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Abstract. Synthetic longitudinal brain MRI simulates brain aging and would 

enable more efficient research on neurodevelopmental and neurodegenerative 

conditions. Synthetically generated, age-adjusted brain images could serve as 

valuable alternatives to costly longitudinal imaging acquisitions, serve as internal 

controls for studies looking at the effects of environmental or therapeutic 

modifiers on brain development, and allow data augmentation for diverse 

populations. In this paper, we present a diffusion-based approach called 

SynthBrainGrow for synthetic brain aging with a two-year step. To validate the 

feasibility of using synthetically-generated data on downstream tasks, we 

compared structural volumetrics of two-year-aged brains against synthetically-

aged brain MRI. Results show that SynthBrainGrow can accurately capture 

substructure volumetrics and simulate structural changes such as ventricle 

enlargement and cortical thinning. Our approach provides a novel way to 

generate longitudinal brain datasets from cross-sectional data to enable 

augmented training and benchmarking of computational tools for analyzing 

lifespan trajectories. This work signifies an important advance in generative 

modeling to synthesize realistic longitudinal data with limited lifelong MRI 

scans. The code is available at XXX. 
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1 Introduction 

Brain aging research relies heavily on magnetic resonance imaging (MRI) to track 

longitudinal changes in brain structure and function [1], [2]. Modeling long-term 

trajectories of different volumetric structures is critical for understanding healthy 
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development, neurodegenerative disorders [3] and the effect of interventions on brain 

development [4]. However, such lifelong longitudinal MRI data remains scarce. 

Recent advances in generative modeling provide new opportunities to synthesize 

pseudo-longitudinal MRI data simulating brain aging effects. Denoising diffusion 

probabilistic models (DDPMs) have shown early promise in the synthetic MRI 

generation [5]. Comparing synthetic MRIs that represent healthy brain aging to actual 

patient clinical scans could reveal neurodevelopmental diseases, abnormalities due to 

environmental or clinical interventions such as psychiatric medications or radiotherapy, 

patterns of atrophy, and other biomarkers associated with neurodegenerative diseases 

[4]. 

In this work, we propose a conditional DDPM that takes 3-dimensional (3D) brain 

T1w MRIs as input and generates synthetic images simulating the subject brain 

maturation two years into the future. Our model was trained on paired scans from 

individuals two years apart in the demographically diverse sample from the Adolescent 

Brain Cognitive Development (ABCD) study [6]. By learning transformations from the 

first to the second scan showing natural aging effects and utilizing the input volume as 

a conditional guidance, our model can generalize to new input scans and output images 

depicting simulated aging. 

This approach could generate pseudo-longitudinal data, augmenting existing MRI 

studies and databases. In addition, our synthesized aged brains could provide 

controllable test cases for evaluating computational analysis tools focused on 

volumetric changes over time. Visualizations of normal versus abnormal aging 

trajectories from our model may provide clinical decision support. 

 

Related Work. Physical pubertal maturation was previously reported to be 

associated with brain development beyond chronological age [7]. ABCD study spans 

across 21 research sites across the United States, has been used to investigate various 

aspects of adolescent health and behavior, such as sociocultural influences on alcohol 

expectancies, associations resting-state functional brain connectivity, and childhood 

anhedonia [8], [9].  

Recently, DDPMs have gained much attention due to their superior performance in 

image generation [10]. DDPM was further improved by changing the loss objective, 

making architecture improvements, and using classifier guidance during sampling, 

improving the output image quality [11]. In medical imaging, DDPM has shown 

success in various tasks, such as segmentation [12], under-sampled medical image 

reconstruction [13], estimating brain age from routine MRI [14], and contrast 

harmonization [15]. Synthetic MRI has been explored to evaluate changes in relaxation 

values in different brain regions and construct brain age prediction models [16]. While 

some new research applies diffusion models to tasks such as medical image generation 

[5], to our knowledge, there is no preliminary work on synthetic brain aging in children 

through young adulthood.  

Recently, one approach was proposed by Fu et al. that explores the generation of 

synthetic brain aging images by diffeomorphic registration, enabling the augmentation 

of 3D MRI scans for healthy brain aging for adult subjects [17]. However, since their 

method relies on diffeomorphic registration, it requires two images, unlike generative 
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approaches. In contrast to their work, we focus on the younger subjects ranging from 

8-16 years old from the ABCD study with a two-year scan interval and DDPM as a 

backbone model, which allows us to synthetically age brain MRI using only one 

baseline image.  

Contribution. We propose the first diffusion model for the synthetic aging of subject-

specific brain MRIs and the first model of any kind for synthetic aging in young people. 

Our model simulates two years of anatomically-plausible brain maturation based on 

paired scans showing real aging effects. We demonstrate the utility of our synthesized 

pseudo-longitudinal data by analyzing age-related substructural volumetrics and 

volumetric changes. 

2 Method 

An overview of the workflow for an image of the ABCD dataset is shown in Fig. 1.   

Fig. 1.  Top panel: Method overview. Step 1: MRI preprocessing, pairwise co-

registration, intensity normalization, and rescaling to 64x64x64. Step 2: Diffusion 

probabilistic model SynthBrainGrow for synthetic brain 2-year aging. Step 3: Image 

upscaling using SynthSR. Step 4: Brain tissue segmentation using SynthSeg. For more 

details on each step, please refer to the “3.1 Experimental Setup & Dataset” section. 

Bottom panel: The training and sampling procedure of our method. In every step t, the 

anatomical information is induced by concatenating the baseline brain MR images b to 

the noisy aged brain xc,t 

 

Our model was trained on paired 3D T1w MRI scans of the same subjects scanned 

two years apart. The first scan provides the input for the baseline of healthy brain, while 

the second scan provides the ground truth for the image after two years of aging. By 

training the diffusion model on these input-output pairs, the model learns to take a 

healthy brain as input and output a version that has simulated two years of aging. We 

follow the idea and implementation proposed by Wolleb et al. [12] and Dorjsembe et 
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al. [18]. Like DDPMs, our aging synthesis approach relies on a forward diffusion 

process that adds Gaussian noise to brain MRI scans from young healthy individuals, 

followed by a reverse generative process that denoises the images. However, we 

incorporated the anatomical guidance from the baseline scan during diffusion. 

Specifically, at each time step t, our model takes as input a noisy aged brain image xt 

along with a corresponding input baseline brain scan c. We concatenate these along the 

channel dimension to produce an augmented input:  

 X:= xc ⊕ c (1) 

This concatenated volume provides essential anatomical cues to guide the denoising 

diffusion process. The forward diffusion process that corrupts the baseline scan x0 over 

T steps is defined the same as DDPM: 

 𝑥𝑐,𝑡 = √𝑎𝑡̅𝑥0 + √1 − 𝑎𝑡̅𝑒,     𝑤𝑖𝑡ℎ 𝑒~𝑁(0, 𝐼)  (2) 

   The reverse generative modeling process relies on our conditional diffusion model 

pθ(xt-1|~xt). At each timestep, the model takes as input ~xt and outputs the denoised xt-1 

used for generation after T steps: 

 xt-1 ∼ pθ(xc,t-1|~xt,cc) (3) 

Through exposure to anatomical conditional guidance during diffusion, we hypothesize 

pθ will learn mappings to synthesize aged scans. The loss objectives and model 

hyperparameters are specified in the appendix of [11]. Due to the stochastic nature of 

the DDPM, aging twice for the same brain MR image c does not result in the same 

output.  

3 Experiments and Results 

3.1 Experimental Setup & Dataset  

We evaluated our method on the ABCD dataset (Data Release 5.1). The ABCD Study® 

operates as a consortium, comprising 21 data collection sites across the continental US 

to sample in an epidemiologically-informed and inclusive way [6]. We performed a 

pairwise registration using the Elastix [19] package for each patient 3D T1w MRI scans 

pair, followed by a skull stripping step using HD-BET [20]. The image intensity was 

then normalized with brain mask as guidance. Addtionally, the image was 

downsampled to 3×3×2.5 mm3 in voxel size and the resulting volume was cropped to 

the size of 64×64×64 mm3. To overcome the memory size constraints and save 

computational time during model training, we pre-computed all the preprocessing steps 

prior to the deep learning training.   

The total number of 3D T1w MRI pairs is 9324, originating from 7843 patients aged 

8-16 years (53% Male). We performed the random 70/15/15 train/validation/test split, 

which results in 6526/1399/1399 MRI scan pairs. We chose a linear noise schedule for 

T=1000 steps. The U-Net was trained with the loss objectives given in the study by 



 SynthBrainGrow 5 

Nichol et al. [11] using the MONAI framework v1.4 with a learning rate of 10-4 using 

Adam optimizer and a batch size of 1. We trained the model for 4,000 epochs on 1x 

Nvidia A6000 with a validation evaluation step for every 100 epochs, which took 

around one day per 100 epochs.  

For the MRI postprocessing, we upsampled the image ×2 using spline interpolation, 

resample voxel size back to 1×1×1 mm3, and increased image resolution using 

FreeSurfer v.7.4.1 SynthSR v2.0 [21]. To segment brain structures, we used FreeSurfer 

v.7.4.1 SynthSeg v1.0 [22] (see Fig. 2. for an example of synthetically aged brain MRI). 

We discarded the testing cases with anatomically-implausible ground truth 

segmentation, which is lower than 30 WMV and lower than 1 mm3/10,000 sGMV units. 

All implementation details can be found in the study git repository XX. 

 

 

Fig. 2. A. An example of synthetically-aged brain MRI in axial, sagittal, and coronal view cuts 

(z=80, x=85, y=93) with an overlaid heatmap (blue) of the normalized delta, which was 

calculated as the difference between a ground truth scan and a synthetically-aged scan. A lighter 

color indicates more difference. B. SynthSeg bilateral segmentation mask of synthetically-aged 

scan with an overlay heatmap (blue) of the normalized delta. 

3.2 Quantitative Image Quality 

The evaluation of synthetic medical image quality requires robust metrics to ensure 

accuracy and reliability. The use of structural similarity indices such as the structural 

similarity index measure (SSIM) for evaluating synthetic medical images has come 

under recent scrutiny, as it may not effectively capture perceptual quality or clinical 

usefulness in synthesized radiology scans [23]. This limitation seems especially 

relevant for synthetic brain MRIs modeling neurodevelopment, where clinical value is 

derived from quantitative biomarkers like volumetrics [24]. Similarly, SSIM does not 

reflect image quality well, suggesting its inadequacy in evaluating image quality in 
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certain contexts [25], [26]. To assess the performance of SynthBrainGrow, we 

evaluated the substructural volumetric similarity between synthetic and real patient 

scans. We compared total gray matter (GMV), white matter (WMV), subcortical gray 

matter (sGMV), and ventricular (VV) volumes by calculating Pearson correlation and 

mean absolute error (MAE) between our aging model-predicted outputs and 

anatomically corresponding ground truth validation scans (Table 1).  

Table 1. Volumetric structural comparison between ground truth intra-subject two-year aged 

brains and synthetically-generated ones (N=1399). GMV: Gray matter GMV; WMV: white 

matter; sGMV: subcortical GM; VV: ventricular volume; MAE: mean absolute error; Delta,%: 

the difference between synthetically generated one and ground truth intra-subject two-year-aged 

brain, normalized by the ground truth.  

 

 

 

 

 

Strong volumetric correlations were observed in WMV, GMV and VV with 

Pearson R values (p<0.05) from 0.74 (GMV) to 0.89 (WMV), demonstrating that the 

SynthBrainGrow accurately generates realistic patterns of the aging process (Fig. 3). A 

moderate correlation with Person R 0.45(p<0.05) was observed for sGMV. Mean 

absolute volume errors between synthetic and real patient scans were in the range of 

0.2 mm3/10,000 (VV) and 4.8 mm3/10,000 (GMV), indicating good volumetric 

validity.  

3.3 Uncertainty Maps as an Explainability Surrogate 

By utilizing the inherited property (stochastic sampling process) of the DDPMs, we 

can generate a distribution of aged 3D MRI scans. This property allows us to compute 

pixel-wise uncertainty and allows an implicit ensemble to show patient-specific regions 

of interest contributing to brain maturation and, therefore, help to bridge the “black-

box” explainability gap in DL. In Fig. 4., we visualize a variance map by predicting the 

aged brain of one subject ten times. The regions that are most affected by the diffusion 

aging model appear to correspond with areas where structural changes related to aging 

occur, such as enlargement of the ventricles and cortical thinning. The clinical utility 

of attention maps remains to be evaluated, but they may provide an interpretable output 

and could potentially be used for uncertainty quantification when used as a visual guide. 

Structural 

Volumetrics 

Pearson R MAE, 

mm3/10,000 

Delta, % 

WMV 0.89 0.95 0.1 

GMV 0.74 4.5 0.08 

sGMV 0.45 0.55 0.07 

VV 0.83 0.18 0.04 
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Fig. 3. A. Scatterplots with regression model fit lines comparison of ground truth (GT) versus 

synthetically-aged (prediction) scan for bilateral WMV, GMV, sGMV, and VV volume 

(N=1399). Axes are scaled in units of 10,000 mm3. B. Bland-Altman plots for substructure 

volumetrics agreement between GT vs. prediction for bilateral WMV, GMV, sGMV, and VV. 

GMV: Gray matter GMV; WMV: white matter; sGMV: subcortical GM; VV: ventricular 

volume. 

 

Fig. 4. Combined uncertainty mean maps with variance heatmap overlay for ten sampled MRI 

T1w brains for a single subject, five axial slice views (z- axial slice number). A lighter color 

means higher variance. 

3.4 Limitations and Future Directions  

Our model was trained on a relatively narrow age range and sample from one study 

representative of the population within United States. Testing performance is needed 

when extrapolating beyond the training data to younger or older ages. Real longitudinal 

within-person trajectories may show more variability and nonlinearity than model 

approximation. Incorporating diverse scans from multi-site datasets spanning different 

demographics, health statuses, and neurodegenerative conditions might reveal where 

synthesis quality drops and additional training is required.  
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Mapping synthetic scans back to brain age versus chronological age biomarkers may 

offer a universal framework for validation. Ideal outputs would mirror consistent but 

variable patterns of within-person maturation and decline in large-scale studies. This 

could indicate utility for personalized prediction of neurocognitive trajectories. 

Extending to longitudinal training and evaluating scan trajectories against real 

neuropsychological, molecular, and clinical aging biomarkers is an exciting future 

direction. 

Additionally, we will consider sampling with the DDIM approach to speed up the 

sampling process in future work. 

4 Conclusion 

We developed a generative model approach SynthBrainGrow for synthetic 2-year 

brain maturation in MRI T1w. Using a stochastic sampling process, our method enables 

the generation of different MRIs for the same input brain MR image without training a 

new model. Moreover, the model yields uncertainty maps by computing the variance 

to measure clinical interpretability. Our results suggest that synthetically-aged brain 

MRI with diffusion accurately captures substructure volumetric trends and could be 

used as a control for studies investigating modifying factors of brain development. For 

future work, we plan to explore the aging process in subjects with brain abnormalities 

and expand our dataset to a broader age range. The next priority is assessing 

generalizability and clinical relevance by evaluating performance on diverse unseen 

target groups and prediction intervals. For now, this model framework can be utilized 

and fine-tuned by the research community to generate short-interval brain aging effects 

in various scenarios.   
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