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Matrix geometric means between two positive definite matrices can be defined

equivalently from distinct perspectives – as solutions to certain nonlinear systems of

equations, as points along geodesics in Riemannian geometry, and as solutions to cer-

tain optimisation problems. This diversity already suggests the potential for varied

applications, as well as acting as a bridge between different domains. Here we devise

new quantum subroutines to efficiently prepare quantum unitary operators that em-

bed the standard matrix geometric mean and its generalisations called the weighted

matrix geometric mean. This enables the construction of solutions to the algebraic

Riccati equation, which is an important class of nonlinear systems of equations that

appears in machine learning, optimal control, estimation, and filtering. Using these

subroutines, we present a new class of quantum learning algorithms called quantum

geometric mean metric learning. This has applications in efficiently finding the best

distance measure and solving classification problems in the weakly supervised limit

and for anomaly detection, for both classical and quantum problems. We also show

how our method can be generalised to a particular pth-order system of nonlinear

equations. These quantum subroutines for matrix geometric means are also useful

in other areas of quantum information. For example, we show how to use them in the

estimation of geometric Rényi relative entropies and the Uhlmann fidelity by means

of the Fuchs–Caves observable. In particular, our quantum algorithms for estimating

the Uhlmann and Matsumoto fidelities have optimal dependence on the precision.

Finally, we provide a BQP-complete problem based on matrix geometric means that

can be solved by our subroutines, thus characterising their computational capability.
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1. Fidelity 20
2. Geometric fidelity and geometric Rényi relative entropy 21
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I. INTRODUCTION

Quantum computation is considered a rapidly emerging technology that has important
implications for the development of algorithms. Many quantum algorithms that have the-
oretically demonstrated potential quantum advantage, however, have been chiefly directed
towards linear problems – in part because quantum mechanics is itself linear. These include
simulating solutions of linear systems of equations [1], known as quantum linear algebra,
and linear ordinary and partial differential equations [2–5].

However, many problems of scientific interest are nonlinear. While most nonlinear sys-
tems of equations of interest for applications only appear after discretising nonlinear ordinary
and partial differential equations, there is an important class of nonlinear system of equations
that is not only relevant to partial differential equations but is also of independent interest.
This class consists of the algebraic Riccati equations, which are nonlinear matrix equations
with quadratic nonlinearity [6]. These are also the stationary states of the Riccati matrix
differential equations, which are essential for many applications in applied mathematics,
science, and engineering problems. These nonlinear matrix equations are particularly rele-
vant for optimal control, stability theory, filtering (e.g., Kalman filter [7]), network theory,
differential games, and estimation problems [8].

It turns out that solutions to the algebraic Riccati equations are closely connected with
the concept of a matrix geometric mean. For example, the unique solution to the simplest
algebraic Riccati equation can be precisely expressed as the standard matrix geometric
mean, as we will recall later. The matrix geometric means are matrix generalisations of
the scalar geometric mean and have a long history in mathematics [9, 10]; there are diverse
approaches to this same concept. For example, the standard matrix geometric mean can
be defined as the output of an optimisation problem. The matrix geometric mean between
two matrices also has an elegant geometric interpretation as a midpoint along the geodesic
joining these two matrices that live in Riemannian space [6]. The Monge map between two
Gaussian distributions, appearing in optimal transport, can also be expressed in terms of the
matrix geometric mean [11]. The standard and weighted matrix geometric means appear in
quantum information in the form of quantum entropic [12–14] and fidelity [15–17] measures.

However, computing the matrix geometric mean involves matrix multiplication and also
nonlinear operations like taking inverses and square roots of matrices. Here classical numer-
ical schemes can be inefficient, with costs that are polynomial in the size of the matrix [18].
The processing of several matrix multiplications can, under certain conditions, be more
efficient through quantum processing. Our aim here is to construct quantum subroutines
that embed the standard and weighted matrix geometric means into unitary operators and
to determine the conditions under which these embeddings can indeed be conducted effi-
ciently. There are many such possible unitary operators, and we choose a formalism called
block-encoding [19–21].

The block-encoding of a non-unitary matrix Y is a unitary matrix UY whose upper left-
hand corner is proportional to Y . The construction of this unitary matrix allows realisation
by means of a quantum circuit, which describes unitary evolution. The matrix Y can be
subsequently recovered by extracting only the top-left corner through measurement. This
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provides a convenient building block for constructing sums and (integer and non-integer)
powers of matrices Y by concatenating its block-encodings via unitary circuits. This for-
malism allows us to form the block-encoding of the standard and weighted matrix geometric
means, which are products of matrices and their roots. From these block-encodings, one can
also recover their expectation values with respect to certain states. These different expecta-
tion values are then relevant for various applications, like in machine learning and quantum
fidelity estimation.

Under certain assumptions, we show how these can be efficiently implementable on quan-
tum devices. This efficiency arises from the fact that matrix multiplications can be more
efficient with quantum algorithms. This observation has an important consequence. It
means that a quantum device can efficiently prepare solutions of the (nonlinear) algebraic
Riccati equations. The expectation values of these solutions can also be shown to be effi-
ciently recoverable for different applications. Our approach differs from many past works in
three key respects: (a) ours is the first quantum subroutine, to the best of our knowledge, to
prepare solutions of nonlinear matrix equations without using iterative methods. The solu-
tions themselves are matrices and not vectors, which differs from other quantum algorithms
for nonlinear systems of equations, for example [22–24]; (b) the solutions are not embedded
in a pure quantum state, but rather an observable, thus introducing a novel embedding of
the solution. This is important when solutions themselves are in matrix form (for matrix
equations), which differs from the quantum embeddings of solutions of discretised nonlinear
ordinary and partial differential equations (solutions not in matrix form) [22–24]; (c) we
show the efficient recovery of outputs for nonlinear systems of equations directly relevant
for applications.

One class of applications is in the area of machine learning. Machine learning algorithms
often require an assignment of a metric, or distance measure, in order to compute distances
between data points. The values of these distances then become central to the outcome,
for instance, in making a prediction for classification. This means that the choice of the
metric itself is important, but the best metric can depend on the actual data. Learning
the metric from given data – called metric learning – can also be formulated as a learning
problem. While most of these metric learning algorithms require iterative techniques like
gradient descent to minimise the proposed loss function, a class of metric learning algorithms
called geometric mean metric learning [25] admits closed-form solutions. It has also been
shown to attain higher classification accuracy with greater speed than previous methods.
Here we devise efficient quantum algorithms, using our quantum subroutine for the matrix
geometric mean, for geometric mean metric learning for both classical and quantum data.
For quantum data, we propose new algorithms that can be used for the anomaly detection
of quantum states, which differs from previous algorithms [26]. The applicability extends
also to asymmetric cases for which there is a higher cost to be paid for false negatives or
true positives. This is in fact related to the weighted matrix geometric mean.

There is also an important connection between the solution of the geometric mean metric
learning problem and the Fuchs–Caves observable [15], which appears in quantum fidelity
estimation. This allows for a re-derivation of quantum fidelity from the point of view of
machine learning. We show that our quantum subroutines for the matrix geometric mean
can also be used in the efficient estimation of geometric Rényi relative entropies and the
quantum fidelity by means of the Fuchs–Caves observable. This new way of estimating the
quantum fidelity has polynomially better performance in precision than previously known
fidelity estimation algorithms. It is also shown to be optimal with respect to precision.
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We can also extend our method to a more general class of nonlinear systems of equations
of pth-degree. These are pth-degree polynomial generalisations of the simplest algebraic
Riccati equations. We show that the unique solutions of these equations are weighted matrix
geometric means. We similarly devise quantum subroutines to prepare their block-encodings.
The weighted matrix geometric mean for two quantum states has an elegant geometric
interpretation as the state at (1/p)th of the length along the geodesic connecting two quantum
states in Riemannian space. We also show these are relevant to the weighted version of our
new quantum learning algorithm. Furthermore, preparing block-encodings of the weighted
matrix geometric means allows us to construct, to the best of our knowledge, the first
quantum algorithm for estimating the geometric Rényi relative entropies.

A. Summary of our results

For convenience, we provide a brief summary of our results here. Our first contribu-
tion consists of basic quantum subroutines in Section III for matrix geometric means (see
Definition 1) and their weighted generalisation (see Definition 2).

Solving algebraic Riccati equations. We then consider the problem of solving the
algebraic matrix Riccati equation

Y AY −B†Y − Y †B − C = 0, (1)

where A, B, and C are D × D complex-valued matrices. We delineate quantum algo-
rithms with time complexity O(poly logD) for solving Eq. (1) for well-conditioned ma-
trices, in Section III B and Section III C. Here, we say a matrix A is well-conditioned if
A ≥ I/(poly logD). The higher-order case Y (AY )p−1 = C is studied in Section IIID. In
Section V, we show that it is BQP-complete to solve the equation Y AY = C, a special case
of Eq. (1), in which case the solution is Y = A−1#C (see Definition 1 for the meaning of
this notation).

Geometric mean metric learning. We introduce quantum algorithms for learning
the metric in machine learning, by phrasing this as an optimisation problem using a geo-
metric perspective. Unlike other metric learning algorithms, this optimisation problem has
a closed-form solution. This follows the geometric mean metric learning method [25]. The
solution turns out to be expressible in terms of the matrix geometric mean Y = A−1#C. We
design quantum algorithms for the learning task for classical data (Section IVA1) as well as
for quantum data (Section IVA2). We present the conditions under which the quantum al-
gorithm is more efficient than the corresponding classical algorithm. The learning algorithm
for quantum data is uniquely quantum in nature and has no classical counterpart.

(Uhlmann) fidelity estimation. Based on the Fuchs–Caves observable [15], we design
a new quantum algorithm for fidelity estimation in Section IVB1 via the fidelity formula
F (ρ, σ) = Tr((σ−1#ρ)σ), which involves the matrix geometric mean. We prove that our

algorithm has Õ(1/ϵ) dependence on the precision ϵ and that it is optimal up to polyloga-
rithmic factors.

Geometric Rényi relative entropy. In Section IVB2, we present the first quantum
algorithm for computing the geometric Rényi relative entropy, to the best of our knowl-
edge. In particular, we design a quantum algorithm for computing the geometric fidelity

F̂1/2(ρ, σ) := Tr(ρ#σ) (also known as the Matsumoto fidelity [16, 17]) with Õ(1/ϵ) depen-
dence on the precision ϵ, and we prove that it is optimal up to polylogarithmic factors.
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Organisation of this paper. In Section II, we begin with a review of the standard ma-
trix geometric mean, weighted matrix geometric mean, the algebraic Riccati equation, and
block-encoding. In Section III we compute the costs required to prepare block-encodings of
the solutions of algebraic Riccati equations and their pth-order generalisations. Applications
are presented Section IV. In Section V we show how our new quantum subroutines for the
matrix geometric mean can solve a BQP-complete problem. We end in Section VI with
discussions.

II. BACKGROUND

In this section we give a brief overview of the standard and weighted matrix geometric
means and their role in solving algebraic Riccati equations (see [27, Chapters 4 & 6] and
[9, 10] for more details). We then provide a definition of block-encoding. Throughout the
paper, unless otherwise stated, we deal with Hermitian matrices.

A. Matrix geometric means

Definition 1 (Matrix geometric mean). Fix D ∈ N. Given two D × D positive definite
matrices A and C, the matrix geometric mean of A and C is defined as

A#C := A1/2(A−1/2CA−1/2)1/2A1/2 > 0. (2)

Note that the matrix geometric mean between A−1 and C is thus defined by

A−1#C = A−1/2(A1/2CA1/2)1/2A−1/2 > 0. (3)

Alternatively, the matrix geometric mean A#C can be equivalently be written as

A#C = max

{
Y ≥ 0 :

(
A Y
Y C

)
≥ 0

}
, (4)

where the ordering of Hermitian matrices is given by the Löwner partial order.

The matrix geometric mean appears in quantum information, for example, like the Fuchs–
Caves observable [15], in quantum fidelity and entropy operators like the Tsallis relative
operator entropy [28], and quantum fidelity measures between states [12, 13, 16, 17] and
channels [29]. This concept can also be generalised to the weighted matrix geometric mean.

Definition 2 (Weighted matrix geometric mean). Fix p > 0. The weighted matrix geometric
mean with weight 1/p is defined as

A#1/pC := A1/2(A−1/2CA−1/2)1/pA1/2. (5)

The weighted matrix geometric mean between A−1 and C is then equal to

A−1#1/pC = A−1/2(A1/2CA1/2)1/pA−1/2. (6)
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The canonical matrix geometric mean corresponds to the weighted geometric mean with
weight 1/p = 1/2.

We will use the definitions in Eqs. (3) and (6) here and throughout because, as we will
see later on, they are relevant to solutions of classes of nonlinear matrix equations like the
algebraic Riccati equations.

For positive definite matrices (which include full-rank density matrices), the standard
and weighted matrix geometric means have elegant geometric interpretations. It is known
that the inner product on the real vector space formed by the set of Hermitian matrices
gives rise to a Riemannian metric [27, Chapter 6]. This Riemannian metric is defined on
the manifold MH formed by the set of positive definite matrices. Following [27, Eqs. (6.2)
& (6.4)], a trajectory γ : [a, b] → MH on this manifold is a piecewise differential path on

MH whose length is defined by L(γ) :=
∫ b
a

∥∥γ−1/2(t)γ′(t)γ−1/2(t)
∥∥
2
dt. Then the distance

δ(A−1, C) = infγ L(γ) between any two positive definite matrices A−1 and C on this manifold
is defined to be shortest length joining these two points. Then we have the following result.

Lemma 3 ([27, Theorem 6.1.6]). If A−1 and C are two positive definite matrices, then there
exists a unique geodesic joining A−1 and C. This geodesic has the following parameterisation
with t ∈ [0, 1]:

γgeod(t) = A−1/2(A1/2CA1/2)1/tA−1/2, t ∈ [0, 1]. (7)

This geodesic has length given by

δ(A−1, C) = L(γgeod) =
∥∥log(A1/2CA1/2

)∥∥
2
. (8)

In the above, ∥X∥2 :=
√
Tr[X†X] denotes the Schatten 2-norm, whereas ∥ · ∥ refers to

operator norm throughout our paper.
From this viewpoint, the matrix geometric mean A−1#C = γgeod(t = 1/2) can clearly be

interpreted as the midpoint along the geodesic joining A−1 and C. Similarly, the weighted
geometric mean with weight 1/p can be interpreted as the point along the manifold when t =
1/p.

B. Algebraic Riccati equations

Let us begin with a general form of the algebraic Riccati equation for the unknown D×D
matrix Y :

Y †AY −B†Y − Y †B − C = 0, (9)

where A, B, and C are D×D matrices with complex-valued entries. This can be understood
as a matrix version of the famous (scalar) quadratic equation ay2 − 2by − c = 0. Solutions
of equations like (9) are not always guaranteed to exist, and certain conditions are required
to prove the existence of, for instance, Hermitian solutions [30]. See [31] for conditions on
solvability. Even if existence can be shown, the solutions may not be unique or could alter-
natively be uncountably many [32–34]. However, there are unique solutions under certain
conditions. For instance, if all the matrix entries are real-valued, then for symmetric positive
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semidefinite A,C and symmetric positive Y , there is a unique positive definite solution if

and only if an associated matrix H =

(
−B A
C BT

)
has no imaginary eigenvalues [35].

In this paper, we confine our attention to simpler cases, for example in Lemmas 4 and 5,
when there are unique solutions.

Lemma 4 (Solution of simple algebraic Riccati equation). Consider the following algebraic
Riccati equation when A and C are positive definite matrices and Y is Hermitian:

Y AY = C. (10)

This equation has a unique positive definite solution given by the standard matrix geometric
mean:

Y = A−1#C := A−1/2(A1/2CA1/2)1/2A−1/2 > 0. (11)

Proof. This lemma is well known from [36, 37], but we provide a brief proof for completeness.
Starting from the Riccati equation in (10) and by using the fact that A is positive definite
with a unique square root, consider that

Y AY = C ⇔ Y A1/2A1/2Y = C (12)

⇔ A1/2Y A1/2A1/2Y A1/2 = A1/2CA1/2 (13)

⇔ (A1/2Y A1/2)2 = A1/2CA1/2. (14)

Since the matrix A1/2CA1/2 is positive definite and the equality in the last line above has
been shown, both A1/2CA1/2 and (A1/2Y A1/2)2 have a unique positive definite square root,
implying that

A1/2Y A1/2 = (A1/2CA1/2)1/2 ⇔ Y = A−1/2(A1/2CA1/2)1/2A−1/2, (15)

thus justifying that Y = A−1#C is the unique positive definite solution as claimed.

See [38] for a discussion of (10) in the infinite-dimensional case.
If A and C are both positive definite with unit trace Tr(A) = 1 = Tr(C), then A and C

can also be interpreted as density matrices. Then the operator A−1#C is also known as the
Fuchs–Caves observable [39], which is of relevance in the study of quantum fidelity. We will
return to this point later. See also [40, Section V] for an interpretation of (10) when A and
C are density matrices.

We can also extend Lemma 4 to the B ̸= 0 case, and the following holds.

Lemma 5. If A and C are positive definite, B is an arbitrary matrix, and (A−1B) =
(A−1B)†, then a Hermitian solution to Eq. (9) can be expressed as

Y = A−1#(B†A−1B + C) + A−1B. (16)

Proof. See Appendix A.

Classical algorithms for solving algebraic Riccati equations are typically inefficient [18]
with respect to the size of the problem, i.e., polynomial inD. We will be looking at conditions
for which a quantum algorithm for solving algebraic Riccati equations can be executed with
less complexity.
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C. Block-encoding

Classical information can be embedded in quantum systems in the form of quantum
states, either pure or mixed, or in the form of quantum processes. A closed quantum system
evolves under a unitary transformation, represented by a unitary matrix. In this paper,
we will be focusing on how a matrix solution to a matrix equation can be embedded in a
unitary matrix. Unlike other quantum subroutines that prepare solutions of a linear system
of equations embedded in the amplitudes of a pure quantum state, here we first embed the
solution Y into a unitary matrix.

There are different ways of embedding an arbitrary matrix into a unitary matrix. For
instance, it is guaranteed by the Sz. Nagy dilation theorem (see, e.g., [41, Theorem 1.1])
that such a unitary matrix should always exist. We choose a flexible dilation known as
block-encoding [19–21]. A unitary matrix UY is called a block-encoding of a matrix Y if it
satisfies the following definition.

Definition 6 (Block-encoding). Fix n, a ∈ N and ϵ, α ≥ 0. Let Y be an n-qubit operator.
An (n+ a)-qubit unitary UY is an (α, a, ϵ)-block-encoding of an operator Y if

∥Y − α ⟨0|a UY |0⟩a∥ ≤ ϵ. (17)

Here |0⟩a are the |0⟩ states in the computational basis of the a-ancilla qubits. The
block-encoding formalism allows one to construct, for example, block-encodings of sums of
matrices, linear combinations of block-encoded matrices, and polynomial approximations of
negative and positive power functions of matrices [19]. We list several associated lemmas in
Appendix B for convenience.

III. QUANTUM SUBROUTINES FOR MATRIX GEOMETRIC MEANS,

ALGEBRAIC RICCATI EQUATIONS, AND HIGHER-ORDER NONLINEAR

EQUATIONS

Let us focus on cases where the solutions to the algebraic Riccati equations can be
captured by the matrix geometric mean in Lemmas 4 and 5. The computation of the
matrix geometric mean involves the computation of the square roots of matrices and several
matrix multiplications. For D × D matrices, typically these costs will scale polynomially
with D for a classical algorithm. However, quantum algorithms for matrix multiplications
of block-encoded matrices can be performed more efficiently when compared to the number
of classical numerical steps. These series of block-encoded matrix multiplications can be
achieved in the quantum case via the block-encoding formalism.

Let us begin with the algebraic Riccati equation in Eq. (9):

Y AY −B†Y − Y †B − C = 0. (18)

It is our goal below first to construct a block-encoding of the solution Y , denoted UY , under
the conditions obeyed in Lemmas 4 and 5. This we consider as a subroutine that we can
then employ in various applications.

Below we assume that we also have access to the block-encodings of A, B, C – denoted
UA, UB, UC , respectively – as well as their inverses U †

A, U
†
B, U

†
C and controlled versions.

For example, if A, B, and C are positive semi-definite matrices with unit trace, these can
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be considered as density matrices. Then from Lemma 30 we can prepare block-encodings
UA, UB, UC by access to the unitaries that prepare purifications of A, B, and C, with
only a single query to each purification and O(logD) gates. In more general scenarios, we
can leave the preparation of these block-encodings to a later stage, which also depends on
the particular application. Below, κA and κC denote the condition numbers for A and C,
respectively. It is important to clarify that, as assumed in [1], all of our quantum algorithms
for matrix geometric means assume that

I ≥ A ≥ I/κA, (19)

I ≥ C ≥ I/κC , (20)

I ≥ B†B. (21)

This means that κA and κC are really equal to the inverses of the minimum eigenvalues of
A and C, respectively, and ∥A∥ , ∥B∥ , ∥C∥ ≤ 1. The upper bounds above are automatically
satisfied whenever A and C are density matrices.

A. Quantum subroutine for matrix geometric means

As a warm-up, we present a quantum subroutine for implementing block-encodings of
the weighted matrix geometric means.

Lemma 7 (Block-encoding of weighted matrix geometric mean). Suppose that UA, UC are
(1, a, 0)-block-encodings of matrices A,C, respectively, where A ≥ I/κA, C ≥ I/κC and I is

the identity matrix. For ϵ ∈ (0, 1/2), one can implement a (κ
1/p
A γp, 5a+20, ϵ)-block-encoding

of Y for every fixed real p ̸= 0, where

γp =

{
1 p > 0,

κ
−1/p
A κ

−1/p
C p < 0,

(22)

and
Y = A#1/pC = A1/2

(
A−1/2CA−1/2

)1/p
A1/2, (23)

using

• Õ(κAκC log (1/ϵ)) queries to UC, Õ
(
κ2AκC log2(1/ϵ)

)
queries to UA;

• Õ
(
aκ2AκC log2(1/ϵ)

)
gates; and

• poly(κA, κC , log (1/ϵ)) classical time.

Remark 1. In the above and in what follows, ‘queries to U ’ refers to access not only to U ,

but also to its inverse U †, controlled-U , and controlled-U †. Here and in the following, Õ(·)
suppresses logarithmic factors of functions appearing in (·).

Proof sketch of Lemma 7. See Appendix C for a detailed proof. As an illustration for the
construction of our quantum subroutines, we outline the basic idea. Other quantum subrou-
tines later presented in this section are obtained using similar ideas. Our approach consists
of three main steps:
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1. Implement a block-encoding of A−1/2, using roughly Õ(κA) queries to a block-encoding
of A (for simplicity, we ignore the ϵ-dependence in our brief explanation here). This is
done by applying quantum singular value transformation (QSVT) [19] with polynomial
approximations of negative power functions (see Lemma 27).

2. Implement a block-encoding of (A−1/2CA−1/2)1/p, using roughly Õ(κAκC) queries to a
block-encoding of A−1/2CA−1/2. This is done by applying QSVT with polynomial
approximations of positive power functions (see Lemma 28). Note that a block-
encoding of A−1/2CA−1/2 can be implemented using O(1) queries to block-encodings
of A−1/2 and C by the method for realising the product of block-encoded matrices (see
Lemma 24).

3. Similar to Step 2, implement a block-encoding of A1/2(A−1/2CA−1/2)1/pA1/2, using
O(1) queries to block-encodings of A1/2 and (A−1/2CA−1/2)1/p, where a block-encoding

of A1/2 can be implemented using Õ(κA) queries to a block-encoding of A.

To conclude, the overall query complexity is roughly Õ(κA)·Õ(κAκC)+Õ(κA) = Õ(κ2AκC).
Note that the construction is mainly based on QSVT and thus is also time efficient. So
the overall time complexity is equal to the query complexity only up to polylogarithmic
factors.

B. B = 0 algebraic Riccati equation

Let us begin with the unique positive definite solution to the algebraic Riccati equation
with B = 0, i.e., Eq. (9), which can be expressed as the matrix geometric mean Y = A−1#C,
according to Lemma 4, where A and C are positive definite matrices. Then we have the
following lemma, which characterises a block-encoding of the solution in a quantum circuit.

Lemma 8. Suppose that UA, UC are (1, a, 0)-block-encodings of matrices A,C, respectively,
with A ≥ I/κA and C ≥ I/κC. For ϵ ∈ (0, 1/2), one can implement a (κA, 5a+20, ϵ)-block-
encoding of Y , where

Y = A−1#C = A−1/2
(
A1/2CA1/2

)1/2
A−1/2, (24)

using

• Õ(κAκC log (1/ϵ)) queries to UC and Õ
(
κ2AκC log2(1/ϵ)

)
queries to UA;

• Õ
(
aκ2AκC log2(1/ϵ)

)
gates; and

• poly(κA, κC , log (1/ϵ)) classical time.

Proof. See Appendix D.

C. B ̸= 0 algebraic Riccati equation

Here we want to construct a block-encoding of a Hermitian solution to the algebraic
Riccati equation via the standard matrix geometric mean, according to Lemma 5. We then
have the following lemma.
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Lemma 9. Suppose that UA, UB, UC are (1, a, 0)-block-encodings of matrices A,B,C, re-

spectively, with A ≥ I/κA, C ≥ I/κC and A−1B = (A−1B)
†
. For ϵ ∈ (0, 1/2), one can

implement a (κ
3/2
A , b, ϵ)-block-encoding of Y , where b = O(a+ log (1/ϵ)) and

Y = A−1#
(
B†A−1B + C

)
+ A−1B (25)

= A−1/2
(
A1/2

(
B†A−1B + C

)
A1/2

)1/2
A−1/2 + A−1B, (26)

using

• Õ(κAκC log (1/ϵ)) queries to UB and UC, and Õ
(
κ2AκC log2(1/ϵ)

)
queries to UA;

• Õ
(
aκ2AκC log2(1/ϵ)

)
gates; and

• poly(κA, κC , log (1/ϵ)) classical time.

Proof. See Appendix E.

D. Higher-order polynomial equations

Algebraic Riccati equations are second-order nonlinear equations whose solutions are
given by the second-order matrix geometric mean, i.e., p = 2. We can also generalise
our formalism to particular pth-order nonlinear matrix equations, whose solutions involve
p ∈ {3, 4, . . .} weighted matrix geometric mean. For example, consider the following pth-
order nonlinear matrix equations, which we call the pth-order YAY algebraic equations

Y (AY )p−1 = C, (27)

where p is the highest order polynomial in Y . It is straightforwardly checked that the
solutions can be written in terms of the weighted geometric mean from Definition 2:

Y = A−1/2(A1/2CA1/2)1/pA−1/2 = A−1#1/pC. (28)

See [42] for a discussion of this kind of equation in the infinite-dimensional case.

Lemma 10 (Solution of simple pth-order algebraic Y AY equation). Fix p ∈ {2, 3, 4, . . .}.
Consider the pth-order algebraic Y AY equation when A and C are positive definite matrices:

Y (AY )p−1 = C. (29)

This equation has a unique positive definite solution given by the following weighted geometric
mean:

Y = A−1/2(A1/2CA1/2)1/pA−1/2 = A−1#1/pC > 0. (30)

Proof. The proof is a generalisation of that for Lemma 4 and we provide it for completeness.
Starting from the equation in (29) and by using the fact that A is positive definite with a
unique square root, consider that

Y (AY )p−1 = C ⇔ Y (A1/2A1/2Y )p−1 = C (31)

⇔ (A1/2Y A1/2)p = A1/2CA1/2, (32)
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where the last line is obtained by left and right multiplying the previous line by A1/2. Since
the matrix A1/2CA1/2 is positive definite and the equality in the last line above has been
shown, both A1/2CA1/2 and (A1/2Y A1/2)p have a unique positive definite pth root, implying
that

A1/2Y A1/2 = (A1/2CA1/2)1/p ⇔ Y = A−1/2(A1/2CA1/2)1/pA−1/2, (33)

thus justifying that Y = A−1#1/pC is the unique positive definite solution as claimed.

To construct a block-encoding for the weighted geometric mean (and thus the solution
of (27)), we have proven the following lemma, which holds for every non-zero real number p.

Lemma 11. Suppose that UA, UC are (1, a, 0)-block-encodings of matrices A,C, respectively,
with A ≥ I/κA and C ≥ I/κC and let p ̸= 0 be any fixed non-zero real number. For
ϵ ∈ (0, 1/2), one can implement a (κAγp, 5a+ 20, ϵ)-block-encoding of Y , where

Y = A−1#1/pC = A−1/2
(
A1/2CA1/2

)1/p
A−1/2, (34)

and

γp =

{
1 p > 0,

κ
−1/p
A κ

−1/p
C p < 0,

(35)

using

• Õ(κAκC log (1/ϵ)) queries to UC, Õ
(
κ2AκC log2(1/ϵ)

)
queries to UA;

• Õ
(
aκ2AκC log2(1/ϵ)

)
gates; and

• poly(κA, κC , log (1/ϵ)) classical time.

Proof. See Appendix F.

IV. APPLICATIONS

Here we explore two classes of applications for preparing block-encodings of the matrix
geometric mean. The first class of applications is to learning problems, in particular for
metric learning from data, both quantum and classical. Next we demonstrate how having
access to the matrix geometric mean also allows us to compute some fundamental quantities
in quantum information, like the quantum fidelity between two mixed states via the Fuchs–
Caves observable, as well as geometric Rényi relative entropies.

A. Quantum geometric mean metric learning

In learning problems, there is typically a loss function L that we want to optimise. Sup-
pose we haveD×D positive definite matrices Y , A, and C. We note that here the uniqueness
result in Lemma 4 continues to hold. Consider the following optimisation problem:

min
Y≥0

L(Y ), L(Y ) := Tr(Y A) + Tr(Y −1C). (36)
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It turns out that, for given A and C, the unique Y minimising L(Y ) is Y = A−1#C. In [25],
this result was proven for real positive definite matrices A and C, and here we extend it to
positive definite Hermitian matrices. In [43], the same optimisation problem was considered
in the context of quantum fidelity, where it was shown that the optimal value of (36) is
equal to Tr[(A1/2CA1/2)1/2].

Lemma 12. Fix A and C to be positive definite matrices. The unique solution to minY≥0 L(Y )
where L(Y ) = Tr(Y A) + Tr(Y −1C) is the matrix geometric mean Y = A−1#C.

Proof. If L(Y ) is both strictly convex and strictly geodesically convex, then the solution
to ∇L(Y ) = 0 will also be a global minimiser. For the proof of strict convexity and strict
geodesic convexity, see Appendix G. Now ∇L(Y ) = A−Y −1CY −1 = 0 implies the algebraic
Riccati equation Y AY = C or Y = A−1#C, which is the unique solution for positive definite
matrices A and C.

We will use this property and map two learning problems – one for classical data and
another for quantum data – onto this optimisation problem. Using the block-encoding for
the matrix geometric mean in Lemma 8, we then devise quantum algorithms for learning a
Euclidean metric from data as well as a 1-class classification algorithm for quantum states.
We also extend to the case of weighted learning, where there are unequal contributions to
the loss function in Eq. (36) from Tr(Y A) and Tr(Y −1C).

1. Learning Euclidean metric from data

Machine learning algorithms rely on distance measures to quantify how similar one set of
data is to another. Naturally different distance measures can give rise to different results,
and so choosing the right metric is crucial for the success of an algorithm. The distance
measure itself can in fact be learned for example in a weakly supervised scenario, and this
is called metric learning [44]. Here we are provided with the following two sets S (similar)
and D (dissimilar) of pairs (training data)

S := {(x,x′) |x,x′ are in the same class}, (37)

D := {(x,x′) |x,x′ are in different classes}, (38)

and {(x(k),x′(k))}k are the data points, where k labels all the pairs that either belong to S
or D. An important example in metric learning is learning the Euclidean metric from data,
which can be reformulated as a simple optimisation problem with a closed-form solution.
Learning a Euclidean metric is a common form of metric learning, where we can learn a
Mahalanobis distance dY

dY (x,x
′) = (x− x′)TY (x− x′) = Tr(Y (x− x′)(x− x′)T ), (39)

with Y a real D × D symmetric positive definite matrix. To identify a suitable Y , one
requires a suitable cost function.

In geometric mean metric learning [25], we want dY to be minimal between data in the
same class, i.e., S. At the same time, when the data are in different classes, i.e., D, we want
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dY −1 to be minimal instead. Thus we want to minimise the sum
∑

S dY +
∑

D dY −1 . This
leads to an optimisation problem of the form in Eq. (36)

min
Y≥0

L(Y ), L(Y ) := Tr(Y A) + Tr(Y −1C), (40)

A =
∑

(x,x′)∈S

(x− x′)(x− x′)T , (41)

C =
∑

(x,x′)∈D

(x− x′)(x− x′)T , (42)

where we assume A and C are positive definite. From Lemma 12, we see that the optimal
solution to Eq. (40) is the matrix geometric mean Y = A−1#C. We see that this is also in
fact the solution of the B = 0 algebraic Riccati equation Y AY = C. In Lemma 8, we saw
that, given access to the block-encodings of UA, UC , their inverses, and controlled versions,
we can construct the block-encoding of Y , denoted UY . Lemma 8 also shows that the query
and gate complexity costs are efficient in D, i.e., O(poly logD), when the condition numbers
for A and C are also polynomial in logD.

While we see that it is possible to efficiently recover UY , it is not sufficient for a direct
application to machine learning. Learning Y is part of the learning stage, but reading off
the classical components of Y directly from UY is inefficient. However, if we consider the
testing stage in machine learning, then we need to compute the actual distance dY if we
are given a new data pair (y,y′), known as testing data. For this testing data, we do not
know its classification into S or D a priori. Thus the task is to show that, having access
to UY , it is then sufficient to compute dY without needing to read out the elements of Y .
For example, a large value of dY (y,y

′) means that we should classify (y,y′) ∈ D, whereas
a small value of dY (y,y

′) means that we should classify (y,y′) ∈ S. We discuss later the
preparation of the block-encodings of UA, UC .

Before proceeding, we first discuss the preparation of a quantum state that we later
require. Given a new data pair (testing data) (y,y′) for which we want to compute dY , where
we use the optimal Y , we can define a corresponding pure quantum state with m = O(logD)

qubits |ψ⟩y,y′ = (1/Nψ)
∑D

i=1(y − y′)i|i⟩, with normalisation constant N 2
ψ =

∑D
i=1(y − y′)2i .

Its amplitudes are proportional to y − y′ for any pair (y,y′). We say that the state |ψ⟩y,y′
has sparsity σ if σ is the number of non-zero entries in the amplitude. We can use optimal
state preparation schemes [45–47] to prepare |ψ⟩y,y′ .

Lemma 13. A circuit [45] producing an m-qubit state |z⟩ =
∑2m

i=1 zi|i⟩ from |0⟩ with given
classical entries {zi}2

m

i=1 can be implemented using O(mσ) CNOT gates and O(σ(log σ+m))
one-qubit gates, where the specification of the circuit can be found with a classical algorithm
with time complexity O(mσ2 log σ). It also uses a constant number of ancilla qubits. Al-
ternative preparation strategies [46, Remark 1],[47, Theorem 2] have a reduced gate (depth)
complexity Θ(log(mσ)), but require O(mσ log σ) ancilla qubits.

Since here m = O(logD), we see that as long as σ is small, e.g., σ = O(poly logD), then
the total initial state preparation cost, in either gate complexity and number of ancillas is
O(poly logD). Next we compute dY .

Theorem 14. Suppose we are given UA, UC, which are (1, logD, 0)-block-encodings A =∑
(x,x′)∈S(x − x′)(x − x′)T and C =

∑
(x,x′)∈D(x − x′)(x − x′)T , respectively. We also

assume access to their inverses and controlled versions. We assume that the data obeys
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κA, κC = O(poly logD). Given a testing data pair (y,y′), we assume that the corresponding
state |ψ⟩y,y′ has sparsity O(poly logD) and Nψ = O(poly logD). Then computing dY (y,y

′)
to precision ϵ has a query and gate complexity O(poly(logD, 1/ϵ)).

Proof. We first make the observation that, for optimal Y ,

dY (y,y
′) = N 2

ψ⟨ψ|y,y′Y |ψ⟩y,y′ ≈ N 2
ψκATr(⟨0|UY |0⟩|ψ⟩y,y′⟨ψ|y,y′), (43)

where Y = A−1#C and UY is a (κA, 5a + 20, ϵ) block-encoding of Y . The proportionality
constant of κA comes from Lemma 8, which shows that ∥Y − κA⟨0|5a+20UY |0⟩5a+20∥ ≤ ϵ,
where a = logD. For simplicity, we neglect the subscript on the |0⟩ states. This trace can
be interpreted as an expectation value of |ψ⟩y,y′ with Y as the observable, and comes from
the definition of dY and |ψ⟩y,y′ .

To compute this trace given UY , we observe Tr((S ⊗ T )X) = Tr(XTS), where if T =∑
n λn|un⟩⟨vn|, then XT =

∑
n λn⟨vn|X|un⟩. So we can rewrite

dY (y,y
′) ≈ N 2

ψκATr(⟨0|UY |0⟩|ψ⟩y,y′⟨ψ|y,y′) (44)

= N 2
ψκATr((|ψ⟩y,y′⟨ψ|y,y′ ⊗ |0⟩⟨0|)UY ) (45)

= N 2
ψκA⟨Ψ|y,y′UY |Ψ⟩y,y′ , (46)

where |Ψ⟩y,y′ = |ψ⟩y,y′ ⊗ |0⟩. The last expectation value can be realised with a conventional
swap test [48, 49] between the states |Ψ⟩y,y′ and UY |Ψ⟩y,y′ . One can also use the destruc-
tive SWAP test (i.e., Bell measurements and classical post-processing) [50]. Alternatively,
Tr((|ψ⟩y,y′⟨ψ|y,y′ ⊗ |0⟩⟨0|)UY ) can also be computed through a Hadamard test (Lemma 31),
where one is given the controlled-UY and state |ψ⟩y,y′ ⊗ |0⟩. For example, applying the uni-
tary UY to |ψ⟩y,y′⊗|0⟩ and using the swap test with |ψ⟩y,y′⊗|0⟩, we recover ⟨ψ|x,x′Y |ψ⟩x,x′ to
precision ϵ with query and gate complexity O(poly(logD, 1/ϵ)), when κA = O(poly logD).
Now, dY (y,y

′) = N 2
ψ⟨ψ|y,y′Y |ψ⟩y,y′ . Since we only have σ = O(poly logD) non-zero entries

in y−y′, the cost in the classical computation of the normalisation constant is also of order
O(poly logD). Assuming that N 2

ψ = O(poly logD), then we recover dY efficiently when
given access to UY and |ψ⟩y,y′ .

We saw that preparing the state |ψ⟩y,y′ according to Lemma 13 incurs a costO(poly logD).
From Lemma 8 we can construct a (κA, O(logD), ϵ)-block-encoding of Y with gate and query
complexity O(poly(κA, κC , log(1/ϵ))). Since κA, κC = O(poly logD), then the theorem is
proved.

Thus, if our assumptions are obeyed, the quantum cost for computation of dY can be
O(poly logD), whereas classical numerical algorithms for computing the matrix geometric
mean alone has cost O(polyD) for D ×D matrices [51, 52].

In Theorem 14, we also assumed access to UA, UC . We show below the preparation of
a block-encoding of density matrices which are proportional to A and C and how this can
be used to compute dY efficiently. First consider Lemma 30, which shows how to create a
block-encoding of a density matrix. We first observe that we can define density matrices ρA
and ρC where rewrite

ρA =
A

Tr(A)
, A =

∑
k∈S

N 2
ψk
|ψk⟩⟨ψk|, Tr(A) =

∑
k∈S

N 2
ψk
,

ρC =
C

Tr(C)
, C =

∑
k∈D

N 2
ψk
|ψk⟩⟨ψk|, Tr(C) =

∑
k∈D

N 2
ψk
, (47)
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where |ψk⟩ = (1/Nψk
)
∑D

i=1(x
(k)−x′(k))i|i⟩ and N 2

ψk
=

∑D
i=1(x

(k)−x′(k))2i is the correspond-
ing normalisation. Then from Lemma 30, if we are given unitaries VA and VC that prepare
purifications of ρA and ρC , respectively, it is possible to create UρA and UρC using one query
to VA and VC respectively and O(logD) gates. One such class of states purifying ρA and ρC
are

|ΣA⟩ :=
∑
k∈S

√
p
(A)
k |k⟩|ψk⟩, (48)

|ΣC⟩ :=
∑
k∈D

√
p
(C)
k |k⟩|ψk⟩, (49)

where

p
(A)
k := N 2

ψk
/
∑
l∈S

N 2
ψl
, (50)

p
(C)
k := N 2

ψk
/
∑
l∈D

N 2
ψl
. (51)

To prepare |ΣA⟩ and |ΣC⟩ we require the controlled unitaries VA =
∑

k∈S |k⟩⟨k| ⊗ W
(A)
k

and VC =
∑

k∈D |k⟩⟨k| ⊗ W
(C)
k acting on states

∑
k∈S

√
p
(A)
k |k⟩|0⟩ and

∑
k∈D

√
p
(A)
k |k⟩|0⟩

respectively. Here W
(A)
k and W

(C)
k are the state preparation circuits from Lemma 13 that

create |ψk⟩ where k ∈ S and k ∈ D, respectively. Since W
(A)
k and W

(C)
k are known circuits

and assuming σ = O(poly logD), it is similarly efficient and also straightforward to realise
VA and VC . Then from Lemma 30 it is possible to create (1, O(logD), 0)-block-encodings of
ρA and ρC with gate and query complexity O(poly logD), denoted UρA and UρC , respectively.
In the case where Tr(A) = 1 = Tr(C), then this automatically gives us the unitaries UA and
UC required in Theorem 14.

For general classical data, Tr(A) = 1 = Tr(C) would not hold in general. However, since
A = Tr(A)ρA and C = Tr(C)ρC , the proof in Theorem 14 holds in the same way if we began
with UρA and UρC , from which we can create UY ′ where Y ′ ≡ ρ−1

A #ρC = (Tr(C)/Tr(A))1/2Y .
This implies

⟨0|UY |0⟩ ≈ Y = (Tr(A)/Tr(C))1/2Y ′ ≈ (Tr(A)/Tr(C))1/2⟨0|UY ′|0⟩. (52)

Following through the same proof idea as in Theorem 14 allows us to extract d′Y . To
recover dY , we just use dY ≈ (Tr(A)/Tr(C))1/2d′Y . These normalisations can be efficiently
recovered by assuming the states |ψk⟩ have low sparsity σk = O(poly logD) for each k. This
also means that the normalisations Tr(A) and Tr(C) are efficient to compute. So long as
(Tr(A)/Tr(C))1/2 is O(poly logD), then dY is efficiently estimable.

2. 1-class quantum learning

Here we propose a new quantum classification problem that is a 1-class problem. This
means that given a quantum state, we only want to know whether this state belongs to a
class A or not. This problem occurs in many areas in machine learning, in particular in
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anomaly detection, where A is the class of states that are considered anomalous. Here we
can be provided with the following training data:

ρ =
1

N

N∑
i=1

ρi, ρi ∈ A, (53)

σ =
1

M

M∑
i=1

σi, σi /∈ A, (54)

where {ρi}i and {σi}i are sets of D-dimensional states. In anomaly detection scenarios,
there are usually much fewer examples of anomalous states than ‘normal’ states, so that
N ≪M . However, we will not focus on subtleties associated with imbalanced training data
here.

Suppose that we have an incoming quantum state ξ and we want to flag this as belonging
to the class A or not. Then it is useful to learn an ‘observable’ or a ‘witness’ Y such that its
expectation value Tr(Y ξ) is large when ξ is flagged as anomalous, belonging to A, but this
value is small when ξ is ‘normal’. Thus we can set up an optimisation problem of the form

min
Y≥0

L(Y ), L(Y ) := Tr(Y σ) + Tr(Y −1ρ). (55)

It is sensible in the above to minimise Tr(Y −1ρ) in L(Y ) above since it is simple to show
that a small value of Tr(Y −1ρ) implies a large value of Tr(Y ρ). Since ρ is a density matrix,
it can be shown that Tr(Y −1ρ) ≥ Tr(Y ρ)−1, which is a consequence of the operator Jensen
inequality (see [53, Eqs. (29)–(35)]). Thus Tr(Y −1ρ) ≤ λ implies Tr(Y ρ) ≥ 1/λ.

When ρ and σ are (positive definite) density matrices, the unique solution to Eq. (55)
is given by the matrix geometric mean Y = σ−1#ρ. We can therefore proceed as before to
compute Tr(Y ξ), except now we do not need to be concerned with state preparation of ρ
and σ, and we can assume that we are given copies of ρ and σ. Thus, given access to UY ,
we can estimate the following expectation:

Tr(Y ξ) ≈ κσ Tr((ξ ⊗ |0⟩⟨0|)UY ), (56)

where the κσ constant follows from Lemma 8 and the error in the above estimate is upper-
bounded by ϵ. We then have the following result.

Theorem 15. Suppose that we are given the block-encodings Uρ and Uσ, where ρ ∈ A,
σ /∈ A and that we are also given access to multiple copies of ξ. Suppose further that κρ, κσ =
O(poly logD). Then computing Tr(Y ξ) for the optimal Y in Eq. (55) to precision ϵ > 0 has
a query and gate complexity O(poly(logD, 1/ϵ)).

Proof. From Lemma 8 we can construct a (κσ, O(logD), ϵ)-block-encoding of Y with gate
and query complexity O(poly(κρ, κσ, log(1/ϵ))). Considering that κρ, κσ = O(poly logD),
applying the unitary UY to ξ⊗|0⟩⟨0|, and using the Hadamard test (Lemma 31) with ξ⊗|0⟩⟨0|,
we recover Tr(Y ξ) to precision ϵ with query and gate complexity O(poly(logD, 1/ϵ)).

We emphasise that this problem is entirely quantum in nature as we are given directly
only quantum data.

Remark 2. The assumption of Uρ and Uσ as block-encodings of ρ and σ, respectively, is
without loss of generality in practice. There are two quantum input models for quantum
states that are commonly employed in quantum algorithms:
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• Quantum query access model. In this model, quantum unitary oracles Oρ and
Oσ are given such that they prepare purifications of ρ and σ, respectively. By the
technique of purified density matrix in [21] (see Lemma 30), we can implement Uρ
and Uσ from Oρ and Oσ with query and gate complexity Õ(1). Therefore, Theorem 15
can be adapted to the quantum query access model with query and gate complexity
O(poly(logD, 1/ϵ)).

• Quantum sample access model. In this model, independent and identical copies
of ρ and σ are given. By the technique of density matrix exponentiation [54, 55],
we can implement unitary operators that are block-encodings of ρ and σ using their
copies (which was first noted in [56] and later investigated in [57–59]). In this way,
Theorem 15 can be adapted to the quantum sample access model with sample and gate
complexity O(poly(logD, 1/ϵ)).

A very interesting observation to note here is that the matrix geometric mean solution Y
to Eq. (55) is precisely the Fuchs–Caves observable [15], which is important for distinguishing
two states ρ and σ. From this observation, we can motivate the Fuchs–Caves observable
as the observable that gives rise to a kind of ‘optimal witness’ that distinguishes ρ and σ
and the value of this ‘witness’ is precisely quantum fidelity, as shown in the next section.
This provides an alternative motivation for the form of quantum fidelity between two mixed
states from a metric learning viewpoint. In fact, a protocol involving a measurement of
the Fuchs–Caves observable also achieves an upper bound on sample complexity for the
quantum hypothesis testing problem in distinguishing ρ and σ [60, Appendix F]. Thus, up
to constant factors, the strategy also minimises the number of copies of each state used for
a given tolerated precision in distinguishing the states. We note that the loss function also
appears in Eq. (6) in [43], but this is motivated from a different perspective.

3. Extension to weighted geometric mean metric learning

The two terms in the loss function in Eq. (53), involving σ and ρ respectively, have
equal weights. This means the learning algorithm deems closeness to ρ and farness to σ of
equal ‘importance’. However, there are scenarios, especially in anomaly detection, where
asymmetry is preferable. For example, this occurs when there is a higher cost in getting
false negatives.

Modifying Eq. (53) by simply multiplying each of the two terms by different constants
α, β leads to L(Y ) = αTr(Y σ)+βTr(Y −1ρ). However, this only rescales the optimal solution
Y → (β/α)1/2Y by a constant factor, as observed in [25]. A new loss function is therefore
necessary for the asymmetric case.

Following [25], one can first observe that the solution Y = σ−1#ρ is in fact also a solution
to the following optimisation problem when t = 1/2:

min
Ỹ≥0

Lt(Ỹ ), Lt(Ỹ ) := (1− t)δ(Ỹ , σ−1) + tδ(Ỹ , ρ), t ∈ [0, 1], (57)

where δ is the geodesic distance defined in Eq. (8). While the mathematical proof is more
involved, this fact can easily be understood from the geometric viewpoint. Here Y = σ−1#ρ
can be understood as the midpoint along the unique geodesic in Riemannian space joining
σ−1 and ρ. When t = 1/2, the optimal Ỹ is then the point along this geodesic that simulta-
neously minimises the distance between Ỹ and σ−1, as well as Ỹ and ρ. This clearly must
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be the midpoint. Similar geometric reasoning leads one to generalise to t ̸= 1/2 where the
solution to Eq. (57) is the weighted matrix geometric mean Ỹ = σ−1#tρ. That this is the
unique solution to Eq. (57) is a special case (the n = 2 case) in [61] and proofs can also be
found in [27, Chapter 6]. Also see [25] for a discussion in the context of geometric mean
metric learning.

We can proceed similarly to 1-class quantum learning algorithm with equal weights as
described in the previous section. The goal is also to output Tr(Ỹ ξ) for some input test
state ξ. Here we require instead the construction of block-encodings of the weighted matrix
geometric mean, as given in Lemma 11. However, for any t > 0 (p > 0 in Lemma 11), we
see that there is no scaling difference for constructing the block-encoding for the weighted
version. Thus the cost, up to constant and logarithmic factors, is identical for the quan-
tum weighted geometric mean metric learning algorithm as for the unweighted version in
Theorem 15.

B. Estimation of quantum fidelity and geometric Rényi relative entropies

Here we describe our quantum algorithms for estimating quantum fidelity and geometric
Rényi relative entropies using our quantum subroutines for preparing block-encodings of the
standard and weighted matrix geometric means.

1. Fidelity

The fidelity between two mixed quantum states is defined by [62]

F (ρ, σ) := Tr
((
σ1/2ρσ1/2

)1/2)
, (58)

which is a commonly considered measure of the closeness of or similarity between two quan-
tum states. Estimating the value of fidelity is a fundamental task in quantum information
theory. When given matrix descriptions of the states ρ and σ, it can be calculated directly
using the formula above or as the solution to a semidefinite optimisation problem [43]. Re-
cently, several time-efficient quantum algorithms for fidelity estimation have been developed
when one has access to state-preparation circuits of ρ and σ [57, 63, 64].

Here, we introduce a new approach for fidelity estimation that is based on the Fuchs–
Caves observable [15]. For two quantum states ρ and σ, this observable is given by M =
σ−1#ρ. Then, the fidelity between ρ and σ can be represented as the expectation ofM with
respect to σ (cf. [39, Eq. (9.159)]):

F (ρ, σ) = Tr(Mσ). (59)

Theorem 16 (Fidelity estimation via Fuchs–Caves observable). Suppose that Oρ and Oσ

prepare purifications of mixed quantum states ρ and σ, respectively. Then, we can estimate

F (ρ, σ) within additive error ϵ using Õ(min{κ2ρ, κ2σ} · κσκρ/ϵ) queries to Oρ and Oσ, where
κρ, κσ > 0 are such that ρ ≥ I/κρ and σ ≥ I/κσ.

Proof. Suppose that ρ and σ are n-qubit mixed quantum states and Oρ and Oσ are (n+ a)-
qubit unitary operators. By Lemma 30, we can implement two unitary operators Uρ and
Uσ that are (1, n + a, 0)-block-encodings of ρ and σ using O(1) queries to Oρ and Oσ,
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respectively. Then, by applying Lemma 8, we can implement a (κσ, b, δ)-block-encoding UM
of M = σ−1#ρ, using Õ(κσκρ log(1/δ)) queries to Uρ and Õ(κ2σκρ log

2(1/δ)) queries to Uσ,
where b = O(n+ a), and κρ and κσ satisfy ρ ≥ I/κρ and σ ≥ I/κσ.

By the Hadamard test (given in Lemma 31), there is a quantum circuit C that outputs 0
with probability 1

2
(1 + Re{Tr(⟨0|b UM |0⟩b σ)}), using one query to UM and one sample of σ.

By noting that
|κσ Re{Tr(⟨0|b UM |0⟩b σ)} − Tr(Mσ)| ≤ Θ(δ), (60)

we conclude that an O(ϵ/κσ)-estimate of Re{Tr(⟨0|b UM |0⟩b σ)} with δ = Θ(ϵ/κσ) suffices to
obtain an ϵ-estimate of Tr(Mσ) (which is the fidelity according to Eq. (59)). By quantum
amplitude estimation (given in Lemma 33), this can be done using O(κσ/ϵ) queries to C.

In summary, an ϵ-estimate of F (ρ, σ) can be obtained by using Õ(κ3σκρ/ϵ) queries to Oσ

and Õ(κ2σκρ/ϵ) queries toOρ. The proof is completed by taking the minimum over symmetric
cases (i.e., simply flipping the role of ρ and σ since the fidelity formula is symmetric under
this exchange).

The current best quantum query complexity of fidelity estimation is Õ(r2.5/ϵ5), due
to [57], where r is the lower rank of the two input mixed quantum states. In compari-
son, our quantum algorithm for fidelity estimation based on the Fuchs–Caves observable,
as given in Theorem 16, has a better dependence on the additive error ϵ, if κρ and κσ are
known in advance.

Moreover, we note that the ϵ-dependence of the quantum algorithm given in Theorem 16
is optimal (up to polylogarithmic factors), as stated in Lemma 17 below.

Lemma 17 (Optimal ϵ-dependence of fidelity estimation). Suppose that Oρ and Oσ prepare
purifications of mixed quantum states ρ and σ, respectively, satisfying ρ ≥ I/κρ and σ ≥ I/κσ
for κρ, κσ > 0. Then, every quantum algorithm that estimates F (ρ, σ) within additive error ϵ
requires query complexity Ω(1/ϵ) even if κρ = κσ = Θ(1).

Proof. See Appendix I.

2. Geometric fidelity and geometric Rényi relative entropy

Here we present, to the best of our knowledge, the first quantum algorithm for computing
the geometric α-Rényi relative entropy, as introduced in [12, 13]. For α ∈ (0, 1) ∪ (1, 2], the
geometric α-Rényi relative entropy is defined as (see, e.g., [14, Eq. (9)] and [65, Eq. (7.6.1)])

D̂α(ρ∥σ) :=
1

α− 1
log F̂α(ρ, σ), (61)

where
F̂α(ρ, σ) := Tr(ρ#1−ασ) = Tr(σ#αρ) (62)

is known as the geometric α-Rényi relative quasi-entropy. When α ∈ (0, 1), we also refer

to F̂α(ρ, σ) as the geometric α-fidelity. In particular, for the case of α = 1/2, the quantity

F̂1/2(ρ, σ) is the geometric fidelity (also known as the Matsumoto fidelity) [16, 17]. The α-
geometric Rényi relative entropy has several uses in quantum information theory, especially
in analysing protocols involving feedback [14, 29, 66].

Here we present quantum algorithms in Theorems 18 and 19 for computing the geometric
Rényi relative (quasi-)entropy.



22

Theorem 18. Suppose that Oρ and Oσ prepare purifications of mixed quantum states ρ and

σ, respectively. Then, for α ∈ (0, 1) ∪ (1, 2], we can estimate F̂α(ρ, σ) to within additive
error ϵ using

• Õ(min{κρ, κσ}min{1+α,2−α} · κρκσ/ϵ) queries for α ∈ (0, 1), and

• Õ(min{κρκα−1
σ , κα−1

ρ κσ, κ
1+α
ρ , κ1+ασ } · κρκσ/ϵ) queries for α ∈ (1, 2]

to Oρ and Oσ, where κρ, κσ > 0 satisfy ρ ≥ I/κρ and σ ≥ I/κσ.

In particular, when α = 1/2, F̂1/2(ρ, σ) is the geometric fidelity (also known as the Mat-

sumoto fidelity), which can be estimated using Õ(min{κρ, κσ}3/2 · κρκσ/ϵ) queries to Oρ

and Oσ.

Proof. See Appendix H.

Theorem 19. Suppose that Oρ and Oσ prepare purifications of mixed quantum states ρ

and σ, respectively. Then, for α ∈ (0, 1) ∪ (1, 2], we can estimate D̂α(ρ∥σ) within additive
error ϵ using

• Õ(min{κρ, κσ}min{1+α,2−α} · κρκ2−ασ /ϵ) queries for α ∈ (0, 1), and

• Õ(min{κρκα−1
σ , κα−1

ρ κσ, κ
1+α
ρ , κ1+ασ } · καρκσ/ϵ) queries for α ∈ (1, 2]

to Oρ and Oσ, where κρ, κσ > 0 satisfy ρ ≥ I/κρ and σ ≥ I/κσ.

Proof. See Appendix H.

Notably, we show that our quantum algorithm for estimating the geometric fidelity
F̂1/2(ρ, σ) achieves an optimal ϵ-dependence. The optimality also holds for F̂α(ρ, σ) with
α ∈ (0, 1).

Lemma 20 (Optimal ϵ-dependence of geometric α-fidelity estimation). Suppose that Oρ

and Oσ prepare purifications of mixed quantum states ρ and σ, respectively, with ρ ≥ I/κρ
and σ ≥ I/κσ, where κρ, κσ > 0. Then, for any constant α ∈ (0, 1), any quantum algorithm

that estimates F̂α(ρ, σ) within additive error ϵ requires query complexity Ω(1/ϵ) even if κρ =
κσ = Θ(1), where Ω(·) hides a constant factor that depends only on α.

Proof. See Appendix I.

It remains an open problem for optimality still holds if α ∈ (1, 2]. However, note that

when α ∈ (1, 2], the inequality F̂α(ρ, σ) ≥ 1 holds, and so F̂α(ρ, σ) cannot be interpreted as
a fidelity for these values of α; thus, different techniques are required in order to establish
optimality.

V. BQP-HARDNESS

In this section, we consider the hardness of computing the matrix geometric mean. Pre-
cisely, we show that our quantum algorithm for matrix geometric means (given in Lemma 8)
can be used to solve a BQP-complete problem (defined in Problem 1). Roughly speaking,
this problem pertains to testing a certain property of the matrix geometric mean of two
well-conditioned sparse matrices.
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Problem 1 (Matrix geometric mean). For functions κA : N → N and κC : N → N,
let MGM(κA, κC) be a decision problem defined as follows. For a size-n instance of
MGM(κA, κC), let N = 2n and let A,C ∈ CN×N be O(1)-sparse positive definite matri-
ces with I/κA(n) ≤ A ≤ I and I/κC(n) ≤ C ≤ I, given by a poly(n)-size uniform classical
circuit Cn such that, for every 1 ≤ j ≤ N , the circuit Cn(j) computes the positions and values
of the non-zero entries in the j-th row of A and C. Let Y ∈ CN×N be the matrix geometric
mean of A and C such that Y AY = C. The task is to decide which of the following is the
case, promised that one of the two holds:

• Yes: ⟨ψ|M |ψ⟩ ≥ 2/3;

• No: ⟨ψ|M |ψ⟩ ≤ 1/3,

where |ψ⟩ := Y 2|0⟩
∥Y 2|0⟩∥ and M = |0⟩⟨0| ⊗ IN/2 measures the first qubit.

Theorem 21. MGM(poly(n), poly(n)) is BQP-complete.

Proof. The proof consists of two parts: Lemma 22 and Lemma 23.

1. In Lemma 22, we state that MGM(poly(n), poly(n)) is BQP-hard; the proof employs
a reduction of the Quantum Linear Systems Problem (QLSP).

2. In Lemma 23, we state that MGM(poly(n), poly(n)) is in BQP; the proof employs the
quantum algorithm for the matrix geometric mean given in Lemma 8.

Lemma 22. MGM(poly(n), poly(n)) is BQP-hard.

Proof. We consider the Quantum Linear Systems Problem (QLSP) defined as follows.

Problem 2 (QLSP). For functions κ : N → N, let QLSP(κ) be a decision problem defined
as follows. For a size-n instance of QLSP(κ), let N = 2n and A ∈ CN×N be an O(1)-sparse
Hermitian matrix such that I/κ(n) ≤ A ≤ I, given by a poly(n)-size uniform classical
circuit Cn such that for every 1 ≤ j ≤ N , Cn(j) computes the positions and values of the
non-zero entries in the j-th row of A. The task is to decide which of the following is the
case, promised that one of the two holds:

• Yes item: ⟨ψ|M |ψ⟩ ≥ 2/3;

• No item: ⟨ψ|M |ψ⟩ ≤ 1/3,

where |ψ⟩ := A−1|0⟩
∥A−1|0⟩∥ and M = |0⟩⟨0| ⊗ IN/2 measures the first qubit.

It was shown in [1] that QLSP(poly(n)) is BQP-complete. Here, we reduce QLSP(poly(n))
to MGM(poly(n), poly(n)), and therefore show the BQP-hardness of MGM(poly(n), poly(n)).

Consider any instance (matrix) A ∈ CN×N of QLSP(κ), where N = 2n and κ = poly(n).
We choose C = I ∈ CN×N to be the identity matrix, which is a 1-sparse Hermitian matrix
and each of whose rows can be easily computed. Note that the matrix geometric mean Y
of A−1 and C is Y = A−1#C = A−1/2. Then, it can be seen that Y 2 = A−1 and thus
|ψY ⟩ = Y 2 |0⟩ /∥Y 2 |0⟩∥ = A−1 |0⟩ /∥A−1 |0⟩∥ = |ψA⟩. Consequently, any quantum algorithm
that determines whether ⟨ψY |M |ψY ⟩ ≥ 2/3 or ⟨ψY |M |ψY ⟩ ≤ 1/3 with success probability
at least 2/3 can be used to determine whether ⟨ψA|M |ψA⟩ ≥ 2/3 or ⟨ψA|M |ψA⟩ ≤ 1/3. In
summary, QLSP(κ) can be reduced to MGM(κ, 1) through the above encoding. Therefore,
MGM(poly(n), poly(n)) is BQP-hard.
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Lemma 23. MGM(poly(n), poly(n)) is in BQP.

Proof. See Appendix J.

VI. DISCUSSION

We constructed efficient block-encodings of the matrix geometric mean (and weighted ma-
trix geometric mean). These are unique solutions to the simplest algebraic Riccati equations
– quadratically nonlinear system of matrix equations. Unlike the output of most quantum
algorithms for linear systems of equations, these solutions of the nonlinear matrix equations
are not embedded in pure quantum states, but rather in terms of observables from which
we can extract expectation values.

This allows us to introduce a new class of algorithms for quantum learning, called quan-
tum geometric mean metric learning. For example, this can be applied in a purely quantum
setting for picking out anomalous quantum states. This can also be adapted to the case
of flexible weights on the cost of flagging an anomaly. The new quantum subroutines can
also be used for the first quantum algorithm, to the best of our knowledge, to compute
the geometric Rényi relative entropies and new quantum algorithms to compute quantum
fidelity by means of the Fuchs–Caves observable. In the latter case, we demonstrate optimal
scaling Ω(1/ϵ) in precision.

While most of the applications introduced above are for quantum problems for which
there is no direct classical equivalent (although the quantum learning algorithm can also be
applied to learning Euclidean distances for classical data), there are potential benefits that
the new quantum subroutine can have over purely classical methods. This could be exploited
for future applications. For example, classical numerical algorithms to compute the matrix
geometric mean have cost O(polyD) for D×D matrices [51, 52]. The same is also true for
solving the differential matrix Riccati equation and algebraic matrix Riccati equation [18]
through iterative methods and other methods based on finding the eigendecomposition of a
larger matrix [67]. For quantum processing on the other hand, we showed conditions under
which the block-encodings of some of these solutions can be obtained with costO(poly logD).

For example, there are many classical problems for which it is important to compute the
matrix geometric mean between two matrices. They appear in imaging [68, 69] and in the
analysis of multiport electrical networks [70]. The algebraic Riccati equation of the form
in Eq. (9) also appears in optimal control and Kalman filters. Under the assumptions in
Lemma 5 when uniqueness of its solution is also satisfied, it can be possible to construct its
block-encoding in Lemma 9. Although these assumptions are not generally satisfied, this
still gives an idea of the extent and reach of the matrix geometric mean. Extensions of our
algorithms to the matrix geometric mean consisting of more than two matrices can also be
explored, which already find applications in areas like elasticity and radars [71, 72]. It is
also intriguing to consider purely quantum extensions of these problems. The main difficulty
associated with constructing block-encodings of multivariate geometric means is that they
are not known to have an analytical form as they do in the bivariate case; rather, they are
constructed as the solutions of nonlinear equations generalizing the simple algebraic Riccati
equation [10].

In addition to usefulness in applications, the standard and weighted matrix geometric
means also have an elegant interpretation in terms of geodesics in Riemannian space. De-
spite the importance and beauty of Riemannian geometry in mathematics and other areas
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in physics, sensing, and machine learning, it has not appeared too much in quantum compu-
tation yet, apart from very notable exceptions like [73]. This geometric perspective is useful
in understanding the weighted quantum learning algorithm, and we showed how it provided
an alternative motivation for the form of quantum fidelity via the Fuchs–Caves observable.
There is more potential here for the matrix geometric mean to bring the ideas of geometry
closer to quantum information and computation.
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Appendix A: Proof of Lemma 5

This follows by observing that (9) is a matrix version of the quadratic equation and by
following an argument similar to what is well known as completing the square. Consider
that(

Y − A−1B
)†
A
(
Y − A−1B

)
=

(
Y † −

(
A−1B

)†)
A
(
Y − A−1B

)
(A1)

=
(
Y † −B† (A−1

)†)
A
(
Y − A−1B

)
(A2)

=
(
Y † −B†A−1

)
A
(
Y − A−1B

)
(A3)

= Y †AY − Y †AA−1B −B†A−1AY +B†A−1AA−1B (A4)

= Y †AY − Y †B −B†Y +B†A−1B. (A5)

Then

Y †AY −B†Y − Y †B − C =
(
Y − A−1B

)†
A
(
Y − A−1B

)
−B†A−1B − C, (A6)

and so (9) is equivalent to
X†AX = D, (A7)

where

X = Y − A−1B, (A8)

D = B†A−1B + C. (A9)

Observe thatD is positive definite because B†A−1B is positive semi-definite and C is positive
definite. So this is a reduction to the original simplified form of the algebraic Riccati equation
in (10), which we know from Lemma 4 has the following unique positive definite solution:

X = A−1#D (A10)

= A−1#
(
B†A−1B + C

)
. (A11)

This implies that

Y = X + A−1B (A12)

= A−1#
(
B†A−1B + C

)
+ A−1B (A13)

is a solution of (9).

Remark 3. Contrary to what is stated in the proof of [74, Corollary 4], the solution of (9),
under the assumptions stated in Lemma 5, is not unique. Indeed,

Y = −
(
A−1#

(
B†A−1B + C

))
+ A−1B (A14)

is also a legitimate solution. In fact, the following is a matrix version of the famous quadratic
formula:

A−1B ±
(
A−1#

(
B†A−1B + C

))
, (A15)

for which the scalar version is b
a
±
√

1
a

(
b2

a
+ c

)
corresponding to a solution of ay2−2by−c = 0

(stated after (9)), under the assumption that a, c > 0.
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Appendix B: Preliminary lemmas of the block-encoding formalism and other useful

results

Let us introduce several preliminary lemmas of the block-encoding formalism, which
enable us to implement various arithmetic operations on the block-encoded matrices. The
first lemma states that, given block-encodings of two matrices, we can obtain a block-
encoding of their product.

Lemma 24 (Product of block-encoded matrices [19, Lemma 30]). If U is an (α, a, δ)-block-
encoding of A and V is a (β, b, ϵ)-block-encoding of B, then there is a unitary W that is an
(αβ, a+b, αϵ+βδ)-block-encoding of AB, and can be implemented by one query to U and V .

Taking the linear combination of several block-encoded matrices is also useful and is
stated in the following lemma.

Lemma 25 (Linear combination of block-encoded matrices [19, Lemma 29]). Let m ∈ N
and β > 0 be constant, and let x = (x1, . . . , xm) ∈ Rm be a vector such that ∥x∥1 ≤ β.
Suppose that each Uj is a (1, a, ϵ)-block-encoding of Aj for j = 1 to m. Then there is a
unitary U that is a (1, a + η log(1/ϵ), 2β−1ϵ)-block-encoding of β−1

∑m
j=1 xjAj, where η is

some constant, and U can be implemented by one query to each Uj and polylog(1/ϵ) gates.

To construct our quantum algorithms for matrix geometric means, we need to deal with
the non-linear terms in the matrix geometric means. The tool to be used is quantum singular
value transformation [19], which in our case is an (approximate) polynomial transformation
of the block-encoded matrix, as stated in the following lemma.

Lemma 26 (Polynomial eigenvalue transformation [19, Theorem 31]). Let U be a (1, a, ϵ)-
block-encoding of a Hermitian matrix A. If δ ≥ 0 and q(x) ∈ R[x] is a polynomial of

degree d such that |q(x)| ≤ 1 for x ∈ [−1, 1], then there is a unitary Ũ that is a (1, a +
2, 4d

√
ϵ+δ)-block-encoding of q(A)/2, and can be implemented by d queries to U and O((a+

1)d) gates. A description of such an implementation can be computed classically in time
O(poly(d, log(1/δ))).

We also need two polynomial approximation results for applying Lemma 26 in our sce-
nario. The following two lemmas show low-degree polynomials for approximating the nega-
tive and positive power functions, respectively.

Lemma 27 (Polynomial approximations of negative power functions [19, Corollary 67 in
the full version]). Let f(x) = (x/δ)−c /2. For δ, ϵ ∈ (0, 1/2) and c > 0, there is a polynomial
q(x) of degree O((c+ 1)δ−1 log(1/ϵ)) such that

• |q(x)− f(x)| ≤ ϵ for x ∈ [δ, 1];

• |q(x)| ≤ 1 for x ∈ [−1, δ).

Lemma 28 (Polynomial approximations of positive power functions [20, Lemma 10]). Let
f(x) = xc/2. For δ, ϵ ∈ (0, 1/2) and c ∈ (0, 1), there is a polynomial q(x) of degree
O(δ−1 log(1/ϵ)) such that

• |q(x)− f(x)| ≤ ϵ for x ∈ [δ, 1];

• |q(x)| ≤ 1 for x ∈ [−1, δ).
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In practice, how to encode the desired matrices into block-encodings and how to extract
useful (classical) information from the block-encodings are of great concern. For the encod-
ing, a typical scenario is that we are given sparse oracle access to a sparse matrix, and we
can construct a block-encoding of the matrix, as stated in the following lemma.

Lemma 29 (Block-encoding of sparse matrices, [19, Lemma 48 in the full version]). Suppose
A ∈ CN×N is an s-sparse matrix such that every entry Aj,k satisfies |Aj,k| ≤ 1. Suppose
sparse oracles Os and OA are given such that

Os |j⟩ |k⟩ = |j⟩ |lj,k⟩ , (B1)

OA |j⟩ |k⟩ |0⟩ = |j⟩ |k⟩ |Aj,k⟩ , (B2)

where lj,k denotes the column index of the k-th non-zero entry in the j-th row. Here, we
assume that the exact value of the entry Aj,k is given in a binary representation. Then, we
can implement a quantum circuit that is an (s, log2N + 3, ϵ)-block-encoding of A, using two
queries to Os, two queries to OA, and O(logN + log2.5(s/ϵ)) one- and two-qubit quantum
gates.

Another useful case of encoding commonly considered is that we are given purified access
to a density operator, and we can construct a block-encoding of the density operator.

Lemma 30 (Block-encoding of density operators [21, Lemma 7], [19, Lemma 25]). Let ρ be
an n-qubit density operator, and let Vρ be an (n+a)-qubit unitary that prepares a purification

of ρ such that tra(Vρ |0⟩n+a⟨0|V †
ρ ) = ρ. Then there is a (2n + a)-qubit unitary Ṽ that is a

(1, n + a, 0)-block-encoding of ρ, and it can be implemented by one query to V and O(n)
gates.

To extract classical information from the block-encodings, one needs to perform quantum
measurements. The Hadamard test is a useful and efficient way to estimate the expectation
value of a quantum observable on a given quantum state. The following lemma shows a
Hadamard test for block-encodings.

Lemma 31 (Hadamard test for block-encodings, [57, Lemma 9]). Suppose that U is a
unitary operator that is a (1, a, 0)-block-encoding of an n-qubit operator A. Then, there is a

quantum circuit that outputs 0 with probability 1+Re{Tr(Aρ)}
2

, using one query to U and one
sample of the mixed quantum state ρ.

The success probability of extracting classical information from a block-encoding often
depends on the scaling factor of the block-encoding. Robust oblivious quantum amplitude
amplification is a technique for amplifying the scaling factor of block-encoding, as stated in
the following lemma.

Lemma 32 (Robust oblivious amplitude amplification [58, Corollary 2.8], adapted from [19,
Theorem 15]). Let U be a (1, a, ϵ)-block-encoding of A/α such that α > 1 and ∥A∥ ≤ 1. Then

there is a unitary Ũ that is a (1, a+ 2, 8αϵ)-block-encoding of A and can be implemented by
O(α) queries to U and O(aα) gates.

Apart from the block-encoding formalism, let us introduce other useful results. Quantum
amplitude estimation allows one to estimate the amplitude of a specific component of a
quantum state, stated as follows.
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Lemma 33 (Quantum amplitude estimation [75, Theorem 12]). Suppose that unitary oper-
ator U is given by

U |0⟩ |0⟩ = √
p |0⟩ |ϕ0⟩+

√
1− p |1⟩ |ϕ1⟩ , (B3)

where |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states, and p ∈ [0, 1]. Then, we can obtain
an estimate p̃ of p such that

|p̃− p| ≤
2π

√
p(1− p)

M
+

π2

M2
(B4)

with probability ≥ 8/π2 using O(M) queries to U . In particular, if we take M = Θ(1/δ),
then p̃ is a δ-estimate of p with high probability.

Finally, the following two lemmas give relevant bounds on the condition number of ma-
trices, which will be useful in the complexity analysis of our algorithms.

Lemma 34. Let A,B > 0 be two positive definite matrices such that ∥A∥ = ∥B∥ = 1. Then
κ−1
A+B ≥ κ−1

A + κ−1
B .

Lemma 35. Let A > 0 be a positive definite matrix, and let B be a matrix of full rank, such
that ∥A∥ = ∥B∥ = 1. Then κB†AB ≤ κAκB†B.

Proof. First note that B†B > 0 and B†CB > 0 for every C > 0. Since A ≥ I/κA, it follows
that

B†AB ≥ κ−1
A B†IB ≥ κ−1

A κ−1
B†B

I. (B5)

It immediately follows that κ−1
B†AB

≥ κ−1
A κ−1

B†B
.

Appendix C: Proof of Lemma 7

In this appendix we prove Lemma 7. Let us first prove the following lemma, which shows

that we can implement a block-encoding of the matrix
(
A−1/2CA−1/2

)1/p
.

Lemma 36. Suppose that UA, UC are (1, a, 0)-block-encodings of matrices A,C, respectively,
such that A ≥ I/κA and C ≥ I/κC. For ϵ ∈ (0, 1/2), one can implement a (1, 3a + 12, ϵ)-

block-encoding of κ
−1/p
A γ−1

p

(
A−1/2CA−1/2

)1/p
for any fixed real p ̸= 0, where

γp =

{
1 p > 0,

κ
−1/p
A κ

−1/p
C p < 0,

(C1)

using

• O(κAκC log (1/ϵ)) queries to UC, Õ
(
κ2AκC log2(1/ϵ)

)
queries to UA;

• Õ
(
aκ2AκC log2(1/ϵ)

)
gates; and

• poly(κA, κC , log (1/ϵ)) classical time.
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Proof. We first consider the case p > 0. Let us construct U
κ
−1/p
A (A−1/2CA−1/2)

1/p , a block-

encoding of κ
−1/p
A

(
A−1/2CA−1/2

)1/p
, step by step as follows. Along the way, we also analyse

the resources for each step. In the remainder of the paper, we use the notation Õa1,...,an(f)
to denote O(f polylog(b1, . . . , bn)), where ai, bi are parameters, f is a function, and bi =

ai+a
−1
i . Similarly, we use Ω̃a1,...,an(f) to denote Ω(f/ polylog(b1, . . . , bn)). In context without

ambiguity, we just omit the subscripts as usual.

1. UA → U(κAA)−1/2 :

• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ1 in Lemma 27, we have a polynomial

q1(x) of degree d1 = O(κA log(1/ϵ1)) that approximates (κAx)
−1/2/2.

(b) Taking U = UA, q = q1(x), ϵ = 0, and δ = ϵ1 in Lemma 26, we have
U(κAA)

−1/2/4, a (1, a + 2, ϵ1)-block-encoding of q1(A)/2, which is therefore a

(1, a+ 2, 2ϵ1)-block-encoding of (κAA)
−1/2 /4.

(c) Taking U = U(κAA)
−1/2/4, α = 4 in Lemma 32, we obtain U(κAA)

−1/2 , a (1, a+

4, 26ϵ1)-block-encoding of (κAA)
−1/2.

• Resources: O(d1) queries to UA, and O(ad1) gates, and poly(d1, log(1/ϵ1)) classi-
cal time.

2. UC , U(κAA)−1/2 → Uκ−1
A A−1/2CA−1/2 :

• Construction: by Lemma 24, given UC and U(κAA)−1/2 , we have Uκ−1
A A−1/2CA−1/2 ,

a (1, 3a+ 8, 27ϵ1)-block-encoding of κ−1
A A−1/2CA−1/2.

• Resources: O(1) queries to UC and U(κAA)−1/2 .

3. Uκ−1
A A−1/2CA−1/2 → U

κ
−1/p
A (A−1/2CA−1/2)

1/p :

• Construction:

(a) Taking c = 1/p, δ = κ−1
A κ−1

C ≤ κ−1
A κ−1

A−1/2CA−1/2 (by Lemma 35 and noting
κA−1 ≤ 1), and ϵ = ϵ2 in Lemma 28, we have a polynomial q2(x) of degree
d2 = O(κAκC log(1/ϵ2)) that approximates x1/p/2.

(b) Taking U = Uκ−1
A A−1/2CA−1/2 , q = q2(x), ϵ = 27ϵ1, and δ = ϵ2 in Lemma 26,

we have U
κ
−1/p
A (A−1/2CA−1/2)

1/p
/4
, a (1, 3a+ 10, 25.5d2

√
ϵ1 + ϵ2)-block-encoding

of q2
(
κ−1
A A−1/2CA−1/2

)
/2, which is therefore a (1, 3a+ 10, 25.5d2

√
ϵ1 + 2ϵ2)-

block-encoding of
(
κ−1
A A−1/2CA−1/2

)1/p
/4.

(c) Taking U = U
κ
−1/p
A (A−1/2CA−1/2)

1/p
/4
, α = 4 in Lemma 32, we obtain U

κ
−1/p
A (A−1/2CA−1/2)

1/p ,

a (1, 3a+ 12, 210.5d2
√
ϵ1 + 26ϵ2)-block-encoding of κ

−1/p
A

(
A−1/2CA−1/2

)1/p
.

• Resources: O(d2) queries to Uκ−1
A A−1/2CA−1/2 , andO(ad2) gates, and poly(d2, log(1/ϵ2))

classical time.

Let us take

• ϵ2 = 2−7ϵ = Ω(ϵ).
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• ϵ1 = 2−23ϵd−2
2 = Ω

(
κ−2
A κ−2

C ϵ log−2 (1/ϵ2)
)
= Ω̃

(
κ−2
A κ−2

C ϵ
)
.

Then, we can calculate the final approximation error in U
κ
−1/p
A (A−1/2CA−1/2)

1/p as a block-

encoding of κ
−1/p
A

(
A−1/2CA−1/2

)1/p
:

210.5d2
√
ϵ1 + 26ϵ2 ≤ ϵ. (C2)

The number of ancilla qubits for constructing U
κ
−1/p
A (A−1/2CA−1/2)

1/p is 3a+ 12.

Finally, let us calculate the complexities of each step.

1. UA → U(κAA)−1/2 :

ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,

and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

2. UC , U(κAA)−1/2 → Uκ−1
A A−1/2CA−1/2 :

O(1) queries to UC , ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,
and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

3. Uκ−1
A A−1/2CA−1/2 → U

κ
−1/p
A (A−1/2CA−1/2)

1/p :

O(κAκC log (1/ϵ)) queries to UC , ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.

For the case p < 0, the analysis is the same except that in Step 3a, we can use Lemma 27

instead of Lemma 28. This only incurs an additional scaling factor κ
1/p
A κ

1/p
C into the final

block-encoded matrix, without significantly changing the complexity.

Now we are ready to prove Lemma 7, which gives an implementation of a block-encoding
of the weighted matrix geometric mean in Eq. (2).

Proof of Lemma 7. We first consider the case p > 0. Let us construct U
κ
−1/p
A Y

, a (1, 5a +

20, ϵ)-block-encoding of κ
−1/p
A Y , step by step as follows, where

Y = A#1/pC = A1/2
(
A−1/2CA−1/2

)1/p
A1/2. (C3)

Along the way, we also analyse the resources for each step.

1. UA → UA1/2 :

• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ1 in Lemma 28, we have a polynomial

q1(x) of degree d1 = O(κA log(1/ϵ1)) that approximates x1/2/2.

(b) Taking U = UA, q = q1(x), ϵ = 0, and δ = ϵ1 in Lemma 26, we have UA1/2/4,
a (1, a+ 2, ϵ1)-block-encoding of q1(A)/2, which is therefore a (1, a+ 2, 2ϵ1)-
block-encoding of A1/2/4.

(c) Taking U = UA1/2/4, α = 4 in Lemma 32, we obtain UA1/2 , a (1, a + 4, 26ϵ1)-

block-encoding of A1/2.
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• Resources: O(d1) queries to UA, and O(ad1) gates, and poly(d1, log(1/ϵ1)) classi-
cal time.

2. UA, UC → U
κ
−1/p
A (A−1/2CA−1/2)

1/p :

• Construction:

Taking ϵ = ϵ2 in Lemma 36, we can construct U
κ
−1/p
A (A−1/2CA−1/2)

1/p , a (1, 3a +

12, ϵ2)-block-encoding of U
κ
−1/p
A (A−1/2CA−1/2)

1/p .

• Resources:

According to Lemma 36, the resources for the above construction are:

– O(κAκC log (1/ϵ2)) queries to UC , Õ
(
κ2AκC log2(1/ϵ2)

)
queries to UA;

– Õ
(
aκ2AκC log2(1/ϵ2)

)
gates; and

– poly(κA, κC , log (1/ϵ2)) classical time.

3. UA1/2 , U
κ
−1/p
A (A−1/2CA−1/2)

1/p → U
κ
−1/p
A Y

:

• Construction: by Lemma 24, given UA1/2 and U
κ
−1/p
A (A−1/2CA−1/2)

1/p , we have

U
κ
−1/2
A Y

, a (1, 5a+ 20, 27ϵ1 + ϵ2)-block-encoding of κ
−1/2
A Y .

• Resources: O(1) queries to UA1/2 and U
κ
−1/p
A (A−1/2CA−1/2)

1/p .

Let us take ϵ1 = 2−8ϵ and ϵ2 = 2−1ϵ. Then the final approximation error in U
κ
−1/p
A Y

as a

block-encoding of κ
−1/p
A Y is

27ϵ1 + ϵ2 ≤ ϵ. (C4)

The number of ancilla qubits for constructing κ
−1/p
A Y is 5a+20. Finally, let us calculate the

complexities of each step.

1. UA → UA1/2 :

ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,

and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

2. UA, UC → U
κ
−1/p
A (A−1/2CA−1/2)

1/p :

O(κAκC log (1/ϵ2)) queries to UC , Õ
(
κ2AκC log2(1/ϵ2)

)
queries to UA, Õ

(
aκ2AκC log2(1/ϵ2)

)
gates, and poly(κA, κC , log (1/ϵ2)) classical time.

3. UA1/2 , U
κ
−1/p
A (A−1/2CA−1/2)

1/p → U
κ
−1/p
A Y

:

O(κAκC log (1/ϵ2)) queries to UC , Õ
(
κ2AκC log2(1/ϵ2)

)
queries to UA, Õ

(
aκ2AκC log2(1/ϵ2)

)
gates, and poly(κA, κC , log (1/ϵ2)) classical time.

By Definition 6, U
κ
−1/p
A Y

is also a (κ
1/p
A , 5a + 20, κ

1/p
A ϵ)-block-encoding of Y . Replacing

the precision parameter immediately yields the results for the case p > 0 in Lemma 7. For
the case p < 0, the analysis is similar and is omitted.
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Appendix D: Proof of Lemma 8

In this appendix we prove Lemma 8.

Proof of Lemma 8. Let us construct Uκ−1
A Y , a (1, 5a+20, ϵ)-block-encoding of κ−1

A Y , step by

step as follows, where

Y = A−1#C = A−1/2
(
A1/2CA1/2

)1/2
A−1/2. (D1)

Along the way, we also analyse the resources for each step.

1. UA → UA1/2 :

• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ1 in Lemma 28, we have a polynomial

q1(x) of degree d1 = O(κA log(1/ϵ1)) that approximates x1/2/2.

(b) Taking U = UA, q = q1(x), ϵ = 0, and δ = ϵ1 in Lemma 26, we have UA1/2/4,
a (1, a+ 2, ϵ1)-block-encoding of q1(A)/2, which is therefore a (1, a+ 2, 2ϵ1)-
block-encoding of A1/2/4.

(c) Taking U = UA1/2/4, α = 4 in Lemma 32, we obtain UA1/2 , a (1, a + 4, 26ϵ1)-

block-encoding of A1/2.

• Resources: O(d1) queries to UA, and O(ad1) gates, and poly(d1, log(1/ϵ1)) classi-
cal time.

2. UC , UA1/2 → UA1/2CA1/2 :

• Construction: by Lemma 24, given UC and UA1/2 , we have UA1/2CA1/2 , a (1, 3a+
8, 27ϵ1)-block-encoding of A1/2CA1/2.

• Resources: O(1) queries to UC and UA1/2 .

3. UA1/2CA1/2 → U
(A1/2CA1/2)

1/2 :

• Construction:

(a) Taking c = 1/2, δ = κ−1
A κ−1

C ≤ κ−1
A1/2CA1/2 (by Lemma 35), and ϵ = ϵ2 in

Lemma 28, we have a polynomial q2(x) of degree d2 = O(κAκC log(1/ϵ2))
that approximates x1/2/2.

(b) Taking U = UA1/2CA1/2 , q = q2(x), ϵ = 27ϵ1, and δ = ϵ2 in Lemma 26,
we have U

(A1/2CA1/2)
1/2

/4
, a (1, 3a + 10, 25.5d2

√
ϵ1 + ϵ2)-block-encoding of

q2
(
A1/2CA1/2

)
/2, which is therefore a (1, 3a + 10, 25.5d2

√
ϵ1 + 2ϵ2)-block-

encoding of
(
A1/2CA1/2

)1/2
/4.

(c) Taking U = U
(A1/2CA1/2)

1/2
/4
, α = 4 in Lemma 32, we obtain U

(A1/2CA1/2)
1/2 ,

a (1, 3a+ 12, 210.5d2
√
ϵ1 + 26ϵ2)-block-encoding of

(
A1/2CA1/2

)1/2
.

• Resources: O(d2) queries to UA1/2CA1/2 , and O(ad2) gates, and poly(d2, log(1/ϵ2))
classical time.

4. UA → U(κAA)−1/2 :
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• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ3 in Lemma 27, we have a polynomial

q3(x) of degree d3 = O(κA log(1/ϵ3)) that approximates (κAx)
−1/2/2.

(b) Taking U = UA, q = q3(x), ϵ = 0, and δ = ϵ3 in Lemma 26, we have
U(κAA)

−1/2/4, a (1, a + 2, ϵ3)-block-encoding of q3(A)/2, which is therefore a

(1, a+ 2, 2ϵ3)-block-encoding of (κAA)
−1/2 /4.

(c) Taking U = U(κAA)
−1/2/4, α = 4 in Lemma 32, we obtain U(κAA)

−1/2 , a (1, a+

4, 26ϵ3)-block-encoding of (κAA)
−1/2.

• Resources: O(d3) queries to UA, and O(ad3) gates, and poly(d3, log(1/ϵ3)) classi-
cal time.

5. U(κAA)−1/2 , U
(A1/2CA1/2)

1/2 → Uκ−1
A Y :

• Construction: by Lemma 24, given U(κAA)−1/2 and U
(A1/2CA1/2)

1/2 , we have Uκ−1
A Y ,

a (1, 5a+ 20, 210.5d2
√
ϵ1 + 26ϵ2 + 27ϵ3)-block-encoding of κ−1

A Y .

• Resources: O(1) queries to U(κAA)−1/2 and U
(A1/2CA1/2)

1/2 .

Let us take

• ϵ3 = 2−9ϵ = Ω(ϵ).

• ϵ2 = 2−8ϵ = Ω(ϵ).

• ϵ1 = 2−23ϵd−2
2 = Ω

(
κ−2
A κ−2

C ϵ log−2 (1/ϵ2)
)
= Ω̃

(
κ−2
A κ−2

C ϵ
)
.

Then, the final approximation error in Uκ−1
A Y as a block-encoding of κ−1

A Y is

210.5d2
√
ϵ1 + 26ϵ2 + 27ϵ3 ≤ ϵ. (D2)

The number of ancilla qubits for constructing Uκ−1
A Y is 5a+ 20.

Finally, let us calculate the complexities of each step.

1. UA → UA1/2 :

ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,

and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

2. UC , UA1/2 → UA1/2CA1/2 :

O(1) queries to UC , ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,
and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

3. UA1/2CA1/2 → U
(A1/2CA1/2)

1/2 :

O(κAκC log (1/ϵ)) queries to UC , ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.
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4. UA → U(κAA)−1/2 :

O(κA log (1/ϵ)) queries to UA, O(aκA log (1/ϵ)) gates, and poly(κA, log (1/ϵ)) classical
time.

5. U(κAA)−1/2 , U
(A1/2CA1/2)

1/2 → Uκ−1
A Y :

O(κAκC log (1/ϵ)) queries to UC , ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.

By Definition 6, Uκ−1
A Y is also a (κA, 5a + 20, κAϵ)-block-encoding of Y . Replacing the

precision parameter immediately yields the results in Lemma 8.

Appendix E: Proof of Lemma 9

In this appendix we prove Lemma 9.

Proof of Lemma 9. Let D = B†A−1B + C and E = A1/2DA1/2. As B†A−1B ≥ 0, we have

κ−1
D ≥ κ−1

C (E1)

by Lemma 34.
Similar to the proof of Lemma 8 in Appendix D, let us construct U

κ
−3/2
A Y

, a (1, b, ϵ)-block-

encoding of κ
−3/2
A Y , step by step as follows, where b = O(a+ log (1/ϵ)) and

Y = A−1#D + A−1B = A−1/2E1/2A−1/2 + A−1B. (E2)

Along the way, we also analyse the resources for each step.

1. UA → U(κAA)−1 :

• Construction:

(a) Taking c = 1, δ = κ−1
A , and ϵ = ϵ1 in Lemma 27, we have a polynomial q1(x)

of degree d1 = O(κA log(1/ϵ1)) that approximates (κAx)
−1/2.

(b) Taking U = UA, q = q1(x), ϵ = 0, and δ = ϵ1 in Lemma 26, we have
U(κAA)

−1/4, a (1, a + 2, ϵ1)-block-encoding of q1(A)/2, which is therefore a

(1, a+ 2, 2ϵ1)-block-encoding of (κAA)
−1 /4.

(c) Taking U = U(κAA)
−1/4, α = 4 in Lemma 32, we obtain U(κAA)

−1 , a (1, a +

4, 26ϵ1)-block-encoding of (κAA)
−1.

• Resources: O(d1) queries to UA, and O(ad1) gates, and poly(d1, log(1/ϵ1)) classi-
cal time.

2. UB, U(κAA)
−1 → Uκ−1

A B†A−1B:

• Construction: Note that given UB, one can construct UB† = U †
B, a (1, a, 0)-block-

encoding of B†, using 1 query to UB. By Lemma 24, given UB and U(κAA)
−1 , we

have Uκ−1
A B†A−1B, a (1, 3a+ 4, 27ϵ1)-block-encoding of κ−1

A B†A−1B.
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• Resources: O(1) queries to UB and U(κAA)
−1 .

3. UC , Uκ−1
A B†A−1B → U(2κA)−1D:

• Construction: Takingm = 2, x = (1, κ−1
A ), β = 2, U1 = Uκ−1

A B†A−1B, U2 = UC and

ϵ = 27ϵ1 in Lemma 25, we obtain a (1, 3a+ 4 + η1 log (1/ϵ1) , 2
7ϵ1)-block-encoding

of (2κA)
−1D, for some constant η1.

• Resources: O(1) queries to UC and Uκ−1
A B†A−1B, and polylog (1/ϵ1) gates.

4. UA → UA1/2 :

• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ2 in Lemma 28, we have a polynomial

q2(x) of degree d2 = O(κA log(1/ϵ2)) that approximates x1/2/2.

(b) Taking U = UA, q = q2(x), ϵ = 0, and δ = ϵ2 in Lemma 26, we have UA1/2/4,
a (1, a+ 2, ϵ2)-block-encoding of q2(A)/2, which is therefore a (1, a+ 2, 2ϵ2)-
block-encoding of A1/2/4.

(c) Taking U = UA1/2/4, α = 4 in Lemma 32, we obtain UA1/2 , a (1, a + 4, 26ϵ2)-

block-encoding of A1/2.

• Resources: O(d2) queries to UA, and O(ad2) gates, and poly(d2, log(1/ϵ2)) classi-
cal time.

5. U(2κA)−1D, UA1/2 → U(2κA)−1E:

• Construction: By Lemma 24, given U(2κA)−1D and UA1/2 , we have U(2κA)−1E, a
(1, 5a+ 12 + η1 log (1/ϵ1) , 2

7ϵ1 + 27ϵ2)-block-encoding of (2κA)
−1E.

• Resources: O(1) queries to U(2κA)−1D and UA1/2 .

6. U(2κA)−1E → U
κ
−1/2
A E1/2 :

• Construction:

(a) Taking c = 1/2, δ = 2−1κ−2
A κ−1

C ≤ 2−1κ−2
A κ−1

D ≤ (2κA)
−1κ−1

E (by Lemma E1
and Lemma 35), and ϵ = ϵ3 in Lemma 28, we have a polynomial q3(x) of
degree d3 = O(κAκC log(1/ϵ3)) that approximates x1/2/2.

(b) Taking U = U(2κA)−1E, q = q3(x), ϵ = 27 (ϵ1 + ϵ2), and δ = ϵ3 in Lemma 26,
we have U

2−2.5κ
−1/2
A E1/2 ,

a (1, 5a+14+η1 log (1/ϵ1) , 2
5.5d3

√
ϵ1 + ϵ2+ϵ3)-block-encoding of q3 ((2κA)

−1E) /2,
which is therefore
a (1, 5a+14+η1 log (1/ϵ1) , 2

5.5d3
√
ϵ1 + ϵ2+2ϵ3)-block-encoding of 2

−2.5κ
−1/2
A E1/2,

(c) Taking U = U
2−2.5κ

−1/2
A E1/2 , α = 22.5 in Lemma 32, we obtain U

κ
−1/2
A E1/2 ,

a (1, 5a+16+η1 log (1/ϵ1) , 2
11d3

√
ϵ1 + ϵ2+26.5ϵ3)-block-encoding of κ

−1/2
A E1/2,

• Resources: O(d3) queries to U(2κA)−1E, and O((a+ log (1/ϵ1)) d3) gates, and
poly(d3, log(1/ϵ3)) classical time.

7. UA → U(κAA)−1/2 :
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• Construction:

(a) Taking c = 1/2, δ = κ−1
A , and ϵ = ϵ4 in Lemma 27, we have a polynomial

q4(x) of degree d4 = O(κA log(1/ϵ4)) that approximates (κAx)
−1/2/2.

(b) Taking U = UA, q = q4(x), ϵ = 0, and δ = ϵ4 in Lemma 26, we have
U(κAA)

−1/2/4, a (1, a + 2, ϵ4)-block-encoding of q4(A)/2, which is therefore a

(1, a+ 2, 2ϵ4)-block-encoding of (κAA)
−1/2 /4.

(c) Taking U = U(κAA)
−1/2/4, α = 4 in Lemma 32, we obtain U(κAA)

−1/2 , a (1, a+

4, 26ϵ4)-block-encoding of (κAA)
−1/2.

• Resources: O(d4) queries to UA, and O(ad4) gates, and poly(d4, log(1/ϵ4)) classi-
cal time.

8. U(κAA)−1/2 , U
κ
−1/2
A E1/2 → U

κ
−3/2
A A−1#D

:

• Construction: By Lemma 24, given U(κAA)−1/2 and U
κ
−1/2
A E1/2 , we have Uκ−3/2

A A−1#D
,

a (1, 7a + 24 + η1 log (1/ϵ1) , 2
11d3

√
ϵ1 + ϵ2 + 26.5ϵ3 + 27ϵ4)-block-encoding of

κ
−3/2
A A−1#D.

• Resources: O(1) queries to U(κAA)−1/2 and U
κ
−1/2
A E1/2 .

9. U(κAA)−1 , UB → Uκ−1
A A−1B:

• Construction: By Lemma 24, given U(κAA)−1 and UB, we have Uκ−1
A A−1B, a (1, 2a+

4, 26ϵ1)-block-encoding of κ−1
A A−1B.

• Resources: O(1) queries to U(κAA)−1 and UB.

10. U
κ
−3/2
A A−1#D

, Uκ−1
A A−1B → U

κ
−3/2
A Y

:

• Construction:

(a) Taking m = 2, x = (1, κ
−1/2
A ), β = 2, U1 = U

κ
−3/2
A A−1#D

, U2 = Uκ−1
A A−1B

and ϵ = ϵ5 = 211d3
√
ϵ1 + ϵ2 + 26.5ϵ3 + 27ϵ4 + 26ϵ1 in Lemma 25, we obtain

U
2−1κ

−3/2
A Y

a (1, 7a+ 24 + η1 log (1/ϵ1) + η2 log (1/ϵ5) , ϵ5)-block-encoding of 2−1κ
−3/2
A Y .

(b) Taking U = U
2−1κ

−3/2
A Y

, α = 2 in Lemma 32, we obtain U
κ
−3/2
A Y

,

a (1, 7a+ 26 + η1 log (1/ϵ1) + η2 log (1/ϵ5) , 2
4ϵ5)-block-encoding of κ

−3/2
A Y .

• Resources: O(1) queries to U
κ
−3/2
A A−1#D

and Uκ−1
A A−1B,

and O(a+ log (1/ϵ1) + polylog (1/ϵ5)) gates.

Let us take

• ϵ5 = 2−4ϵ = Ω(ϵ).

• ϵ4 = 2−13ϵ = Ω(ϵ).

• ϵ3 = 2−12.5ϵ = Ω(ϵ).
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• ϵ2 = ϵ1 = 2−35d−2
3 ϵ2 = Ω

(
κ−2
A κ−2

C ϵ2 log−2 (1/ϵ3)
)
= Ω̃

(
κ−2
A κ−2

C ϵ2
)
.

Then, the final approximation error in U
κ
−3/2
A Y

as a block-encoding of κ
−3/2
A Y is

24
(
211d3

√
ϵ1 + ϵ2 + 26.5ϵ3 + 27ϵ4 + 26ϵ1

)
≤ ϵ. (E3)

The number of ancilla qubits for constructing U
κ
−3/2
A Y

is

7a+ 26 + η1 log (1/ϵ1) + η2 log (1/ϵ5) = O(a+ log (1/ϵ)) . (E4)

Finally, let us calculate the complexities of each step.

1. UA → U(κAA)−1 :

ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,

and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

2. UB, U(κAA)
−1 → Uκ−1

A B†A−1B:

O(1) queries to UB, ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,
and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

3. UC , Uκ−1
A B†A−1B → U(2κA)−1D:

O(1) queries to UC and UB, ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ))
gates, and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

4. UA → UA1/2 :

ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,

and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

5. U(2κA)−1D, UA1/2 → U(2κA)−1E:

O(1) queries to UC and UB, ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ))
gates, and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

6. U(2κA)−1E → U
κ
−1/2
A E1/2 :

O(κAκC log (1/ϵ)) queries to UC and UB, ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.

7. UA → U(κAA)−1/2 :

O(κA log (1/ϵ)) queries to UA, O(aκA log (1/ϵ)) gates, and poly(κA, log (1/ϵ)) classical
time.

8. U(κAA)−1/2 , U
κ
−1/2
A E1/2 → U

κ
−3/2
A A−1#D

:

O(κAκC log (1/ϵ)) queries to UC and UB, ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.
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9. U(κAA)−1 , UB → Uκ−1
A A−1B:

O(1) queries to UB, ÕκA,κC ,ϵ (κA log (1/ϵ)) queries to UA, ÕκA,κC ,ϵ (aκA log (1/ϵ)) gates,
and polyκA,κC ,ϵ (κA, log (1/ϵ)) classical time.

10. U
κ
−3/2
A A−1#D

, Uκ−1
A A−1B → U

κ
−3/2
A Y

:

O(κAκC log (1/ϵ)) queries to UC and UB, ÕκA,κC ,ϵ

(
κ2AκC log2(1/ϵ)

)
queries to UA,

ÕκA,κC ,ϵ

(
aκ2AκC log2(1/ϵ)

)
gates, and polyκA,κC ,ϵ (κA, κC , log (1/ϵ)) classical time.

By Definition 6, U
κ
−3/2
A Y

is also a (κ
3/2
A , b, κ

3/2
A ϵ)-block-encoding of Y . Replacing the precision

parameter immediately yields the results in Lemma 9.

Appendix F: Proof of Lemma 11

In this appendix we prove Lemma 11.

Proof of Lemma 11. The proof is similar to that of Lemma 8. For p > 0, we can simply
take c = 1/p instead in Step 3a, without significantly changing the complexity.

For p < 0, in Step 3a, we can use Lemma 27 instead of Lemma 28, and take c = −1/p.

This only incurs an additional scaling factor κ
1/p
A κ

1/p
C into the final block-encoded matrix,

without significantly changing the complexity.

Appendix G: Proof of Lemma 12

Although in [25] the lemma was stated only for real, symmetric positive definite matrices
(SPDs), each step in the proof is also applicable to positive definite Hermitian matrices as
we show below.

To find the global minimum of L(Y ), it is sufficient to find the solution to ∇L(Y ) = 0
when L(Y ) is strictly convex and is also strictly geodesically convex on the manifold of
positive definite Hermitian matrices. For the definition of distances on this manifold and
the geometric interpretation for the matrix geometric mean, see Section IIA.

The strict convexity of Y 7→ L(Y ) can be proved for the two terms separately since
strict convexity is preserved in a sum. The term Tr(Y A) is clearly strictly convex since it
is linear and A is positive definite. For strict convexity of the second term Tr(Y −1C), it
follows directly from the fact that Y → Y −1 is strictly operator convex and C is positive
definite. As an alternative proof, we evoke the following relationship. It is known that a
twice-differentiable function L : V → R on an open subset Y of a vector space Z is convex
if and only if for all Y ∈ Y and Z ∈ Z

d2L(Y + tZ)

dt2
|t=0 > 0. (G1)
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Using the Woodbury matrix identity, we can rewrite

(Y + tZ)−1 = (Y (I + tY −1Z))−1 = Y −1 − tY −1(I + tZY −1)−1ZY −1

= Y −1 − tY −1ZY −1 + t2Y −1ZY −1ZY −1 +O(t3). (G2)

Therefore the condition in Eq. (G1) for Tr(Y −1C) is equivalent to showing that

Tr(DC) > 0, D = Y −1ZY −1ZY −1. (G3)

Y is positive definite Hermitian and let Z be Hermitian so D = D†. We note that DC
is similar to the matrix D−1/2(DC)D1/2 = D1/2CD1/2, so they have identical eigenvalues.
Then it suffices to show that D1/2CD1/2 only has positive eigenvalues. Since D1/2 is also
Hermitian and C is positive definite Hermitian, then Tr(D1/2CD1/2) = Tr(CD) > 0.

By strictly geodesically convex, it means that for all positive definite Hermitian matrices
Y1, Y2, we have

L(Y1#tY2) < tL(Y1) + (1− t)L(Y2), t ∈ [0, 1].

To show geodesic convexity, we also need the following two facts. From [76], there is the
fundamental operator inequality for positive definite matrices for t ∈ [0, 1]

Y1#tY2 ≤ (1− t)Y1 + tY2. (G4)

For Y1 ̸= Y2 for t = 1/2, this is a strict inequality. From the definition, it can also be shown
that [27]

(Y1#tY2)
−1 = Y −1

1 #tY
−1
2 . (G5)

Since midpoint convexity (convexity at t = 1/2) and continuity imply convexity, we have

L(Y1#1/2Y2) = Tr((Y1#1/2Y2)A) + Tr((Y1#1/2Y2)
−1C)

<
1

2
(Tr(Y1A) + Tr(Y2A)) + Tr((Y1#1/2Y2)

−1C)

=
1

2
(Tr(Y1A) + Tr(Y2A)) + Tr((Y −1

1 #1/2Y
−1
2 )C)

<
1

2
(Tr(Y1A) + Tr(Y2A) + Tr(Y −1

1 C) + Tr(Y −1
2 C))

=
1

2
(L(Y2) + L(Y1)). (G6)

Thus we have strict geodesic convexity.

Appendix H: Proof of Theorems 18 and 19

Here we provide details of the proofs of Theorems 18 and 19.

Proof of Theorem 18. By Eq. (62), the definition of F̂α(ρ, σ), we have

F̂α(ρ, σ) = Tr
(
ρ
(
ρ−1/2σρ−1/2

)1−α)
= Tr

(
σ
(
σ−1/2ρσ−1/2

)α)
. (H1)
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Suppose that ρ and σ are n-qubit mixed quantum states and Oρ and Oσ are (n + a)-qubit
unitary operators. By Lemma 30, we can implement two unitary operators Uρ and Uσ that
are (1, n + a, 0)-block-encodings of ρ and σ using O(1) queries to Oρ and Oσ, respectively.
We consider two approaches via the first and second formulas in Eq. (H1) separately.

Via the first formula. By Lemma 36, we can implement a (1, b, δ)-block-encodingW of

κα−1
ρ γα(ρ

−1/2σρ−1/2)1−α using Õ(κ2ρκσ log
2(1/δ)) queries to Uρ and Õ(κρκσ log(1/δ)) queries

to Uσ, where b = 3a+ 12, and

γα =

{
1, α ∈ (0, 1),

κ1−αρ κ1−ασ , α ∈ (1, 2].
(H2)

By the Hadamard test (given in Lemma 31), there is a quantum circuit C that outputs
0 with probability 1

2
(1 + Re{Tr(ρ ⟨0|bW |0⟩b)}), using one query to W and one sample of ρ.

By noting that

|κ1−αρ γ−1
α Re{Tr(ρ ⟨0|bW |0⟩b)} − F̂α(ρ, σ)| ≤ Θ(κ1−αρ γ−1

α δ), (H3)

we conclude that an O(κα−1
ρ γαϵ)-estimate of Re{Tr(ρ ⟨0|b UM |0⟩b)} with δ = Θ(κα−1

ρ γαϵ)

suffices to obtain an ϵ-estimate of F̂α(ρ, σ). By quantum amplitude estimation (given in
Lemma 33), this can be done using O(1/δ) = O(κ1−αρ γ−1

α ϵ−1) queries to C.

To conclude, an ϵ-estimate of F̂α(ρ, σ) can be obtained by using

Õ(κ2ρκσ log
2(1/δ)) ·O(κ1−αρ γ−1

α ϵ−1) =

{
Õ(κ3−αρ κσ/ϵ), α ∈ (0, 1),

Õ(κ2ρκ
α
σ/ϵ), α ∈ (1, 2],

(H4)

queries to Oρ and

Õ(κρκσ log(1/δ)) ·O(κ1−αρ γ−1
α ϵ−1) =

{
Õ(κ2−αρ κσ/ϵ), α ∈ (0, 1),

Õ(κρκ
α
σ/ϵ), α ∈ (1, 2],

(H5)

queries to Oσ.
Via the second formula. By Lemma 36, we can implement a (1, b, δ)-block-encoding

W of κ−ασ (σ−1/2ρσ−1/2)α using Õ(κ2σκρ log
2(1/δ)) queries to Uσ and Õ(κρκσ log(1/δ)) queries

to Uρ, where b = 3a+ 12. By the Hadamard test (given in Lemma 31), there is a quantum
circuit C that outputs 0 with probability 1

2
(1 + Re{Tr(ρ ⟨0|bW |0⟩b)}), using one query to

W and one sample of ρ. By noting that

|κασ Re{Tr(ρ ⟨0|bW |0⟩b)} − F̂α(ρ, σ)| ≤ Θ(κασδ), (H6)

we conclude that an O(κ−ασ ϵ)-estimate of Re{Tr(ρ ⟨0|b UM |0⟩b)} with δ = Θ(κ−ασ ϵ) suffices to

obtain an ϵ-estimate of F̂α(ρ, σ). By quantum amplitude estimation (given in Lemma 33),
this can be done using O(1/δ) = O(κασϵ

−1) queries to C.

To conclude, an ϵ-estimate of F̂α(ρ, σ) can be obtained by using Õ(κ2σκρ log
2(1/δ)) ·

O(1/δ) = Õ(κ2+ασ κρ/ϵ) queries to Oσ and Õ(κσκρ log(1/δ)) · O(1/δ) = Õ(κ1+ασ κρ/ϵ) queries
to Oρ.

Conclusion. Combining the above cases (and their symmetrical cases), the query com-
plexity is
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• Õ(κρκσ/ϵ ·min{κρ, κσ}min{1+α,2−α}) for α ∈ (0, 1),

• Õ(κρκσ/ϵ ·min{κρκα−1
σ , κα−1

ρ κσ, κ
1+α
ρ , κ1+ασ }) for α ∈ (1, 2].

Proof of Theorem 19. Note that I/κσ ≤ ρ−1/2σρ−1/2 ≤ κρI. Thus κ
α−1
σ I ≤ (ρ−1/2σρ−1/2)1−α ≤

κ1−αρ I for α ∈ (0, 1) and κ1−αρ I ≤ (ρ−1/2σρ−1/2)1−α ≤ κα−1
σ I for α ∈ (1, 2]. By Eq. (H1), we

have κα−1
σ ≤ F̂α(ρ, σ) ≤ κ1−αρ for α ∈ (0, 1) and κ1−αρ ≤ F̂α(ρ, σ) ≤ κα−1

σ for α ∈ (1, 2].

For α ∈ (0, 1), to estimate D̂α(ρ∥σ) within additive error ϵ, we can estimate F̂α(ρ, σ) to
relative error ϵ (i.e., within additive error κα−1

σ ϵ). By Theorem 18, this can be done by using

using Õ(κρκ
2−α
σ /ϵ ·min{κρ, κσ}min{1+α,2−α}) queries to Oρ and Oσ.

For α ∈ (1, 2], to estimate D̂α(ρ∥σ) within additive error ϵ, we can estimate F̂α(ρ, σ) to
relative error ϵ (i.e., within additive error κ1−αρ ϵ). By Theorem 18, this can be done by using

using Õ(καρκσ/ϵ ·min{κρκα−1
σ , κα−1

ρ κσ, κ
1+α
ρ , κ1+ασ }) queries to Oρ and Oσ.

Appendix I: Proof of Lemmas 17 and 20

To prove the lower bound, we need the quantum query lower bound for distinguishing
probability distributions given in [77].

Lemma 37 ([77, Theorem 4]). Let p, q : {1, 2, . . . , n} → [0, 1] be two probability distributions
on a sample space of size n. Let

Up |0⟩ =
n∑
j=1

√
pj |j⟩ |φj⟩ , (I1)

Uq |0⟩ =
n∑
j=1

√
qj |j⟩ |ψj⟩ , (I2)

where {|φj⟩}nj=1 and {|ψj⟩}nj=1 are orthonormal bases. Then, given an unknown unitary
operator U , any quantum query algorithm that determines whether U = Up or U = Uq
with probability at least 2/3, promised that one or the other holds, has query complexity
Ω(1/dH(p, q)), where

dH(p, q) :=

√√√√1

2

n∑
j=1

(√
pj −

√
qj
)2

(I3)

is the Hellinger distance.

Proof of Lemma 17. Let ϵ ∈ (0, 1/4). Consider the discrimination of the two probability
distributions p, q : {0, 1} → [0, 1] on a sample space of size two such that for each j ∈ {0, 1},

pj =
1 + (−1)jϵ

2
, (I4)

qj =
1 + (−1)j2ϵ

2
. (I5)
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It can be verified that their Hellinger distance is upper bounded by

dH(p, q) =

√
1−

√
(1 + ϵ)(1 + 2ϵ) +

√
(1− ϵ)(1− 2ϵ)

2
≤ ϵ. (I6)

Suppose that two unitary operators Up and Uq are given such that

Up |0⟩ =
√
p0 |0⟩ |φ0⟩+

√
p1 |1⟩ |φ1⟩ , (I7)

Uq |0⟩ =
√
q0 |0⟩ |ψ0⟩+

√
q1 |1⟩ |ψ1⟩ , (I8)

where {|φ0⟩ , |φ1⟩} and {|ψ0⟩ , |ψ1⟩} are orthonormal bases.
Let A(Oρ,Oσ, κρ, κσ, ϵ) be any quantum query algorithm that estimates the fidelity

F (ρ, σ) between two mixed quantum states ρ and σ within additive error ϵ, where Oρ

and Oσ prepare purifications of ρ and σ, respectively, with ρ ≥ I/κρ and σ ≥ I/κσ. In the
following, we use A(Oρ,Oσ, κρ, κσ, ϵ) to distinguish Up and Uq. We first note that Up and
Uq can be understood as quantum unitary oracles that prepare purifications of the following
two quantum states:

ρ =
1 + ϵ

2
|0⟩⟨0|+ 1− ϵ

2
|1⟩⟨1|, σ =

1 + 2ϵ

2
|0⟩⟨0|+ 1− 2ϵ

2
|1⟩⟨1|. (I9)

Then, one can set κρ = κσ = 4 = Θ(1). Consider the quantum state

η =
1

4
|0⟩⟨0|+ 3

4
|1⟩⟨1|, (I10)

and let Oη be a quantum oracle that prepares a purification of η. We note that

F (ρ, η) =

√
1 + ϵ+

√
3(1− ϵ)√

8
. (I11)

F (σ, η) =

√
1 + 2ϵ+

√
3(1− 2ϵ)√

8
. (I12)

By simple calculation, we have

F (ρ, η)− F (σ, η) ≥ ϵ

16
. (I13)

Let U be the unitary oracle to be tested, promised that either U = Up or U = Uq. For
convenience, suppose that U prepares a purification of ϱ, promised that either ϱ = ρ or
ϱ = σ. Our algorithm for determining which is the case is given as follows.

1. Apply A(U,Oη, 4, 4, ϵ/64) to obtain an ϵ/64-estimate x̃ of F (ϱ, η).

2. If |x̃− F (ρ, η)| ≤ ϵ/32, then return that U = Up; otherwise, return that U = Uq.

It can be verified that the above algorithm determines whether U = Up or U = Uq with high
probability, where the correctness is mainly based on Eq. (I13).

On the other hand, by Lemma 37, any quantum query algorithm that distinguishes
Up and Uq has query complexity Ω(1/dH(p, q)) = Ω(1/ϵ). Therefore, the algorithm
A(U,Oη, 4, 4, ϵ/64) should use at least Ω(1/ϵ) queries to U , which completes the proof.
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Using the same hard instance, we can prove Lemma 20.

Proof of Lemma 20. Note that under the choice of ρ, σ, η the same as the proof of Lemma 17,
we still have

F̂1/2(ρ, η)− F̂1/2(σ, η) ≥
ϵ

16
, (I14)

which is similar to Eq. (I13).
Such an observation can be generalized to the general case when 0 < α < 1, which,

however, becomes a bit more complicated. We first note that

F̂α(ρ, η) =

(
1

4

)1−α(
1 + ϵ

2

)α

+

(
3

4

)1−α(
1− ϵ

2

)α

, (I15)

F̂α(σ, η) =

(
1

4

)1−α(
1 + 2ϵ

2

)α

+

(
3

4

)1−α(
1− 2ϵ

2

)α

. (I16)

To make the construction in the proof of Lemma 17 applicable to F̂α(·, ·) for 0 < α < 1, we
only have to show that there is a constant c > 0 and ϵ0 > 0 (which depends only on α) such
that for all 0 < ϵ < ϵ0, it holds that

F̂α(ρ, η)− F̂α(σ, η) ≥ cϵ. (I17)

To complete the proof, we show that this is achievable by noting that

lim
ϵ→0

F̂α(ρ, η)− F̂α(σ, η)

ϵ
=

(
1

2

)α
[(

3

4

)1−α

−
(
1

4

)1−α
]
α > 0. (I18)

Appendix J: Proof of Lemma 23

We consider how to solve MGM(κA, κC) in quantum time poly(n) for κA = poly(n) and
κC = poly(n). It is straightforward that the given uniform classical circuit Cn implies the
quantum implementations of the sparse oracles of A and C, which are (uniform) quantum
circuits of size poly(n). By Lemma 29, we can implement UA and UC such that UA and
UC are (O(1), poly(n), ϵ)-block-encodings of A and C, respectively, using O(1) queries to
the sparse oracles of A and C and O(poly(n) + polylog(1/ϵ)) one- and two-qubit quantum
gates. Here, we choose ϵ = 1/ exp(n) for convenience, and we assume that UA and UC are

(O(1), poly(n), 0)-block-encodings of Â and Ĉ such that ∥Â− A∥ ≤ ϵ and ∥Ĉ − C∥ ≤ ϵ.
Let δ = O(κ−5

A κ−5
C ) = 1/ poly(n). By Lemma 8, we can implement an (O(1), poly(n), δ)-

block-encoding UY of κ−1
A Ŷ using Õ(κAκC log(1/δ)) = poly(n) queries to UC , Õ(κ

2
AκC log2(1/δ)) =

poly(n) queries to UA, and poly(n) · poly(κA, κC , log(1/δ)) = poly(n) one- and two-qubit

quantum gates, where Ŷ = Â−1#Ĉ. Moreover, the quantum circuit description of UY can
be computed in classical time poly(κA, κC , log(1/δ)) = poly(n). By Lemma 24, we can

implement an (O(1), poly(n), O(δ))-block-encoding UY 2 of κ−2
A Ŷ 2 using O(1) queries to UY .

Here, we assume that UY 2 is an (O(1), poly(n), 0)-block-encoding of

Z = ⟨0|⊗a UY 2 |0⟩⊗a (J1)
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such that ∥Z − κ−2
A Ŷ 2∥ ≤ O(δ), and it can be easily shown that ∥Ŷ − Y ∥ ≤ O(ϵ). Then,

∥Z − κ−2
A Y 2∥ ≤ O(δ + κ−2

A ϵ), (J2)(
κ−3
A κ−1

C −O(ϵ)κ−2
A −O(δ)

)
I ≤ Z ≤ I. (J3)

The latter can be seen by noting that κ−1
A κ−1

C I ≤ Y 2 ≤ κ2AI.
Now we prepare the quantum state |ψ⟩ = UY 2 |0⟩ = |0⟩⊗a ⊗ Z |0⟩ + |⊥⟩ where |⊥⟩ is

orthogonal to |0⟩⊗a ⊗ |φ⟩ for any |φ⟩. By measuring the first a qubits of |ψ⟩, the outcome
will be 0a with probability

∥Z |0⟩∥2 ≥ Θ(κ−6
A κ−2

C ) =
1

poly(n)
(J4)

and |ψ⟩ will become the state |uZ⟩ := Z |0⟩ /∥Z |0⟩∥. Let |uY ⟩ := Y 2 |0⟩ /∥Y 2 |0⟩∥. We have

∥|uZ⟩ − |uY ⟩∥ ≤
∥∥∥∥ Z |0⟩
∥Z |0⟩∥

− κ−2
A Y 2 |0⟩
∥Z |0⟩∥

∥∥∥∥+

∥∥∥∥κ−2
A Y 2 |0⟩
∥Z |0⟩∥

− κ−2
A Y 2 |0⟩

∥κ−2
A Y 2 |0⟩∥

∥∥∥∥ (J5)

≤ O

(
∥Z − κ−2

A Y 2∥
∥Z |0⟩∥

)
(J6)

≤ O

(
δ + κ−2

A ϵ

κ−3
A κ−1

C

)
=

1

poly(n)
. (J7)

Let pZ (resp. pY ) be the probability that outcome 0 will be obtained by measuring the
first qubit of |uZ⟩ (resp. |uY ⟩). Note that pZ = ⟨uZ |M |uZ⟩ and pY = ⟨uY |M |uY ⟩, where
M = |0⟩⟨0| ⊗ I measures the first qubit of |uZ⟩ and |uY ⟩. Then, |pZ − pY | ≤ 1/ poly(n) by
Eq. (J7).

Finally, we can estimate pZ to precision, say 0.1, by repeating the above procedure for
O(1) times; in this way, we can determine whether pY ≥ 2/3 or pY ≤ 1/3 with high probabil-
ity. As all the procedures mentioned above take poly(n) time, we obtain a polynomial-time
quantum algorithm for MGM(κA, κC) if κA = poly(n) and κC = poly(n). Therefore, we
conclude that MGM(poly(n), poly(n)) is in BQP.
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