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ABSTRACT

Relational database management systems (RDBMS) are widely used
for the storage and retrieval of structured data. To derive insights
beyond statistical aggregation, we typically have to extract spe-
cific subdatasets from the database using conventional database
operations, and then apply deep neural networks (DNN) training
and inference on these respective subdatasets in a separate ma-
chine learning system. The process can be prohibitively expensive,
especially when there are a combinatorial number of subdatasets
extracted for different analytical purposes. This calls for efficient
in-database support of advanced analytical methods.

In this paper, we introduce LEADS, a novel SQL-aware dynamic
model slicing technique to customize models for subdatasets speci-
fied by SQL queries. LEADS improves the predictive modeling of
structured data via the mixture of experts (MoE) technique and
maintains inference efficiency by a SQL-aware gating network. At
the core of LEADS is the construction of a general model with mul-
tiple expert sub-models via MoE trained over the entire database.
This SQL-aware MoE technique scales up the modeling capacity,
enhances effectiveness, and preserves efficiency by activating only
necessary experts via the gating network during inference. Addi-
tionally, we introduce two regularization terms during the training
process of LEADS to strike a balance between effectiveness and ef-
ficiency. We also design and build an in-database inference system,
called INDICES, to support end-to-end advanced structured data an-
alytics by non-intrusively incorporating LEADS onto PostgreSQL.
Our extensive experiments on real-world datasets demonstrate that
LEADS consistently outperforms baseline models, and INDICES de-
livers effective in-database analytics with a considerable reduction
in inference latency compared to traditional solutions.

1 INTRODUCTION

Relational Database Management Systems (RDBMS) are extensively
employed as the primary storage solution for structured data across
various applications [30, 34, 41, 46]. They serve as a fundamental
infrastructure for various domains and are critical to the operation
of numerous businesses [23, 28, 64]. In the contemporary business
landscape, structured data analytics via databases has become an
indispensable component for driving business growth and success
[23, 28, 37, 43, 64]. Traditional structured data analytics approaches
rely on database-driven filtering or aggregation operations to derive
insights. However, these insights only offer a limited statistical view,
which often fails to capture the complexity and intricacies of the
underlying patterns [21, 45]. Fortunately, recent advancements in

Deep Neural Networks (DNNs) open up new horizons for advanced
analytics beyond simple statistical aggregation [8, 9, 19, 35].

At its core, exploiting DNNs for advanced structured data ana-
lytics comprises two main phases: training and inference [19]. The
former primarily involves the construction of a DNN model and the
training of this model on targeted data, while the latter utilizes the
trained model to make predictions on new data. Notably, to deliver
advanced DNN-driven analytics for informed decision-making, ef-
fectiveness and efficiency are the two most important metrics to
optimize for [7, 14, 32, 52]. Specifically, effectiveness focuses on
the inference phase, measuring the extent to which the predictions
delivered by the model are accurate. Meanwhile, efficiency evalu-
ates the requirements of the model in terms of response time and
computational resources in both phases [32].

In real-world scenarios, analysts are often more interested in per-
forming analytics on specific subsets of data. For instance, they may
assess trends among patients diagnosed with a particular disease,
or, study behaviors of consumers of a certain age group. Consider
the scenario illustrated in Figure 1, where an analyst aims to eval-
uate the influence of education and city location on the incomes
of different subdatasets, i.e., tuples grouped by gender and age.
Naturally, the analyst seeks to build a predictive model that is effec-
tive, delivering accurate predictions for these subsets of tuples, and
meanwhile, executes predictions efficiently with minimal response
time and computational resources. However, there are two main
challenges in achieving this objective.

First, achieving efficient training for effective predictive model-
ing across analyst-specified subdatasets is challenging. Convention-
ally, a single general model is trained to support inference across all
data tuples [19, 23, 30]. This approach is efficient, which requires
training only one model. However, such a model, optimized to
capture the common patterns and general behaviors of the whole
dataset, is likely not as effective in providing accurate predictions
as a dedicated model trained on a specific subdataset of interest.
Taking for example the scenario in Figure 1, a model trained explic-
itly for the group of the gender male and age 24 would probably
identify finer-grained patterns and behaviors pertinent to this sub-
dataset, given sufficient training tuples, this dedicated model could
outperform the general model significantly. Nonetheless, training a
separate model for each subdataset is computationally prohibitive
due to the combinatorial nature of potential subdatasets.

Second, efficiently integrating the inference phase into an RDBMS
while ensuring effectiveness is also challenging from a system per-
spective. One major obstacle is how to reconcile the practices of
managing structured data within an RDBMS and the execution of
inference on a separate ML system. Many existing solutions support
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Figure 1: An illustration of in-database analytics on income via SQL-aware dynamic model slicing.

the inference process with two separate systems [13, 51], which
requires transferring the inference data from an RDBMS, typically a
subset of tuples, to another inference system. Such a process is time-
consuming, susceptible to errors, and might also violate privacy and
security requirements [55]. Recently, several preliminary attempts
have been made to integrate the inference process directly into
RDBMS via User-Defined Functions (UDFs) [5, 17, 24, 55, 58, 63],
which improves user experience by enabling in-database inference
through SQL statements. Specifically, running Python in UDFs can
tap into its rich machine learning libraries [18], while it misses
the opportunity to leverage the more efficient data retrieval APIs
offered by RDBMS, e.g., server programming interface (SPI) A pro-
posed enhancement involves utilizing multiple programming lan-
guages within UDFs, aiming to harness both data retrieval APIs and
advanced ML libraries. However, this approach introduces extra
overhead and affects inference efficiency, especially when conver-
sions and copying of inference data between different language
execution environments become necessary [18]. Therefore, achiev-
ing efficient and seamless integration of the inference process into
RDBMS is an imperative problem to address.

To address the above challenges, we build an efficient and ef-
fective IN-Database InferenCE System (INDICES). The system is
designed to produce effective predictions across subsets of data
dynamically specified and retrieved by SQL queries. To this end, we
propose a novel SQL-awarE dynAmic moDel Slicing (LEADS) tech-
nique, which enhances the effectiveness of the base model via the
mixture of experts (MoE) technique, and maintains the inference
efficiency using a SQL-aware gating network for dynamic model
customization for subdatasets specified by SQL queries. Specifically,
in LEADS, we propose to enhance the modeling capacity of the
base model by constructing a general model that is composed of
multiple replicas of this base model. These replicas, termed as ex-
perts, are trained to specialize in different problem subspaces for
more effective predictive modeling. To enhance effectiveness via
MoE without incurring reduced inference efficiency, we further
introduce a SQL-aware gating network that dynamically generates
sparse gating weights based on filter conditions in the SQL query
to slice a subset of only necessary experts from the general model.

Such a sliced model is optimized for the corresponding SQL query
during training, and is dedicated to the specified subdataset for
enhancing inference effectiveness while maintaining efficiency.

To support end-to-end structured data analytics, our system IN-
DICES seamlessly incorporates LEADS into PostgreSQL, an open-
source RDBMS widely used in both industry and academia. For
ease of use and inference efficiency, we divide the proposed in-
database inference process into four separate stages and propose
three optimization techniques to minimize the overhead of each
stage: efficient execution allocation, memory sharing, and state
caching. Given that all the stages of the inference process are sup-
ported within a single UDF, analysts can now conveniently invoke
inference queries using a single SQL statement. This approach ob-
viates the need to transfer and manage data in separate systems
and reduce data copying overhead between executions of different
programming languages. Additionally, while the current system is
supported by PostgreSQL, INDICES can be readily integrated into
other RDBMSs, e.g., MySQL.

We summarize the main contributions as follows.

o We formulate the SQL-aware structured data analytics problem,
which requires efficient and effective predictive modeling on
subdatasets specified by corresponding SQL queries. To the best
of our knowledge, this is the first work that develops techniques
and a system to address the problem.

e We propose a novel SQL-aware dynamic model slicing technique
LEADS, which scales up the modeling capacity of the base model
via MoE and devises a SQL-aware gating network for efficient
and effective dynamic model customization for SQL-specified
subdataset.

e We design and build an end-to-end in-database inference system
INDICES for advanced structured data analytics, which non-
intrusively incorporate LEADS onto PostgreSQL with three op-
timization techniques for further improving the inference effi-
ciency.

e We conduct extensive experiments on four real-world datasets.
The results confirm the effectiveness of LEADS, with up to 3.95%
improvement in accuracy for given workloads of datasets com-
pared with the baseline models, while INDICES achieves up to
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2.06x speedup in terms of inference efficiency compared with
the traditional solution.

In the remainder of this paper, we introduce preliminaries in
Section 2. We formulate our problem in Section 3. We present
LEADS with detailed descriptions of its modules and optimization
schemes in Section 4. We discuss the integration of LEADS and
INDICES with PostgreSQL in Section 5. Experimental results are
presented in Section 6. We review related work in Section 7 and
conclude the paper in Section 8.

2 PRELIMINARIES

In this section, we present two key techniques central to our sys-
tem, namely Mixture of Experts (MoE) for scaling up the model
capacity while maintaining its inference efficiency via conditional
computation [48], and sparse softmax [38] for the informed selec-
tion of active experts for enhancing efficiency. Scalars, vectors and
matrices are denoted by x, x and X respectively.

Mixture of Experts (MoE) [29, 48, 53] is a general ensemble learn-
ing and conditional computation technique to scale up the modeling
capacity without incurring much computational overhead. In DNN-
based MOoE, a series of expert DNNs are adopted to divide problem
space into different regions, where each expert specializes in han-
dling a certain sub-region. MoE is particularly useful when the data
exhibits complex patterns or variations [16, 47, 65] due to its capa-
bility of enhancing model capacity. There are two main components
in an MoE layer: expert models and a gating network. For simplicity
of construction, expert models can be composed of homogeneous
models that share the same model architecture. During training,
expert models are trained to specialize in different problem sub-
spaces. The gating network is also trained to produce a set of gating
weights dynamically, which determines the importance assigned
to corresponding experts.

Denoting the gating weights and outputs of experts as w =
[w1, wy, ..., wg] and H = [hy, hy..., hg] respectively, where K is the
number of experts, and h; is the output of the i-th expert, the output
of the MoE for the current input is then a weighted average of these
experts: y = Zle  wih;. During training, the MoE model optimizes
the gating network and experts simultaneously. The gating network
learns to assign appropriate weight to experts, while the experts
learn to make accurate predictions within their respective regions
of expertise.

MoE has found extensive application in various domains, notably
in the large language model GPT-4 [42] for texts and the large vision-
language model MoE-LLaVA [36] for images, which combines the
benefits of large model capacity with efficient computation, by
only engaging a fraction of the model parameters for each input.
In LEADS, we focus on the applicability of the MoE technique to
structured data analytics, intending to harness its scalable modeling
capacity for enhanced predictive accuracy and efficiency.

Sparse Softmax. Softmax transformation is a crucial function in
the gating network, which maps an input vector z into a probability
distribution p whose probabilities correspond proportionally to the

exponential of its input values, i.e., softmax(z;) = Ze_%;z(jz)_). The
1 1
output of softmax can thus be subsequently used as the network

output denoting the class probabilities or weights indicating the

importance of corresponding inputs. Specifically, denoting the d-
dimension probability as A4 := {p € RY : p > 0.[p|l; = 1},
softmax can be interpreted in the variational form with entropy:
softmax(z) = argmax pTz + Hs(p) (1)
peAd
where H3(p) = - % j Pjlog p; is the Shannon entropy. The softmax
function is extensively used in DNNs, largely due to its differen-
tiable and convex properties. However, softmax always assigns
dense probabilities to inputs, which is less interpretable and effec-
tive [8, 20], as compared with sparse credit assignment. To over-
come this limitation, sparse softmax is proposed to produce sparse
distributions, by assigning zero probability to certain outputs. Par-
ticularly, a-entmax [44] generalizes both dense and sparse softmax
with Tsallis a-entropies HE (p) [50]:

a-entmax(z) = argmax pTz + HZ(p) (2)
peAd

where HS(p) = - 2j(pj= p;?‘) ifa # 1, else Hnlr(p) = H5(p). With
a larger a, a-entmax tends to produce a sparser probability distri-
bution. Another appealing property is that the hyper-parameter
a, which controls the shape and sparsity of the mapping, can be
learned adaptively to the predictive task in the training stage. Let
p* = a-entmax(z) denote the distribution p; = (p;‘)z_"‘ 12 (p;)z_a
and the Shannon entropy h; = —(p;)log(p;). The gradient of a is

. . 0 a-entmax(z) _ (p})=pi hi—p; 2 hj
derived as: Sa = 0;_1 . ya=

can be optimized end-to-end together with the parameters of the
predictive model [44]. We aim to adopt a learnable sparse soft-
max in LEADS to improve model training and further enhance the
predictive efficiency.

, a > 1, which

3 PROBLEM FORMULATION

Technically, structured data can be viewed as one logical table T,
which comprises N rows and M attributes within RDBMS. Each
row, represented as a tuple x = (x1, xg, - - - , Xp1), serves as a feature
vector in predictive modeling, with x; denoting the value of the
i-th attribute. In structured data analytics, data analysts typically
focus on specific subsets of data characterized by shared attributes.
For example, analysts may assess the readmission rates among
the patients diagnosed with a certain disease, or predict the e-
commerce click-through rate (CTR) within a particular age group.
Typically, for complex analytical queries that involve prediction,
WHERE statement in a SQL query is executed first to select relevant
tuples, to which DNNs are applied subsequently for prediction.
In this paper, we refer to this process as SQL-aware predictive
modeling.

Given a SQL query, denoted by g, there are two main steps in
SQL-aware predictive modeling: data selection and model predic-
tion. Utilizing relational algebra, a generalized SQL query selection
q is expressed as 0, (T), where o is the unary operator for selection
and ¢ is the propositional formula in g. Typically, ¢ consists of mul-
tiple predicates connected by logical operators. The selection o, (T)
retrieves all tuples in table T that satisfies ¢, formally defined as
0p(T) = {x: x € T, ¢(x)}. For simplicity, the subdataset retrieved
by the SQL query q is denoted as Ty = {x1,X2, -+, X}, where
n is the number of tuples. Each tuple x; € RM in T, comprises
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Figure 2: SQL query encoder.

M attributes, and x; can be represented as a vector of categorical
and/or numerical features, i.e., X; = [xj1,xi2, -+, xi m]. DNNs are
then applied to perform prediction on these selected tuples, e.g., to
predict the labels y = {y1,y2,- - - , yn}, aiming to derive meaningful
insights, such as patients readmission rates in healthcare analyt-
ics or CTR in e-commerce. Technically, SQL-aware predictive
modeling refers to making predictions on a selected subset of tu-
ples retrieved from a logical table T based on a SQL query g with a
propositional formula ¢.

4 SQL-AWARE DYNAMIC MODEL SLICING

In contrast to conventional machine learning paradigms, SQL-
aware predictive modeling makes use of constraints specified in
SQL queries to provide more accurate predictions with respect to
the data of interest. For example, the query outlined in Figure 2 is
interested in data constrained based on age, location, and gender.
Such selection constraints present optimization opportunities for
prediction accuracy and efficiency. To this end, we propose SQL-
aware dynamic model slicing technique, LEADS, to leverage the
propositional formula ¢ from SQL queries as meta-information to
customize the base model, as a means to improve the effectiveness
and efficiency of the prediction of a specified datasubset.

In this section, we first introduce the SQL query encoder to
translate ¢ into a vectorized format. Next, we present two key
components of LEADS for scaling up the modeling capacity of the
base model via the Mixture of Experts (MoE) technique and dynamic
model slicing via a SQL-aware gating network. For optimization, we
further design two regularization terms to strike a balance between
effectiveness and efficiency.

4.1 SQL Query Encoder

In SQL-aware predictive modeling, the WHERE clause of SQL queries
filters tuples according to a predefined propositional formula ¢.
This formula comprises one or more predicates, each setting a logi-
cal condition on a particular attribute. For instance, "gender = ‘M’ "
mandates that the gender attribute of the filtered tuples must be ‘M’.
These predicates are interconnected via logical operators such as
"AND" or "OR" to form a complete propositional formula. The expo-
nential number of possible predicate combinations in SQL queries
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renders the direct development of models for every conceivable
subdataset, as in traditional machine learning approaches, both
complex and intractable.

For the SQL query encoder, we focus on individual queries, re-
ferred to as primitive SQL query. Considering a table T with M
attributes, the j-th attribute denoted as A}, each attribute is linked
to either a numerical or categorical feature in predictive modeling.
Particularly, each numerical feature needs to be converted into a cor-
responding categorical feature through discretization, which will be
detailed subsequently. In a primitive SQL query, each attribute A;
may be associated with zero or one predicate, with predicates across
attributes conjoined using the logical operator A (AND), as depicted
in Figure 2a. Technically, a predicate for attribute A; in primitive
SQL query can be expressed as Pj : Aj = aj, where aj € D; U{A}},
Dj represents the domain of possible values for A, and A; denotes
a default value assigned to A; when it is not specified in the query.
Figure 2a illustrates a valid primitive SQL query example, contrast-
ing with two non-examples. Thus, the propositional formula ¢ can
be represented as:

@=P APy A--- APy

The objective of the SQL query encoder is to generate a categorical
feature vector q for each primitive SQL query based on the meta-
information ¢, achieved by concatenating the attribute values of the
predicates. Formally, the feature vector of the SQL query encoding
can be obtained by:

q=[q1,92, " . qm]

where g; is the categorical attribute value for predicate P;. Figure 2b
demonstrates the transformation of a primitive SQL query into a
feature vector. Notably, the numerical attribute "age" here is first
discretized before being encoded alongside categorical attributes
"city" and "gender", and columns lacking predicates are filled by the
default value A;.
Discretization. Discretization is essential for encoding numerical
attributes, e.g., weight or salary. The infinite possible values of
numerical attributes make direct encoding infeasible, hence requir-
ing discretization. This process first partitions the domain D of
each numerical attribute into a fixed number of bins, akin to ap-
proximating a k-nearest neighbors classifier in predictive modeling.
The goal of discretization is to preserve the key information in the
embedding space for maintaining predictive modeling capacity.
To this end, we employ a supervised discretization approach
that accounts for the correlation between numerical attributes and
the target attribute. This aims to maximize information value (IV),
which measures the reduction of uncertainty within each bin rela-
tive to the prediction target. Higher IV values indicate a significant
decrease in uncertainty, thereby preserving the predictive capacity.
In particular, we introduce the open-source OptBinning [40] imple-
mentation for discretization, which optimizes IV effectively while
supporting constraints like the maximum bin count per attribute.

4.2 SQL-Aware Dynamic Model Slicing

The categorical feature vector q, obtained from the SQL query
encoder, captures key information that facilitates dynamic cus-
tomization of a predictive model to an optimal configuration for
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Figure 3: Overview of SQL-aware dynamic model slicing.

the targeted subdataset. The customization should significantly
enhance predictive performance in SQL-aware predictive modeling.
As illustrated in Figure 3, LEADS first scales up the modeling ca-
pacity via MoE by replicating the base model to construct a general
model, and subsequently, LEADS integrates a SQL-aware gating
network based on the SQL encoding vector q to selectively activate
experts in the general model to derive a sliced model for higher
efficiency and effectiveness.

In this subsection, we will first introduce the preprocessing mod-
ule that prepares the embedding vector q for the predictive model-
ing, elaborate on the two key modules, i.e., the general model and
the SQL-aware gating network, and finally, explain our SQL-aware
dynamic model slicing technique in detail.

4.2.1 Preprocessing Module. There are two sets of input constructed
for the SQL-aware prediction modeling given an input tuple. The
first set of input is constructed for the gating network and can
be uniformly represented as a categorical feature vector q. q =
1,92, ---,qm] comprises M feature values from respective at-
tribute fields, where numerical attributes need to be converted
into categorical attributes via discretization, as discussed in the
previous subsection. The second set is the attribute values of the
input tuple x = [x1, X2, ..., xp], and each attribute value x; can be
either categorical or numerical.

For both q and x, each field of attribute value v; (g;i/x;) needs
to be transformed into a corresponding embedding vector e; to
participate the subsequent predictive modeling. Specifically, each
categorical attribute is transformed via embedding lookup, i.e., e; =
Ei[qgi],e;i € R™, where n, is the feature embedding size, and E;
is the embedding matrix of this categorical attribute. Note that
different embedding vectors of E; correspond to their respective
values of this attribute. As for each numerical attribute x; of x, the
corresponding embedding vector is obtained by linearly scaling
up a learnable embedding vector &; for this numerical attribute,
namely e; = x; - &;. In this way, we obtain fixed-size inputs, i.e.,
embedding vectors § = [q1,q2,...,qm] and X = [x1,X2,..., xpm].

4.2.2 General Model and SQL-aware Gating Network. The general
model comprises a set of K replicated base models, denoted as

F = [F1,F2, ..., Fx], which are referred to as "expert models".
These experts share the same model architecture but learn distinct
model parameters during training, which take the same input x
and produce different outputs that need to be aggregated for final
predictions. The output of the i-th expert for a given input x is
denoted as F;(%).

As for the SQL-aware gating network G, it takes the SQL query
embedding vectors § as input to produce a K-dimensional vector,
termed the gating weight w, with w € RX. Specifically, a two-layer
multilayer perceptron (MLP) is employed as the gating network
following the practice [16, 42, 47]. We concatenate all embeddings
in § as the input of the gating network q = q; ® qz . .. ® qps, where
q € RM e then feed q to G, and obtain the gating weight w by:

z=¢(W1q+b1)
w =G(s) = Waz+by

where Wy € R"%=XMne W, ¢ RKXnz and by € R, by € RK are
the weights and biases respectively, n; is the hidden layer size, and
¢ represents the ReLU activation function.

Given the gating weight w, the a-entmax function [12, 44] is
further applied to recalibrate w to a probability distribution. As in-
troduced in Section 2, the hyper-parameter & in a-entmax controls
the level of sparsity, and a larger value of & sets more gating weights
to zero and thus deactivates more experts for higher efficiency. The
output of a-entmax w is thus:

®)

W = a-entmax(w), w € RK (4)

which is used to aggregate expert outputs. The final output of the
general model is a weighted average of expert outputs:

K
y= Wi Fix) 5)
i=1
where § is the prediction given the input x and the corresponding

query q of the SQL-aware predictive modeling.

4.2.3 Dynamic Model Slicing via Gating Network. For a given SQL
query, all the retrieved data tuples share the same recalibrated



gating weight w. Further, w; = 0 in Equation 5 indicates that the
corresponding i-th expert is not required in the current predictive
modeling, and thus, only a small fraction of experts ; need to be
activated for prediction for much higher computational efficiency.

Denoting the set of indices of activated expertsas {I1, Is, - - - , I, },
where n, is the current number of activated experts and WIJ. *
0,Vj € {1,2,...,n0}, and given the corresponding SQL query en-
coding q, we index the activated experts to form a sliced model, i.e.,
7{1 =1, FL,» - ,7‘}"”]. Therefore, the final output of the sliced

model is as follows:

= W7, ©)
j=1

where the number of activated experts n, directly affects the ef-
fectiveness and efficiency of the sliced model. A large n, indicates
larger model capacity while incurring higher computational over-
head, and vice versa. In LEADS, n, is determined by the gating net-
work based on the SQL query encoding q and the hyper-parameter
a of the sparse softmax function. Notably, instead of predefining
a fixed value, @ in @-entmax is learnable and optimized based on
the input tuples and corresponding queries during training. Subse-
quently, during inference, LEADS can dynamically adapt n, based
on the current SQL query, trading off between the effectiveness and
efficiency of the predictive modeling.

4.3 Optimization

Our LEADS framework can be applied to different predictive tasks
by configuring a proper objective function, such as mean squared
error (MSE) for regression or cross-entropy for classification. For
instance, in binary classification, the objective function employed
is binary cross-entropy:

N
LogLoss(,) = ~x- > {loga(di) + (1~ yplog(1 - 0@} ()

where y represents the prediction labels, y denotes the ground
truth labels, N is the number of tuples for prediction, and o(+) is
the sigmoid function.

To make the optimization more robust and effective, we intro-
duce two regularization terms to the main loss function. The first
term is the balance loss, L., which is introduced to address
the issue of imbalanced expert utilization. This imbalance occurs
when the gating network G tends to favor a small subset of experts,
leading to a skewed training process where these preferred experts
are overutilized while others are underutilized. Such a scenario
undermines the capacity of MoE and can detrimentally affect the
model performance.

Let X denote a mini-batch of training instances with ny, tuples,
and W = [W1, W2, -+, Wp,] is the recalibrated gating weights of
X, where w;; is the j-th weight of w;. L, is defined as:

$j — E(®)

K
Lyain = ?) =
baln = cV(®) ; (@)

. ®)
®=[gr. o Sk 6= ) Wij
i=1
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where E(®) = % 25{:1 ¢;. The balance loss term Ly, encourages
uniform distribution of weights across experts within the mini-
batch to ensure more balanced importance among all experts.

The balance loss term is designed to encourage a more balanced
selection of experts, which however, empirically results in activat-
ing a large number of experts despite the introduction of sparse
softmax. To maintain sparsity within the model and counteract this
tendency for more efficient computation, we further introduce a
sparsity loss term, Lsprs:

1 &
-Esprs = _n_b Z (\77,’)2 (9)
i=1

which encourages the gating network to allocate higher weights to
select a few experts while minimal or zero weights to others. Both
loss terms are scaled by their respective regularization coefficient,
A1 and Ay, and then added to the main loss:

Loss = LogLoss(¥.y) + A1Lpain + A2Lsprs. (10)

With this objective function, LEADS can then be trained effec-
tively with gradient-based optimizers, e.g., SGD or Adam [31].

5 IN-DATABASE MODEL INFERENCE

In this section, we present our in-database model inference system
INDICES. We use PostgreSQL [61] as our underlying database sys-
tem. By exploiting Postgres extension and User-Defined-Functions
(UDFs), we seamlessly incorporate the SQL-aware dynamic model
slicing technique LEADS onto PostgreSQL to enable in-database
model inference.

The typical model inference pipeline consists of four stages:
model loading, data retrieval, data preprocessing, and inference. A
naive way to support LEADS is to decouple the database system
and the inference system. That is, analysts retrieve data from the
database via SQL query, preprocess the data, and perform inference
in a dedicated inference system. However, this decoupled solution
presents three drawbacks. First, moving the data out from the data-
base can expose it to potential security risks and may not align
with compliance standards. Second, it is troublesome for the users
to maintain two separate systems with complicated data analytics
workflow. For traditional data analysts accustomed to SQL queries,
learning an additional inference framework represents an extra
burden. Third, moving data from the database to the inference sys-
tem may incur additional overhead and latency, particularly when
dealing with large datasets being moved across the network to
an external inference system. We conduct a profiling experiment
to evaluate the time usage breakdown of the decoupled solution
using LEADS with the PyTorch [26] runtime. As shown in Fig-
ure 4, data retrieval time occupies approximately 33% to 43% of
the total inference time. This overhead primarily stems from the
database connection, serialization, network communication, and
deserialization for data movement. Therefore, we focus on creating
an in-database inference system by integrating the inference proce-
dure onto PostgreSQL via UDF to avoid transferring data out from
the database and reduce data retrieval overhead.
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Figure 4: The breakdown response time of the inference
stages for the decoupled approach.

5.1 Inference UDF Design

By utilizing a UDF that encompasses all stages of the inference
process, users can initiate queries by specifying parameters such
as ‘TableName’” and “WHERE’ conditions, as illustrated in Figure 5.
The UDF then retrieves relevant subdatasets from the database by
applying the ‘WHERE’ condition on ‘TableName’. Subsequently,
the UDF dynamically loads the trained model and performs the
designated inference task. Upon completion, the prediction results
are returned to the users. However, relying solely on Python in
UDFs for the entire model inference pipeline remains suboptimal
due to its inefficient data retrieval process. Therefore, we introduce
three optimizations to improve the UDF inference efficiency.
Efficient Execution Allocation. We utilize a multi-language strat-
egy in UDFs, combining low-level languages like C or Rust for effi-
cient data retrieval, and high-level languages like Python for model
loading, data preprocessing, and inference with its extensive ML li-
braries, such as Pytorch and Sklearn. Rust is employed in our system
due to its Postgres extension development library PGRX [1] which
helps access advanced low-level data retrieval APIs in Postgres like
the Server Programming Interface (SPI) for faster data retrieval.
However, even with this approach, there are two main challenges
for efficient model inference: (1) data copying overhead, arises from
different execution environments and data representations between
RDBMS and the inference runtime. It necessitates extensive copy-
ing and conversations. (2) state initializing overhead, comes from
repeatedly loading and releasing the deep learning model when
handling an inference request. To mitigate these overheads, we
further design memory sharing and state caching techniques in
INDICES to improve inference efficiency.

Memory Sharing. Due to the isolation between Python and Rust
execution environments, data transfer between them requires two
read-write operations: first, data is fetched from an RDBMS and
stored in Rust’s environment, then it is transferred from Rust’s
memory to Python’s memory. To mitigate data transfer inefficien-
cies, we leverage shared memory to bypass redundant read-write
operations. Initially, data is filtered and retrieved within Rust’s en-
vironment using SPI. The data is then directly written to shared
memory. This shared memory, allocated at the commencement of
UDFs invocation, is accessible in both environments. Thus, the
Python environment can directly access and extract data, eliminat-
ing the need for an additional copying step.

State Caching. In handling numerous inference requests, the fre-
quent loading and releasing of the model during each inference
execution incur significant overhead. To address it, we persistently
cache the general model trained via the LEADS technique at the
PostgreSQL session-level and maintain a state cache for the utilized
sliced model. Specifically, when our inference UDF encounters an
SQL query with a new filter condition, it first checks the cache for
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Environment Environment
Name
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Figure 5: INDICES inference UDF execution.
Table 1: Dataset statistics.

Dataset Tuples  Positive Ratio ~ Attributes Features
Payment 30,000 21.4% 23 350
Credit 244,280 7.8% 69 550
Census 269,356 6.4% 41 540
Diabetes 101,766 46.8% 48 850

the existing sliced model related to this condition. If the correspond-
ing dedicated model is not found, a new model is derived from the
general model and stored in the cache. To ensure efficient memory
utilization and achieve constant time complexity for management,
we adopt the least recently used (LRU) caching policy to manage
cached sliced models.

5.2 System Workflow

Next, we present INDICES’ workflow, which comprises training
and in-database inference phases, as shown in Figure 6.

Training Phase. In the training phase, we construct a general
model based on tables in RDBMS following LEADS for the predic-
tion task. We collect SQL query logs from the real-world database to
help construct the training workload. The frequent filter conditions
in these logs reveal the attributes and features that data analysts
consider most relevant and significant. Using these queries, we
can extract the corresponding subdatasets as the training dataset.
Both the SQL queries and the selected subdatasets are preprocessed,
vectorized, and fed into the general model for iterative training
(Step 1 in Figure 6). Once this well-trained general model is pre-
pared, it is serialized and saved as a state dictionary (Step 2). When
the associated UDF is invoked, the model is loaded into Postgres
and dynamically sliced based on the SQL query, allowing for the
handling of online inference requests.

In-Database Inference Phase. In the inference phase, we inte-
grate the inference process into Postgres by implementing a UDF
through extension installation. The UDF, named indices_inference,
offers a SQL interface for issuing inference queries using the fol-
lowing statement:

SELECT indices_inference(<tableName>, <taskName>, <filter>);

which accepts three arguments, the tableName refers to the table in
RDBMS from which the subdataset is selected, the taskName rep-
resents the prediction target (e.g., click-through-rate, readmission-
rate). The final argument filter denotes the propositional formula
following the “WHERE” clause.
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Figure 6: INDICES workflow: model training and in-database inference.

When the query parser receives the inference query (Step 3),
it initiates the execution of the UDF within the PostgreSQL UDF
runtime environment (Step 4), as illustrated in Figure 5. Upon acti-
vation, the UDF performs four main tasks for an online SQL query.
First, using the initial two parameters, it identifies the prediction
target and determines the required general model. It checks whether
the model is already cached; if not, it locates and loads the trained
general model (Step 5). Second, the UDF customizes the model via
LEADS technique mentioned in Section 4 based on the filter in the
query and subsequently caches it in the Least Recently Used (LRU)
cache. Third, it retrieves the relevant data based on the filter condi-
tions specified in the query via the server programming interface
(SPI) and writes the selected data to a shared memory (Step 6). The
model inference stage then reads the data from the shared memory
and executes model inference. Finally, the UDF creates a view based
on the original table, incorporating a new column that holds the
predictive results.

6 EXPERIMENTS

In this section, we evaluate the effectiveness of LEADS and effi-

ciency of our in-database inference system, INDICES, using four

real-world datasets. Particularly, we devise the experiments to an-

swer the following three key research questions (RQs):

e RQ1: Does the LEADS technique improve the SQL-Aware predic-
tive modeling task compared with the original base models?

e RQ2: How effective is each component of LEADS in these pre-
diction tasks?

o RQ3: Does the INDICES system improve the inference efficiency
compared with the traditional decoupled approach?

We report our findings with regards to the above questions respec-
tively in Sections 6.2, 6.3, and 6.4.

6.1 Experimental Setup

6.1.1 Datasets. We conduct experiments on four real-world datasets
from the domains of finance, sociology, and healthcare. The statis-
tics of the datasets are summarized in Table 1.

(1) Payment [59, 60] consists of the profile of credit card clients
and their past bill payments. The task is to predict whether the
payment on a credit card will be in default in the next month.

(2) Credit [6, 25] is gathered by Home Credit Group, focusing on
the unbanked population. The task is to predict the repayment
abilities of this population for better loan experience.

(3) Census [3, 56] contains data from the Current Population Sur-
vey conducted by the U.S. Census Bureau. The task is to determine

Algorithm 1 Synthetic Workload Generation

Require: dataset D, the number of SELECT queries N, the maxi-
mum filter condition size max_col
Ensure: a synthetic workload W containing N SELECT queries
: W=0
2: fori < 1to N do
3 Randomly select a data tuple x € RM from D
4 Randomly sample the number of selected columns m €
[1, min(max_col, M)]
5: Randomly sample m columns from data tuple x along with
their corresponding values
6: Form a SELECT query with a filter condition of size m based
on the selected columns and values
7 Add the generated SELECT query to the workload W
8: end for
9: return synthetic workload W

whether a person’s annual income exceeds 50K based on their pro-
file information, including age, class education, etc.

(4) Diabetes [10, 49] contains ten years of clinical care at 130 US hos-
pitals. Each tuple pertains to hospital records of patients diagnosed
with diabetes, including details like medications and laboratory
results. The task is to predict the patient’s readmission.

6.1.2  Workloads. In SQL-aware predictive modeling, there is cur-
rently no benchmark that fulfills the criteria of having both SQL
queries and supervised data. Traditional OLAP benchmarks, like
TPC-DS [39] and YCSB [11], primarily focus on assessing query
performance with complex operations such as JOIN and GROUPBY.
However, they lack prediction tasks and labeled data. On the other
hand, conventional datasets for evaluating deep learning algorithms
do not incorporate OLAP queries. To bridge this gap, we opt to cre-
ate synthetic inference queries as workloads based on deep learning
datasets to evaluate LEADS and INDICES.

Our workload generation method is outlined in Algorithm 1,
which employs a random strategy to generate a workload that com-
prises a set of synthetic SQL queries, with each query retrieving
a subset of the dataset for prediction. The procedure begins by
randomly selecting a data tuple x from the dataset D (Step 3). Then,
a value m is sampled from the range [1, min(max_col, M)] to de-
termine the number of predicates in the SQL query, where M is
the number of attributes in D (Step 4). max_col is a parameter that
indicates the maximum number of predicates in any SQL query.
Subsequently, m attributes are randomly chosen from x, and the
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Table 2: Evaluation of performance improvements with LEADS.

. DNN CIN AFN ARMNet
Datasets Metric

w/o w/ Imprv. ‘ w/o w/ Imprv. ‘ w/o w/ Imprv. w/o w/ Imprv.
Pavment Workload-AUC 0.7003 0.7089 +1.23% | 0.7164 0.7189 +0.35% | 0.7067 0.7143 +1.08% | 0.7141 0.7212  +0.99%
4 Worst-AUC 0.4733 0.5467 +15.51% | 0.3836 0.4463 +16.35% | 0.4467 0.6333 +41.77% | 0.5267 0.6067 +15.19%
Credit Workload-AUC  0.7145 0.7427  +3.95% | 0.7234 0.7408 +2.41% | 0.7171 0.7218 +0.66% | 0.7231 0.7347 +1.60%
Worst-AUC 0.3852 0.6000 +55.76% | 0.3333 0.4074 +22.23% | 0.3852 0.4074 +5.76% | 0.4444 0.6264 +40.95%
Census Workload-AUC  0.9157 0.9200 +0.47% | 0.9187 0.9224 +0.40% | 0.9151 0.9216 +0.71% | 0.9196 0.9237 +0.45%
Worst-AUC 0.7692 0.8041 +4.54% | 0.7692 0.7845 +1.99% | 0.7577 0.7892 +4.16% | 0.7692 0.7962 +3.51%
Diabetes Workload-AUC 0.8308 0.8375 +0.81% | 0.8322 0.8419 +1.17% | 0.8329 0.8390 +0.73% | 0.8342 0.8402 +0.72%
Worst-AUC 0.5495 0.6374 +16.00% | 0.6264 0.7033 +12.28% | 0.6484 0.6813 +5.07% | 0.6044 0.6593 +9.08%

Table 3: Top-4 SQL queries in terms of AUC improvement 0.9

due to LEADS.

no. of tuples

query# (test/train) propositional formula in query
1 20/134 change = “No” && admission_type = 3
2 20/153 outpatient = 20 && metformin.pio = “Up”
3 55/451 glipizide = “Down”
4 61/481 diag 1= “50

values of these selected attributes are collected to form a proposi-
tional formula for the generated SQL query (Steps 5-6). This query
is put into the workload (Step 7). We repeat this process N times
to create a complete workload. In the experiments, we set N to 30
and max_col to 3, and generate workloads for each dataset.

6.1.3 Baseline Methods. We select four kinds of base models de-
signed for structured data and enhance these models via the LEADS
technique. We evaluate LEADS’s effectiveness by comparing the
performance of these base models with and without the integration
of LEADS. We introduce each base model as follows.

(1) DNN [19]: it is a perceptron with multiple linear and activation
layers, representing the most fundamental neural network.

(2) CIN [35]: it is a convolutional layer-based neural network, which
models higher-order feature interactions through compressed in-
teraction with input embeddings.

(3) AFN [9]: it incorporates logarithm neurons in the network layer,
aiding in capturing the feature interaction in arbitrary order.

(4) ARMNet [8]: it introduces multi-head attention to adaptively
extract the combination of features, demonstrating state-of-the-art
performance in structured data prediction tasks.

Moreover, to evaluate the efficiency of our in-database infer-
ence system INDICES, we compare it with INDICES-decoupled, a
variant of INDICES that follows the traditional inference approach
mentioned in Section 5. For INDICES-decoupled, since data is re-
trieved from PostgreSQL through network communication based
on psycopg, there is no data copy process between different execu-
tion environments as in INDICES. To ensure a fair comparison, we
warm up both systems by caching the general model in advance.

6.1.4  Evaluation Metric. Notice that a workload contains a series
of prediction queries, with each query representing a specific pre-
diction task. We use the AUC (Area Under the ROC Curve) metric

I w/o LEADS
B w/ LEADS

2.78%
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Figure 7: AUC improvement of SQL queries listed in Table 3.

to evaluate the effectiveness of LEADS on a query, denoted by q.
A higher value indicates a better performance. Then, we use two
metrics to assess the overall performance of LEADS on the entire
workload. The first is the average AUC value across all queries in
the workload, denoted as Workload-AUC, which is calculated by:
N
1
Workload-AUC(W) = — Z AUC(qy), 11)
N=
where N is the number of SQL queries in the workload W. The

second is the lowest AUC value among all prediction queries in the
workload, termed Worst-AUC, which is calculated as follows:

Worst-AUC(W) = Min(AUC(q1),AUC(q2) ... AUC(gn)). (12)

In fields like finance or healthcare, where prediction errors can
result in significant losses, focusing on the lower bound of the per-
formance is crucial. The Worst-AUC metric provides insights into
the worst-case scenario, ensuring that the technique’s performance
is reliable and does not lead to the worst decisions.

For model-level efficiency, we utilize the floating-point oper-
ations per second (FLOPs) metric to measure the computations
during the inference phase of a workload. As for our system IN-
DICES, we measure the performance using the end-to-end response
time, which calculates the CPU time elapsed from the moment a
user invokes an inference query to the moment when the user
receives the prediction results.

6.1.5 Hyper-parameter Settings. For fair comparisons, we fix the
feature embedding size at 10 and set the size of the hidden layer
to 32 for all the base models. Given the ability to select multiple
experts in LEADS, we reduce the hidden layer size of each expert
to 16 for better efficiency. The depth of each base model is set to 3.
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Figure 8: Effects of SQL-aware gating network on accuracy.
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Figure 10: Effects of a-entmax and number of experts on
efficiency.

For ARMNet, we specify the number of heads and the hidden size
of the self-attention module as 8 and 16, respectively. The initial
alpha in a-entmax is set to 2.5. The number of experts of LEADS is
searched in 2~256 and fixed at 16. Also, the balance regularization
factor Ay and the sparsity regularization factor A, are searched in
le-3~5e-2, and fixed at 1e-3. We perform a sensitivity analysis on
these hyper-parameters and report the best results.

6.1.6  Training Details. Since there are no specific SQL queries in
the training dataset to update the parameters of the gating network,
we simulate a SQL query for each input data following Steps 3-6 in
Algorithm1. Additionally, we adopt the Adam [31] optimizer with
a learning rate searched in 1e-3~0.1 and a batch size of 1024 for all
base models and datasets. All the experiments are conducted on a
server equipped with Xeon(R) Silver 4114 CPU@2.2GHz (10 cores),
256G memory, and GeForce RTX 3090 Ti. We implement all the
models with PyTorch 1.6.0 with CUDA 10.2.

6.2 SQL-aware Predictions

To evaluate the efficacy of LEADS, we investigate the performance
improvement of four base models after integrating with LEADS for
given workloads.

The experimental results are summarized in Table 2. The main
observation is that the prediction performance w.r.t. both Workload-
AUC and Worst-AUC consistently improve when utilizing LEADS
for all base models and all workloads. Further, we note that the most
significant improvement is in the Worst-AUC metric. For instance,
when using DNN as the base model, LEADS achieves improvements
of 55.76% and 16.00% on the Credit and Diabetes datasets, respec-
tively. The reason for the base model’s low performance could be
significant variability or nuances in the instances of the retrieved
subset that are not well-represented in the training data. As a conse-
quence, the trained base model fails to provide accurate predictions
for these instances.

To further analyze the Worst-AUC improvement, we perform
a breakdown analysis on the Diabetes dataset with a DNN base
model. Table 3 describes the top-4 SQL queries in terms of AUC
improvement due to LEADS, and Figure 7 presents the respective
AUC improvement of these queries. We observe that the AUC
values under these SQL queries are less than Workload-AUC (see
Table 2), the average AUC value of all queries in the workload.
In addition, the number of training/testing tuples in the selected
subset for each SQL query is very small. For instance, there are
only 134 training tuples for SQL query#1, while the whole training
dataset contains 101,766 tuples (see Table 1). Without sufficient
examples, the base model cannot generalize effectively in these
subdatasets, resulting in a misleading prediction. In our LEADS,
the SQL-aware network leverages the propositional formula from
SQL queries as meta-information to assist the general model in
learning associated patterns within these subdatasets. Therefore,
a base model handled by LEADS yields better performance for
queries with limited numbers of related training samples.

We note that the propositional formulas of these four queries
in the Diabetes dataset all revolve around the drug’s status. For
instance, in query #2, glipizide="Down” denotes that the drug “glip-
izide” has been prescribed and its dosage reduced. In healthcare
records, the drug’s status is sparse, seen in only a few training
samples. Despite its rarity, it significantly affects readmission rates,
making it essential for analysts to gain insights into retrieving these
subsets. This makes LEADS valuable for improving prediction mod-
els and preventing performance collapse, especially in healthcare,
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Figure 11: Effects of the regularization terms on accuracy.

where insights from specific subsets matter. Our experimental re-
sults demonstrate that LEADS effectively handles this scenario.
The improvement results from dynamically integrating multiple
expert models. When faced with challenging input samples, LEADS
strategically allocates more experts for the sliced model, enhancing
the network’s complexity and improving prediction capabilities.

6.3 Ablation Study

In this subsection, we shall conduct an ablation study to evaluate
the effectiveness of each component in LEADS.

SQL-aware gating network. In this evaluation, we compare LEADS
with two methods: w/o LEADS and LEADS w/o SQL-aware gating
network. For the latter, we create a default SQL query vector by
concatenating a set of default values for each attribute, denoted as
qq = [A1, Az, - -+, Ap], indicating the absence of predicates in the
SQL query for slicing a model. The comparison results are shown
in Figure 8. There are two main observations. First, the w/o LEADS
method achieves the lowest Workload-AUC because it simply uses
the base model to handle the SQL queries. Second, the LEADS w/o
SQL-aware gating network method results in a performance reduc-
tion across four base models compared to LEADS. For example, on
the Credit dataset, this reduction can reach up to 0.02 in terms of
Workload-AUC. It is because without the SQL-aware gating net-
work, LEADS loses the ability for dynamic model customization
based on SQL query vectors, leading to unsatisfactory results.
a-entmax. In this investigation, we evaluate the effect of the a-
entmax function in LEADS. We compare LEADS to w/o LEADS and
LEADS w/o a-entmax, where the latter is a variant that substitutes
the a-entmax function with the softmax function. We use DNN
as the base model and vary the number of experts from 2 to 256
to evaluate the performance w.r.t. Workload-AUC and FLOPs on
Payment and Credit datasets.

The results are presented in Figures 9-10. We can observe from
Figure 9 that as the number of experts increases from 2 to 32, there
is a notable improvement in AUC. This is expected because the
model is able to generate more accurate predictions with additional
experts. However, when the number of experts exceeds 32, there is
areduction in the Credit dataset for LEADS w/o a-entmax, because
the model becomes overly complex and results in overfitting and
subsequently a decline in AUC performance. Figure 10 highlights
the advantages of a-entmax in terms of FLOPs saving, particularly
when the number of experts increases. Specifically, the FLOPs of
LEADS w/o a-entmax show a linear increase with the growing
number of experts. In contrast, LEADS with a-entmax experiences
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Figure 12: Analysis of the activated frequency for each expert
w.r.t. the query workload. The x-axis denotes the expert ID,
and the y-axis denotes the frequency (1.0 means that the
expert is activated in every SQL query).

an initial increase with a much gentler incline due to the fact that
a-entmax assigns small values to zero instead of retaining all ex-
perts when using softmax. In the slicing process, we then remove
these unused experts with zero weights, effectively conserving
computational resources.

Regularization terms. For the balance term Ly, and the sparsity
term Lgprs, we compare the performance of LEADS with three
variants: without the balance term (LEADS w/0 Ly;,,), without the
sparsity term (LEADS w/0 Lspys), and without both terms (LEADS
w/o both). We use DNN as the base model and conduct experiments
on the Payment and Credit datasets.

Figure 11 presents the comparison results w.r.t. Workload-AUC,
and Figure 12 provides a breakdown analysis of activated frequency
for each expert during the execution of the query workload, where
a higher frequency indicates more extensive usage of an expert in
the workload. There are three main findings from the results. First,
removing the balance term significantly reduces the Workload-AUC
of LEADS, as shown in Figure 11. While the sparse term is designed
to counteract the effect of the balance term, using it solely will lead
to a much smaller number of experts being utilized for each SQL
query, resulting in lower prediction accuracy. This phenomenon can
be validated in Figure 12, where only two experts are predominately
selected. Second, when only adding the balance term, the perfor-
mance is slightly lower than that of LEADS (see Figure 11), but
the model utilizes almost all experts for every SQL query (see Fig-
ure 12), increasing computational costs. This is because the balance
term encourages an even expert selection and drives the LEADS
to utilize as many experts as possible. Third, when enabling both
terms in LEADS, we can observe that the experts are utilized in
a balanced manner while achieving the best performance, which
demonstrates the effectiveness of our regularization terms.

6.4 System Efficiency

In this subsection, we evaluate the efficiency of INDICES in terms
of its end-to-end response time and compare it with the INDICES-
decoupled baseline (see Section 6.1.3). We also measure the break-
down response time for each system.

Comparison with the baseline. We utilize a SQL query that se-
lects 100k records for inference. We report the response time of
INDICES and INDICES-decoupled on the four datasets, as presented
in Figure 13a. Compared to INDICES-decoupled, INDICES achieves
speedup of 1.94x, 2.06x, 2.00x, and 1.82x on the Census, Credit,
Diabetes, and Payment, respectively. There are three main reasons
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Figure 13: Efficiency evaluation of INDICES in terms of
response time. In the sub-figures, the ‘Left Bar’ denotes
INDICES-decoupled (I-d), and the ‘Right Bar’ denotes IN-
DICES (I).

for such superior performance. First, INDICES reduces the costly
data movement overheads between PostgreSQL and the inference
system, with lower data retrieval time usage. Second, INDICES is
further enhanced with the aforementioned optimizations: shared
memory to reduce data copying overhead, and state caching to
eliminate the cost of model loading during the entire inference
UDF execution process. Last, within Frame’s Python execution,
data from shared memory is directly read as a numpy.ndarray[22] ,
which facilitates quicker conversion to tensors for inference tasks
and results in lower data preprocessing time in INDICES.

Effects of the number of predicting records. We next evalu-
ate the effect of the number of selected records in the SQL query
in terms of the response time. We create SQL queries that select
various numbers of records ranging from 40k to 640k from the
Payment dataset. Figure 13b shows the response time of INDICES
and INDICES-decoupled. We observe that INDICES consistently
surpasses INDICES-decoupled across all record sizes, with per-
formance improvement ranging from 1.47x to 1.93x. Moreover,
the response time of INDICES increases more slowly than that of
INDICES-decoupled. This is because the data movement overhead
between the database and the inference system becomes more pro-
nounced with more records.

Evaluation of optimization techniques in INDICES. Further,
we experiment to evaluate the benefits of the optimizations in
Section 5.1. Specifically, we compare INDICES with (i) INDICES
without memory sharing; (ii) INDICES without SPI; (iii) INDICES
without state caching; and (iv) INDICES without any optimizations.
Figure 14 presents the comparison results w.r.t. the response time
to predict 100k records on the Payment dataset. The absence of
shared memory results in significant data copying overhead be-
tween Rust and Python execution environments. Likewise, without
SPL, the data retrieval time is high. Besides, if we do not enable
state caching, it results in a substantial model loading overhead.
With all the optimizations enabled, INDICES can greatly reduce the
in-database inference response time.

7 RELATED WORK

Mixture-of-Experts [15, 27, 62] integrates the outputs of different
experts in an input-driven manner. In the case of Sparse MoE,
only a small subset of experts is chosen for each input, facilitating

Lingze Zeng!, Naili Xing!, Shaofeng Cai', Gang Chen?, Beng Chin Ooi!
Jian Pei®, Yuncheng Wu*

Model Loading
[EIN Data Retrieval

B Data Copying
Data Preprocessing & Inference

INDICES w/o all optimizations /NN AN NN
INDICES w/o state caching A NI
INDICES w/o SPI | NN\N/

INDICES w/o memory sharing {SESISISUERRINNNN]
INDICES w/ all optimizations ISR

0.0 500.0 1.0k 1.5k 2.0k 2.5k
Response Time (ms)

Figure 14: Effects of INDICES’ optimization techniques.

substantial model scaling without additional computation overhead.
Sparse MoE has been used to build large language models [16, 33,
48] and applied to vision-related tasks[47, 57]. Our research delves
into the potential of MoE in structured data analytics. We closely
combine it with database data analytics, selecting experts based on
the filter conditions in SQL queries.

In-Database Machine Learning involves running machine learn-
ing directly within the database. MADIib [24] is an open-source
library providing SQL-based ML functions in PostgreSQL. Google
ML library[2], and Microsoft’s SQL Server Machine Learning Ser-
vices [4] offer SQL APIs for ML functions on Oracle, bigquery,
and Microsoft SQL Server, respectively. Recently, [54] proposed to
integrate neural architectural search (NAS) model selection into
PostgreSQL as an extension, which is orthogonal to our proposal. In
summary, these works incorporate existing ML algorithms into the
database for analysts but typically lack optimization for specific data
analysis scenarios and seldom support deep learning algorithms.

8 CONCLUSIONS

In this paper, we propose a novel SQL-aware dynamic model slicing
technique called LEADS. We enhance the general model trained
on the entire database with the Mixture of Experts (MoE) tech-
nique and devise a SQL-aware gating network to effectively cus-
tomize a sliced model given the propositional formula in the user’s
SQL query. Further, we integrate LEADS into our end-to-end in-
database inference system INDICES. We build the system on top of
a full-fledged and open-source RDBMS, PostgreSQL, and introduce
three optimization techniques to reduce the response time of infer-
ence queries. Extensive experiments conducted on four real-world
datasets demonstrate that LEADS consistently outperforms four
baseline models and INDICES significantly reduces the inference
time compared to the conventional approach.
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