νβ + βu̇ν) , (68)

which, together with the relation (for uncharged fluids)∇νβ = −β∇νP/(ε+ P ) and the equation of motion (neglecting
dissipative terms)

u̇ν =
∇νP

ε+ P
(69)

yields

ξ〈ν〉αuα = 0 , (70)

such that we can drop these terms as they are of the same order as dissipative ones. Evaluating also the projections
of the spin potential and the thermal vorticity, we finally obtain

T
[µν]
0 = −~

2Γ(κ)u[µ
(
κν] + βu̇ν]

)
+ ~

2Γ(ω)ǫµναβuα (ωβ + βΩβ) , (71)

where Ωµ := 1
2ǫ

µναβuν∇αuβ is the fluid vorticity vector.


