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ABSTRACT
This research paper explores ways to apply Federated Learning
(FL) and Differential Privacy (DP) techniques to population-scale
Electrocardiogram (ECG) data. The study learns a multi-label ECG
classification model using FL and DP based on 1,565,849 ECG
tracings from 7 hospitals in Alberta, Canada. The FL approach
allowed collaborative model training without sharing raw data
between hospitals, while building robust ECG classification mod-
els for diagnosing various cardiac conditions. These accurate ECG
classification models can facilitate the diagnoses while preserv-
ing patient confidentiality using FL and DP techniques. Our re-
sults show that the performance achieved using our implemen-
tation of the FL approach is comparable to that of the pooled
approach, where the model is trained over the aggregating data
from all hospitals. Furthermore, our findings suggest that hospitals
with limited ECGs for training can benefit from adopting the FL
model compared to single-site training. In addition, this study show-
cases the trade-off between model performance and data privacy
by employing DP during model training. Our code is available at
https://github.com/vikhyatt/Hospital-FL-DP.
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1 INTRODUCTION
Electrocardiograms (ECGs), offer critical insights into cardiac func-
tion by capturing the heart’s electrical activity, making them an
indispensable tool in healthcare. As this test is non-invasive, pain-
less, and quick, it is used to diagnose a range of cardiac conditions,
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including arrhythmias, conduction disorders, and other anomalies
[1, 2]. Recent studies show that ECGs can also identify non-cardiac
medical conditions, including diabetes and Alzheimer’s disease
[3, 4]. Unfortunately, the manual analysis of ECG signals is a metic-
ulous and error-prone task, even for seasoned specialists [5]. Con-
sequently, developing accurate ECG classification models is critical
for the prompt and precise detection of medical conditions, which
is vital for effective treatment and management. This necessity
has spurred the adoption of deep learning techniques to leverage
the full potential of ECG data. By automatically learning hierarchi-
cal representations from raw ECG signals, deep neural networks
can uncover intricate features that might elude traditional hand-
crafted algorithms. However, building such models requires access
to substantial and diverse datasets that represent different patient
populations and medical contexts to achieve generalizable models
across various clinical and demographic populations. Moreover, the
acquisition of ECG data from many hospitals introduces challenges
of privacy considerations. The autonomous nature of hospitals
leads to many different data formats, recording systems, and ECG
acquisition protocols. Additionally, certain healthcare facilities may
cater exclusively to specialized clinical cohorts or serve geographi-
cally confined populations. A covariate shift between two hospitals’
data denotes a dissimilarity in patient characteristics, such as demo-
graphic features or disease prevalence, between the training dataset
utilized for model development and the dataset encountered during
deployment, potentially resulting in poor model performance. Con-
currently, addressing privacy is important, as hospitals are bound
by a mandate to safeguard patient confidentiality and uphold eth-
ical principles [37–39]. Recent research has additionally demon-
strated that ECGs can be leveraged for biometric authentication,
showcasing their capacity to discern and verify individuals [6, 7].
Furthermore, given the heightened sensitivity and confidentiality
of medical data, certain individuals may be reluctant to provide
their data to a central data collection [8, 9]. Thus, the establishment
of collaborative, privacy-centric data-sharing frameworks assume
paramount significance, with innovative methodologies such as
Federated Learning (FL) and Differential Privacy (DP) emerging as
promising solutions. It is essential to recognize that the FL method
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confers significant advantages in bolstering data security and guar-
anteeing privacy, as delineated by Yin et al. [19]. This paper explores
the application of FL and DP techniques on population-scale ECG
data to develop accurate ECG classification models while preserv-
ing data privacy and security.

Subsections 1.1 and 1.2 provide an overview of FL and DP, and
outline the study’s objectives. Section 2 then delves into related
literature, exploring FL and DP applications in different healthcare
contexts, especially for ECG data –to critically assess the limitations
of prior work and highlight our contributions. Section 3 outlines the
methods we will employ, discusses the prediction task, patient char-
acteristics, learning algorithm, and the evaluation scheme. Section
4 presents the results derived from various experiments conducted
related to both FL and DP. Section 5 interprets our work and sum-
marizes the entire paper.

1.1 Federated Learning
Federated Learning (FL) is a pioneering paradigm designed to ad-
dress the challenges associated with learning from many data
sources in a way that preserves privacy [11]. This method allows
one model to be trained using data from different sources, like
hospitals, without sharing private information. Each hospital helps
improve that single model through minor updates while keeping
sensitive details private. FL ensures that each hospital’s data stays
within its boundaries, preserving data privacy and security. Fig-
ure 1 depicts the FL configuration employed in our multi-hospital
setup, showing FL is a multi-step process in which each hospital
initially preprocesses its local ECG data, a crucial step to ensure
data consistency and implement privacy-preserving techniques.
Subsequently, each hospital learns its own localized ECG classifica-
tion model, based on its preprocessed data. These individual models
are then aggregated into a global model through techniques such
as federated averaging, which appropriately weighs each hospital’s
contribution [11]. The global model is then transmitted back to the
individual hospitals, where it undergoes fine-tuning in successive
iterations; these “weights” are then returned to the central, until
it converges on a single global ECG classification model. Through
this approach, FL establishes itself as a solution for collaborative
medical research across diverse healthcare institutions.

1.2 Differential Privacy
Differential privacy (DP), a fundamental concept in data privacy,
has become a crucial framework for addressing the delicate bal-
ance between preserving data usefulness and safeguarding individ-
ual privacy. Initially introduced by Dwork et al. in 2006 [10], this
framework has since gained prominence as it offers a mathematical
guarantee of privacy protection within data analysis processes. By
quantifying the extent to which the inclusion or exclusion of a sin-
gle individual’s data point influences the outcomes of data analyses,
DP ensures that the privacy of any individual remains effectively
preserved, inspiring confidence in data sharing, which facilitates
collaborative medical research for advancing healthcare outcomes.
Figure 2 illustrates the DP setup in the context of machine learning.
In this scenario, we can train 2 models using learner A: model M
on database D and M’ on database D’, which is the dataset formed

Figure 1: Diagram illustrating the Federated Learning setup
for multi-hospital ECG datasets

Figure 2: Diagram illustrating Differential Privacy

by adding Mr. Smith’s data to dataset D. Subsequently, we pose
the same query Q to both of these trained models. If the resulting
answers, B and B’, are essentially indistinguishable, then no private
information about Mr. Smith can be inferred.

1.3 Aim of Study
Our study investigates the impact of incorporating FL and DP tech-
niques in the analysis of ECG data obtained from 7 distinct hospitals
in Alberta, Canada. Our prediction task is to develop an ECG clas-
sification model that can use a patient’s ECG to determine if that
patient has zero or more of several prevalent cardiovascular and
metabolic diseases. The overarching goal is to investigate whether
adopting a federated approach with (versus without) differential
privacy can enhance data privacy and security without significantly
compromising the performance of pre-existing global models.
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2 RELATEDWORK
Various studies have explored the implementation of FL in health-
care applications [25]. Raza et al. [12] employed an FL approach on
the MIT-BIH Dataset [13], to learn a model to categorize ECGs into
5 heartbeat categories focusing on model explainability. However,
it uses data from a single hospital, undermining the fundamental
justification for employing FL in this scenario. In contrast, our re-
search matches the FL objective by incorporating data aggregated
from multiple hospitals. In a customized FL approach, Tang et al.
[14] demonstrates enhanced performance in their FL model, person-
alized for each local node, compared to a model trained using the
FedAvg algorithm. Their study would benefit from a comparative
analysis across demographic groups and an inter-site performance
evaluation. Our study used the same FedAvg algorithm in an inter-
site analysis framework inspired by Goto et al. [15], who developed
FL models for hypertrophic cardiomyopathy classification by in-
tegrating ECGs and echocardiograms from 4 different hospitals,
thereby setting a benchmark for assessing the utility of ECGs. We
differ from the HCM-focused study [15] as we leverage ECG data
to comprehensively diagnose various cardiovascular and metabolic
diseases in patients — more details in Subsections 3.1 and 3.2. Both
Lin et al. [16] and Meqdad et al. [17] propose novel FL approaches
for 5-class heartbeat classification using ECGs, specifically benefi-
cial for non-independent and identically distributed (non-IID) smart
device data, with validation on the MIT-BIH dataset. The non-IID
nature of the data in this context arises because the data from each
node (patient or device) originates from the same patient, leading
to a lack of independence and thus categorizing it as non-IID. In
contrast, Baumgartner et al. [18] learns a multi-label classification
model that can detect 13 SNOMED codes using ECGs from 5 data
sources [23], emphasizing metric-focused evaluations while using
FL to preserve privacy for multi-site data. Ying et al. [24] intro-
duces a novel preprocessing method for ECG data by converting
ECGs to images and employs FL for smart devices, incorporating a
semi-supervised approach with pseudo-labeling. Nevertheless, they
conducted an analysis using the MIT-BIH dataset, known for its
non-IID nature and utility for patient-level data nodes. Finally, Dolo
et al. [26] proposes for the Differentially Private Stochastic Gradient
Descent applied to the Federated Averaging (DPSGDFedAvg) algo-
rithm, specifically for diabetes prediction. We adopt DPSGDFedAvg
for our experiments in Section 4.3.

Our study adds to the existing body of literature by introducing
several advancements. An essential difference is that numerous
papers utilize ECG data from the MIT-BIH dataset sourced from a
single hospital. In these cases, FL is implemented on an individual
patient level, treating them as nodes, and the data is non-IID. In
contrast, our approach uses hospitals as nodes in our FL model, mir-
roring a more realistic deployment scenario. Our model utilizes data
from 7 hospitals in Alberta, Canada, where each hospital contains
data from numerous patients. The linkage of our ECG dataset to
provincial administrative health records provides multiple diagnos-
tic labels based on ICD-10 coding systems and our learned model
can simultaneously predict the diagnosis of multiple diseases for a
given ECG instance [14, 18]. Our study focuses on just diseases that
include at least 15,000 instances, facilitating ample training samples.

Table 1: ECG distribution among hospitals

Site \Data Split Train Tuning Holdout

Hospital 1 232517 59142 195383
Hospital 2 217578 54774 180733
Hospital 3 98865 25323 81938
Hospital 4 87201 21436 72442
Hospital 5 78329 20420 65035
Hospital 6 19769 5184 16334
Hospital 7 13714 3261 11291
TOTAL 747973 194720 623156

We employ the FedAvg algorithm [11] for FL, consistent with the
existing literature, considering its established efficacy. Furthermore,
we introduce an additional layer of data privacy by incorporat-
ing the Differential Privacy Stochastic Gradient Descent (DP-SGD)
algorithm [27] during FL training. The inclusion of DP-SGD dif-
fers from previous related works on similar prediction tasks and
aligns with contemporary privacy norms and legal requirements.
Additionally, our research conducts inter-site analysis, addressing a
notable gap in some previous literature. This analysis underscores
the motivation behind employing FL, particularly for hospitals with
limited ECG data, thus ensuring both efficacy and data privacy
simultaneously, a crucial aspect not explored in earlier studies. In
addition, this study seeks to showcase the trade-off between model
performance and data security by employing DP techniques in
model training.

3 METHODS
3.1 Data Description and Patient Characteristics
This work began with a dataset containing 2,015,808 ECG records
from 260,065 patients, collected between February 2007 and April
2020, from 14 hospitals in Edmonton, Alberta, Canada. We applied
the ECG data preprocessing methods outlined in the Analysis Co-
hort subsection of the Methods section in Sun et al. [28]. An ECG
record was labeled with ICD-10 codes of the healthcare episode if
its acquisition date fell within the timeframe of the episode. We
excluded ECGs that (1) could not be linked to any episode, (2) were
from patients below 18 years of age, or were of poor signal qual-
ity, leaving an analysis cohort of 1,603,109 ECGs originating from
748,773 episodes involving 244,077 patients [28]. In this study, we
included 7 hospitals (also referred to as ‘sites’), each of which pro-
vided a minimum of 12,500 ECGs. Table 1 provides the distribution
of ECGs across various hospitals along with different experimental
splits. The final dataset consists of 1,565,849 ECGs, from 243,128
patients across 7 hospitals. Here, each ECG is a standard 12-lead
ECG tracings derived from the Philips IntelliSpace ECG system,
consisting of voltage-time series, sampled at a rate of 500 Hz over a
duration of 10 seconds for each of the 12 leads, resulting in a total
of 500 × 10 × 12 voltage measurements per ECG. General patient
characteristics have been described by Sun et al. [28], and hospital-
wise distributions are presented in Table 2.
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Table 2: Patient Characteristics and Prevalence of classification labels and comorbidities

Hospital 1 2 3 4 5 6 7

Patient Characteristics
Number of ECGs 487042 453085 206126 181079 163784 41287 28266

Median Age (min-max) 66 (18 - 108) 66 (18 - 108) 69 (18 - 106) 71 (18 - 108) 71 (18 - 108) 64 (18 - 105) 72 (18 - 107)
Male % 59.66 58.24 55.77 50.61 54.13 53.40 52.20

Prevalence of ICD-10 Classification Labels
I21.1 16417 (3.37%) 19999 (4.41%) 4786 (2.32%) 3131 (1.73%) 3972 (2.43%) 615 (1.49%) 394 (1.39%)
I21.0 14329 (2.94%) 16840 (3.72%) 3022 (1.47%) 2250 (1.24%) 2859 (1.75%) 436 (1.06%) 274 (0.97%)
I50.0 78074 (16.03%) 62743 (13.85%) 23251 (11.28%) 21970 (12.13%) 19721 (12.04%) 2467 (5.98%) 3818 (13.51%)
I25.10 118240 (24.28%) 125316 (27.66%) 33251 (16.13%) 27869 (15.39%) 33001 (20.15%) 3819 (9.25%) 3573 (12.64%)
I48.9 52394 (10.76%) 49914 (11.02%) 14291 (6.93%) 15671 (8.65%) 14132 (8.63%) 2161 (5.23%) 2447 (8.66%)
I21.4 47306 (9.71%) 46823 (10.3%) 25162 (12.21%) 17054 (9.42%) 19789 (12.08%) 2011 (4.87%) 2286 (8.09%)
I48.0 55344 (11.36%) 30892 (6.82%) 17753 (8.61%) 17041 (9.41%) 12924 (7.89%) 1145 (2.77%) 1767 (6.25%)
E87.5 14263 (2.93%) 10635 (2.35%) 3220 (1.56%) 2788 (1.54%) 1841 (1.12%) 413 (1.00%) 635 (2.25%)
E11.2 22683 (4.66%) 21745 (4.80%) 6680 (3.24%) 4305 (2.38%) 4106 (2.51%) 631 (1.53%) 492 (1.74%)
I35.0 14207 (2.92%) 6799 (1.50%) 1914 (0.93%) 2066 (1.14%) 1827 (1.12%) 163 (0.39%) 232 (0.82%)

Prevalence of Comorbidities
Peripheral Vascular Disease 7184 (1.48%) 3393 (0.75%) 19582 (9.50%) 1504 (0.83%) 1262 (0.77%) 151 (0.37%) 194 (0.69%)
Cerebrovascular Disease 28453 (5.84%) 7684 (1.70%) 7992 (3.88%) 3516 (1.94%) 3525 (2.15%) 802 (1.94%) 729 (2.58%)
Myocardial Infarction 113887 (23.38%) 120451 (26.58%) 37501 (18.19%) 30539 (16.87%) 36440 (22.25%) 4011 (9.71%) 4424 (15.65%)

Hypertension 42189 (8.66%) 36162 (7.98%) 18944 (9.19%) 13852 (7.65%) 14653 (8.95%) 2244 (5.44%) 3037 (10.74%)
Dementia 7624 (1.57%) 8421 (1.86%) 3604 (1.75%) 5137 (2.84%) 3248 (1.98%) 149 (0.36%) 690 (2.44%)

Chronic Pulmonary Disease 28407 (5.83%) 34426 (7.60%) 15136 (7.34%) 16337 (9.02%) 16034 (9.79%) 3469 (8.40%) 3271 (11.57%)
Renal Disease 9799 (2.01%) 4466 (0.99%) 1781 (0.86%) 1718 (0.95%) 1634 (1.00%) 202 (0.49%) 359 (1.27%)
Liver Disease 8706 (1.79%) 5233 (1.15%) 1530 (0.74%) 1631 (0.90%) 1172 (0.72%) 221 (0.54%) 197 (0.70%)

Cancer 40575 (8.33%) 24215 (5.34%) 9437 (4.58%) 8294 (4.58%) 5887 (3.59%) 671 (1.63%) 1223 (4.33%)

Figure 3: Diagram depicting the prediction task by represent-
ing the output using a specific example

3.2 Prediction Task
Our dataset, sourced from Alberta Health Services (AHS), contains
administrative electronic health records (EHRs) and ECGs. Based
on linkage of ECGs to administrative health records, we labeled
each ECG with the set of ICD-10 diagnosis codes assigned to this
patient. The objective of our research is a multi-label classifica-
tion task that uses both ECG waveforms and demographic data to
predict the probabilities of 10 specific diseases, as defined by their
respective ICD-10 codes (see Appendix: Table 5). We chose these
classification labels because of their significant clinical relevance to
cardiovascular and metabolic diseases and their predictability using
Deep Learning (DL) models, as elucidated by the research findings
presented by Sun et al. [28]. Figure 3 provides a schematic of the
performance system generated by our model. The model predicts
each disease label independently, assigning either 0 (negative) or

1 (positive) based on the prediction probability for a given ECG
tracing as input. Our dataset aggregates information from multiple
hospitals, so our approach involves developing a multi-label model
within a federated learning framework. We compare the pooled and
federated learning models to discern the efficacy of federated learn-
ing in this context. Finally, we will compare models trained and
tested independently within and across each participating hospital,
evaluating their performance.

3.3 Learning Algorithm
For the DL model, we implemented a CNN based on the residual
neural network architecture, consisting of a convolutional layer,
4 residual blocks with 2 convolutional layers per block, followed
by a dense layer (total of 8,922,644 model parameters) [28]. We
used batch normalization [35], ReLU [34], and dropout after each
convolutional layer. Each ECG instance was loaded as a 12×5120
numeric matrix. Additional features such as age and sexwere passed
to a 10-hidden-unit layer and concatenated with the dense layer,
and finally passed to a softmax layer to produce the outputs. Binary
cross-entropy was used as the loss function with the initial learning
rate of 10−3, Adam optimizer [36], ReLU activation function, kernel
size of 16, batch size of 512, and dropout rate of 0.2 with other hyper-
parameters set to default. Models were learnt for a maximum of
50 epochs. The learning rate was reduced to 10−5 if there was
no improvement in tuning loss for 7 consecutive epochs, and the
learning process was stopped if loss in the tuning set did not reduce
for 9 epochs. We trained all our models on the NVIDIA Driver
version 418.88 with 8 Tesla V100-SXM2 GPUs and 32 GB of RAM
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per GPU. Each DL model took approximately 30 minutes per epoch
to train.

3.4 FL/DP Algorithm
3.4.1 Federated Averaging (FedAvg).
We implemented the Federated Averaging (FedAvg) algorithm [11],
a decentralized machine learning paradigm designed for training
models across various hospitals while ensuring data privacy. In
the FedAvg framework, each participating hospital autonomously
conducts model training on its locally stored ECG data. Instead of
transmitting raw data to a central server, only the model updates, in
the form of gradients, are communicated. The central server aggre-
gates these updates and computes a global model through parameter
averaging. Subsequently, the resulting global model is disseminated
to the participating hospitals, initiating a recurrent iterative process.
FedAvg is particularly beneficial in scenarios marked by distributed
ECG data across multiple sites, enabling collaborative model train-
ing without explicit data exchange.

3.4.2 Differentially Private Stochastic Gradient Descent (DP-SGD).
To implement differential privacy during model training, we em-
ployed the Differential Privacy Stochastic Gradient Descent (DP-
SGD) algorithm [27]. This optimization technique focuses on inte-
grating differential privacy guarantees. DP-SGD extends the tradi-
tional Stochastic Gradient Descent (SGD) optimization algorithm
by introducing controlled noise into gradient computations. This
approach is particularly effective in mitigating the risk of extracting
sensitive personal information from the ECG data. The intentional
addition of noise ensures that the model’s updates maintain dif-
ferential privacy, whereby the inclusion or exclusion of any single
ECG has a negligible impact on the overall model parameters. DP-
SGD strikes a balance between optimizing model performance and
upholding the privacy of patient information within the ECG data.
We have incorporated DP-SGD into our framework utilizing the
Opacus library [20], which employs the Rényi Differential Privacy
[21] accountant as its mechanism for tracking privacy.

3.5 Evaluation
We randomly assigned the ECGs into the development set (60%) and
holdout set (40%). In the development set, we used 80% for training
and 20% for tuning the model’s performance. The proportions were
maintained approximately within each hospital site (Table 1). The
holdout set was kept aside to independently test the model. To
mitigate the bias, we made sure that ECGs from the same patient
were not used in both the development and holdout sets. For each of
the 10 ICD code labels corresponding to specific medical diagnoses,
we calculated the area under the receiver operating characteristic
curve (AUROC) [29] values based on the holdout set. Subsequently,
we computed the macro AUROC score encompassing all diseases.
This process was repeated 1000 times through repeated random
sampling, involving 10% of the holdout data on each occasion. Then,
we calculated the mean of the 1000 macro AUROCs and determined
the 95% confidence intervals using the percentile method. We used
these 95% confidence intervals to discern statistical significance in
our results.

4 RESULTS
4.1 Characteristics of Multi-hospital Cohorts
Table 2 presents the distribution of age, sex, common comorbidities
and diagnostic classes in the study cohort across the hospitals, high-
lighting their differences. Hospitals 1 and 2 consistently exhibited
the highest prevalences among all participating healthcare facilities
for most classification labels. The distribution of gender and age
across all hospitals is notably varied. Hospitals 4, 5, and 7 showed a
higher median age range of 71-72 years, which is 5 to 8 years greater
compared to Hospitals 1, 2, and 4, where the median age ranged
from 64 to 66 years. Similarly, Hospitals 1 and 2 had a relatively
higher percentage of men (58-59%) compared to Hospital 4, which
maintained approximately equal gender distribution. All comor-
bidities and diagnostic classes also showed significant variations
in their prevalence rates across the hospitals. Noteworthy varia-
tions are observed in the prevalence rates of specific comorbidities,
with Peripheral Vascular Disease exhibiting a significantly higher
prevalence in Hospital 3 (9.50%) compared to other hospitals (with
a maximum of 1.48%). Conversely, the prevalence of Cancer, De-
mentia, Heart Failure (I50.0), Paroxysmal Atrial Fibrillation (I48.0),
and Myocardial Infarction was conspicuously lower in Hospital 6
compared to others.

4.2 Federated Learning
Initially, we employed a conventional approach, where the entire
development dataset (combining training and tuning ECGs from all
the hospitals) was utilized to train a single ECG classification model.
This model served as our benchmark for evaluation, as we aim to
attain comparable performance using an FL setup. Subsequently,
we implemented a DL model with a similar architecture within the
framework of FL. We then conducted a comparative analysis of
the results obtained from both models (holdout ECGs from each
of the hospitals, as well as the entire holdout set). For reference,
we will denote the first approach as the "pooled approach" method
and the second as the "FL approach" (Table 3, Figure 4). We observe
that specific sites, such as Site 7, exhibit low performance even
with the Pooled approach. A marginal reduction in performance
was observed with FL approach as opposed to the conventional
data aggregation technique. However, the performance difference
between the Pooled approach model and the FL approach model
was statistically significant only for Site 1’s test data, while the test
performance on data from all other hospitals was not statistically
different. When we examined the class-wise AUROCs, we did not
observe any discernible correlation between the prevalence of dis-
eases (i.e., positive rate of labels) and their corresponding AUROC
scores (Table 2, Appendix: Figures 7 and 8).

In the subsequent experiment, we conducted both intra-site and
inter-site testing for our ECG classification model without utiliz-
ing FL (Figure 5). This experiment was designed to explore how
individual sites varied in their performance benefits from the FL
framework, compared to local model development. Table 4 shows
performance of models trained utilizing data from individual sites.

The models trained on sites 6 and 7 demonstrated inferior per-
formance compared to all models trained on data from the first 5
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Table 3: AUROC scores of models trained in FL and Standard approach along with the respective 95% confidence intervals

Model \Site Site-1 Site-2 Site-3 Site-4 Site-5 Site-6 Site-7 Complete
Test Data

Standard Approach 80.99 [80.58,81.39] 82.95 [82.52,83.39] 82.02 [81.07,82.90] 82.33 [81.42,83.20] 81.55 [80.57,82.48] 84.23 [81.88,86.42] 79.43 [76.52,82.18] 82.07 [81.58,82.50]
FL approach 79.78 [79.37,80.20] 82.29 [81.84,82.75] 81.14 [80.17,82.09] 81.63 [80.78,82.49] 80.65 [79.63,81.58] 82.66 [80.24,84.48] 78.40 [75.69,81.05] 81.03 [80.50,81.48]

Table 4: Table with intra-site and inter-site performance (AUROC in %) comparisons along with corresponding 95% confidence
intervals

Train site / Test site Site 1 (59,142) Site 2 (54,774) Site 3 (25,323) Site 4 (21,436) Site 5 (20,420) Site 6 (5,184) Site 7 (3,261) Complete test data
Site 1 (232,517) 78.87 [78.41,79.29] 80.48 [79.97,80.98] 79.58 [78.55,80.53] 79.80 [78.90,80.73] 78.99 [77.87,80.08] 80.51 [77.87,83.03] 77.14 [73.82,80.04] 79.62 [79.12,80.09]
Site 2 (217,578) 78.70 [78.27,79.18] 81.61 [81.10,82.06] 80.41 [79.40,81.33] 80.54 [79.57,81.47] 79.76 [78.69,80.80] 82.39 [80.10,84.51] 77.18 [74.02,80.13] 80.08 [79.52,80.56]
Site 3 (98,865) 77.80 [77.36,78.22] 80.43 [79.96,80.90] 80.28 [79.36,81.17] 80.26 [79.34,81.19] 79.54 [78.50,80.49] 80.55 [77.70,83.15] 77.36 [74.20,80.05] 79.35 [78.86,79.82]
Site 4 (87,201) 76.94 [76.45,77.39] 79.71 [79.20,80.17] 78.89 [77.92,79.86] 80.04 [79.07,80.91] 78.87 [77.79,79.99] 81.42 [78.84,83.72] 77.38 [74.38,80.18] 78.57 [78.06,79.05]
Site 5 (78,329) 77.49 [77.05,77.91] 80.10 [79.62,80.60] 79.31 [78.37,80.25] 79.87 [78.87,80.83] 79.98 [78.95,80.97] 80.84 [78.20,83.20] 77.33 [74.16,80.04] 79.12 [78.61,79.62]
Site 6 (19,769) 73.04 [72.51,73.54] 75.64 [75.05,76.20] 75.01 [73.82,76.14] 75.90 [78.84,83.72] 75.19 [74.00,76.36] 78.82 [75.51,81.53] 73.14 [69.21,76.57] 74.64 [74.09,75.18]
Site 7 (13,714) 74.01 [73.52,74.50] 76.70 [76.17,77.21] 76.58 [75.46,77.60] 76.64 [75.54,77.73] 76.42 [75.30,77.55] 78.66 [75.59,81.28] 75.34 [72.43,78.44] 75.70 [73.90,77.49]

Complete Train Data 80.99 [80.58,81.39] 82.95 [82.52,83.39] 82.02 [81.07,82.90] 82.33 [81.42,83.20] 81.55 [80.57,82.48] 84.23 [81.88,86.42] 79.43 [76.52,82.18] 82.07 [81.58,82.50]

Figure 4: Comparison of Model Performance (AUROC in %)
between the Federated Learning (FL) Approach and Standard
Approach for different sites. The error bars on the graph
indicate the 95% confidence intervals.

Figure 5: Diagram explaining the intra-site and inter-site
testing framework. For intra-site testing, the classification
model is trained and tested on Hospital A’s respective train
and test sets. In contrast, for inter-site testing, the model is
trained on Hospital A’s training data and tested on Hospital
B’s testing data

sites and tested on any of the 7 test sets. This may be attributed to
the first 5 sites having significantly more number of ECG samples
compared to sites 6 and 7. However, site-1 did not achieve the best

performance across all test sets consistently, as the model trained
on site-2 data exhibits superior performance in 4 out of the 7 test
sets. Moreover, a diminishing performance trend was observed
in other sites as their respective training dataset sizes decreased.
Furthermore, we found that a model trained on a particular site
exhibits performance that matches those trained on other sites
when tested on the same site data, except for Sites 6 and 7. In other
words, intra-site testing performs better than inter-site testing. For
instance, a model trained on site-5 training data performs notice-
ably worse than other models when tested on datasets other than
the site-5 testing dataset. However, when tested on site-5 data, its
performance is marginally better than any of the other models. This
could be attributed to covariate and distributional shifts across the
sites. When comparing the performance of models trained individ-
ually for each site with those trained using the pooled approach
with the complete train dataset, we found that both the pooled and
FL approach models clearly surpassed their individually trained
counterparts. This trend underscores the significant advantages of
adopting the FL approach, as it consistently enhances the model’s
performance across most sites. Particularly, hospitals with smaller
sample sizes showed a marked improvement in their model perfor-
mance, while hospitals with larger sample sizes exhibited a more
modest impact.

4.3 Differential Privacy
During the local training phase within FL context, we implemented
DP-SGD for parameter updates at the site level. As noted in Section
1.2, the parameter 𝜖 in DP indicates the privacy guarantees provided
by the algorithm. A smaller value of 𝜖 signifies a stronger privacy
guarantee, implying that less information about a specific individual
can be inferred from the output. As privacy is quantified using 𝜖 , we
varied this parameter to observe its influence onmodel performance.
The model’s performance exhibited a similar diminishing trend for
all of the seven sites as we reduced the 𝜖 value (Figure 6). The model
performances approached AUROC levels akin to random guessing,
with values close to 0.5, for 𝜖 values below 1. Overall, we observed
that heightened privacy protection comes at the cost of reduced
model performance consistently across all sites.
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Figure 6: Plot shows model performance for different values
of epsilon (tested on data from different sites)

5 DISCUSSION
The imperative for rigorous adherence to regulatory frameworks in
healthcare, exemplified by the Health Insurance Portability and Ac-
countability Act (HIPAA) in the United States and the General Data
Protection Regulation (GDPR) in the European Union, underscores
the importance of implementing FL and DP models for diagnosis
tasks. Given the sensitive nature of health data and the potential
for significant privacy breaches, compliance with such regulations
is not merely a legal obligation but a fundamental ethical consid-
eration. Against this backdrop, FL emerges as a pivotal research
area with its inherent focus on decentralized model training and
DP. This study contributes some novel findings to this end, aiming
to enhance ECG ML models’ robustness and privacy assurances in
compliance with prevailing legal frameworks.

Our analytical framework comprises 2 distinct components: FL
and DP. In the FL framework, we benchmarked our model per-
formance against pooled models devoid of the FL technique. Our
findings indicate that FL model performance registers a negligi-
ble decrease (< 2%) across all sites compared to the pooled model
trained using data from all the hospitals. During inter-site testing,
we observed advantageous outcomes for hospitals with limited data
under the FL paradigm. This advantage may be due to the potential
inclusion of rare disease occurrences in datasets from hospitals with
more extensive ECG datasets. We also note that models trained
using the pooled approach on sites with many ECGs (e.g., Site 1
and Site 2) demonstrate good performance when tested across all
sites, including those with fewer ECGs. Furthermore, we observe
a direct correlation between the origin of training data and model
performance. Models perform well when trained and tested on the
same site, as displayed by a model trained on Site 5 and tested
on Site 5, exhibiting comparable performance to models tested on
other sites for the corresponding testing data. Moreover, our model
shows increased robustness within the FL framework, owing to its
training across disparate datasets with varying demographics and
prevalence rates. This adaptability enhances the model’s general-
ization capacity, fostering resilience to variations in data.

Recent research has suggested alternative methodologies for con-
ducting federated averaging on non-independent and identically
distributed (non-IID) data [31–33]. We used FedAvg as a baseline
model for this study to establish preliminary feasibility. We chose
our prediction labels based on ICD-10 codes associated with clin-
ically important cardiovascular and metabolic conditions, prior
demonstration of predictability using ECGs [3], and sufficient rep-
resentation across various hospital sites. However, we acknowledge
the representative nature of our label selection and highlight the
need for future experiments to explore if similar trends extend to
other diagnostic categories. The use of ECG machines from a single
manufacturer to capture all ECG data in this study presents a poten-
tial limitation, which may restrict the diversity of instrumentation
and limit the generalizability of the study’s findings. However, the
examination of ECG cohorts reveals notable variations in age, sex
and disease prevalence rates across the 7 hospitals despite their
geographical proximity and single healthcare provider (Table 2).
These observed variations in clinical and demographic distributions
among hospitals underscore the importance for adopting FL ap-
proaches for developing robust and equitable prediction models.

In the DP experiment, the DP-SGD algorithm revealed a discernible
correlation between the value of 𝜖 and the model performance. By
constraining gradients and introducing controlled noise, DP-SGD
mitigates the adversarial risk on the training process. Moreover, DP-
SGD can safeguard against privacy breaches, including membership
inference attacks, through strategic noise injection, hindering mali-
cious actors from inferring sensitive information. As 𝜖 increases,
indicating a decrease in privacy, a concurrent increase in model
performance is observed—an anticipated outcome. While the aug-
mented noise levels enhance privacy safeguards, they also diminish
the model’s ability to discern subtle patterns in the ECG data. Con-
sequently, the model’s performance deteriorates when 𝜖 values are
reduced. This observation underscores the fundamental trade-off to
be considered in applications of DP: decreasing privacy constraints
may augment prediction performance, whereas increasing privacy
can lead to compromised model performance. We observed that
the trade-off between privacy and performance becomes more pro-
nounced with diminishing 𝜖 values. Therefore, striking the right
balance between preserving privacy and maintaining a high level of
predictability remains a complex and ongoing challenge. One poten-
tial approach for determining the optimal value of 𝜖 in the context
of DP might be employing Membership Inference Attacks [22] to
evaluate the effectiveness of the privacy measures. Ponomareva et
al. [30] posits that maintaining an epsilon value below 10 provides
a substantiated privacy assurance. Additionally, the process of com-
puting noise to gradients can significantly increase the training
time and resource requirements, which can be a practical concern
in applications where real-time processing is critical. Therefore,
practitioners must carefully consider these trade-offs and make
informed decisions when implementing DP-SGD in their machine
learning workflows. Nonetheless, the benefits of DP-SGD in terms
of privacy preservation make it a compelling approach, with its lim-
itations being areas for continued refinement in privacy-preserving
machine learning.
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A APPENDIX
Table 5 contains the ICD-10 codes and their corresponding disease
names for our classification labels. Figures 7 and 8 depict label-wise
model performance across various testing sites. Figure 7 illustrates
the model performance for the Standard Approach, whereas Figure
8 showcases the model performance for the Federated Learning
Approach.

Table 5: ICD-10 codes used and their disease names

ICD-10 Code Disease Name

I21.1 ST elevation (STEMI) myocardial infarction
of inferior wall

I21.0 ST elevation (STEMI) myocardial infarction
of anterior wall

I50.0 Heart failure

I25.10 Atherosclerotic heart disease of native coronary
artery without angina pectoris

I48.9 Unspecified atrial fibrillation and atrial flutter
I21.4 Non-ST elevation (NSTEMI) myocardial infarction
I48.0 Paroxysmal atrial fibrillation
E87.5 Hyperkalemia
E11.2 Type 2 diabetes mellitus with kidney complications
I35.0 Nonrheumatic aortic (valve) stenosis
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Figure 7: Plot shows model performance (AUROC in %) for
each label as well as the Macro AUROC using the Standard
Approach

Figure 8: Plot shows model performance (AUROC in %) for
each label as well as the Macro AUROC using the Federated
Learning Approach
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