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Abstract

Backpropagation-optimized artificial neural networks, while precise,
lack robustness, leading to unforeseen behaviors that affect their safety.
Biological neural systems do solve some of these issues already. Thus, un-
derstanding the biological mechanisms of robustness is an important step
towards building trustworthy and safe systems. Unlike artificial models,
biological neurons adjust connectivity based on neighboring cell activity.
Robustness in neural representations is hypothesized to correlate with the
smoothness of the encoding manifold. Recent work suggests power law
covariance spectra, which were observed studying the primary visual cor-
tex of mice, to be indicative of a balanced trade-off between accuracy
and robustness in representations. Here, we show that unsupervised local
learning models with winner takes all dynamics learn such power law rep-
resentations, providing upcoming studies a mechanistic model with that
characteristic. Our research aims to understand the interplay between
geometry, spectral properties, robustness, and expressivity in neural rep-
resentations. Hence, we study the link between representation smoothness
and spectrum by using weight, Jacobian and spectral regularization while
assessing performance and adversarial robustness. Our work serves as a
foundation for future research into the mechanisms underlying power law
spectra and optimally smooth encodings in both biological and artificial
systems. The insights gained may elucidate the mechanisms that realize
robust neural networks in mammalian brains and inform the development
of more stable and reliable artificial systems.
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1 Introduction
Research on Artificial Intelligence (AI) has made tremendous progress within
recent decades. To a large extent, this success is due to biologically inspired
artificial neural networks (ANN) with vast parameter spaces. Convolutional
Neural Networks (CNNs) constitute a prominent example. Mimicking the mor-
phology of the visual cortex, they have revolutionized the field of image analysis
[1]. Today, the majority of ANNs are trained supervised using backpropagation.

Despite achieving high accuracy, backpropagation optimised ANNs are un-
stable with regard to changes in their input [2]. For example, unpredictable
changes in output are caused by random noise or adversarial examples on the
input [3]. Instabilities can lead to unexpected model behaviors with direct
consequences for the applicability of AI technology. In cancer recognition, for
example, hardly visible changes in images of moles can cause diagnostic tools to
change their rating from benign to malignant [4], at the expense of the patient’s
health. Not only does this example illustrate direct individual implications, but
it also questions the reliability of such systems and can be a problem of societal
impact.

When compared to humans in a feed forward setting, machine learners are
significantly less robustness against black box attacks [5]. This type of diver-
gence is hypothesized to be due to invariances in model "metamers" compared
between biological and artificial neural networks [6] and perceptual straight-
ness of visual representations [7]. However, when compared to primates, black
box attacks show that inferior temporal gyrus neurons are more suceptible than
adverserially trained networks [8]. Out-of-distribution (ood) generalization com-
pared between humans and machine learners shows that the primary factors for
increasing robustness are data size and architectural design [9]. This example
illustrates that it is promising to search for properties and mechanisms in bio-
logical systems that ANNs might benefit from and vice versa. Biological Neural
Networks (BNN) are models that emulate the nature of neural tissue beyond
a connected set of neurons. Moreover, BNNs adjust their connectivity in re-
sponse to the activity patterns of neighboring neurons within the network. In
that sense, BNNs learn locally. A prominent example of a local learning algo-
rithm is Oja’s rule [10] which is a mathematical formalisation of Hebb’s learning
theory [11]. Since BNNs learn differently from ANNs, implementing principles
such as local learning constitutes one potential approach to resolve robustness
issues.

Recent work from [12] introduced the idea to learn latent representations
using a biologically plausible local learning rule in an otherwise backpropagation
optimized model. [13] demonstrated that models that feature such biologically
plausible layers can at least keep up with end-to-end backpropagation trained
networks in terms of accuracy. Additionally, [14] showed similar models to be
more resilient to black box attacks, such as square occlusion, than their end-
to-end counterparts. Black box attacks are perturbation methods that treat
models as black boxes. In contrast to them, white box attacks have access to
the inner workings of a model and can, therefore, fool them more specifically.
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These studies find that local learning yields smoother feature maps compared
with their end-to-end counterparts, and conclude that to be the reason for the
observed increase in robustness.

Representations on smoother manifolds are less affected by small perturba-
tions in the input which makes them less prone. From a geometric perspective,
a representation’s smoothness relates to how abruptly the phase space surface
it spans passes over from one point to another. However, smaller distances
between closely related representations makes them also harder to distinguish.
Therefore, different representations of data are usually pushed apart to increase
expressivity. Thus, from a structural perspective, accuracy and robustness stay
in an inverse relationship and are conflicting. [15] proved that a representation’s
fractal dimension, which can be considered a measure of smoothness, is related
to the exponent of asymptotic decay in the manifold’s covariance (PCA) spec-
trum. As a consequence, an optimal balance between accuracy and robustness
is characterized by a close to n−α power law decay in ordered spectral com-
ponents, where α depends on the input’s intrinsic dimension. Interestingly, it
is this power law functional relation that they also observe in the primary vi-
sual cortex of mice. Not only does this result validate their argument, but it
also suggests V1 representations to be optimal in that sense. In consequence,
their study indicates that instabilities of artificial neural network models may
be related to the smoothness of their representations, as compared to biolog-
ical neural networks.[15] Following this, [16] introduced a power law spectral
regularization term to enforce their image classifiers to favor power law repre-
sentations in their hidden layers under supervised learning. In agreement with
Stringer, they found representations following a power law to be more robust in
Multi-Layer Perceptron Models (MLPs) and CNNs. However, their results are
solely empirical and the underlying mechanisms are not understood.

Instead of relying on empirical evidence linking the spectrum to robustness,
one can optimize for smooth representations directly. Assuming the represen-
tation’s phase surface to be locally differentiable, the norm of its Jacobian con-
stitutes a valid local measure of change and, hence, smoothness. Thus, bound-
ing the Jacobian’s magnitude provides a regularization mechanism to achieve
smoother surfaces [17]. [18] found the decision landscapes of Jacobian regu-
larized classifiers to change less abruptly, with smoother boundaries increasing
resilience to adversarial attacks. Their algorithm constrains hidden representa-
tions in favor of differential smoothness and robustness efficiently.

In summary, it appears that a representation’s geometry, its spectrum and
robustness are closely interrelated. Although some links are well understood,
in general their mutual dependence remains unclear. Since Krotov and Hop-
field’s learning rule is directly related to the physiological learning processes, to
test whether it reproduces Stringer’s spectral property seems obvious. Being a
mechanistic model makes it in principle an ideal candidate device for future un-
derstanding these connections, because its connectivity dynamics are explicitly
stated. In this paper, we study the cross relations between the power spectral
decay, geometric properties, robustness and expressivity (model performance).
At first, we test Krotov and Hopfield’s model for adversarial robustness with re-

3



spect to random corruption and white box attacks. Based on the results in [14],
we expect it to be more robust compared to end-to-end backpropagation trained
models. In an attempt to understand the underlying mechanism, we probe the
representation’s properties. At first, we examine whether the model reproduces
spectral decays conforming to a power law. Using the mentioned regularization
methods allows to specifically constrain the optimization for smooth or power
law compliant representations. With this, we study the mutual implications of
the latent characteristics in a systematic manner.

We will provide a short overview of our architectural choices, Krotov and
Hopfield’s local learning model, optimization and regularization methods as well
as dataset and

2 Methods
Architectural choices To study the implications of structural properties in
the hidden representation, we assess relative model performance and constrain
the structure of our neural network model to an Encoder-Decoder architecture.
This choice justifies simpler function classes to control parameters and limit
effects due to large model complexity. Because the regularizers are architecture-
agnostic beyond the existence of a hidden layer, compatibility concerning Krotov
et al.’s hybrid model is the limiting factor. Consequently, we choose a Multi-
Layer Perceptron model, similar to that in [12]

h(x) = W x

ĥ(h) = ReLU(h)n

y(ĥ) = Aĥ+ b .

(1)

Here, x denotes a flattened single image.
Stringer’s theory makes statements about the functional relationship be-

tween eigenvalues and their index in the ordered spectrum of principal com-
ponents in the set of the model’s representations. Because principal com-
ponents correspond to the eigenvectors of the respective covariance matrix
Cov(h, h), we study the covariance spectrum {λn}1≤n≤N in descending or-
der: λ1 ≥ λ2 ≥ · · · ≥ λN . According to [15], optimal encodings follow a power
law

λn = λ1 n
−α (2)

with an exponent α > 1. To detect them, we make use of their scale invariance
property. Changing the dimensionality of the underlying representations, real
power laws will stay the same if they are correctly normalized. We restrict our
quantitative analysis of the power law to finding the exponent α using linear
regression on the double logarithmic representation of the power law. Because
we expect to see boundary effects, we will do this analysis in regions away from
the boundary. We justify these choices in greater detail in Subsection C of the
Appendix.
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In [12], the authors suggest a biologically inspired dynamic learning rule
to learn the latent representations of an image classifier in an unsupervised
scheme. The decoder of the classifier is learned in a supervised manner using
backpropagation. For S denoting the synaptic adjacency matrix between the
input and the latent layer, a forward pass in Krotov and Hopfield’s encoder
translates to

hi(x) =
∑
j

Si,j |Si,j |p−2
xj (3)

in index notation. Identifying the weight matrix Wi,j with Si,j |Si,j |p−2, we
formally recover the first mapping in Equation 1.

Unsupervised training Krotov and Hopfield’s synaptic updating rule was
derived implementing renowned neuroplastic mechanisms. A batch parallel ap-
proximation of it reads

∆Si,j = λL Ex∈B [g (hi(x)) (xj − hi(x)Si,j)] (4)

with

g(hi) =


1 ⇔ hi = max [h]

−δ ⇔ hi = maxk [h]

0 else
(5)

realizing a Winner-Take-All as well as an inhibition mechanism. Here, maxk [·]
denotes the k-th maximum in the set of entries of the vector h. We choose
the values of hyperparameters consistently with [12]. Under these conditions,
the model learns prototypic representations and some other features of the data
set. However, we also notice that some synapses do not converge. Because
the are more noisy, they account for higher variance contributions to the repre-
sentation’s spectrum. After pruning their distribution by ablating all synaptic
connections that account for variances above 0.0015, model performance remains
unaffected. To avoid potential side effects, we therefore decided to go with the
ablated synapses. For a detailed description of the procedure and its effects on
the spectrum, we refer to Section A.

Supervised learning, loss and regularizations All supervised training,
which includes learning only the decoder in Krotov and Hopfield’s hybrid model
and all weights in the Multi Layer Perceptron (MLP), was based on optimizing
the Cross Entropy Loss using the Adam optimizer and mini batches consisting of
1000 examples each. Besides the pure MLP, we complemented the total loss by
adding regularization terms to achieve desired properties in the hidden layer. To
study the implications of smoother encodings, we used L2 and [18]’s Jacobian
regularization with nproj = 3 projections, but only on hidden representation
states. Moreover, we spectrally regularizered the hidden representations for a
n−1 spectrum using [16]’s method. For the results in this paper, we used the
CIFAR10 datasets for training and testing.

In terms of structural and spectral properties of the hidden, or rather la-
tent, representations, we expect L2 and Jacobian regularization to have the
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same effect. In Subsection D, we lay down our argument more comprehensively.
However, since we measure robustness with regard to the model’s prediction,
which involves decoding of the hidden representation, they might affect our ro-
bustness measures differently. We suspect such also because local and global
bounding might affect decoding differently.

Perturbation experiments We tested the model robustness against ran-
dom perturbations and adversarial attacks. In the case of random perturba-
tions, we drew random unit vectors for each image in the model’s input space
to perturb the image in that direction with magnitude ϵ. These random vec-
tors were created by sampling entries from a standard normal distribution and
normalizing the length of the vector to unity. Next to random perturbation,
we tested robustness against adversarial attacks, in particular the Fast Gradi-
ent Sign Method (FGSM) [3] and Projected Gradient Descent (PGD) [19], [20]
using N = 10 iterations.

To measure model performance under these perturbations, we captured two
metrics: relative accuracy and critical distance. Because each model achieves
a different prediction accuracy score, and were not interested in the robustness
towards false predictions, we normalized the test data for correct predictions for
each model to have a common ground to compare them amongst each other. In
consequence, all models exhibit 100% accuracy in predictions on their individual
test set without perturbation (ϵ = 0). Amongst all adversarial methods, we have
varied the perturbation strength ϵ uniformly on a logarithmic scale until the
relative accuracy saturated. Plotting relative accuracy against ϵ yields smooth
curves, whereby a faster or steeper drop in relative accuracy corresponds to a
less resilient classifier. Next to this set-wide measure, we recorded the minimal
fooling, or critical, distance ∥∆x∥crit for each image in the individual test set and
each classifier. This measure is the euclidean length of the perturbation vector
in the input image space when the corresponding image is just misclassified. The
resulting distributions of critical distances and their statistics provide additional
information with respect to the nature of resilience on the individual image level.

To get a qualitative impression on the representational geometry, we examine
the model’s decision landscape on a randomly projected plane in input space
as in [18]. In addition, we also visualize the map of the hidden representation’s
Jacobian norm on the same plane which provides quantitative information about
the local change of the encoding and and impression about its relative change,
reflecting the curvature of the surface.

3 Results
Comparison in adversarial robustness We tested the robustness of Krotov
and Hopfield’s hybrid model (KH) against random perturbations in the input
as well as FGSM and PGD adversarial attacks in comparison with end-to-end
backpropagation trained models. Next to a naive end-to-end model (BP), we
tested L2, Jacobian (JReg, [18]) and spectral regularization (SpecReg, [16]).
The results of our perturbation experiments are shown in Figure 1. Left hand
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side panels show relative accuracy as a function of the perturbation parameter
ϵ. Additionally, the right hand side panels visualize the distributions of criti-
cal (minimum fooling) distances. Across all attacks and measures, the hybrid
model outperforms the others regarding robustness, followed by L2 and Jaco-
bian regularization in that order. In terms of FGSM and PGD resilience, the
naive and the spectrally regularized model perform similarly bad. However,
concerning random perturbations, spectral regularization evidently yields worse
results. Generally across models, the order of severity is: random perturbations,
FGSM and PGD. Thus, robustness declines according to how specifically tar-
geted the attack is. As expected, relative accuracy, mean and median critical
distance contain the same information. Interestingly, however, the mean and
the variance in critical distance appear to be directly correlated. This means
that with more resilient models, selected images are also less coherently cor-
rectly classified. Consequently, the least robust models are so most coherently.

Figure 1: Left panel: Relative accuracy as a function of the perturbation
parameter ϵ for all models of consideration under the three adversarial attacks.
Right panel: Distributions of critical perturbation magnitude ∥∆x∥crit. as
L2 distance in the input space (minimal fooling distance) across all images in
the input set that were originally correctly classified for all models and attacks
considered.

Robustness-accuracy trade-off We have studied the relation between
robustness and accuracy in terms of test accuracy and median critical fooling
distance ∥∆x∥crit. for all five models. Examplarily, we present results for ran-
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dom perturbation and PGD experiments in Figure A2 of Subsection B in the
appendix. Although being the most robust, the hybrid model (KH) is also the
least accurate. The opposite applies to the naive model (BP). Weight regular-
ization in general finds a better balance compared to the other methods. In
particular, local weight regularization (JReg) achieves more robust representa-
tions without substantial decrease in accuracy, whereas L2 clearly favors robust-
ness. Here, spectral regularization exhibits the worst results in both measures
in compared to the other models.

So far, we have observed a general trend between geometric regularization
(L2, JReg) and robustness compared to the hybrid and the naive model. To
categorize these results, we will study the mutual implications of geometric and
spectral properties next.

Local learning yields optimal power law representations Figure 2
shows the ordered and normalized covariance spectra of the data, the Krotov-
Hopfield layer right after initialization and after training on CIFAR10 on double
logarithmic axes. The spectra are simultaneously shown at different scales to
examine their scaling behavior. Our control, the white noise signal (ξ(t)), reveals
a flat spectrum as expected besides the final fall due to the finite extensions
of the model and data. Also the latent representations of white noise just
after initialization are flat. At larger scales, the drop shifts towards the right,
but the general flat profile of the spectrum is not affected by the scaling. In
turn, we can use the white noise spectra calibrate our analysis of other spectra.
For example, because the spectrum in the region appears completely flat, it
is reasonable to assume a highconfidence in spectrum profiles anywhere below
n ≃ 500. In addition, we note that linear regression yields exponents different
from 0 contrary to the real value. Therefore, we take the magnitude of this
deviation as a proxy for the error of the estimate for α.

CIFAR10 test images themselves do not exhibit a power law. Neither does
the spectrum’s profile appear linear, nor the spectral relation scale independent.
However, selecting sub-patches to scale the input dimension might have affected
the integrity of the spectrum. Surprisingly, the untrained network appears to
have a scale free spectrum, even for CIFAR10 input.

The essential result of our spectral analysis is that the latent representations
of the trained encoder consistently exhibit a scale free power law spectrum in
the region n < 800. Scaling only leads to earlier or later drops in the profile,
but does not affect its overall shape. Moreover, we notice a slight bump in
CIFAR10 spectra for n > 800 dimensions which we account to finite boundary
effects. Surprisingly, even random signals appear to get projected to power law
representations. In general, we notice that the estimated exponents of repre-
sentations are always larger than those of the pure data. Moreover, exponents
related to the CIFAR10 signal are larger than those related to the white noise
source.

The link between geometry, spectrum and performance Figure 3
summarizes the ordered covariance spectra of all end-to-end backpropagation
trained models for CIFAR10 as well as Gaussian white noise input. At first,
we note that the naive Single Hidden Layer Perceptron (SHLP) model does
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Figure 2: Normalized covariance (PCA) spectra of latent representations h(x)
across CIFAR10 and Gaussian white noise ξ(t) random input. The displayed
spectra are those of the signals themselves, the hybrid model suggested by [12]
after initialization (Initialized) and after unsupervised training (KH Layer).

not have a power spectrum, neither in terms of its profile shape nor its scal-
ing. In MLPs, the white noise spectrum seems to have a particularly complex
profile. L2 and Jacobian regularization appear to produce qualitatively similar
spectra with steeper decay slopes than the naive model. With respect to that,
L2 spectrum exhibits an even larger exponent estimate than that of the Jaco-
bian regularizer. It is interesting that weight regularization appears to cause a
similar bump in the spectrum towards higher n as in the KH Layer plot in Fig-
ure 2. The fact that this bump is more pronounced in the steeper L2 spectrum
suggests that this might a result of higher compression in the more dominant
components. As expected, spectral regularization achieves a good power law
spectrum for CIFAR10 input. In terms of quality, it is comparable to that of
the hybrid model in Figure 2. However, since the model was optimized for
α = 1, its estimated exponent including the inaccuracy deviates more from the
target than expected. Moreover, we see that for white noise input, the spectrally
regularized model exhibits a completely flat spectrum, similar to the flat white
noise spectra. On closer inspection, we notice that both spectra resemble those
of the untrained encoder in Figure 2. Overall, we observe that optimizing for
smoothness in addition to accuracy does not seem sufficient to enforce power law
spectra. Additionally, the power law spectrum in SpecReg does not generalize
to arbitrary inputs in contrast to the KH Layer.

9



Figure 3: Normalized covariance (PCA) spectra of latent representations h(x)
across CIFAR10 and Gaussian white noise ξ(t) random input. The displayed
spectra are those of the fully gradient optimised models without (SHLP) and
with regularisation (L2, JacReg, SpecReg).

As in [18], we plotted an exemplary decision boundary landscape of a com-
mon random plane projection in the model’s input space. The resulting decision
landscapes of all models are shown in the lower panel of Figure 4. There, we
started with an example image that was correctly classified across all models
(center of the plots) and tracked the model’s decisions along with its confidence
to estimate the decision landscape for a linear continuation around the origi-
nal image in a random two-dimensional plane. In addition, we also visualize
the Frobenius norm of the exact Jacobian of the latent activations ĥ of each
model for the same random projection, as a measure of its smoothness. With
it, we gain two pieces of information within the plane. The value of the norm
serves as a local estimate of the encoding manifold’s change. Moreover, the
relative change of the value of the norm in space provides a qualitative estimate
of its curvature. Thus, in total we get qualitative information concerning the
latent and hidden representation’s roughness, and how this affects the model’s
predictions, out of this plot. In direct comparison, we observe that weight
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a

b

Figure 4: Norm of the Jacobian of latent activations ĥ (upper panel) and deci-
sion landscape (lower panel) of studied models. Similarly to [18], the displayed
planes are created by grid sampling from a random plane projection in the
model’s input space.

regularization, in general, results in the lowest norm values, whereby L2 reg-
ularization achieves the lowest. Also, these low values in panel a), indicating
comparably small changes in the representation surface, translate into smooth
decision boundaries with very clear borders in panel b). In contrast to that,
the naive model exhibits by far the highest Jacobian scores which translate into
rather small decision domains with rougher edges. Regarding the norm values,
spectral regularization resides between those poles and shows rather large de-
cision domain patches. However, especially in the close neighborhood of the
center, which represents the starting image, the decision terrain appears partic-
ularly rough. In terms of the range of the Jacobian, [12]’s model (KHModel) is
closest to weight regularization which is also reflected in its decision landscape.
In fact, the general structure of the decision lanscape between these models is
almost identical, besides the orientation of the gradient. However, the hybrid
model’s confidence changes less abruptly between decision domains, compared
to the weight regularized models.

In terms of relative change of the Jacobian norm across the field, there are es-
sential differences between local learning and backpropagation. We observe that
the norm value changes only gradually and smoothly along the latent activation
landscape of the KH model. Moreover, the Jacobian score changes linearly from
smaller to higher values starting in the upper left corner and ending in the lower
right one. These quantitative results indicate the highest curvature of the latent
representation to occur perpendicular to the gradient which coincides with the
major trench in the corresponding decision landscape. From this, we see that
the major trend in the geometry of the model’s latent representation essentially
informs the model’s decision. The same analysis yields similar results in case of
L2 and Jacobian regularization. However, we observe that the relative changes
in the hidden Jacobian landscapes, which is reflected in the image’s contrast,
are less smooth which suggests a rougher surface. Eventually, the respective
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relative changes in the naive and spectrally regularized models appear similarly
abrupt and show no trend, particularly in the case of spectral regularization.

4 Discussion
In this paper, we studied the mutual implications between geometric and spec-
tral properties of latent and hidden representations and how they affect per-
formance of simple two layer perceptron models on the basis of Krotov and
Hopfield’s local learning model. This theme resonates with the exploration un-
dertaken in [21], where the structural intricacies of GANs’ latent spaces and their
spectral properties are analyzed, elucidating their influence on image generation.
We measured performance in terms of accuracy and robustness against random
perturbations, FGSM as well as PGD attacks. In general, robustness and ac-
curacy are consistently negatively correlated across models apart from spectral
regularization, where the hybrid model was most robust but least accurate. To
understand why, we studied the smoothness of the model’s representation man-
ifold in terms of the Jacobian as well as its covariance spectrum with regard to
power law profiles. Both are established mechanisms to achieve general model
robustness against data corruption. To establish a baseline for comparison, we
also studied the regularizers that optimize for the respective presumably opti-
mal properties. The local learning model exhibits both, a comparably smooth
representation surface as well as a power law spectrum, indicating presumably
optimally balanced representations.

Krotov and Hopfield’s model yields latent representation manifolds similarly
smooth as with weight regularization. Providing additional results on white box
attacks, we find that smoother representation manifolds result in more resilient
models in agreement with [12], [13], [18], [22]. By comparison with their de-
cision landscapes, we see that geometric properties in hidden representations
translate down to geometric properties in the classification layer, although they
were not explicitely regularized. With this, smoother hidden representations
yield smoother decision boundaries, thus increasing robustness of the classifier
overall. This finding is in line with [23], who explore how training induces ge-
ometric transformations in neural networks, particularly magnifying areas near
decision boundaries, which significantly impacts class differentiation and net-
work robustness. Besides the local learning model, L2 as well as Jacobian regu-
larization constitute the most promising approaches of those studied to achieve
high resiliency. Although they were optimized for accuracy and smoothness si-
multaneously, neither of the weight regularized models exhibit spectra close to
a power law. Consequently, we conclude that either both models are located
afar from the optimum in parameter space. Moreover, an ideal balance might
not be a sufficient criterion for this class of models.

Controlling the spectrum directly had almost no implications, neither re-
garding geometry nor performance. Following [16], we would have expected an
increase in robustness from spectral regularization that we did not reproduce.
We observe that spectral regularization decreases the magnitude of the latent
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Jacobian compared to the naive representation but does not benefit robustness
This can be explained by a stronger folded surface, which the abrupt changes
in the Jacobian norm hint at. In contrast to local learning, the regularized
power spectrum does not generalize to white noise data. Consequently, the hy-
brid model constitutes the more interesting case to study. Its latent spectrum
falls more quickly than the dataset’s which can be seen from the estimated ex-
ponents. If we assume them to reflect the intrinsic (fractal) dimension of the
signal, even when the spectra do not follow power laws, we qualitatively con-
firm [15] in that optimal representations have higher exponents corresponding
to lower dimensions. However, representations are also generally expected to
are lower dimensional than the original data because they formally constitute
some form of data compression. In this light, also the estimated exponents of
the end-to-end backpropagated models are consistent. For example, the decay
of the weight regularized models is steeper in the estimation regions compared
to the naive model since constraint (smoother) representations lead to higher
degrees of compression. In particular, the L2 spectrum is characterized by an
even steeper fall in comparison to Jacobian regularization. As predicted by [15],
the spectral decay is generally stimulus dependent, with flatter spectra reflecting
higher dimensional data.

We notice that there remain gaps that are not explained by the current state
of the theory. Partly, they might be a result of our model’s finite nature whereas
Stringer’s arguments rely on properties in infinitely dimensional Hilbert spaces.
In any case, our results suggest that many open questions remain regarding
understanding robustness of classifiers, even for simple function classes.

To close these gaps, our discovery, that Krotov and Hopfield’s local learning
rule yields robust representations that perform well, are smooth and exhibit a
close to ideal power law spectrum, might be of significant impact for upcoming
studies. With properties that match with the ideal model in Stringer’s theory
it is a promising mechanistic study case. Moreover, our work could provide a
starting point towards understanding how power law spectra determine opti-
mally smooth encodings and beyond. Because of the model’s biological foun-
dations, our results also provide insights into how robust neural networks are
mechanistically realized in the mammalian brain, and how they can be achieved
in artificial systems.

Reproducibility Our results were generated using the methods we mention
with parameters according to their references. Whenever our parameter values
differ from that in the resources we explicitly state our values in the text.
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A Appendix

A Postprocessing and Pruning
Figure A1 a) shows a selected subset of synaptic weights in S after unsupervised
training. Each image block resembles the weight values Si,· that linearly project
the input onto one of the hidden units. As in [12], we display them in the same
format as the original input, in this case in the same format as CIFAR10 images.
The model has mostly learned prototypic representations and other features of
the data set in agreement with [12]. However, we also notice that some of the
image blocks in Figure A1 a) Raw do not seem to have any correlations: they
appear to be random. We suspect that these subsets of synapses do not encode
any information, but rather constitute an artifact due to the finite amount of
training, and would have converged otherwise. Appearing more noisy, they ac-
count for higher variance contributions to the representations, which is reflected
in their covariance spectra. Figure A1 b) shows the distribution of per-image
variances. Next to the major mode of the distribution located just below 0.001,
we see another, less pronounced, minor mode at 0.002. Assuming these repre-
sent the allegedly not converged subset, we prune the distribution by ablating
all synaptic connections that account for variances above 0.0015. In agreement
with this assumption, we notice that the noisy subsets have vanished in Fig-
ure A1 a) Pruned. Moreover, Figure A1 c) shows the latent representation’s
ordered covariance spectra of both, with an without ablation, in a double log-
arithmic plot. On the left panel, the model was subject to images from the
CIFAR10 testing dataset, whereas on the right hand side, results are shown for
random white noise input. Generally, we see that the representation’s spectra
appear linear, apart from the left and the right boundaries, in all cases which
suggests them to follow a power law. As discussed earlier, this alleged linear-
ity is not sufficient to identify the relation as a power law. A comprehensive
analysis follows in the results section. In particular, the noise-input spectrum
of the untouched model (Raw) is characterized by a substantial drop after the
first two eigenvalues. On closer inspection, one identifies a similar characteris-
tic in the profile of the corresponding CIFAR10 spectrum. The fact that it no
longer appears in the ablated spectra confirms our suspicion that it was caused
by high variance contributions in the set of synapses S. Because the noisy im-
age synapses do not appear to encode meaningful information, but the ablated
spectra show a more coherent putative power law, we chose the ablated model
for further investigations.

B Robustness-accuracy trade-off
Figure A2 shows the relation between test accuracy and median critical fool-
ing distance ∥∆x∥crit. of all five models. As an example, we present results
for a) random perturbations and b) PGD. Aside from spectral regularization,
robustness and accuracy are negatively correlated.
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Figure A1: Synapse and representation characteristics after unsupervised train-
ing with the local learning rule. a): Synaptic connections presented as images.
Some entry blocks appear to resemble noise (Raw). We prune noisy contribu-
tions to improve spectral properties (Pruned). b): Distribution of total vari-
ances per image block in S. The distribution is bimodal with the major mode
centered below 0.001 and the minor mode around 0.002. Pruning the higher
variance contributions by setting a cutoff threshold at 0.015 ablates noisy im-
ages in S (see panel a)), and eliminates the initial drop in the representation’s
covariance spectrum (see panel b)). The latter results in comparably clean
power relations between the eigenvalues of the first components. c): Ordered
covariance spectra of the representations corresponding to both, the original
(Raw) and ablated (Pruned) set of synapses, subjected to CIFAR10 (left panel)
or Gaussian noise (right panel).

C Power Laws
Beyond indicating putative optimal encodings, power laws are special because of
their scale invariance. For any fixed exponent, scaling transformations n 7→ an
leave the power law property unaffected

λn 7→ λan = λ1 (an)
−α

= a−α λn . (A6)

From that, we immediately see that λa 1 = a−αλ1. Consequently, a power law
in λn can be detected as a power law in

λ̃n =
λn

λ1
= n−β , (A7)

the difference is that the functional relationship in λ̃n is independent of the
absolute magnitude of eigenvalues or scale and is therefore comparable between
different models at arbitrary scales.
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a b

Figure A2: Relational plot between test accuracy and the median of criti-
cal distances ∥∆x∥crit. across models as a measure of robustness regarding a):
random perturbations and b): Projected Gradient Descent.

We restrict our quantitative analysis of the power law to identifying the
exponent α. At this point we stress the important difference between our notion
of a power law and what is widely perceived. Primarily, power laws refer to
probability distributions or their density functions. In those cases, it is best
to estimate parameters leveraging the vast amounts of statistical methods that
exist. Here, however, the term power law refers to a functional relationship.
Methods for parameter estimation in functional relationships usually come down
to regression methods. In a double logarithmic plot, power laws appear as linear
relations

log λ̃n = −α log n , (A8)

with former exponents corresponding to slopes. Therefore, we use linear regres-
sion to identify α and its error in the double logarithmic representation of the
ordered spectrum. Because statistical tests for linear regression focus on mono-
tonicity hypotheses, which are trivially met in ordered spectra, we renounce
analyses regarding our estimates’ significance.

D Similarity of L2 and Jacobian regularization
In terms of spectral implications, we should expect weight based regularization
methods to have a similar effect, whether it is Jacobian or L2 regularization. The
notions of robustness and continuity are closely related in the context of static
models or functions. Therefore, Stringer’s statement, smoother representations
account for more robust models, intuitively makes sense. With robustness, we
are generally interested in how comparably small perturbations in the input
x 7→ x + p locally translate into changes in the output. With [15] in mind,
we are particularly interested in changes in the latent or hidden representation
ĥ(x) 7→ ĥ(x + p). Assuming local differentiability allows us to locally quantify
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how perturbations translate by applying Taylor expansion.

∥∥∥ĥ(x+ p)− ĥ(x)
∥∥∥ =

∥∥∥∥∥ĥ+
∂ĥ(x)

∂x
p+ · · · − ĥ(x)

∥∥∥∥∥
≤

∥∥∥∥∥∂ĥ∂x
∥∥∥∥∥ ∥p∥+O(∥p∥2)

(A9)

Comparably low perturbations in the input scale with a factor of ∥Dĥ(x)∥ in the
representations. Thus, bounding the Jacobian yields local stability with respect
to small perturbations. Because structurally ĥ(x) = σ(W x), the norm of the
Jacobian directly relates to the norm of the weights∥∥∥∥∥∂ĥ∂x

∥∥∥∥∥ =

∥∥∥∥∂σ(Wx)

∂(Wx)
W

∥∥∥∥ . (A10)

Consequently, Jacobian and L2 regularization locally have the same effect on
robustness. In contrast to Jacobian regularization, however, L2 regularization
bounds the weight matrix globally. Since σ = ReLU in our case, it might not
be differentiable at W x. Moreover, these considerations apply only locally and
to the hidden representation and have direct consequences with respect to its
geometry. Following Stringer’s argument, we therefore expect both forms of
weight regularization to have similar effects on its covariance spectrum.
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