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Universality of the second correlation function of the deformed
Ginibre ensemble
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Abstract

We study the deformed complex Ginibre ensemble H = Ay+ Hy, where Hy is the complex
matrix with iid Gaussian entries, and Ag is some general n x n matrix (it can be random and
in this case it is independent of Hy). Assuming rather general assumptions on Ag, we prove
that the asymptotic local behaviour of the second correlation function of the eigenvalues of
such matrices in the bulk coincides with that for the pure complex Ginibre ensemble.

1 Introduction
Consider the complex deformed Ginibre ensemble, i.e. n X n matrices

H = Ay + Hy, (1.1)

where Hj is a complex Ginibre matrix with i.i.d. complex Gaussian entries {hl(-;)) ijl such that

ERY) =0, E[hYP)=1/n, E[(h))=0.
The deformation matrix Ay is a general n x n matrix with complex entries (which can be random,
and in this case is independent of Hy). Such matrices has a lot of applications, in particular, in
computational mathematics and communication theory.

The ensemble (LI]) and its more general case with non-Gaussian Hj is extensively studied in
mathematical literature. In particular, it is known from [27] that under the reasonable general
assumption on the distribution of Ay and for more general Hy with iid but non-Gaussian entries,
there exists a limiting spectral distribution u of the eigenvalues of H. If Ag = 0, then p is the
celebrated circular law, a uniform distribution on a unit disk in the complex plain. But for
Ag # 0, the limiting distribution is not necessary the circular law and it hardly depends on Ag.
The exact form of the support D of the measure p is not simple to describe, however, according
to [5] (see also the review [6] for the history of the problem and [29] and references therein for
the more general case), under rather general conditions on Ay it takes the nice form:

D= {z : /A‘lduz()\) > 1}, (1.2)
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where v, is the limiting normalized eigenvalue counting measure of Yy(z) = (Ap — 2)(Ag — 2)*.
We refer to the interior points inside D as the bulk of the spectrum (and denote it as D°), and
to the points on the boundary 0D as the edge of the spectrum.

The behaviour of individual eigenvalues, or the local eigenvalue statistics, is expected to be
more universal, i.e. it does not depend on Ag. This is a part of a general Wigner-Dyson-Mehta
universality conjecture stating that the behavior of local statistics of eigenvalues of random
matrices is determined by the symmetry type of ensemble and largely does not depend on the
entries distribution or even their independence. The conjecture is going back to the Wigner’s
pioneering idea to model spectral statistics of complex quantum systems by those of simple
random matrix ensembles that respect the basic symmetries but otherwise may not be related at
all to the initial quantum Hamiltonian. The original conjecture concerned mostly the Hermitian
and symmetric ensembles of random matrices and starting from the breakthrough works of
Erdos, Yau, Schlein with co-authors (see [I3] and reference therein) and Tao and Vu (see, e.g.,
[25]) is proved now for most classical random graphs and random matrix models.

However, for the non-Hermitian random matrices with two-dimensional spectral distribution
the local spectral statistics of eigenvalues is much less studied. One of the main reasons why
the non-Hermitian spectral analysis is so difficult is because, unlike in the Hermitian case, the
resolvent (H — z)~! of a non-normal matrix is not effective to study eigenvalues near z due to
the instability of the non-Hermitian eigenvalues under perturbations.

The main useful tool to deal with eigenvalues of non-Hermitian matrices is Girko’s logarith-
mic potential approach [16] based on the formula expressing linear statistics of eigenvalues of H
in terms of the log-determinant of the symmetrized matrix

Y(2) = (H — 2)(H — 2)". (1.3)

For example, the linear eigenvalue statistics for any smooth, compactly supported test function
f can be expressed as

Nulf] = Zf(zj) = ﬁ/ AL f(2) -log |det Y (2)|d*z, (1.4)
j=1 ¢

where A, = %?)2' Then, the kth correlation function pg (21, ... 2x) can be recovered as
pr(21,- s 26) = (Amn)TPAL, . AL E{logdet Y(2) ... logdet Y (z;,)}

Bulk universality conjecture of the local eigenvalue statistics states that for any zy € D°
uniformly in {(; }é‘?zl varying in any compact set K C C we have

Tim oo + G/ (om) 2w G o)) = det{ KO (G )Yy (15)
where p is a limiting density p;(zp) and
KOG, ) = 2emlalP2-lel /2408,
77
This means that the limit coincides with that obtained for the pure Ginibre ensemble. Similar

statement (but with a different kernel K(®)(¢;,()) can be formulated for zy € 0D (so-called
edge universality).



The key point of Girko’s logarithmic potential approach is that Y(z) is now a Hermitian
matrix and all tools and results developed for Hermitian ensembles in the last years are available.
The problem is that Girko’s formula is much harder to analyse than the analogous expression
for the Hermitian case. In particular, it requires a good lower bound on the smallest singular
value o1 (H — z) of H — z, a notorious difficulty which was already crucial in the proof of circular
law and its more general analog [27]. However, for the study of the asymptotic behavior of
individual eigenvalues much more precise control of o1(H — z) is required.

Such control is hardly accessible for the standard random matrix techniques (see, e.g., the
discussion in [§] for details). For the case of matrices with iid entries, after the long series
of results, bulk and edge universality for a general distribution were obtained in the classical
work of Tao and Vu [26] (see also reference therein for the history of the problem) under the
assumption that the common distribution of the entries is good enough (e.g., has all bounded
moments), and its first four moments match the first four moments of the standard Gaussian
distribution. The result holds also for the case of matrices with iid real entries.

The removing of this four moment matching condition happened very recently and required
combination of the well-developed random matrix techniques with the supersymmetry (SUSY)
approach based on the representation of the determinant as an integral (formal) over the Grass-
mann variables. Combining this representation with the representation of an inverse determinant
as integral over the Gaussian complex field, SUSY allows to obtain an integral representation
for the main spectral characteristics such as averaged density of states, characteristic polynomi-
als, correlation functions, as well as for elements of the resolvent moments, etc. Although the
rigorous control of such SUSY integral representations can be difficult, SUSY approach is widely
used in the physics literature (see e.g. reviews [12], [21]) and was successfully applied rigorously
to the study of some Hermitian and non-Hermitian random matrices (see, e.g., [15], [14], [24],
1, 23], 2)).

Using integral representation obtained by SUSY, the optimal control of o1(H — z) for the
Ginibre ensemble at the edge of the spectrum was achieved in [7] (the result for Ay # 0 was
obtained in [22]). The result of [7] was used in the subsequent work [8] to remove the four moment
matching condition of [26] for the edge universality. Very recently, in the work of Maltsev and
Osman [20], SUSY together with a partial Schur decomposition was applied to obtain the bulk
universality for the matrices (ILI]) with a small Gaussian perturbation VtH, and matrices A
with a very good control of the resolvent of (Ag — 2)(Ag — 2)* + &2 (basically, they need Ag to
satisfy the two-resolvent local law, see [3], [9]) Similar result was obtained in [28] for diagonal
Ap with only a finite number of different parameters {a;} on its diagonal. The result of [20]
combined with the local law allowed to remove the four moment matching condition of [26] for
the bulk universality. The matrices with iid real entries were similarly treated recently in [18],
[11].

The main aim of the current paper is to prove bulk universality (I.3]) of the second correlation
function po(z1,292) for the ensemble (LI]) with a rather general deformation Ay which is not
restricted to be normal, to satisfy the local law, or to have a limiting spectrum in the unit disc.
We would like to mention that we expect that our proof can be transposed directly to the case
of kth correlation function if we replace 2 x 2 matrices by k X k in the argument. The only
exception is technical Lemma[3.2] (see Section [3]), where the matrix dimension is used essentially.

To get the integral representation of ps(z1, 22), we apply SUSY. Following [15], instead of the



E{logdet Y (z1)logdet Y (z2)} with Y (z) of (I3) we consider the following generating functional

L 2 det(Y(z) 4 €2) , ,
Z(<7C7€76):E{]11 det(y(zj)_i_g/é)}’ Z]‘:ZO_‘_Cj/\/ﬁv Zj:ZO_‘_Cj/\/ﬁv (16)

( =diag {¢1, ¢}, (' =diag{(1, () € =diag{er,ea}, & =¢'b.
Here we choose 21, 2o in the n~/2-neighbourhood of some point zy € D. It is easy to check that

p2(z0 + ¢j/V/n, 20 + Cj/V/n) (1.7)
= 1%(47‘()_28182%%2((, ¢ inLely,n 1 Ly)

= =, A A )
G1=(1,61=¢} ,é=¢&=el>
where in order to simplify formulas we use notations:

0 0 0 0

=t =, Og=——+—.
Lag a0k oG

(1.8)

Now suppose Ag satisfies the following conditions
Assumptions (A1)-(A3):

(A1) There are some M,d > 0 such that

n
Prob{n_l Z |A07Z’j|2 < M} >1- n1-d,
ij=1

(A2) For almost all z normalized counting measure v, , of eigenvalues of the matrix
Yo(z) := (Ao — 2)(Ap — 2)* converges, as n — 0o, to some limiting measure v,;

(A3) For any z € D° (see (L.2))) there are d;(z) > 0,e(z) > 0 such that
Prob{n_lTr (Yo(z) + 52(2))_1 >1+4 dl(z)} >1-Cln174,

Notice that in the case when Ag is non-random, assumptions (A1)-(A3) mean that starting from
some n the inequalities in (A1)-(A3) (which in the random case we want to have with probability
higher than 1 — n~'=9) are valid.

According to [27], the assumptions (A1)-(A2) guarantee that there exists a limiting distri-
bution p of the eigenvalues of (I.I]). In addition, for almost all z € C there exists a non-random
probability measure 7, on R which is a limit of the normalized counting measure of eigenvalues
of Y(z) defined in (L3]) (see [10]).

To formulate the main result of the paper we need a few notations. Denote by u, a positive
solution of the equation

/(ui + Ay, (M) =1 <= n'Tr G =1, (1.9)
Gi= (A AL +u)™!, A=Ay — 2. (1.10)

Notice that this solution is unique and the condition (A3) guarantees that u, > (z) with high
probability.



We introduce also notations for scalar characteristics of the matrix A, which appear in our
consideration below:

g2 =n"'TrG?, ka=n"'TrA.G, ha=n"'TrA.G? fa=n"1Tr(A.G)?%
Ge =(ALA, +ud)™, p=n""2Tr GG, + g5 ' |hal?. (1.11)

Theorem 1.1. Let Ag satisfies assumptions (A1)-(A3) and zo € D° (see (1.3)). Then for any
M > 0 uniformly in |(1| < M, |C2| < M we have

pQ(Zo + Cl/n1/2720 + C2/nl/2) N p2(1 _ e—P‘Cl—CQ‘Q), (1‘12)

where Z is defined by (1.6) and p is defined by (1.11]).

An important ingredient of our proof is a following proposition, which allows us to express a
weak limit of po (zo—l—Cl/nl/z, 20+C2/n1/2) in terms of the generating functional Z((, (', £z, $ 1o).

Proposition 1.1. For any z; = zo +n~ /2, 1 = 1,2 with {G}2, varying on the compact set
and any €1 > 0,e2 > 0

E{logdet Y (z1)logdet Y (22)} (1.13)
- E{ log det <Y(z1) + <%)2) log det <Y(z2) + (%)2) H < Cees.

The proof of the proposition is given in Section .11

We prove Theorem [I.1] in few steps. First, in Section 2] we construct the integral represen-
tation for Z((,(’,¢,¢") using SUSY approach. For the reader convenience, the brief outline of
the basic formulas of SUSY techniques is given in Section 2.1. The obtained integral repre-
sentation (see (2.13))) contains a large parameter n at the exponent, hence we analyse it using
a saddle-point method. Section Bl is devoted to the proof of the fact that only a small neigh-
bourhood of a saddle-point contributes to the integral. Unfortunately, the formula obtained in
Section [ after the saddle-point analysis (see (3.6)) still contains an additional multiplier n* in
front of the integral. This suggests that non-zero contribution to the integral is given by the
8-th order of the Taylor expansions at the neighbourhood of the saddle-point of all functions
under the integral. Since our functions depend on 16 variables, the corresponding expansion
looks too complicated, and we prefer to use a different method. In Section M we do a number
of changes in Grassmann and scalar variables which allow us to transform (3.6)) into an integral
which does not have additional factor n® in front of it. In addition, the obtained integral (see
(@21))) depends on Ag only through 2 scalar parameters p, u2/gs (see (ILII)). Since the same
representation is valid for Ag = 0 with a different |2{| < 1 and ( (see the argument at the end
of Section [5.2]), we conclude that the result of the limiting and differentiation procedure (L)
is universal (modulo two above scalar parameters) for any Ay satisfying assumption (A1)-(A3).
Combined with Proposition [[.1] this argument completes the proof of Theorem [I1]
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2 Integral representation

A

In this section we derive an integral representation for Z((,¢’,€,€’) using supersymmetry tech-
niques. For the reader convenience, the brief outline of the basic formulas of SUSY techniques
is given in Section 2.1. More detailed information of the techniques and its applications can be
found, e.g., in [21], [12].

2.1 SUSY techniques: basic formulas

Consider two sets of formal variables {¢;}7_;, {v; }7—; satisfying the anticommutation relations:

These two sets of variables {1; }?:1 and {E] 1 generate the Grassmann algebra 2. Taking into
account that anticommutation relations imply ¢]2- = 1;]2 = 0, all elements of 2 are polynomials
of {1; 71 and {Ej 7y of degree at most one in each variable. If such polynomial has only
monomials of even power, then it is clearly a commuting element of 2, and we call such elements
even. If the polynomial has only monomials of odd power, we call it an odd element (such
elements anticommutes with each other).

Define also functions of the Grassmann variables. Let x be an element of 2L, i.e.

X=a+ Z(aﬂ/ﬁ +bY;) + Z(aj,ijk + by kb + R UR) (2.2)
=1 i#k
Given the sufficiently smooth function f, we define by f(x) the element of 2 obtained by
substituting x — a in the Taylor series of f at the point a:

_ / f"(a) 2
fo)=a+ f@)x-a)+—5—Kx-a)+...
Since x is a polynomial of {t;}7_;, {4, 71 of the form (2.2), according to (2.I]) there exists
such [ that (x — a)! = 0, and hence the series terminates after a finite number of terms.
Following Berezin [4], we define the operation of integration with respect to the anticom-
muting variables in a formal way:

/dwj Z/d% =0, /%’dwa‘ Z/%d@j =1,

and then extend the definition to the general element of 2 by the linearity. A multiple integral is
defined to be a repeated integral. Assume also that the “differentials” dv; and d 1), anticommute
with each other and with the variables v; and 1. More precisely, if

k
F@r, k) =po+ > pinti + > Dinnin Wi + -+ DL k1 U,

Jj1=1 J1<j2
then
/f(l/m cosYR)d Yy dapy = pra ke



It is easy to see that one can perform a linear change of variables in the Grassmann integrals.
Namely, suppose

X1
x=1:1, dx=dxe. -dx,
Xk
and A is invertible complex matrix. Then if y = A(, it is easy to check that
1
dy = —— A¢)dC. 2.3
[ 100ix = 55 [ a0 (23

Notice that the “Jacobian” (which is called a “Berezinian” for the change of Grassmann vari-
ables) is an inverse determinant in contrast to the the determinant for the usual integral.
One can also perform a linear shift of variables x 4+ ¥ — x by writing

/fu+wmw=/fumX (2.4)

for any k-dimension Grassmann vector 1) with odd (anticommuting) elements (which does non
depend on x). Moreover, one can easily show that if f : R¥ — R as a sufficiently smooth function
with finite support (or exponential decay at oo), then for the usual real integral

- f(z+a)dx = /Rk f(x)dx (2.5)

for any k-dimension Grassmann vector a with even (commuting) elements (and independent of
Let A be an ordinary Hermitian matrix with a positive real part. The following Gaussian
integral is well-known

/exp{ - Z Ajkzjfk} H d%Z;d%Zj = de%cA' (2.6)

J,k=1 j=1

One of the important formulas of the Grassmann variables theory is the analog of this formula
for the Grassmann algebra (see [4]):

/ exp { -y Ajkijk} [[d%;d¢; = deta, (2.7)
j=1

jk=1

(A x
F_<77 B>’

where A and B are Hermitian complex k x k matrices such that RB > 0 and x, n are k X k
matrices of independent anticommuting Grassmann variables, and let

0= (¢17"'7¢k7$17"'7$k)t7

where {1 };?:1 are independent Grassmann variables and {:Ej};?zl are complex variables. Com-

bining (2.6]) — ([2.7) we obtain (see [4])

where A now is any n X n matrix.
Let

k

k G P
/ exp{—6°F6} [ dd; dv; [ mﬂﬂ“mﬂ — Sdet F, (2.8)

J=1 J=1




where

det (A —x B~ ')
det B

Notice that this definition allows to maintain the usual properties of determinants such as
Sdet (Fy Fy) = Sdet F} - Sdet Fj, etc. In addition, if we define

Sdet F' =

(2.9)

Str F=TrA—-TrB, (2.10)
then we have a usual properties of trace such as

Str [y Fy = Str Fo Y,
log (Sdet F) = Str (log F)

We will need also the following Hubbard-Stratonovich transform formulas based on Gaussian
integration:

eab — 7'('_1 / eaﬁ—i—bu—ﬁuda du,
e PT — / ePXHTIEXN Gy

Here a,b can be complex numbers or any even (commuting) elements of 2, and p,7 are the
odd (anticommuting) elements of 2. Applying these formulas multiple times one can get the
Hubbard-Stratonovich transform formulas in the matrix form. Let A, B are p X p matrices of
complex numbers or even elements of 2, and R, T are p X p matrices of odd elements of 2. Then

eTrAB :/eTrAW*—l—TrBW—TrWW*dVV, (211)
eTrRT :/e—TI‘I/V*'f‘TI‘VR'f‘TrV*TdV' (212)

Here W is p x p complex matrix, v = {%’,k}? e V= {Dk,j};) p—1 are p X p matrix of independent
Grassmann variables and

d d
dy = H dv;dvsg, dW = H M

s
7,k=1 7,k=1

2.2 Derivation of the integral representation for Z((,(’,¢,¢’)

The main aim of the section is to prove the following proposition:

Proposition 2.1. Given Z(¢,(',¢,¢') of (I8) with ¢ = é/n, & = €' /n we have

Z(¢, ¢ ¢/n,é n) = 32 . / dR dR; / dT/dS/dA / dU/du (2.13)

ST=ux Ho HE U(2)

X e (Q7T’S7R)E*1 (é7 A7 U)E*2 (é ) R’ R2)’




where dT above means the integration over all independent entries of T = iu o +T" (T =T"),
with us defined in (1.9), dU is a Haar measure over unitary group U(2), and

2 2
H II ¢ uk] dy (2.14)
=1 k:

is an integration with respect to 2 x 2 matrices vy, v, | = 1,2 of independent Grassmann
variables. Here

L(Q,T, S, R) :=log Sdet Q — nTr [R? 4+ 2iRT + A?] — Tr (111} + va1}), (2.15)
A® I, iA(C) n~ 2 @I, 0

- iA(Cy)* A® I, 0 n~ Y2 @ I,
=g, 0 (T+8) L, Al (2.16)

0 nV2urel, QALY (T-S)®I,

with
1

A(¢) =Iz®Az+%<®In, A, = Ay — 20, (2.17)
w=UCU*, ¢ =07\, J=R/*RY?, (2.18)

B (6, A, U) =(Tr A)? det A exp { ~ Ty (AUE + éU*A)},

(Tr R)?det R

Ex(¢,R,Ry) =
2(6 2) det2R2

exp { — Tr (¢ Ry + € Ry ' R?) } (2.19)

Proof. Introduce the sets of Grassmann and complex variables:

\Ify) = (zﬁ](ll), . ,ij(-g)t, \Ifg-l) = (1/_)](11), e ,QE](-Q)t, l=1,2, j=1,2 — Grassmann;
X](-l) = (xg-ll),...,a:gg)t, X](-l) = (:ig-ll),...,a’:gg)t, 1=1,2, j=1,2 — complex.

and use the standard linearisation formula

det(Y(2) + %) =detY(z,e), Y(z,e) = < z(H_—E 2)* Z(H_; 2 > :

Since all eigenvalues of Y (z,¢) have the real part —e, we can apply (Z6), (Z7) to write for
7=12

(det(Y'(25) + (5)) " = /dede exp{ XY (2},€5) X},

det(Y(2;) + 63) = /d\I’jd\Ifj eXp{—\I';f/(zj,sj)\I’j},

with 2n-dimensional column-vectors



] no 2 aplapl) L
aX;dx; = [T]] —IE dYAY; = T 11 d¢5ade;..
a=1]=1 a=1[=1

Thus we get
2(.¢2.) = [ 200 2(0) B(v. x) dxav,
where
2
2(X) = [T exp {iTr (Ao — )" XX i (4g - XD X~ e X5 x5, (2.20)
7j=1

2
2w =] exp{ —iTr (A — ) WO —iTr (4 - z) v

@) g (D= | g;Tr \I’;‘Pj},
j=1

J i
B, X) = E{exp {iTr H(XXO* 1+ w@u0) 4 i1 g (XD X 41w 0w@) L
with n x 2 matrices
X0 (x0,x0), 50— @00, 112
and

2 2
dX = [[dX;dX;, d¥=]]d¥,dy;.
Jj=1 Jj=1
Taking the expectation with respect to H we get

E(V,X) = exp{—lTr (X(2)X(1)* + \11(2)\11(1)*> (X(l)X(2)* + \I;(l)qj(?)*>} (2.21)
n
— exp{_l [Tr X W x (1) x @ x(2) _ W) g2 g(2)
n
Crp WD x @ @) 4y x W) g2+ X(z)} }
To explain an application of the Fourier transform, recall that, if we have functions F,o :

R" — R and f : R — R, such that F € Li(R") N Ly(R™) and f € Li(R) N Ly(R) and
f(o(X)) € L1(R") N Lz(R™), then

/ F(X)f(o(X))dX = (2n)7" / F(X) / / M=) £ () dtdrdX.
n R?’L
In our case we consider an analogue of ”condition function” ¢ of the matrix form
R =n'XWx®O =12 (2.22)

and then use corresponding matrix Fourier transform:

ns

/Z(X) Z(WE(V, X)dX = W/dX Z(X)Z(\I/)/dTldTg/deng (2.23)
T
eXp{ —iTr (nRy — XW* XY — Ty (nRy — X@*X@)T, — nTr Rle}

exp {n—l (Tr T pOg@rg@ g x O x@rg® 41y \11(2)*X(2)X(1)*\I/(1)> }

10



To deal with W-integration, we now apply the Hubbard-Stratonovich transformation (2.24]).
Namely, we write

e UM X () /e—Trme—i-n1/2TrV1\I/(1)*X(1)+nUzTrVi‘X(Z)*\I/(Z)dVl, (2.24)

2

RO A A b S A /e—Truzu;Jrn1/2Tru2\11(2)*x<2)+n1/2Tru;X<1>*\1/<1>dV

O R A I LA A n/e—nTrW*W+TrW\Il(l)*\ll(l)+TrW*\Il(2)*\Il(2)dm

) ()
Vol Voo Vg Vo

are 2 X 2 matrices of independent Grassmann variables,

w w
W = 11 12
w21 W22

is a 2 X 2 matrix of independent complex variables, and

where for [ = 1,2

2 2 _
dwpdw;
dy = [ avlanl), aw = ] 0%

Jk=1 Jk=1 T
Combining (2.24) and (2.23]), we obtain
o n12
Z(C,</,€,€/) = W /deng/dTldTg/dW/dl/ (2.25)
HY Ho

X eXp{—Tl“ (I/ll/i< + 1/21/5) —nTrWW* —inTr (R1T1 + RQTQ) —n'Tr Rle}

X /d\IJdXeXp{\IJ*Q\IJ},

where ¥, U* are super-vectors of the form

= 1 1 2 2 1 1 2 2

U — (\Il( )7\1,5 ),\Ilg )7\1,5 ),X£ )7X2( ),Xf ),Xé ))t7
AR TR LR 1B R eI <))
dv = dvy dvs,

and @ is a 8n x 8n super-matrix of the form

(W —-8)®I, iA(C) n 12y eI, 0
B iA(C)* (W*—&)® 1, 0 n~ Y2 @ I,
Q= n—1/21/§< ® I, 0 (ZTl - é/) ® I, Z.A(C/) > (226)
0 n~12ur eI, iA(C)* (iTy — €)@ I,
where ¢ = diag{¢1, (2}, ¢’ = diag{(], (5}, and A((’) is defined in (ZI7)).
Integrating with respect to d¥dX according to (28], we get
/ dUdX exp{U*QU} = Sdet Q. (2.27)

11



This implies

12
Z(¢, (8,8 = (;T)S /dedRQ/dTldTg/dW/dy

HT Ha

x exp{log Sdet Q — inTr (R T1 + RoT») — nTr R1 Ry — Tr (v1v] + vovs) — nTr WIW*}

Further, change the variables

T1—>JT1J*, 141 —)V1J*, Vf—)(J*)_lvik,
Ty — (J*) M7t vy — v L, vy — JU;
with
J=RY’RV? R =(RY*R RY*)/? (2.28)

(notice that the Berezinian of such change is 1 according to the Jacobian of the change of T}, Tb

and to (2.3])). Then
Tr RyRy = Tr Ry *Ry RY* = Tr R?,
Tr Ry JTyJ* = Tr R-Y2RY?R\RYPR™V2Ty = Tt R-Y2R2R™V2Ty = Tr RT,
Tr Ry(J*) Ty ' = Tr RV2R; Y RyRy *RV2Ty = Ty RV2RY?Ty = Tr RTy,
and hence we obtain
TL12
Z(C,C/,é,é/) = W/deng/dTldTg/dW/dV

HY Ha
x exp{log Sdet Q' + nTr[-R? — iR(T} + T5) — WW*] — Tr (1} + 10153)},

where
(W —-é)®1I, iA(C) n~2u @I, 0
o-| Ao wr-ger 0 el
| n2uer, 0 (T, — JE (T Y @ I, iA(C)) ’
0 n—1/2yik @1, iA(C)* (iTy — J*'J) @ I,

Here we used that Q' = JQJ* with

I, 0 0 0
0o L 0o o0

I=1o o gt o|®
0o 0 0 J*

The next change is

T +iJ TN =Ty, Ty+iJéET = T
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Notice that a “matrix shift” above means the change of integration contours for corresponding
matrix entries. For 17,75 it is possible if the imaginary part of “shifting matrix” is positive,
since in this case all eigenvalues of the “bosonic” block (2 x 2 block at the right bottom corner
of matrix ()1 below) have positive real parts and hence cannot be 0.

Since Tr RJ~1&'(J*)™! = Tr &Ry and Tr RJ*&'J = Tr &' Ry, we get

12
2088 = G / dR\dRs / 7T, / AW dy
HY STy=J e (J*)~1
STo=J*E'J

x exp{log Sdet Q1 — nTr [R* + & Ry + &' Ry — iR(T| + Tp) + WW*] — Tr (1105 + 1o153)},

where
(W —8)®@1, iA(C) n~ Y2 @1, 0
_ iA(C)* (W* - &)@ I, 0 n~12uy @ I,
@1 = n~V2u5 @ 1, 0 iTh ® I, iA(Ch)
0 n~\2uf e 1, iA(C))* iTy ® 1,

Let us shift the domain of integration with respect to 17, Tb to ST1 = STs = usl. Then

12
Z(¢,(eé) = (;T)g /dedRz / dT1dT2/de1/

7-[2+ ST =STo=ux

x exp{log Sdet Q1 — nTr [R?> + & Ry + &Ry — iR(T} + Ty) + WW*] — Tr (v1vf + vav3)}.

Now we are going to change variables (R;, R2) to (R, Rz). To this end we first change of the
variables (Ri, R2) to (Rs, R2) with Ry = R;1/2R3R2_1/2 (with a Jacobian det™ Ry), and then

change R3 = R? (with a Jacobian 4(Tr R)? det R, see Lemma [6.1]). We obtain

PN /(TrR)zdetR / / /
Z(¢,¢¢,¢) = 2r)F o R, dRdR dTydTy [ dW [ dv

’H; ST =STo=ux
x exp{—Tr (111} + 1p133) + log Sdet Q1 }
x exp{—nTr [R? + &Ry " R2Ry"* + &' Ry + iR(T1 + To) + WW*]}.

Finally, we make the shift W — & — W and then change
W =AU,
where A € HI, U € U(2). According to Lemma [6.2] this change gives
dW — 273 (Tr A)? det A dA dU,

where dA is the standard integral over Hg and dU is the Haar measure over U(2). If we change
also

1 1
(Tl,TQ) — (T, S), T = §(T1 —I-Tg), S = §(T1 — Tg),

13



then we get representation (2.I3)) for Z({, (', €é/n, €' /n) with Q replaced by

AU ® I, iA(C) n Y20 @I, 0
~ iA(C)* U*A® I, 0 n~ Y2 @ I,
Q= —1/2 ; A
n~ 1205 @ I, 0 (T+S)®l,  iAC))
0 n~ v eI, iA())* (T —8)® I,

Now we make one more transformation of Q. Define
Uy = diag{l,U, I, I} ® I, Uy = diag{U*, I, s, 12} ® I,.

and change .
1/2—>UI/2, l/ék —>I/SU*, Q:UlQUQ.

Notice that the Berezinian of such change is 1 according to (2.3]). Therefore, we obtain ([2.13]).
O

In Section Fl we will also use a modified form of Q, which can be obtained by replacing its
second and third rows and columns:

v (e,  iQ B A n=12y,
Q - ( ZQ* F2 ® [n> ) F1,2 - (n_1/21/§ Z(Tj: S) ’ (230)

Q:=I,®A, +n Y (®l, Q. =LA +n Y oI,
{ =diag{¢, )}, G =diag{¢), (¢))*}, ¢ =diag{¢i, &), ¢ =diag{¢], ¢}, (2:31)

where the last relation means that we represent Q as a block matrix and denote F} ®I,,1Q, Fo ®
I,,1Q, corresponding blocks. It is easy to check that

Sdet Q =Sdet (Fy  I,) - Sdet (Fl ® I, + Q(Fy ® In)_IQ*)
—Sdet (F1F2 ® I+ O(F ® I,) 10 (F ® In)).
In addition,
Str F1 Fy = Tr A2 + n = " Tr vy vf +n” ' Trogrd + Tr (T% — S?).
Hence £(Q, T, S, R) from (ZI5) can be also written in the form

£(Q,T, S, R) =log Sdet (Fng DI+ QR L) QR e In)) (2.32)
—nStr 1 Fy —nTr S% — nTr (R +4T)?

with F} ® I,, Q, F5 ® I,,, Q. defined in (2:30]) after the above change.

3 Saddle-point analysis

The main goal of the section is to find a saddle-point of £ from (2.15) and to prove that one
can restrict the integration in (2I3]) by the small neighbourhood of the saddle-point.

14



It is easy to see that log Sdet Q from (213) has the form

log Sdet Q =log det Q1 — log det Q2 + Grassm

(AR, PA(Q) _ (i T+9 eI, iA(C])
where Ql_(m(@)* A®In>’ Q2—< PA*(Ch) z‘(T—S)J®In>' (3.1)

and we denote by Grassm all terms which contain Grassmann variables.
Hence, £ of (2.15) can be rewritten as

L = n(F + F2) + Grassm, (3.2)
where

Fi=n"tlogdet Q; — Tr A2, (3.3)
Fo = —n"tlogdet Qs — Tr R?> — 2¢Tr RT.

Therefore, we need to study the behaviour of F; and F>. Introduce the function
fu) = / log(u? + \?)dvy, . (A\?) — u?. (3.5)

It is easy to see that u, defined by (LJ) is its unique maximum point for u > 0.
The main result of the section is the following proposition:
Proposition 3.1. Given any fized M > 0 we have uniformly in 0 < é < MI5,0 < ¢ < M,
¢l <M, |¢'] < M
()2Z2(¢, ¢ é/n, Ty /n) =Cnt(e)? / LELF2O B (6 uy + A /2, ) (3.6)
X Eyo(€'In, uy — iT /02, Ry) dAATdSdy + O(e~¢18" ™),

with u defined by (1.9), Hermitian 2 x 2 matrices A, T, S, and 2 x 2 matrices v, v/, | = 1,2
of independent Grassmann variables with dv of (2.14). Here functions E.1, E.o were defined in

(Z19), and
L(Fy, Fy,C) =Str log(F1Fy @ I, + Q(Fy ® I,) ' Q. (Fy @ I,)) —nStr 1 Fy — Tr S22 (3.7)

with

( uetnT2A n=1/2y, -
fi= < w20 e+ in 2T+ S) ) 1=12, (3.8)

and Q, Q, were defined in (2.30).

Poof of Proposition[31l One can see that (3.0)) can be obtained from (2Z.I3)) if we prove that
A =wu Iy, T =iu.ly, R=—iT and S = 0 is a saddle-point of £ of (B:2) and we can restrict the
integration by the O(n~/2logn) neighbourhood of the point.

Let us prove first that A = u, I is a saddle-point of F; of [33). Since A(¢) = A, +O(n~'/?)
and A*(Cy) = AX 4+ O(n~/?) for any U, we have

Fi=Fuo+0mn Y3, Fg:= / log det(A? + \2Iy)dv,, . (\?) — Tr A%
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and so one need to study a saddle-point of Fig
It is easy to see that if A = Vdiag{ui,u2}V*, then

Fro = f(ur) + fluz) < 2f(us)

where f was defined in ([B.5]). Since f(u) has only one maximum u = u* for v > 0, we obtain
that A = u. Iy is a saddle-point of Fig, and so only O(n_l/2 log n)-neighbourhood of u,Is can
contribute to our integral. Expanding F; around w2 up to the first order, we get

Fi ~ 2f (w) +n7 V2 (kaTe ¢* + kaTr Q) + O(n™h). (3.9)

with k4 of (LII)).

Analysis of saddle-points of F5 is more involved than that of F; since the structure of
Fo is more complicated. Another difficulty comes from the fact that for some R, Ry we have
15~ n'/2, and so we cannot neglect this term in the saddle-point analysis (in contrast to
(v appearing in F7). Hence, first of all we need to exclude the situation when ||¢/;|| is big, i.e.
ICy 1> logn.

We denote by w the set of all integration parameters in (2.I3) and consider the sets

0 ={w: Hn_1/2R2_1/2C/R;/2H >n"2logn v €Tr Ry > log? n}, (3.10)
Qo ={w:||R|| > MV |R7'>6"), 6.:=log 'n,

Qs ={w : |T — iu o] > n"?logn V |R+iT| > n""?logn} N QS NQS,

Q ={w: ||S]| > n " ?logn} N QS N Q5N QS,

where we denote by €2 the complement of €2;.
The assertion of Proposition B.1] will follow from the bounds

e (1g,) <e BT =1, 4, (3.11)

if they hold uniformly in 0 < é < M,0 < ¢ < M, |¢| < M,|¢'| < M with any fixed M. Here we
denote by (¢) the integral of the form (2.I3]) with a function ¢ added as a multiplier before the
exponent. We also set

L= —n*?(kaStré, + kaStr() (3.12)

(see (IIT)) for the definition of k4 and (Z31)) for the definition of ¢ and ¢,). This term appears
in the expansion of £ of ([B.2)) near its saddle-point (see, e.g. (B.9)). Since at the end of our
proof after some differentiation procedure we put ¢ = ¢/, and then get £ = 0, this term is not
important for us (see the discussion after formula ([£.22]) in Section @).

The multiplier €2 in (3.I1)) appears because of F,y in (ZI3]). We need to control the depen-
dence of the bounds on € since in Section 5.1l we need to integrate over € from ¢’ = 0.

Below we use also that if RR? > g, then

dRy

‘ / mexp{—e'TrRzRQ_I — ¢'Tr Ry} (3.13)

e, /0 /0 dprdpa(p7t — py )2 exp{—€ (Gt + o3 ) + pr + p2)} < C(60e) Y.
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Here we change dRo over the positive Hermitian matrices to the integration with respect to
eigenvalues pi, p2 of Ry. Then Jacobian 5(p1 — p2)? divided by (det R2)? gives the multiplier
(ort =y )2

Integrating first with respect to R and then with respect to Ro, we get the bound

/ det R (Tr R)%dR / % exp{—€Tr R*R;' — ¢'Tr Ry — nTr R*} (3.14)
2

dp1dpa
o[ [ s
n+€P1 (n+€P1 )Plpz

) dp1dpz _ _ o
_0/ / np1—|-e 2y 1 )2 PP H 7)) < Clne) 2,

Bound (B.I1)) for ©; follows from the lemma

Lemma 3.1. Denote by I(R3) the integral which we obtain if in (213) fiz Ry and integrate with
respect to the rest of parameters. Then there are some fixed positive py,ps such that

exp{ —nlog (1 + Hn_1/2R_1/2CR1/2H /2us > —€Tr (Ry + uiRQ_I)}
(3.15)

where L is defined in [312).

The proof of the lemma is given after the proof of Proposition B.11
Note that if we are in 2f N QF, then

”n_1/2CJ” S M1/25*—1/2Hn—1/2R2—1/2§R;/2H S Cn—1/210g2n

and we can consider saddle-points of 75 of (2.30) with ¢ = 0 only, as we did for Fj.

Now let us prove (B.II) for Qy. For ||R| > M the bound is evident, since we have the
term —nTr R? at the exponent (so it is sufficient to move the integration with respect to T' to
T =i+ T"). Suppose now |R™!|| > 6, which means that r, the minimum eigenvalue of R,
satisfies the bound r2 < d,. Move the integration with respect to 7" such that in the basis of
eigenvectors of R > 0 we have 711 =i + R and Thy € 0, + R, Tio = Tp;. Then

RF, = —n 'Rlogdet Qz — R(2iTr TR + Tr R?)
< —logd; ' +2r +2 -1 —r2 < —logd; ! +8— Tr R%/2,

and [B3.14) (with Tr R? replaced by Tr R%/2) gives us the uniform with respect to ¢ bound of
the type (BI1I)) for Q.

To study the contribution of S to F» we need one more lemma. Set

Q={t:n/4<argt < 3m/4}. (3.16)
Lemma 3.2. Set
([ T+S AL
M(T, S, A1) = < A, T-S ) . (3.17)

Then for any ty,to € OQ with Q of (318), T = diag{t1,t2}, A >0 and S = S* we have
Rlogdet M(T, S, \I) > Rlogdet M(T,0,\I5). (3.18)
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Corollary 3.1. By the mazximum principle inequality (318) is valid for all t1,ts € Q.

It follows from the corollary that for any normal T' with eigenvalues ti,t, € € the point
S =0 is a maximum point for RF2(T,S), and hence the integration over S can be restricted to
a small neighbourhood of S = 0. In particular, it implies (B.11]) for Q4.

Let us consider R in the basis of eigenvectors of T'. The complement of (2o in the set of
positive matrices are the matrices of the form

R=06,+R, R>0.
For simplicity, we will omit the tilde below, i.e. change the R integration R — d,Io + R with
Ri1 >0, Ryp >0, Rig = Ro1,  |Ri2> < RyiRas.

Furthermore, the integration with respect to R can be replaced by the integration by Ri1, Rao,
Ris = ei¢9(R11R22)1/2 (0<0<1,0<¢<2m). Then we have at the exponent

—n(R2, + R2, 4+ 20%R11 Ryy) — 2inTr RT — n(20,(Tr R+ iTr T) + n~2p(R)) (3.19)

with some analytic function ¢(R).
For t1,to which are eigenvalues of T' we set the integration contour as follows

L=LoULLUL_, Lo={tr)=(—u+ir)"2,3t(r) < M}, (3.20)
Ly={ty(M)+71,7>0}, L_={t_(M)—r7,7>0},

where we have chosen a branch of the root such that ¢(0) = iu., and denote by t4(M),t_(M)
the points of intersection of ¢(7) with the line 3t = M. Note that

—Rt2 <202, teLlLnQ (3.21)

Indeed, for t € Ly we have —Rt? = u2 by the definition, and for t =t +7,0 <7 < M — Rt
i +0O(M™?) = —Rt* <22
2M -

Now for any t1,ts € L choose the contour of integration with respect to R11 and Rao

Rty — M| <

Ry1 € L(t1), Rag € ,C(tg), ,C(t) = [O, —it — 5*] U [—it — Oy, +OO), (3.22)

We remark here that for any ¢ the contribution of the integral with respect to
R;; € [—it — 6. +n"/?logn, oo] will be O(e‘CIOgZ"), hence we do not consider it in details. It
means that in all bounds below it is sufficient to consider R;; = (—it; — 0,)7j, 7; € [0,1], and
hence we can write
%{—H(Rjj + (5*)2 — 2ZH(RH + (5*)tj} = —n(l — Tj)2§R(—(5* — itj)2 — n?Rt? (323)
= —nRt3(1 — (1 —175)%) + O(nd,).

For t1,to € L1 & Q (tig =M+ 012+ iM, 61,02 > 0) we have the bound

WRFs <R{— log et Q(T, ) + nK (1, 7) + O(né.)},
K(1,72,0) :(7'12 —271)A; + (7'22 —279)As + 20271798, (3.24)
Ay =Rt2, Ay =Rt:, B =Rtyto.
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In this case

Ar =Rt} = (M +61)* = M?, Ay = Rt5 = (M +65)° — M?,
B = Rtqty = (M+51)(M—|—52) — M2,

where 41, 09 are some positive numbers. Let us check that
K(Tl,Tg,e) < 0. (325)

If one of 71,7y is zero, then (B.25)) is evident, since Ay, Ay are positive and 72 — 27; < 0. Since
fort1,to € L1 & Q we have B > 0, for 71,7 > 0 the maximum in 6 could be obtained only with
6 = 1. Note also that for fixed 79 K(71,72,1) is quadratic with respect to 71 with a positive
coefficient A; in front of 7'12, and hence the maximum in 7 can be achieved only at 71 = 0 or 1.
By the same reason 7o = 0 or 1. Finally,

K(1,1,1) = —(6; — 2)2 <0,
which finishes the proof of (8:25]). It implies
nRFy < —2nlog M.

Remark also that in this case we do not have the bound RR? > &y needed for ([BI3]), but, since
we are in 2], the integral of Ey is bounded by

_ _ c [ dps log? n
/ dprdpa(pit — py ') exp{—€(p1 + pa)} < —,/ L <o—=.
p1>pa>e’/log?n € Je'/log?n P2 €

Taking into account the above bound for RF5, this gives ([B.1I).
The cases t1,to € L_ and t; € L4, 1y € L (t1,t2 & ) can be analysed similarly.
When t1 € Q, to € Q (t1 = M + 61 +iM) we have
nRFy <R{—1og Q(T, S) + nK (11, 79) — nt3 + O(nd,)}
K(71,79,0) =(78 — 211) A1 + (1 — 12)? Ay + 20°71 15 B.
Again we want to check (8:25]). Since A; > 0, Ay < 0, the non-trivial case is B > 0. Then
again one should consider # = 1, since B > 0, and 71 = 0 or 1, since A1 > 0. If ; = 0,
RK (11, 72,1) <0. If 4 = 1, it is easy to see that ‘the maximum point in 73 is 72 = 1. But setting
to = x + iy and using that z <y < M, for t5 € Q, we get
K(1,1,1) = — Ay + 2B = —(2M &1 + 63) + 2((M + &)z — My)
< — (2M6y 4 62) + 2612 < —(2M 6y + 63) + 26, M, = —5?

which finishes the proof of ([3.25)). Then, using (3.21]), we obtain

nRFy <R{  max Q{—?Rlog det Q(T, S) — nRt2}} < exp{—n(log M — 2u?)}.

t1€L4 t2ELHN
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We are left to consider the case when t1,t9 € Q. Since in this case Rt1ts < 0, one should
consider only the case # = 0. Using Lemma [3.2] we obtain

nRFy <R{—logdet Q(T, S) — 2niTr TR — Tr R? + n'/?p(R) + O(né,)}
=R{—logdet Q(T, S) — nTr T? + O(n'/?) + O(nd,)}
< R{—logdet Q(T,0) — nTrT? + O(n'/?) + O(né,)}
=R{n(f1(t1) + fi(t2)) + O(n*?) + O(nd,)}, (3.26)

fi(t) = — / log(\? — t3)dv, (\?) — t2.
Since —t? = u? — it (t € Ly), we have evidently

R(f1(t1) + fi(t2)) < —2f(us),

where f was defined in ([B.5]). Observe also that for ¢1, ty sufficiently close to iu,. we can use the
first line of (3.23)), and since the first term in the r.h.s. here becomes negative for 7; < 1, we get

nRFy < —2nf(uy) + O(n'/?), (3.27)

for all t1,ts, 71, 72,0 belonging to our contours. In addition, for T = tu, + 17" with TV = T"*,
|T"|| ~ n~='/?logn, expanding the functions near T" = iu, o, we obtain

—Rlog det Q(ius + T',0) — nTr (iuy +T')? < —2nf(us) — neaTr T < —2nf(us) — c2log?n
with ¢; = —f"(uy) > 0. Besides, O(n'/?) term in F27) becomes n'/2(—ksTr¢™* — ks Tr ).
Hence, using (3.9), we obtain (BI1]) for Q3. This completes the proof of Proposition Bl

]

Proof of Lemma [31. Let us come back to our construction of the integral representation
(221) and apply the matrix Fourier transform for the function ([Z22]) with j = 2. We have

I(Ry) =Cn'? / dXdVdT, Z(X)Z(¥)
exp { —n ' XM Ry X W* 4Ty (X(2)*X(2) —nRy)Th
-1 @ W+ gOg@*g@ ¢ gD x O x@*p@ 4 mpp@* x @) X(l)*\y(l)) }

where Z(X) and Z(¥) were defined in 220). Applying (Z24) to the terms in the last line and
integrating with respect to d¥, we get

I(Ry) =Cn'? / dXdTydAdUdv Z(X)E. (é,A,U)

exp{ —n e XMW Ry XM* — (¢ /n)Tr XP* X @ 4 iTr (X@* X3 — nRy)T

+nFi(A - Z Tr G(A) XDy k) x k) _ (18 4 V2V;)}’
7,k=1
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where Fj is defined in (B3]), F. is defined in ([219), and for A = Udiag{ui,us}U* we set
G(A) = Udiag{(A*A, +u?)™1, (A2 A, +u3)~1}U*. Since the sum at the exponent is a quadratic
form of a finite number of Grassman variables, we can write

P

exp{ Z Tr G(A) XD (j),,(k)*X(k)*} -y _< 1 Z Tr G(A LG (k)*X(k)*>m

7,k=1 m=0

with some fixed p. Using a saddle-point analysis with respect to Fi, we conclude that G(A)
above can be replaced by Iy ® (AtA, + u?)™! + o(1) and Fi(A) by its expansion (B.J) near
the saddle-point. Then, integrating first with respect to X, X(U* and then with respect to
X@ Xx@* we get

(R2) _ e2nf(u*)+n1/2(kATr<*+kATrC) (R2)
I(Ry) = CnP'(det R.)~ / PXP X R)IXPATLE,(¢,A,U)

exp{—TrA*(C)A(C)X( JRAX@* — (¢ /n)Tr XB X 4 iTr (X@*X®) — nRy) Ty},

(detR /dTgP Ty, R.)

X exp{ —log det <(—1T2 +e/n) @I, + A ()R ® In)A(C/)) —inTr RQTQ}.

Here k4 is defined by (L1I), f is defined by (3.5), Re = Ra + ¢ /n, P(X®, X@* R,) is some
polynomial of (X @, x (2)*), and P (T, Ry) is a result of the application of the Wick theorem to
P(X®, Xx@* R,). Here P(X®, X?* R,) and P(T3, R.) satisfies the bounds

IP(X®, X®* R)| < C(det R)™I(n ' Tr X@* x @),
IP(XP, Xx@* R)| < C(det R)™ q||((—z'T2—|—e/n)®In+A*(§)R;1®InA(C))_1||2p.

Changing the variables

Ty +ie' /n = R-Y2TR-Y?, (3.28)
we get
I(Ry) = CnP(det R.) ™4 / P(T, R.)dT exp{—log det(—iT ® I,, + A*(Ck)A(Ck))
—inTr Ty — €Tr Ry + i€ Tr TR},
where (, = 1/2§’ 12 ,and P(T, R.) is a result of the change 3:28) in P(T%, R.). Move the

integration over T to iu2 + T’ with 7" = (T")*. Then evidently

R{—log det(u? — iT" @ I,4+A*(CR)A(CR)) + 2nu? — inTr T' — € Tr Ry — €' Tr (u? — iT") R}
—log det(u? + A*(CR)A(CR)) + 2nu? — €Tr (Ry + u2R. 1)

1
— 5 logdet(1 + CHT') ® I), (3.29)
where C¢ = (u2 + (| A|| + |[n~Y2¢R[)?) 7, and for B = u? + A*(¢%)A((h) we used the bound
R{—2log det(B + iM)} = —2log det B — log det(1 + B~/2M B~ MB~/?)
< —2logdet B — logdet(1 + C*M?)
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valid for any matrices B > 0, M = M*, if B=' > C.
In addition, denoting G = (u? + AZA,)~!, we get

—log det(u?+A*(CR)A(CR)) = — log det(u? + Iy ® ATA,)
—logdet(1+n"V2¢H @ GV2AGY? + nTV2L @ GVPALGY? + 0T (R ® G).

Continuing transformations, we obtain
D :=logdet(1+n "2} ® GY2A.GY? + n7 V2 @ GMPALGY? + MR ® G)
= log det ((1 +n Y2 @ GVPALGY) (1 + 0 V2, © GVPARGH?)
07 G ® G - A.GADG?),
To simplify formulas below, denote

K =G'Y?4:G'?, Ky=GY?(1 — A,GA)GY? = u?GV?GGY?, G = w2+ A A7}
V=14+n"Y2('9K=(14+n"Y)} oK)= (R?*@L,)Y(R2®1,).

Then

D =logdetY + logdet Y*
+logdet(1+n ' (RY/? ® I,)Y T ('R @ Ko)(Y*) M (R? @ 1,,)).

Since n~!Tr K = ky, and | K|| < C ,we get
logdet Y 4+ det Y* = n'/2(kaTr ¢™* + kaTr ') + O(1),
Y=l =140n"?).
Hence, using the bound Ky > u; 2,
—D = — 2 (kg Tr ¢ 4+ kaTr ¢') + O(1) — logdet(1 +n"'Ch(r @ Ko + O(n 2 ||n=Y2¢g|1?)
< =2 (ksTe ¢ + kaTr¢') — O(1) — nlogdet(1 + |[n = /2¢Cx|?/2u2).
The above bounds imply
— log det(uf + A*(CR)A(CR)) + 2nuf
< =2nf(uy) — n (ks Tr ¢ 4+ kaTr ¢') — nlogdet(1 + |[n~Y2¢x|? /2u2),

and this inequality combined with bound ([B3:29)) yields (B.13]).

]

Proof of Lemma [32. Consider the case when argt; = argty = n/4, T = /4T, T > 0.
Then

det M(T, S, \Iy) =det T2 det M (e™/*, Sy, D) = det T2 det (e”/414 + M(0, S, D))
Sp =T Y28T-Y2  D=XT'
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It is easy to see that if \’ is an eigenvalue of Mg = M (0, St, D) with eigenvector (z,y) (z,y € C?
then (—)') also is an eigenvalue of M(0, S7, D) with eigenvector (y, —z). Hence

[det (¢7/11, + M0, 87, D))| = (M + € (A0 + 67 g+ @) (< + 6|

:‘()\‘f +1)(\3 + 1)‘1/2 = ‘1 + %Trj\/lé + (det MO)Q(W.
But
%Trj\/l‘l =Ty ((s% + D)2 4 [Sy, D] [ST,D]*> > Tr D*
and
det My = det ( _l;T 55 > = det Ddet (D + SpD™'Sp) > det D,
Hence,
1+ %T&Mé + (det Mg)? > 1+ Tr D* + (det D?)? =1 + %T&Mé + (det M)? o

and we obtain (3.18]).
The case when argt; = argte = —7/4 is similar.
Consider now the case t; = Tle”/ 4ty = 7'263”/ 4
formulas below we set

with 71 > 0 and 5 > 0. In order to simplify

Then straightforward computations yield
D :=det M(T, S, \I5) = det ((T 8T - S) — )\2> (3.30)
= (712722 + 2lcfrim + d(S)> + i(Tg(sf +A%) —7i(s5 + A2)> = A+iB
d(S) :=det(S% + A?) = |c|* 4 2|c|*(\? — s189) + (57 + A?)(s3 + \?).
Notice first that since d(S) > 0, if A = 0, then
|D| > |det M(T,0,0)|,

i.e. (BI8)) holds. Thus, it remains to consider the case A # 0.
Consider the critical point of |D|? with respect to parameters sq, s, |¢|. Differentiation with
respect to s1, so yields

4 2 —
{ dy, A+21551B =0 . ’7‘1282d/81 + 7.228161/82 =0, (3.31)

d, A —2r2s:B =0

where
d;l = 2(31(35 + )\2) — \0\232), d;z = 2(32(3% + )\2) — ]6]231).

Here we used that D # 0, hence A, B cannot be zeros both. The relations imply

5189 <7'12(s% +A%) 472 (s? + )\2)) — |e? <7'123§ + 7'223%> =0. (3.32)
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Differentiation with respect to |c| gives
ATC‘ = dlc|(T172 + |c|? + A% — 5159) = 0, (3.33)
since A > 0. If ¢ = 0, then
D| = |(i1f — 57 — A?)(—ir3 — 5 — A})| > |(i1f — \?)(—iT5 — A?)| = | det M(T,0,\L)|.
If ¢ # 0, then, combining (B33 with (332)), we get
(rima + 162 + X2 (7 (3 4+ 2%) + 73 (st + X)) = |ef? (253 +3s) = 0
SN2 (1 +73) + (rim + )\2)<7'12(s% +A?) o (s34 )\2)) =0.

But since 7 > 0, 7o > 0, the last relation cannot be valid for A # 0.
Therefore, inequality (B.I8]) holds in any critical point of |D| with respect to sq,s2 and c.
Notice also, that
d(S) = det(S? + \?) > \?Tr 52,

and hence, according to (3.30)),
ID]? = A% + B2 > A% > d(5)* > M (Tr §?)2.

Thus, if A # 0, |D| — oo if at least one of |s1], |s2| or |c| goes to infinity. This implies that the
minimum point of |D| with respect to s1,$2 and ¢ is a finite critical point, and so (B8] holds
at the minimum point, thus, holds everywhere. [

4 Advanced representation

Consider Z of (B.0). In this section we make a number of changes of variables transforming (B.6)
to a universal form which allows to prove Theorem [l

Proposition 4.1. Given Z of (L.0) with é = n='¢ = n=diag{ey, 2}, & = n~1e'I5, we have

81828%8%2 G=Cla=) 81820%8%2@ G1=¢Ca=¢s’ @D
where 01,0 are defined by (I.8),
80,006 = [ e (Lol (A UT S, )}
x By (¢, %, X", Ra, U)dAdTdSdrdr* dxdy*dUdRs, (4.2)
Lo(ulge,C, AU, T, S, Fy) i= —“3292 Sdet AZ + pSdet Fol, Fy '¢ — Tr S2, (4.3)
Ao =Fy Yo+ V1F; !, (4.4)
Fy=1+P(X?*)+ X, (4.5)

XZ(-?@ >0<> Yl:(ﬁ* z'(Tj—S))’ YF(? i(T/iS)>’ (4.6)
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with A,T,S, and Ry > 0 being 2 x 2 Hermitian matrices, U being a 2 X 2 unitary matriz, and
X, X7, 8, K5 being 2 X 2 matrices of independent Grassmann, and C, (. having the form

¢ =diag{C,Ch ), Go=ding{UCT™ R} ¢hy = '¢o, o= Ry*(1—x )4,
The function P(\) of ({4-3) has a form
PO =VI+A-1, (4.7)
p is defined by (LI1)), and

A2 T — - T2 /T — X
E.(6,¢,x, X" Ra,U) =2 v géR VIZx eXP{—u*Tr(UéJr@U*)\/l—XX*
€ 2
(4.8)

— u'Tr (Ry + RyY(1— X*X))} +0(n~?).
Proof. First let us transform £ of (3.7). Using an expression for Q of (Z30)), we get
L(F1,F,¢) = Str log (I ® (A, A% +u?) + (FLF —u?) ® I,
V2@ A4 VPR R @ A+ F R © 1) — nStr By Fy — Tr S2.
where (, (, are defined in 231])). Since
Str log(Iy ® (A, A% +u?)) = 0,

using G defined in (LI0), we obtain

L(F1, Fy, ) = Str log (14 ® I+ (FIF —u2) ® G

I n—l/zé ® A*G + n—1/2F2—1§*F2 ®A,G+ n_lfFQ_lf*Fg ® G> —nStrF{ Fy — Tr 2.

Let us introduce new 2 x 2 Grassmann matrices x, x*, x, &* and 4 x 4 super-matrices X and Y7 o
with the relations (4.6) combined with

v =k + n1/2u*x, Uy =K — n1/2u*x, vi = k" + n1/2u*x*, vy = K" — n1/2u*x*, (4.9)
dvidvedvidry = Cn~*u;Sdrdrk* dydx*,
Fi=u,(14+X)4+n"Y2Y], F=u,(1—-X)+n" Y2y,

Here we used (2.3]) — (2.5).

Observe that the above change of Grassmann variables eliminates the factor n* in front of
integral in ([3.6). Now set

A ::n1/2(F1F2 — uz) = Usx Y1 + U Yo — n1/2u3X2 +n V2V Yo + u XYy — Uy Y1 X, (4.10)
Ay :=( @ AIG+ Fy ' F ® A,G+n V2 F R e G.

Then

L(Fy, Fs, CA) = Str log(ly ® I, + nPA® G+ n_1/2A1) —n'/2Str A — Tr S2.
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Take the function P of (A7) and make the change of variables in (A.10])
Y, =Y, +n'?u,P(X?), 1=1,2,
i.e. change (see (2.3))
A=N+n"2u,P(—xx"), T=T —in"?u,P(—x*x). (4.11)

Then, using that

Py =u.Fy+ n_l/zYl/, = u*FO_l + n_1/2Y2/
with Fy of ([@H]), we obtain that A takes the form

A =u (Y{Fyt + FyYs) + n'/2u2(P2(X?) + 2P(X?) — X2) + n~V/2Y]Y;y.

Because of (4.7, the coefficient at n'/2 equals to 0. Thus

A =, (YFy ' + FoYy) + nV2Y]Yy.

Hence
A =u, (Y{F;' + ByY)) + O(n~Y?) == u,Ag + O(n~1/?) (4.12)
L :n1/2StrA(TrG - 1) n!/2Str gTrA G 4 piagy e, 4G (4.13)
n n
T 1 T : 1
+ StrCFy YRy G 5Str L ~Str (A ® G)A;
* 2
_ §Str (CQ)Tr (AZG) . —Str (C*)2Tr (f:lZG)
. . TrA,GA
— Str CFOC*Fo_erM —Tr % + O(n~Y2).
It is easy to see that
1 ~Tr A* 2 2 T Az 2
“Str(A®G)A = StrA(CrTZG + FOC*F()_erG> +0(n"12).

According to (L), the coefficient at Str A in (@I3) is zero. Hence, using notations (LIT), we
get

fA fA

£ =n'/? (/;Aswé + kaStr g;) JAG (2~ TAgty 2 (4.14)

+ (1 - w> Str CFOC*FO_l

92“’*

Str A2 — u,Str Ag <hAC + haFoC Fy ) ~TrS2

Notice that

UG A2 S A (ha +hakoloFy ) = P+ Mg gy
5 StrAg —u o) = 5, 20

) o . 2
Byl - %Str (u*Ao +95" (haC + hAFOC*FO_l)> '
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Let us find the matrix C satisfying the equation
FoC +CFy Y = (gous) ™! (ﬁAé + hAFof*F(;l). (4.15)

The standard method to solve such equations is to consider any matrix M : C*> — C? as a vector
in C2® C?
M — M@ Z M;je; @ e;j.

Then equation (£I5]) corresponds to the equation
_ - 4 . (v)
FN = (ggu*)_l(hAC+hA(F()_1C*F0)) . Fi=FooL+IioE ™ (4.16)

where (Fo_l)T is Fy transposed. F is evidently invertible, since
F:2[4®I4+F1®[4+I4®Fg,

where the entries of I'y and I'y are polynomials of Grassmann variables with zero numerical
parts. Therefore, we get

> MMy @I+ [ @TY . .
Z 1 ;lm+14 ) <hAC+hAF0 1C*F()).

U
*g2 m—0

To check that C is a super-matrix, it suffices to check that if M is a super-matrix , then the
vector (T @ Iy + I, ® FT) M®) also corresponds to a super-matrix. But similarly to (2§

(T @ Iy + Iy @ THYM® ~ Ty M + MTs,

and the r.h.s. above is a super-matrix since I'1 M and MT's are super-matrices.
Now, again using (2.4) — (2.5), we make another change of variables

=

V/=Y,-C, Y= _— = 1,2 4.1
1 l Ca l < P T+(—1)l+15 >7 l s 4y ( 7)
A:A+Cll, T:T—iCQQ, kF=k+Cro, K =&r"+Co,

where C;; is the ij-th 2 x 2-block of the 4 x 4 super-matrix C. Then
Do + g3 (haC + haFoCFyt) — FoYa + YiFy ! =: A, (4.18)
and so using notation (LII)) we can write £ of (#I4]) in the form
2 7 2
o V2(FaStr sy (fa - Phyger o (fa Mg e
£ =n*2(ksStr ¢ + kaStr C,) (2 e )St &2 (2 292>Str(C*)
Tr A,GA} hal? fs u? .«
n (1— rA.GAG | |l )StrCFOC*FO_l— P20 gtr A2 — Ty S2.
n g2 2
Then identities
NG =Gy, TACAC R TrGG (4.19)
n n
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combined with (L9)) yield

L=Ly+ £07
r 7,2 2
=2 (K ; 2\ (fa i o (fa T 22
L1 =n <chStr§—|—kAStrC*) ( : 292)Str§ ( . 292)Str @ (4.20)
with Lo of (£3]). Hence,
Z(C,¢ ¢/, @ In) = e10((, L, (" 6 ) (4.21)

with ® of (£2)). The expression for F, follows from (ZI9) and (B, if we make here changes of
variables ([AI1)), (AI7) and Ry — u.Ry. Indeed, these changes give us

T =T +iCas — iuv/nP(—x*x),
thus,
Uy +in V2T = /1 — X*x + in_1/2(f +iCa2).
Similarly,
Ue + 12N = u /1T — xx* + n_l/Q(INX —C11)-

We also used that
det /1 — x*x -det /1 —xx*=1.
It follows from the consideration above that we need to consider
o 0 ISR
68 ————e£1q> 474/74*7C*7é7é, )
296 06 ( ) G=¢!,¢2=¢}

where £; is defined in (£20]), ® is defined in ([@.2]), and 0y, 02 are defined in (L.§]). Since

(4.22)

01Str¢ = dStr{ =0, aStr¢?| =0, 0Str(?

1:<1

/:()7

2:C2

we obtain zero in ([E2Z)) if at least one of the derivatives 9y, 9o is applied to e“1. Moreover, since
for any £ € C

Z(Cl + £7C27<i + faCéaC_l + gv C_Qvg_{ + 57 é_.é)

a=¢.,q=¢ 7
eXp{‘Cl (Cl + 57 C27 C{ + 57 Cév C_l + 57 4_.27 C_{ + 57 é_.é)}

a=¢,a=C]
do not depend on £, we observe that ® possesses the same property. Then differentiating with
respect to RE and € we obtain

81(1)(67 5/7 5*7 él*v é) él)

9

G1=¢{,0=(] B
and similarly

- _ =0
(2=(5,62=Cy
Thus we conclude that only a term in (£22]) which has all derivatives applied to ® gives a

non-zero contribution which implies (@.1]).
O

82@(67 6/7 6*7 é_/*a €7 él)
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5 Proof of the main results

5.1 Proof of Proposition [1.1]
Denote D(eq, €2, ) the Lh.s. of (II3]). We use a trivial formula

€1 €2 2
Dler, e5) = / / ae?aezE{log(Y(zl)—|—(el/n)z)log(Y(ZQ)+(62/n)2)}d61d62

/ / Oe10eo C < E/n ¢ /n) 6'1=e1,6'2=62d61d52-

Observe that if we denote G(z,¢) = (Y (2) + (¢/n)?)7!, then

82
OJe10¢€a

6162

_ G2

Z(¢, ¢ e/n, € /n) e, — E{TrG(z1,e1)Tr G(22,€2) }

LEEVH(Tr G, ) EVH(Tr (G2, €2))

and

€2 9 0? .
SRR G(2,0)) = 55 2(0,0,¢/melo/),

é=elo

Using (421 for Z(0,é/n,e'Is/n), one can see that the matrix € appears only in the term
E.(é,A,U) and

0? . B . )
9e,00 Eq(6,AU) = u2e T (AUe+¢(AU)* )((UA)U + (AU)7)((AU)ag + (AU)L,). (5.1)

To integrate with respect to U observe that for ( = ¢’ = 0 U appears in (£2I)) only in F,;.
Changing variable U — UD with D = diag{e’®!,e*?} and integrating with respect to ¢1, ¢o,
we obtain

8 E*l E A U)
Trr =
v /dU 861862

2 . )
:ui(%)_z/dU dn (€ (AU)11 + e~ (AU e (7 (AU ke AU
0

2 ‘ ‘
X Ao (9 (AU )ag + €792 (AU )5y ) e (e 2 (AU)22 e~ "2 (AU)3,)
0

Then, integrating by parts with respect ¢1, ¢2, we conclude that
IU = €1 €2I~U

with some Ij; uniformly bounded in €;, €. Now the inequality

/ / e erreatuer +02 D)) gy dpy < (')

yields the bound
82
861862
which completes the proof of Proposition [[.1l [

<0,

Z(0,0,€é/n,ely/n)

€1=€,e2=¢€
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5.2 Proof of Theorem .71

To prove Theorem [[I} take any finitely supported function ¢ ({1, (1, (2, (2) which possesses 4
bounded derivatives and write, using (£I]) combined with integration by parts with respect to

d¢1d¢idCadCs,

~ ~ ~t

_ _ o 0 A
/@(C17C17<27<2)<6162 q>(<7</7<*7<*7é7é/)

06 96 a=¢.6=4
782 o E{logdetY logdetY d¢1dCidCodC:
00 B, BB det Y (21) log det ¥ (=)} ) dGr dCrdGadCy
o2 92 2 e
50,7 36357 v o) (B Tomdet (¥ (1) + (T1) ) tomdet (V) + (1))}

— E{log det Y (21) log det Y(Zg)}) d¢1d¢idCadCs.

Since according to Proposition [[.T] the r.h.s. here tends to 0, as € — 0, we conclude that in the
weak sense

lim pp, (20 + Cin Y2, 20 + Gen~Y?)
n—oo

o 0 sy
= (47)"?lim lim 9,0 ¢, ¢ )
(4) ™" limy lin_ 0y 29¢1 0y (G C ) C1=C],61=C e=e/=cI

On the other hand, in the case Ay = 0 (i.e. pure Ginibre case), |Z|> = 1 — gou? (recall that
gu <n'TrG =1), ¢ = p'/2¢, (' = p'/2¢" we obtain the same expression (Z2I)) for ®. Hence
the limit which we get after differentiation in the r.h.s. of (4.1 and then sending ¢ — 0 up to
the multiplicative constant coincides with that for Ag = 0 with parameters 20,5 chosen above:

Jim py(z + /v, 2 + Cofv/m) = Co(1 — e PGl

which coincides with (II2]). Here we also used Proposition [I1]
The constant Cy can be found from the condition

lim  lim po(z+ G /v, 2+ G/vVn) = p?

‘Cl C2|—>°0 n—o00

which concludes the proof of Theorem LIl

6 Appendix

Lemma 6.1. For any integrable function f we have

/f(A) dA =4 /(TrB)2detB'f(Bz)dB. (6.1)

H3 Hy

Proof. Let us change the variables A = V*MV, where V is a unitary matrix and M =
diag{p1, pa}, p1, o > 0. The Jacobian is 2m(u1 — p2)? (see e.g. [17]). We get

/ f(A)dA = 2r / (1 — p2)?f(V*MV) dMdV.
HJr
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Then change the variables p; — ,u?, 7 =1,2. It follows

[ 1A =sn [+ 2 = pa P f VN2V datav.

My
Finally, we do the reverse change B = V*MV and get (6.1]). O
Lemma 6.2. For any integrable function f we have

/ FOVYdAW™*dW = 2r® / (Tr A)? det AdA / dU f(AU), (6.2)
Hy U(2)

where the first integral is over the space of 2 X 2 matrices with complex entries.
Proof. Let us change the variables W = V*MU, where U and V are unitary matrices and

M = diag{p1, 2}, p1, po > 0. The Jacobian is 47t (u? — p3)?u1p2 (see e.g. [I7]). We get

[ awaw pw) =t [ = )P (v M0) aMavav.

Then change the variables A = V*MV with a Jacobian (27(u1 — p2)?)
follows

(see e.g. [17]). Tt

/dW*dW fW) =27 /(Ml + p2)” 1 pradAdU f(AV*U).

A Haar measure is invariant w.r.t. shifts. Therefore, after the shift U — VU we immediately

obtain (6.2]). O
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