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EEG RL-Net: Enhancing EEG MI Classification
through Reinforcement Learning-Optimised Graph
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Abstract—Brain-Computer Interfaces (BCIs) rely on accu-
rately decoding electroencephalography (EEG) motor imagery
(MI) signals for effective device control. Graph Neural Networks
(GNNs) outperform Convolutional Neural Networks (CNNs) in
this regard, by leveraging the spatial relationships between
EEG electrodes through adjacency matrices. The EEG GLT-Net
framework, featuring the state-of-the-art EEG GLT adjacency
matrix method, has notably enhanced EEG MI signal classifi-
cation, evidenced by an average accuracy of 83.95% across 20
subjects on the PhysioNet dataset. This significantly exceeds the
76.10% accuracy rate achieved using the Pearson Correlation
Coefficient (PCC) method within the same framework.

In this research, we advance the field by applying a Rein-
forcement Learning (RL) approach to the classification of EEG
MI signals. Our innovative method empowers the RL agent,
enabling not only the classification of EEG MI data points
with higher accuracy, but effective identification of EEG MI
data points that are less distinct. We present the EEG RL-
Net, an enhancement of the EEG GLT-Net framework, which
incorporates the trained EEG GCN Block from EEG GLT-
Net at an adjacency matrix density of 13.39% alongside the
RL-centric Dueling Deep Q Network (Dueling DQN) block.
The EEG RL-Net model showcases exceptional classification
performance, achieving an unprecedented average accuracy of
96.40% across 20 subjects within 25 milliseconds. This model
illustrates the transformative effect of the RL in EEG MI time
point classification.

Index Terms—Brain-Computer Interfaces (BCIs), Electroen-
cephalography Motor Imagery (EEG MI), Spectral Graph Con-
volutional Neural Networks (GCNs), Reinforcement Learning
(RL), Dueling Deep Q Network (Dueling DQN)

I. INTRODUCTION

BRAIN-COMPUTER INTERFACES establish a connec-
tion between the brain and external control devices. Orig-

inally developed to assist individuals with motor impairments
[1], BCIs translate brain signals acquired through measure-
ments such as electrocorticography (ECoG) and electroen-
cephalogram (EEG) into actionable commands for electronic
control devices including wheelchairs and exoskeleton robots.
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Although ECoG offers superior signal quality over EEG,
its application in BCIs is limited due to invasive route of
acquisition, requiring the placement of electrodes directly on
the cerebral cortex [2]. Meanwhile, EEG is a much more
accessible and hence popular signal acquisition method as it
involves non-invasive placement of electrodes on the scalp.
EEG is widely used to record various types of brain signals,
from spontaneous and stimulus-evoked signals to event-related
potentials [3]. Its clinically relevant applications extend to
dementia classification [4], depression state assessment [5],
seizure detection [6], and the classification of cognitive and
motor tasks [7], including motor imagery (MI) tasks [5], [8],
[9].

MI involves the mental simulation of motor actions, such as
movements of the hands, feet, or tongue, without performing
the physical movements [10], [11]. This technique is crucial
in neuroscience and rehabilitation, with real-world relevance
especially for individuals with motor impairments, such as
stroke survivors. Through integration with an external control
device, MI enables the physically impaired to perform daily
activities that are not otherwise possible, leading to potentially
life-changing benefits by improving quality of life and reduc-
ing the level of chronic care. By integrating MI and BCIs, EEG
based MI signals can be decoded and used to control external
devices, enabling real-time feedback and facilitating patient-
intended movements through accurate signal interpretation
[12].

Deep learning, a subset of machine learning, utilises multi-
ple layers of neural networks to process a variety of data forms.
Convolutional Neural Networks (CNNs), which mimic natural
image recognition in the human visual system, are part of the
deep learning family and excel in computer vision tasks [13]–
[15]. However, their application is restricted to Euclidean data,
such as 1-dimensional sequences and 2-dimensional grids [15].
CNNs struggle with non-Euclidean data, failing to accurately
capture the intrinsic structure and connectivity of the data.

Graph Convolutional Networks (GCNs) have been devel-
oped to perform convolutional operations on graphs, which can
handle non-Euclidean data due to incorporating topological
relationships during convolution. GCNs can represent complex
structures and variations in these structures, which may be het-
erogeneous or homogeneous, weighted or unweighted, signed
or unsigned [16]. They support various types of graph anal-
yses, including node-level, edge-level, and graph-level tasks
[16], [17]. GCNs are particularly effective at classifying EEG
signals as a graph-level task [8], [18]. For this application,
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EEG signal readings from each channel are treated as node
attributes, and the relationships between EEG electrodes are
represented by an adjacency matrix, hence surpassing the
capabilities of traditional CNNs.

There are two primary categories of GCNs: spatial [19]–
[22] and spectral methods [23]–[25]. Some challenges are
encountered with the spatial method [26], [27] especially
in matching local neighbourhoods. Both time domain and
frequency domain features can be extracted from EEG signals
to perform GCN operations [4], [28]–[30]. Frequency domain
features include Power Spectral Density (PSD) and Power
Ratio (PR) for various bands, such as δ (0.5-4Hz), θ (4-
8Hz), α (8-13Hz), β (13-30Hz), and γ (30-110Hz) within
specified time windows. Time domain features, such as Root
Mean Square (RMS), skewness, minmax, variance, number of
zero crosses, Hurst Exponent, Petrosian fractal, and Higuchi,
are also extracted for GCN operations during specific time
windows. These features are integral to window-based GCN
methods.

In the GCNs-Net [8], individual time point signals at
each channel are treated as distinct features. This method is
designed for real-time EEG MI signal classification, focusing
on 1

160s time point signals. The constructing of an effective
adjacency matrix is crucial for GCN operations, and different
methods have been explored in various studies, including:
Geodesic method, which relies on geodesic distances between
EEG channels [9], [31]–[33]; using Pearson Coefficient Cor-
relation (PCC) to evaluate interchannel correlations [8], [27],
[29], [34], [35] ; and experimenting with a trainable matrix
approach [27], [36].

In the EEG GLT-Net [18], a sophisticated algorithm known
as the EEG Graph Lottery Ticket (EEG GLT) is used to
optimise the adjacency matrix by exploring various density
levels, inspired from the unified GNN sparsification technique
(UGS) [37]. This method represents the current state-of-the-
art in adjacency matrix construction, significantly enhancing
accuracy, F1 score, and computational efficiency on the EEG
MI PhysioNet dataset [38] compared to the PCC and Geodesic
methods. However, despite the overall superiority of this
method, it remains challenging to classify the EEG MI time
points remains challenging for some subjects due to signal
ambiguity among different MI tasks at specific time points.
Consequently, supervised learning on these subjects involves
training that forces classification of all time points.

Reinforcement Learning (RL), another subset of machine
learning, enables an RL agent to learn sequential decision-
making in dynamic environments to maximise cumulative
rewards [39]. RL has been primarily applied in robotics
and autonomous systems, which require complex sequential
decision-making. Deep RL principles have been applied to
optimise feature selection for the Classification with Costly
Features (CwCF) problem [40], across various public UCI
datasets [41] including miniboone, forest, cifar, wine, and
mnist. Others [42] have trained an RL agent to minimise fea-
ture extraction costs in classifying electromyography (EMG)
signals from UCI datasets [41], although this reduction in
features compromised accuracy.

In this paper, we introduce EEG RL-Net as a new algo-

rithm, with more advanced capability than existing methods
for classifying EEG MI time point signals by combining GNNs
and RL. Initially, optimal graph features of EEG MI time point
signals are extracted using the best weights and adjacency
matrix from an EEG GCN block, refined to 13.39% density
using the EEG GLT algorithm. Subsequently, the RL agent
makes sequential decisions within an episode of pre-defined
horizon length to accurately classify the EEG MI signals. The
main contributions of this study are:

• EEG RL-Net: A new approach for classifying EEG MI
time point signals, using a trained RL agent that deter-
mines whether to classify or skip each time point based
on GNN features. This method greatly enhances perfor-
mance accuracy by achieving classification as swiftly as
possible within predefined episode lengths.

• Optimal Reward and Max Episode Length Setting:
We evaluated the accuracy and classification speed under
various reward settings and maximum episode lengths
for each subject, identifying the optimal combinations for
simultaneously achieving high accuracy and efficiency.

• Performance Validation: We evaluated the performance
of each subject under optimal settings against the state-
of-the-art EEG GLT-Net with mg GLT matrix and PCC
adjacency matrix. Our results showed significant en-
hancement of accuracy and efficiency on the PhysioNet
dataset.

II. METHODOLOGY

A. Overview

This project is divided into two distinct parts. The first phase
focused on training the EEG GLT-Net model, as illustrated in
Figure 1, to identify the optimal adjacency matrices and spec-
tral GNN weights across different adjacency matrix density
levels, employing Algorithm 1. This phase of training spanned
from t = 1s to t = 3s. Subsequently, the optimal adjacency
matrix and spectral GNN weights, determined at the minimal
adjacency matrix density level of 13.39%, were selected for
the purpose of extracting graph features.

In the project’s second phase, the Multilayer Perceptron
(MLP) block within the EEG GLT-Net was removed, and
in its place, the RL (Reinforcement Learning) block was
integrated, resulting in the formation of the EEG RL-Net,
as depicted in Figure 2. The pre-trained optimal weights of
the EEG GCN block, such as adjacency matrix and spectral
GNN, determined at the lowest adjacency matrix density of
13.39%, were then transferred to the EEG GCN component
of the EEG RL-Net architecture. During this phase, all time
points from t = 0s to t = 4s were utilised, with these points
organised into groups spanning a horizon of 20 states, where
each point represented a single state. Within each episode’s
horizon, the RL agent performed action at every state, based
on the graph features generated by the GNN segment. These
actions involved classifying the state as belonging to Task 1
through to Task 4, or skipping to the next state (Task 0) if the
agent determined that it was not yet prepared to classify.
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B. Dataset Description and Pre-processing

Following the approach of papers [8] and [18], this study
employed the PhysioNet EEG MI dataset [38], which com-
prises EEG recordings from 109 subjects acquired using the
international 10-10 system with 64 EEG channels. The dataset
is structured around four distinct EEG MI tasks, which involve
the subject imagining the actions of:

• Task 1: Opening and closing the left fist.
• Task 2: Opening and closing the right fist.
• Task 3: Opening and closing both fists simultaneously.
• Task 4: Opening and closing both feet.
Each participant completed 84 trials, divided into 3 runs

with 7 trials per run for each task type. The duration of each
trial’s recording was 4 seconds, sampled at 160Hz. In our
study analyses were specifically conducted on a subset of 20
subjects, labelled S1 to S20. Initially, the raw signals were
processed solely through a notch filter at the 50Hz power
line frequency to eliminate electrical interference, deliberately
avoiding other common filtering or denoising techniques to
preserve data integrity. Signals from all 64 channels were
utilised, with each channel treated as a node and the signal at
each time point considered as the node’s feature. Additionally,
the signals at each channel were normalised to achieve a mean
(µ) of 0 and a standard deviation (σ) of 1.

C. Graph Feature Extraction

1) Graph Representation: In a directed graph, G = {V,E}
where V = {v1, v2, ..., vN} represents the set of nodes and |E|
signifies the total number of edges connecting these nodes. The
structure of the graph can be illustrated using an adjacency
matrix A ∈ RN×N . Every node within the graph is associated
with FN features, and the matrix encapsulating these node
features is expressed as X =∈ RN×FN . A combinatorial
Laplacian matrix, denoted as L , is derived through Equa-
tion (1). This involves the use of the degree matrix of A,
symbolised as D, which is calculated using Dii =

∑N
j=1 Aij .

L = IN −D−1/2AD−1/2 (1)

2) Spectral Graph Filtering: The eigenvectors of the
graph Laplacian matrix can be expressed in the Fourier
mode as {ul}N−1

l=0 ∈ RN, with the Fourier basis U =
[u0, ..., uN−1] ∈ RN×N . The corresponding eigenvalues, de-
noted as {λl}N−1

l=0 ∈ R, represent the graph Fourier frequen-
cies, and the diagonal matrix containing these Fourier frequen-
cies, Λ, is defined as Λ = diag[λ0, ..., λN−1] ∈ RN×N . A
signal x can undergo a graph Fourier transform to become
x̂ = UTx, and the inverse Fourier transform is obtained with
x = Ux̂. The convolution operation on the graph G is defined
as:

x ∗G g = U((UTx)⊙ (UT g)) (2)

where g ∈ RN denotes a convolutional filter. With gθ(Λ) =
diag(θ), where θ ∈ RN symbolises the vector of Fourier
coefficients, the graph convolution of the signal x is executed
as:

x ∗G gθ = Ugθ(Λ)U
Tx (3)

Given the non-parametric and non-localised nature of the gθ
filter, its computational demand is excessively high. Utilising
the Chebyshev graph convolution technique, the computational
complexity is reduced from O(N2) to O(KN). The gθ
approximation, up to the Kth order within the Chebyshev
polynomial framework, is facilitated using Equation 4. The
normalisation of the Λ can be achieved using Equation 5. The
term θk denotes the coefficients of the Chebyshev polynomial,
and Tk(Λ̂) is derived using Equation 6.

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̂) (4)

Λ̂ =
2Λ

Λmax
− IN (5)

{T0(Λ̂) = 1, T1 = (Λ̂), Tk(Λ̂) = 2Λ̂Tk−1(Λ̂)− Tk−2(Λ̂)}
(6)

Ultimately, the graph convolution operation on the signal x
is executed as shown in Equation 7, utilising the normalised
Laplacian matrix, L̃ which is calculated through Equation 8.

x ∗G gθ = U

K−1∑
k=0

θkTk(Λ̂)U
Tx =

K−1∑
k=0

θkTk(L̃)x (7)

L̃ =
2L

λmax
− IN (8)

3) Training EEG GLT-Net: In the EEG GLT-Net study
[18], the classification of EEG MI signals, X is facilitated
through a forward pass using the Spectral GNN function,
denoted as f(.,Θ), with a given graph G = {A,X}. The
adjacency matrix, A, integrates Aoriginal and mg as outlined
in Equation 9. The matrix Aoriginal, defined as Aoriginal ij =
{0, ifi = j; 1, otherwise}, is fixed and not subject to training,
structured in the dimension of R64×64. Meanwhile, the adja-
cency matrix mask mg ∈ R64×64 is designated as trainable.

A = Aoriginal ⊙mg (9)

EEG MI signals from individual subjects, recorded between
t = 1s and t = 3s, are trained using Algorithm 1. The
detailed structure of the EEG GLT-Net is depicted in Figure 1
and Table I, with the specific hyperparameter configurations
for the training outlined in Table II. The optimally trained
GNN weights (Θ) and the trained adjacency matrix mask (mg)
are recorded across various adjacency matrix density levels,
ranging from 100% to 13.39%.

4) EEG MI Time Points GNN Features: From the pre-
trained GNN weights and optimal adjacency matrices across
varying mg densities ranging from 100% to 13.39%, the set
corresponding to a density of 13.39% was chosen. This density
was used to extract graph features from EEG MI signals at
specific time points, due to its computation efficiency and
superior accuracy compared to the 100% set. GNN features
were then extracted for all EEG MI time points, spanning
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Fig. 1: EEG GLT-Net model [18]: (a) Overall architecture (classifying EEG MI of one time point 1
160s of signals from 64

EEG electrodes), (b) Components inside the spectral graph convolution block, (c) Chebyshev spectral graph convolution

TABLE I: Details of EEG GLT-Net Model

Layer Type Input Size Polynomial
Order Weights Output

Input Input 64× 1 - - -
GCN Blocks

GC1 Graph Convolution 64× 1 5 1× 16× 5 64× 16
BNC1 Batch Normalisation 64× 16 - 16 64× 16
GC2 Graph Convolution 64× 16 5 16× 32× 5 64× 32

BNC2 Batch Normalisation 64× 32 - 32 64× 32
GC3 Graph Convolution 64× 32 5 32× 64× 5 64× 64

BNC3 Batch Normalisation 64× 64 - 64 64× 64
GC4 Graph Convolution 64× 64 5 64× 128× 5 64× 128

BNC4 Batch Normalisation 64× 128 - 128 64× 128
GC5 Graph Convolution 64× 128 5 128× 256× 5 64× 256

BNC5 Batch Normalisation 64× 256 - 256 64× 256
GC6 Graph Convolution 64× 256 5 256× 512× 5 64× 512

BNC6 Batch Normalisation 64× 512 - 512 64× 512
Global Mean Pooling Block

P Global Mean Pool 64× 512 - - 512
Fully Connected Blocks

FC1 Fully Connected 512 - 512× 1024 1024
BNFC1 Batch Normalisation 1024 - 1024 1024

FC2 Fully Connected 1024 - 1024× 2048 2048
BNFC2 Batch Normalisation 2048 - 2048 2048

FC3 Fully Connected 2048× 4 - 2048× 4 4
S Softmax Classification 4 - - 4

TABLE II: Hyperparameter Configuration for Training the
EEG GLT-Net

Hyperparamter Value
Training Epochs (Nep) 1000

Batch Size (B) 1024
Dropout Rate 0.5

Optimiser Adam
Initial Learning Rate (η) 0.01

from t = 0s to t = 4s for all 84 trials of each subject, was
conducted. The GNN feature corresponding to each time point
had a dimensionality of R512.

D. Problem Redefinition

The EEG GLT-Net underwent training for the classification
of EEG MI time-point signals. Integration the GNN and an
optimally trained adjacency matrix significantly enhanced the
classification accuracy compared to traditional PCC adjacency
matrix method. Nonetheless, ambiguities in signal clarity
between different classes at certain time points could adversely
affect the model accuracy. Leveraging the high efficacy of the
EEG GLT-Net model, the pre-trained weights from the GNN
and adjacency matrix components were integrated with an RL
(Reinforcement Learning) block, resulting in the formation of
the EEG RL-Net, as depicted in Figure 2.

A reinforcement learning approach is used to train an RL
agent for classifying EEG MI time-point signals. Beyond the
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Fig. 2: Overview of the EEG RL-Net model: Incorporation of the pre-trained EEG GCN Block at a 13.39% mg density from
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Algorithm 1 Finding Optimal EEG GCN Weights (Θ) and
Adjacency Matrix (mg) at Different Density Levels
Input: Graph G = {A,X}, GNN f(G,Θ), GNN initialisation

Θ0, Aoriginal ij = {0, if i = j; 1, otherwise},
initial Adjacency Matrix Mask m0

g = Aoriginal,
learning rate η = 0.01, pruning rate pg = 10%,
pre-defined lowest Graph Density Level sg = 13.39%.

Output: Optimal EEG GCN weights (Θs) with optimal
adjacency matrix mask (ms

g) at different graph
density levels.

1: while ||ms
g||0

||Aoriginal||0 ≥ sg do
2: for for iteration i = 0, 1, 2, ..., Nep do
3: Forward f(.,Θs

i ) with Gs = {ms,i
g ⊙Aoriginal, X}

to compute Cross-Entropy Loss, L
4: Backpropagate and update, Θs

i and ms,i
g using

Adam Optimiser
5: end for
6: Record ms,i

g and Θs
i with the highest accuracy in

validation set during the Nep iteration
7: Set pg = 10% of the lowest absolute magnitude values

in ms
g to 0 and the others to 1, then obtain a new

ms+1,0
g

8: end while

Algorithm 2 EEG RL Environment

1: function STEP(st, at, yt, s′t)
2: if at = 0 then
3: rt = −0.1
4: Return(s′t, rt)
5: else

6: rt =

{
rright, eg. + 10 if at = yt

rwrong, eg. − 10 if at ̸= yt
7: Return (s′t = Terminal, rt)
8: end if
9: end function

four initial classes, the RL agent has the capability to defer
classification of a current time point if it determines that it is
not ready. In each state st, the RL agent can perform one of
five discrete actions at ∈ {0, 1, 2, 3, 4} within the EEG RL

ENV Agent

Action	
𝑎!

𝑟!"#

𝑠!"#

Reward,	𝑟!

State,	𝑠!

Fig. 3: Agent interaction with EEG RL Environment

environment, guided by the GNN features extracted from st.
The actions at are described as follows:

• at = 0 : Skip the current state st
• at = 1 : Classify the signal as Class 1
• at = 2 : Classify the signal as Class 2
• at = 3 : Classify the signal as Class 3
• at = 4 : Classify the signal as Class 4
Following action at, the RL agent is rewarded with rt and

transitions to the next state s′t, as illustrated in Figure 3.
Choosing at = 0 indicates the agent’s hesitance to classify due
to uncertainty, leading to a decision to skip the current state
with a minimal penalty until it is deemed ready to classify
or the episode ends. Upon selecting an action at > 0, s′t
is marked as Terminal, which concludes the episode and
the agent receives rt, a positive reward (rright) for correct
classification or a negative reward (rwrong) for incorrect
classification. The dynamics of the EEG RL environment
are elaborated in Algorithm 2. The ultimate goal is for the
RL agent to accurately classify EEG MI signals within the
designated horizon H = 20 (120 milliseconds) as swiftly as
possible.

E. Data Preprocessing and Data Splitting

The EEG RL-Net training also utilised the PhysioNet
dataset, consistent with the approach for EEG GLT-Net train-
ing. For this training, the entire duration of the EEG MI
signals was included, spanning four seconds at a sampling
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Fig. 4: Conversion of EEG MI time points into states using
the pre-trained EEG GCN Block, grouped into episodes com-
prising 20 states each

rate of 160Hz, was included. As outlined in Section II-C4,
GNN features of EEG MI time points were used, which were
extracted by leveraging pre-trained weights at a 13.39%. The
GNN features of each time point were considered as states,
s ∈ R512. For all 82 trials, from t = 0s to t = 4s, groups of
consecutive H = 20 states were organised into episodes with-
out time point overlap between subsequent episodes, creating
an episode set, E ∈ {e0, e1, ..., en}, as illustrated in Figure 4.
Episodes were randomised using a specific seed, with 80% of
the episodes in E allocated for the training set (Etrain), 10%
for the validation set (Eval), and the remaining 10% for the
test set (Etest).

F. Dueling Deep Q-Learning

The Deep Q Learning Network (DQN) method, a value-
based RL approach, was employed in this study to learn
an optimal policy to enable more accurate classification of
EEG MI signals. A state-action value, Q(s, a), represents the
expected discounted reward when the agent is in state s,
and takes action a according to policy π. With the optimal
policy (π∗), the agent aims to achieve the maximum expected
discounted reward Q∗(s, a), fulfilling the Bellman equation:

Q∗(s, a) = Eπ∗ [r + γmaxa′Q∗(s′, a′)|s, a] (10)

here r is the immediate reward, and γ is the discount factor.
The state-action value, Q̂(s, a), for state s and action a can
be approximated using a deep neural network parameterised
by θ. The loss function is defined as:

Loss(θ) = (ŷDQN − Q̂(s, a; θ))2 (11)

where ŷDQN is the target value, calculated as follows:

ŷDQN =

{
rt, if s′t is Terminal
rt + γmaxa′

t
Q̂(s′t, a

′
t; θtarget), otherwise

(12)

state
𝑠 ∈ ℝ!"#

MLP 
Block 

1

MLP 
Block 

2

MLP 
Block 

3

MLP 
Block 

4

MLP 
Block 

5

MLP 
Block 

6

𝑄 𝑠, 𝑎
∈ ℝ!

𝐻!

∈ ℝ!"#$

𝑠

∈ ℝ%!#

𝐻#
∈ ℝ#"$&

𝐻#
∈ ℝ#"$&

𝐻'

∈ ℝ($

𝐻$

∈ ℝ($

𝑉(𝑠)
∈ ℝ!

𝐴(𝑠, 𝑎)
∈ ℝ%

RL Block (Dueling DQN Network)

Fig. 5: EEG RL-Net’s RL Block: Featuring the Dueling Deep
Q Network (DQN), this component predicts the q-values
linked to various actions

The θtarget denotes the parameters of the target network,
which are kept constant. The approximation Q̂(s, a; θ) shares
the architecture with the target network. Our study utilises Du-
eling DQN, a variant of DQN that enhances training stability
and efficiency by separating the estimation of Q̂(s, a; θ) into
state values V (s) and action advantages A(s, a), as follows:

Q̂(s, a; θ) = V̂ (s;α) + Â(s, a;β) (13)

The network separately estimates the state values and action
advantages, which then converge into a single output. The
parameters θ represent the overall network parameters, with α
and β specifically used for estimating state values and action
advantages, respectively. To enhance stability, the equation
subtracts the average advantage values from Q̂(s, a; θ):

Q̂(s, a; θ) = V̂ (s;α)+ [Â(s, a;β)− 1

|A|
∑
a

Â(s, a;β)] (14)

G. EEG RL Algorithm

To generate training data for the RL Block, all possible
actions at = {0, 1, 2, 3, 4} are executed at each state st
within an episode ei in Etrain, interacting with the EEG RL
environment to determine the reward rt and the subsequent
state s′t. Each transition records a tuple (s, a, r, s′). This study
employs the Dueling DQN method for the RL block, as
illustrated in Figure 5. The Dueling DQN agent undergoes
training according to the procedure outlined in Algorithm 3,
utilising the Adam optimiser until convergence is achieved.
The configuration of the entire EEG RL-Net model is outlined
in Table III. The parameters of the fixed target network,
θtarget, for the Dueling DQN network, are refreshed after
every 50 batch updates of θ.

Performance evaluation of the RL agent on Eval and Etest is
described in Algorithm 4. At every time step, the agent selects
an action based on the q-values predicted by the EEG RL-
Net. In this study, a correct classification by the agent yields
a reward rright, while an incorrect classification results in
rwrong. The agent’s objective in each episode ei is to maximise
the cumulative reward rsum within the predefined horizon
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Algorithm 3 Training EEG RL-Net’s Dueling DQN Agent

1: Initialise randomly Dueling DQN network parameter (θ)
and target network parameter (θtarget).

2: Set of train episodes ETRAIN ∈ {e0, e1, ..., eN} where
each ei has set of states, S = {s0, s1, ..., sH−1}. Each
state, st ∈ R512.

3: At each state st, simulate one step with all possible actions
from action set, A ∈ {0, 1, 2, 3, 4} to observe next state,
s′t and reward, rt. Record all the (st, at, rt, s′t) tuples to
the Buffer B.

4: Shuffle the state transitions in the B using random seed,
and group into mini-batches in size of 64 transitions.

5: for epoch = 0 to EPOCHS do
6: Compute ŷDQN for each mini-batch:

7: ŷDQN =

{
rt, if s′t is Terminal
rt + γmaxa′

t
Q̂(s′t, a

′
t; θtarget) otherwise

8: Loss(θ) = (ŷDQN − Q̂(st, at; θ))
2

9: Backpropagate to update θ using Adam optimiser
10: Update θtarget = θ at every 50 updates of θ
11: end for

H = 20. This requires the agent to make classifications as
quickly as possible, since it incurs a penalty of r = −0.1 for
each skipped step. However, at time t = H − 1, skipping is
no longer an option, and the agent must make a classification
action.

Algorithm 4 Evaluation of DQN Agent for a Validation or
Test Episode

1: Episode, ei has horizon of H = 20
2: At ei, the set of states S = {s0, s1, ..., sH−1}, where each

st ∈ R512

3: At ei, the set of labels Y = {y0, y1, ..., yH−1}, where
each yt ∈ {1, 2, 3, 4}

4: Action a′ ∈ {0, 1, 2, 3, 4}, and a′′ ∈ {1, 2, 3, 4}
5: Initialise t = 0, rsum = 0
6: while t < H do

7: at =

{
argmaxa′ q̂DQN (st, a

′), if t < H − 1

argmaxa′′ q̂DQN (st, a
′′), otherwise

8: s′t, rt = STEP (st, at, yt, s
′
t)

9: rsum ← rsum + rt
10: if rt = Terminate then
11: Terminate the Episode, ei
12: else
13: t← t+ 1
14: end if
15: end while

H. Model Setting and Evaluation Metrics

The structure of EEG RL-Net is defined by two principal
components: the spectral EEG GCN block, which extracts
graph features from EEG MI time point signals using pre-
trained weights, and the RL block, embodied by the Dueling
DQN network. The specifics of the EEG RL-Net’s design
are provided in Table III. The RL block comprises six MLP

(Multi-Layer Perceptron) layers, or Fully Connected Layers,
each followed by a Rectified Linear Unit (ReLU) layer, as
described in Equation 15. Information on the training hyper-
parameters is presented in Table IV. The performance of the
different methods was evaluated using both accuracy and F1
score metrics.

TABLE III: Details of EEG RL-Net Model

Layer Type Input Size Weights Output
Input Input 64× 1 - -

EEG GCN Block

EEG GCN
Graph Convolution

and Global
Pooling

64× 1 - 512

RL Block (Dueling DQN Network)
MLP1 Fully Connected 512 512× 1024 1024
MLP2 Fully Connected 1024 1024×2048 2048
MLP3 Fully Connected 2048 2048× 64 64
MLP4 Fully Connected 64 64× 1 1
MLP5 Fully Connected 2048 2048× 64 64
MLP6 Fully Connected 64 64× 5 5

Q Dueling DQN 64× 1 &
64× 5

- 5

TABLE IV: Hyperparameter Configuration for Training the
EEG RL-Net

Hyperparamter Value
Reward Right (rright) +10

Reward Wrong (rwrong) −10
Reward Skip (rskip) −0.1
Discount Factor (γ) 0.99

Training Epoch (EPOCHS) 150
Batch Size 63

Target Network Update Frequency 50
Initial Learning Rate (η) 0.0001

L2 Regularisation Rate (λ) 0.001
Optimiser Adam

ReLU(x) = max(0, x) (15)

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

Sensitivity =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F1 Score =
2× Precision× Sensitivity

Precision+ Sensitivity
(19)

III. RESULTS AND DISCUSSION

A. EEG RL-Net vs EEG GLT-Net

Table V shows comparative analysis of mean accuracy
between the EEG GLT-Net and the EEG RL-Net. The
EEG GLT-Net incorporates two adjacency matrix types: the
Pearson Coefficient Correlation (PCC) and the mg GLT . The
latter is identified as the most optimal adjacency matrix, after
searching through 100% to 13.39% of adjacency matrix den-
sity using the EEG GLT algorithm. According to paper [18],
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employing the mg GLT adjacency matrix yields an accuracy
improvement ranging between 0.51% and 22.04% over the
PCC adjacency matrix, with significant enhancements noted
for subjects S1 and S12, at 22.04% and 21.62% respectively.
Despite seeing notable improvements in accuracy and F1 score
with the mg GLT matrix, certain subjects, specifically S5,
S6, S7, S13, S15, and S19, exhibited classification accuracies
below 70%.

TABLE V: Accuracy Assessment: EEG RL-Net versus
EEG GLT-Net

Subj Accuracy (Mean±Std)
EEG GLT-Net

(PCC Adj)
EEG GLT-Net
(mg GLT Adj)

EEG RL-Net*
(our method)

S1 76.47% ± 9.94% 98.51% ± 0.77% 100.00% ± 0.00%
S2 69.13% ± 7.05% 76.18% ± 5.53% 97.73% ± 0.20%
S3 87.28% ± 9.19% 99.17% ± 0.32% 100.00% ± 0.00%
S4 99.13% ± 1.01% 99.97% ± 0.06% 100.00% ± 0.00%
S5 43.19% ± 3.03% 50.95% ± 3.80% 87.72% ± 0.70%
S6 58.23% ± 5.19% 69.60% ± 5.67% 90.89% ± 1.50%
S7 50.98% ± 3.80% 59.45% ± 3.00% 89.24% ± 2.10%
S8 95.06% ± 5.96% 99.95% ± 0.07% 100.00% ± 0.00%
S9 97.64% ± 3.33% 99.95% ± 0.08% 100.00% ± 0.00%
S10 99.24% ± 0.19% 99.99% ± 0.01% 100.00% ± 0.00%
S11 99.48% ± 0.70% 99.99% ± 0.01% 100.00% ± 0.00%
S12 78.07% ± 8.95% 99.69% ± 0.32% 100.00% ± 0.00%
S13 41.35% ± 1.23% 44.50% ± 2.23% 89.45% ± 0.90%
S14 55.97% ± 6.47% 72.39% ± 6.43% 91.59% ± 2.10%
S15 52.11% ± 3.96% 67.55% ± 9.26% 80.83% ± 1.50%
S16 96.75% ± 5.00% 99.98% ± 0.03% 100.00% ± 0.00%
S17 98.83% ± 2.33% 99.98% ± 0.03% 100.00% ± 0.00%
S18 86.19% ± 9.95% 99.92% ± 0.12% 100.00% ± 0.00%
S19 38.38% ± 2.27% 41.41% ± 1.44% 79.65% ± 1.40%
S20 98.44% ± 0.68% 99.94% ± 0.11% 100.00% ± 0.00%

Overall 76.10% ± 22.71% 83.95% ± 21.43% 95.36% ± 6.83%
* rright = +10, rwrong = −10, rskip = −0.1, H = 20

Using baseline parameters (rright = +10, rwrong = −10,
rskip = −0.1 and H = 20), the EEG RL-Net framework
advances the accuracy beyond the current state-of-the-art
EEG GLT-Net employing the mg GLT adjacency matrix, with
improvements spanning 0.01% to 44.95%. A total of 12
out of 20 subjects, namely S1, S3, S4, S8, S9, S10, S11,
S12, S16, S17, S18, and S20, achieved perfect classification.
The EEG RL-Net also significantly elevated the accuracies
for S13 and S19 to 89.45% and 79l.65%, respectively. Even
for subjects S13 and S19, who initially demonstrated low
accuracies, modest improvement in accuracy at 44.50% and
41.41%, respectively was achieved using the EEG GLT-Net
with the mg GLT matrix.

The EEG GLT-Net with the mg GLT matrix boosted accu-
racy across the 20 subjects, increasing the average accuracy
by 7.85% (from 76.10% to 83.95%). Given the inherent noise
in EEG MI time-point signals and the challenge of classifying
signals representing 1

160s, the EEG GLT-Net showed a decline
in performance accuracy due to its attempt to classify all time
points. Comparatively, the EEG RL-Net achieved remarkable
increase in average accuracy across the 20 subjects to 95.35%.
This substantial improvement is the result of the RL agent’s
capacity to discern the appropriateness of the current signal
for classification. The agent has been optimised to classify
signals as swiftly as possible within a 20 time-point window,
averaging a classification time of 2.91 time points in the

EEG RL-Net setup.

B. Study of Changing rright Values
Table VI demonstrates the effect of varying the rright

value (+5,+10,+15), on average accuracy while keeping
rwrong = −10 constant. The results show average accuracies
of 95.57%, 95.36%, and 94.94% for rright = +5,+10, and
+20, respectively. Notably, the accuracy tends to improve
when rright is less than rwrong, but declines when rright
exceeds rwrong, although the level of variance is minimal at
just 0.63%.

TABLE VI: Impact of Varying rright Values on Accuracy and
Classification Time

Subj
Mean Accuracy (Mean Classification Time)

rr = +5
rw = −10

rr = +10
rw = −10

rr = +20
rw = −10

S1 99.93% (1.70) 100.00% (1.80) 100.00% (1.50)
S2 97.86% (1.51) 97.73% (1.87) 97.86% (1.65)
S3 100.00% (2.10) 100.00% (2.20) 100.00% (1.90)
S4 100.00% (2.80) 100.00% (2.50) 100.00% (1.80)
S5 87.65% (5.71) 87.72% (4.55) 86.14% (3.45)
S6 91.10% (3.37) 90.89% (2.80) 89.72% (2.07)
S7 91.24% (3.64) 89.24% (3.23) 87.80% (3.66)
S8 100.00% (2.90) 100.00% (2.80) 100.00% (2.10)
S9 100.00% (3.70) 100.00% (3.00) 100.00% (2.20)
S10 99.93% (2.40) 100.00% (2.20) 100.00% (1.80)
S11 100.00% (2.00) 100.00% (1.50) 100.00% (2.30)
S12 100.00% (2.80) 100.00% (2.40) 100.00% (2.60)
S13 89.59% (4.90) 89.45% (3.97) 88.28% (3.58)
S14 93.45% (3.75) 91.59% (3.14) 89.86% (2.81)
S15 82.89% (5.23) 80.83% (4.80) 79.45% (4.51)
S16 100.00% (2.40) 100.00% (2.70) 100.00% (2.20)
S17 100.00% (3.00) 100.00% (2.00) 100.00% (1.90)
S18 100.00% (3.30) 100.00% (2.40) 100.00% (1.50)
S19 77.79% (6.89) 79.65% (5.64) 79.59% (4.80)
S20 100.00% (2.20) 100.00% (2.70) 100.00% (2.10)

Mean 95.57% (3.32) 95.36% (2.91) 94.94% (2.51)
Std ± 6.72% ± 6.83% ± 7.32%
rskip = −0.1 and H = 20

On an individual basis, rright = +5 yielded higher accu-
racies for most subjects, except for S1, S5, and S19, where
rright = +10 performed marginally better. No subjects
showed improved accuracy when rright was greater than
rwrong. Therefore, for optimal performance, the magnitude
of rright should not exceed rwrong. It appears that accuracy
is enhanced by a higher penalty for incorrect classifications
(rwrong) rather than a higher reward for correct ones (rright)
enhances accuracy, likely motivating the agent to avoid mis-
classifications more stringently.

Regarding the time points required to classify EEG MI sig-
nals, the configuration with rright = +10 and rwrong = −10
averages at 2.91 time points. Increasing rright to +20 (while
rwrong remains at −10) reduces the classification time to 2.51
time points. Conversely, lowering rright to +5 increases the
average classification time to 3.32 time points, indicating a
more cautious approach by the agent, likely due to prioritising
accuracy over speed by utilising the option to skip uncertain
classifications.

C. Study of Changing rwrong Values
In this study, we examined the impact of altering the rwrong

values while keeping the rright constant at +10, as shown in
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Table VII. We observed the rwrong values at −10, −20, −30,
and −40, correlating with an average performance accuracy
of 95.35%, 95.18%, 95.11%, and 94.88%, respectively. This
indicates that simply increasing the negative magnitude of
rwrong beyond that of rright does not invariably lead to
enhanced performance accuracy. Additionally, we found that
the time required for signal classification was directly related
to the difference in rewards.

TABLE VII: Impact of Varying rwrong Values on Accuracy
and Classification Time

Subj
Mean Accuracy (Mean Classification Time)

rr = +10
rw = −10

rr = +10
rw = −20

rr = +10
rw = −30

rr = +10
rw = −40

S1 100.00% (1.80) 99.79% (1.60) 100.00% (2.00) 99.93% (2.00)
S2 97.73% (1.87) 98.21% (1.97) 97.93% (2.49) 97.93% (2.88)
S3 100.00% (2.20) 100.00% (1.70) 100.00% (2.70) 100.00% (2.20)
S4 100.00% (2.50) 100.00% (3.30) 100.00% (4.30) 100.00% (5.70)
S5 87.72% (4.55) 86.90% (6.26) 85.38% (6.28) 85.79% (7.31)
S6 90.89% (2.80) 90.00% (2.63) 90.90% (4.94) 90.41% (4.25)
S7 89.24% (3.23) 89.59% (5.09) 89.31% (5.20) 88.90% (6.70)
S8 100.00% (2.80) 100.00% (2.60) 100.00% (3.70) 100.00% (4.30)
S9 100.00% (3.00) 100.00% (3.30) 100.00% (5.00) 100.00% (5.30)
S10 100.00% (2.20) 99.93% (1.90) 99.86% (2.00) 99.93% (2.52)
S11 100.00% (1.50) 100.00% (2.20) 100.00% (3.00) 100.00% (3.30)
S12 100.00% (2.40) 100.00% (2.70) 100.00% (4.10) 100.00% (5.10)
S13 89.45% (3.97) 89.52% (5.33) 89.52% (6.24) 87.38% (6.07)
S14 91.59% (3.14) 91.31% (3.00) 92.14% (3.00) 90.55% (4.37)
S15 80.83% (4.80) 81.38% (4.53) 80.14% (3.48) 80.69% (4.13)
S16 100.00% (2.70) 100.00% (3.10) 100.00% (5.00) 100.00% (4.30)
S17 100.00% (2.00) 100.00% (3.70) 100.00% (3.20) 100.00% (4.60)
S18 100.00% (2.40) 100.00% (3.20) 100.00% (2.40) 100.00% (4.30)
S19 79.65% (5.64) 76.90% (7.21) 76.97% (8.22) 76.14% (9.20)
S20 100.00% (2.70) 100.00% (2.80) 100.00% (3.40) 100.00% (4.80)

Mean 95.36% (2.91) 95.18% (3.41) 95.11% (4.03) 94.88% (4.66)
Std ± 6.83% ± 7.19% ± 7.37% ± 7.57%
rskip = −0.1 and H = 20

Despite the reward configuration of {rright =
+10, rwrong = −10} achieving the highest average
performance accuracy among the four settings, it does
not universally outperform across all test subjects.
Specifically, this configuration was only superior for
subjects S5 and S6. Conversely, the configuration of
{rright = +10, rwrong = −20} exhibited higher performance
accuracy in subjects S2, S7, S13, and S15. For subject
S14, the {rright = +10, rwrong = −30} setting was more
advantageous.

Although a smaller magnitude of rwrong relative to rright
appears beneficial, a higher rwrong to rright ratio does not
necessarily equate to improved accuracy. As demonstrated in
Table VII, performance accuracy diminishes with an increas-
ing ratio, identifying the optimal ratio as twice the magni-
tude of rwrong to rright. Furthermore, comparing different
of reward configurations with equivalent magnitude ratios,
such as {rright = +5, rwrong = −10} and {rright =
+10, rwrong = −20}, reveal subtle differences are noted in
average performance accuracy and classification time. The
former configuration outperforms in both average accuracy and
time efficiency for classification.

According to Table VII, the classification time escalates
with the increases in rwrong magnitude, where average times
of 2.91, 3.41, 4.03, and 4.66 seconds were recorded for
rwrong values of −10, −20, −30, and −40, respectively. This

trend suggests that as the penalty for incorrect classification
outweighs the reward for correct answers, the agents proceed
with increased caution, hence extending the classification time.

D. Effects of Episode Length Variation and Optimisation on
Classification Performance

In this study, we examined the mean accuracy, F1 score,
and mean classification time across various episode lengths
(H), including 10, 20, 30, and 40, as presented in Table VIII.
We observed that both accuracy and F1 scores increased
with extension of the episode horizon extends. Conversely,
classification time per point increased with longer episode
lengths. These finding suggests that larger episode lengths
contribute to improvements in accuracy and F1 scores.

TABLE VIII: Impact of Varying Episode Lengths (H) Values
on Accuracy, F1 Score and Classification Time

Horizon
(H)

Accuracy
(Mean ± Std)

F1 Score
(Mean ± Std)

Mean
Classification

Time
10 94.46% ± 8.10% 94.42% ± 8.15% 2.18
20 95.14% ± 7.14% 95.10% ± 7.18% 3.76
30 95.56% ± 6.54% 95.53% ± 5.53% 5.53
40 95.82% ± 6.16% 95.79% ± 6.54% 6.54

Table IX delineates the optimal configuration of reward for
correct (rright) and incorrect (rwrong) decisions, and episode
horizon (H) that achieves the highest accuracy and F1 score in
the shortest classification time possible. In this optimal setting,
the RL agent demonstrates superior performance, achieving an
average accuracy of 96.40% and an average classification time
of less than 25 milliseconds across all 20 subjects.

TABLE IX: Subject-wise Classification Accuracy and Time
with Optimal Reward Settings and Episode Lengths

Subj Mean
Accuracy

Mean F1
Score

Mean Clas-
sification

Time

(rright,
rwrong)

Episode
Horizon

S1 100.00% 100.00% 1.45 (20, -10) 10
S2 98.65% 98.62% 2.93 (20, -30) 30
S3 100.00% 100.00% 1.13 (20, -10) 10
S4 100.00% 100.00% 1.32 (20, -30) 10
S5 90.21% 90.05% 4.85 (10, -10) 30
S6 92.06% 92.06% 4.25 (5, -10) 40
S7 92.33% 92.29% 9.94 (10, -30) 40
S8 100.00% 100.00% 1.23 (10, -10) 10
S9 100.00% 100.00% 1.27 (20, -10) 10
S10 100.00% 100.00% 1.17 (20, -10) 10
S11 100.00% 100.00% 1.11 (20, -20) 10
S12 100.00% 100.00% 1.19 (20, -10) 10
S13 93.29% 93.27% 5.95 (10, -10) 40
S14 93.70% 93.69% 4.17 (5, -10) 40
S15 85.48% 85.43% 7.51 (10, -20) 40
S16 100.00% 100.00% 1.25 (20, -10) 10
S17 100.00% 100.00% 1.28 (20, -10) 10
S18 100.00% 100.00% 1.27 (10, -10) 10
S19 82.33% 82.20% 9.69 (20, -30) 40
S20 100.00% 100.00% 1.15 (20, -10) 10

Mean 96.40% 96.38% 3.21 - -
Std ± 5.47 ± 5.50 - - -

Our analysis, as indicated in Table IX shows that the RL
agent achieved accuracy exceeding 90.00% for each subject,
with the exceptions of S15 and S19 whose accuracies were
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85.48% and 82.33%, respectively. Subjects such as S1, S3,
S4, S8, S9, S10, S11, S12, S16, S17, S18, and S20, where the
RL agent achieved perfect classification, had notably clearer
EEG MI signals. For these subjects, the agent performed
consistently well across most reward and episode horizon con-
figurations. Classifications were achieved within an average
of 2 time points, where an optimal episode horizon of 10
and a reward configuration where rright significantly exceeded
rwrong were conducive to faster classification decisions.

Particularly noteworthy was the performance of EEG RL-
Net on subject S13, where the RL agent achieved a classifi-
cation accuracy of 93.29%. This represented an exceptional
improvement by 48.79% over EEG GLT-Net with mg GLT ,
the current state-of-the-art EEG MI time point classification
method. The classification for S13 took 6 time points on av-
erage, possibly reflecting the only subtle distinctions between
EEG MI tasks for this subject.

IV. CONCLUSION

Our study introduces EEG RL-Net, an innovative approach
for the real-time classification of EEG-based motor imagery
(MI) signals utilising reinforcement learning (RL) techniques.
Building on the foundation of EEG GLT-Net’s EEG GCN
block and optimising computational efficiency with an ad-
jacency matrix density of just 13.39%, EEG RL-Net not
only achieves accurate classification of EEG MI signals but
also identifies signals that are unsuitable for classification.
Remarkably, it achieved 100.00% classification accuracy for
12 out of 20 subjects within less than 12.5 milliseconds.
For challenging subjects (S13 and S19 in this study), where
previous state-of-the-art methods such as EEG GLT-Net could
classify with accuracies of only 44.50% and 41.41% respec-
tively, EEG RL-Net achieved unprecedented improvement in
performance, reaching classification accuracies of 93.29% and
82.33% in less than 62.5 milliseconds. These results under-
score the robustness and efficacy of EEG RL-Net in enhancing
classification rates, filling a gap for subjects previously deemed
difficult by existing classification methods. In future work, we
will further explore the integration of the optimal adjacency
matrix mg GLT for advanced graph feature extraction in the
EEG GCN block, aiming to unlock even greater improve-
ments in the classification capabilities of our EEG RL-Net
system.
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