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2 HANNAH CAIRNS

1. INTRODUCTION

This note is intended to explain the proof of two facts about quadrature
domains: first, they are essentially unique if they exist; and second, they do
exist for a large class of weight functions.

The proofs roughly follow Sakai [6], especially the proof of Lemma 4.13
which is precisely the same as Sakai’s Lemma 5.1. Uniqueness depends on
well-known properties of Green’s function for the Laplacian, for which we
refer to Mörters and Peres [4] and Doob [1]. The proof of existence uses
measure theory, basic properties of harmonic functions, and the fundamen-
tal convergence theorem for subharmonic functions from Doob.

Notation. Lebesgue measure is denoted by λ . If A and B are two sets,
then A∆B := (A\B)∪(B\A). Two sets are essentially equal if λ (A∆B) = 0,
and A is essentially contained in B if λ (A\B) = 0.

If A,B ⊆ R
d , then we set d(A,B) = inf{|x− y| : x ∈ A,y ∈ B}.

1.1. Subharmonic functions. Let Ω ⊆ R
d be an open set.

Let Br(x) be the open ball {y ∈ R
d : |y− x| < r}, and Br := Br(0) be the

open ball around zero. If h : Ω →R∪{±∞} is a locally integrable function,
then let Ah(x;r) be the average of the function on the ball Br(x):

Ah(x;r) =
1

λ (Br)

∫

Br(x)
h(y)dy.

This integral is well-defined for sufficiently small r. We will say that a
locally integrable function h is subharmonic at a point x ∈ Ω if:

(a) the function is upper semicontinuous at x, so limsupy→x h(y)≤ h(x),
(b) and it is bounded above by its averages on small balls around x:

h(x)≤ Ah(x;r) for all sufficiently small r.

If h is subharmonic at every x ∈ E ⊆ Ω, then it is subharmonic on E. If −h

is subharmonic, then h is said to be superharmonic.

1.1.1. Some properties of subharmonic functions. Let Ω be an open subset
of Rd , and h be subharmonic on Ω. We recall some basic facts.

We have the mean value property: if Br(x) is any ball with closure con-
tained in Ω, then h(x) is less than or equal to its average on that ball. We
also have the maximum principle: if F ⊆ Ω is compact, then the maximum
of h on F is attained at some point on the topological boundary ∂F .

If h is twice continuously differentiable on Ω, then h is subharmonic on
Ω if and only if ∇2h≥ 0 on Ω. If h is both subharmonic and superharmonic,
then h is said to be harmonic, and every harmonic function is smooth, that
is, infinitely continuously differentiable.
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These statements still hold if we replace Ω by a smaller open set. We
will later be able to say something about the Laplacian of a function h that
is subharmonic on a general measurable set E, in Theorem 3.13.

1.2. Quadrature domains. We say a function w is a weight function if it is
bounded, nonnegative, and measurable. A quadrature domain for a weight
function w is a bounded open set Ω so that we have w ≡ 0 outside Ω, and

∫

hwdx ≤
∫

Ω
hdx

for every integrable subharmonic function h on Ω.

If h is harmonic and bounded on Ω, then +h and −h are subharmonic, so
∫

hwdx≤
∫

Ω hdx, and
∫

(−h)wdx≤
∫

Ω(−h)dx, which gives us the opposite
inequality

∫

Ω hdx ≤
∫

hwdx. Therefore,
∫

hwdx =
∫

Ω hdx in this case.
We can plug in the harmonic functions h ≡ 1 and h = xi to see that the

quadrature domain has measure exactly
∫

wdx, and its centre of mass is the
same as the centre of mass of the weight function:

∫

Ω xi dλ =
∫

xiwdλ , so
∫

Ω xi dλ

λ (Ω)
=

∫

xiwdλ
∫

wdλ
.

If h = |x|2 = x2
1 + · · ·+ x2

d , then ∇2h = 2d, so h is subharmonic, and
∫

|x|2wdλ ≤
∫

Ω
|x|2 dλ .

It follows that the moment of inertia of Ω is at least as large as the moment
of inertia of w. This is consistent with the intuitive description that we
get the quadrature domain by spreading out the mass in w in a radially
symmetric way.

Quadrature domains are not unique. For example, if we choose w =
31(1,2)+31(4,5), then Ω= (0,6) and Ω′ = (0,3)∪(3,6) are both quadrature
domains for w. However, we will see in the next section that quadrature
domains for the same weight function are essentially equal.

2. UNIQUENESS OF QUADRATURE DOMAINS

We will prove in this section that if a weight function w has two quadra-
ture domains Ω and Ω′, then Ω is essentially equal to Ω′. We need a large
supply of subharmonic functions, which come from Green’s function.

2.1. Green’s function.
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2.1.1. Motivation: What is Green’s function? Loosely speaking, if we have
a differential operator A = ∑α aα∂ α , we say that a kernel function g(x,y) is
“Green’s function” if the kernel map

Kgh(x) =

∫

h(y)g(x,y)dy

is a right inverse for A. In other words, we have AKgh = h for any nice h.
The function spaces are left deliberately vague. This is not a precise

definition; it is a broad term for a class of similar objects.
We find Green’s function for the operator −∇2, where

∇2 = ∑
i

∂i∂i =

(

∂ 2

∂x2
1

+ · · ·+ ∂ 2

∂x2
d

)

.

We will produce two flavours: an “unrestricted Green’s function,” and a
“restricted Green’s function” on any bounded open set.

2.1.2. The unrestricted Green’s function. Let Cd := 2πd/2/Γ(d/2), the area
of the unit sphere in R

d . It turns out that we want our kernel function G(x,y)
to be a function f (|x− y|) where f solves f ′(r) =−1/Cdrd−1.

We make a choice of arbitrary constant and get

G(x,y) =































1

(d−2)Cd

|x− y|2−d if d 6= 2

− 1

2π
log |x− y| if d = 2

−1

2
|x− y| if d = 1

.

If d = 3, the constant is chosen so that the function is zero at infinity.
Otherwise, we pick a constant that makes the formula simple. In every
dimension, this function is smooth on R

d ×R
d \{x = y}, and it’s symmetric

in its arguments, G(x,y) = G(y,x).
Let Gx(y) := G(x,y). If d = 1, then the function is locally bounded, and

if d ≥ 2, then it has a singularity but is integrable on any bounded set. One
can check that ∇2Gx = 0 wherever Gx is smooth, so it’s harmonic on the set
R

d \{x}. The value at x is +∞, so Gx is superharmonic everywhere.
This gives us a large selection of integrable subharmonic functions to use

in the quadrature domain inequality
∫

hwdx ≤
∫

Ω hdx: we can set h =−Gx

for any point x ∈ R
d , and we can set h = Gx if x /∈ Ω.

2.1.3. G is Green’s function for −∇2. We check that these kernels we have
defined are right inverses of −∇2 in the sense of distributions.

Let Ω be an open subset of Rd . If h : Ω →R is smooth and supported on
a compact subset of Ω, we say it is a test function.
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Lemma 2.1. If h is a test function, then
∫

G(x,y)(−∇2h(y))dy = h(x).

Sketch of proof. We are going to evaluate
∫

Gx(−∇2h)dy. First, if y 6= x,
then ∇2Gx(y) = 0, and we can write the integral as a divergence:

Gx(−∇2h) = h∇2Gx −Gx∇2h

= ∇ · (h∇Gx −Gx∇h)

Integrate this divergence over the complement of a small ball Bε(x), and
then make it an integral over the boundary using Stokes’ theorem:

∫

Rd\Bε(x)
G(x,y)(−∇2h(y))dy =

∫

|y−x|=ε

(

Gx
∂h

∂ r
−h

∂Gx

∂ r

)

ds.

The surface area of the sphere |y− x| = ε is Cdεd−1. Green’s function
is smaller, G(x,y) = O(1/εd−2) if d 6= 2 and O(log1/ε) if d = 2; in either
case, the integral of Gx over the surface of the sphere is o(1). On the other
hand, the integral of −h∂Gx/∂ r = h(y)/Cdεd−1 is going to be

1

Cdεd−1

∫

|y−x|=ε
h(y)dy

which is the average of h on the sphere |y− x|= ε . Of course, h is continu-
ous, so that average converges to h(x) as ε → 0. Therefore

∫

Rd
Gx(y)(−∇2h(y))dy = lim

ε→0

∫

Rd\Bε (x)
Gx(y)(−∇2h(y))dy(1)

= lim
ε→0

1

Cdεd−1

∫

|y−x|
h(y)dy

= h(x).

The identity in the first line is true because Gx is a locally integrable
function and h is compactly supported, so Gx∇2h is integrable on R

d . �

Corollary 2.2. If ϕ is a distribution, then −∇2(Gx ∗ϕ) = ϕ .

Proof. Let h be a test function. Then by definition,

−∇2(Gx ∗ϕ)[h] = (Gx ∗ϕ)[−∇2h] = ϕ[Gx ∗−∇2h] = ϕ(h).

�

2.1.4. Green’s function of a bounded open set. We define the restricted
Green’s function in terms of Brownian motion as on page 80, section 3.3 of
Mörters and Peres [4]. We start with a bounded open set Ω of Rd .

Let Bx(t) be Brownian motion started at x∈R
d . It is a random continuous

curve in R
d . Let Tx := min{t ≥ 0 : Bx(t) /∈ Ω} be the first time that Bx(t)
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leaves Ω. The diffusion kernel restricted to Ω is the continuous function
pΩ : (0,∞)×Ω×Ω → [0,∞) satisfying

P [Bx(t) ∈ A and t < Tx] =

∫

A
pΩ(t;x,y)dy

for any measurable set A. That is, if we start the walk at x and stop it when
it leaves Ω, then at time t, the probability density of the walk is pΩ(t;x,y).
That function does exist; see section 3.3 of Mörters and Peres [4].

Set GΩ(x,y) =
∫ ∞

0 pΩ(t;x,y)dt. We call this the restricted Green’s func-

tion of Ω. It keeps track of the average amount of time that the walk spends
in a region before it leaves the set Ω, in the sense that

E[time that the walk spends in A before leaving Ω] =

∫

A
GΩ(x,y)dy.

If d ≥ 3, Brownian motion eventually wanders off to infinity, and the time
spent in any bounded region is finite. In this case, the unrestricted Green’s
function can be defined in the same way, with Ω = R

d :

E[time that the walk spends in A] =

∫

A
G(x,y)dy.

That is the connection between the two functions. It’s also possible to define
GΩ(x,y) in terms of a maximization problem as in Section 4.1.

We will use these well-known properties of the restricted Green’s func-
tion without proof:

• GΩ(x,y)≥ 0 and GΩ(x,y) = GΩ(y,x).
• If GΩ,x is the function y 7→ GΩ(x,y), then GΩ,x is superharmonic on

the whole set Ω and harmonic on Ω\{x}.
• GΩ(x,y)> 0 when x,y are in the same connected component of Ω.
• Gx −GΩ,x is harmonic on Ω.

We also want to know that GΩ,x is integrable on Ω, which we will prove.
If d ≥ 3, then the time that the walk spends in A before Tx is at most the total
time we spend in A, so 0 ≤GΩ,x ≤Gx and

∫

Ω GΩ,x(y)dy ≤
∫

Ω Gx(y)dy <∞.
The situation is more complicated if d = 2, but Mörters and Peres, Lemma

3.37, tells us that |G(x,y)−GΩ(x,y)| ≤ (1/π) logR/r, where r := d(x,Ωc)
and R := inf{r : Br(x)⊇Ω}. This is a finite constant for fixed x, so |GΩ,x| ≤
|Gx|+C and therefore it is also integrable.

2.2. The extended Green’s function. Writers who describe GD as “the
Green’s function” should be condemned to differentiate the Lebesgue’s mea-
sure using the Radon-Nikodym’s theorem.

— Joseph Doob

There is a subharmonic extension of GΩ,x to the set Rd \{x}, and despite
the above proscription, we call it the extended Green’s function.
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Theorem 2.3. If Ω is a bounded open set with Green’s function GΩ, there

is a nonnegative extension Ge
Ω : Ω×R

d → [0,∞] so that:

• Ge
Ω(x,y) = GΩ(x,y) when y ∈ Ω.

• Ge
Ω(x,−) is subharmonic on R

d \{x} and superharmonic on Ω.

• Ge
Ω(x,−) is zero at almost every point in R

d \Ω.

• Ge
Ω(x,−) is integrable.

Reference. This is (c) of Doob’s Theorem 1.VII.4 [1]. Our set Ω is bounded
and d ≥ 2, so it is Greenian and the theorem applies.

Doob’s conclusion is that the function is zero at “quasi every finite point,”
or in other words on the complement of a polar set. This implies that it is
zero on a set of full measure, because polar sets have measure zero.

The extension is integrable because it’s equal to GΩ on Ω and zero almost
everywhere outside of it. �

The above theorem is true for every bounded open set, even if it has sharp
cusps, an infinite number of small holes, or a boundary that has positive
Lebesgue measure. This generality is very important in our setting.

2.3. Monotonicity of quadrature domains.

Theorem 2.4. If w ≤ w′ are two weight functions and C,D are quadrature

domains for w and w′, then C is essentially contained in D.

Proof. Let E be a connected component of C. We will prove that E \D

has zero measure. If it’s empty, we are done. Otherwise, choose x ∈ E \D.
Then Ge

C is subharmonic and integrable on D ⊆R\{x}, so by the definition
of quadrature domains,

∫

Ge
C(x,y)w

′(y)dy ≤
∫

D Ge
C(x,y)dy.

On the other hand, −Ge
C(x,−) is subharmonic on C, and again by the

definition of a quadrature domain, −
∫

Ge
C(x,y)wdy ≤−

∫

C Ge
C(x,y)dy.

We can chain those inequalities together to get this:
∫

C
Ge

C(x,y)dy ≤
∫

Ge
C(x,y)w(y)dy ≤

∫

Ge
C(x,y)w

′(y)dy ≤
∫

D
Ge

C(x,y)dy.

Subtract
∫

C∩D Ge
C dy from both sides to see that

∫

C\D Ge
C(x,y)dy is at most

∫

D\C Ge
C(x,y)dy, which is zero because Ge

C(x,−) is zero almost everywhere
on the complement of C.

Green’s function GC(x,−) is strictly positive on E, so E \D must have
zero measure; otherwise

∫

C\D Ge
C(x,y)dy would have been positive. An

open set in Euclidean space has only countably many components, so

C \D =
⋃

E component of C

E \D

also has zero measure, and C is essentially contained in D. �
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Corollary 2.5. Quadrature domains are essentially unique.

Proof. By the lemma, two quadrature domains for the same weight are
essentially contained in each other, so their set difference has measure zero.

3. POSITIVITY OF THE LAPLACIAN

3.1. Positive distributions. Let Ω be an open subset of Rd , and recall that
a distribution on Ω is a continuous linear functional on the space of test
functions on Ω.

(We recall from distribution theory that a linear functional ψ on the space
of test functions is continuous if and only if, for every compact F ⊂ Ω, the
restricted map ψ|C∞

c (F) : C∞
c (F)→ R is continuous in some ‖ ‖Cn(F) norm.

In particular, measures and locally integrable functions are distributions,
and the space is closed under differentiation.)

Let D′(Ω) be the vector space of distributions. Let ψ ∈ D′(Ω). Then ∂iψ
is the distribution h 7→ −ψ[∂ih], and ∇2ψ is the distribution h 7→ ψ[∇2h].

If µ is a locally finite measure or a signed measure1 we write the corre-
sponding distribution h 7→ ∫

hdµ as dµ . In the same way, if f is locally
integrable, we write the distribution h 7→

∫

h f dλ as f dλ .
(This is a little different from the usual notation, where distributions from

measures are written as µ and distributions from functions are written as f .)
A distribution ψ is positive if ψ[h]≥ 0 whenever h ≥ 0, and it is negative

if ψ[h]≤ 0 whenever h ≥ 0. We write ψ ≤ ψ ′ if ψ ′−ψ is positive.

3.1.1. The Laplacian of a subharmonic function. We will now prove that
the distributional Laplacian of a subharmonic function on Ω is a locally
finite measure.

Theorem 3.1. If f is subharmonic on Ω, then ∇2( f dλ ) is positive on Ω.

Proof. Fix h ∈C∞
c (Ω) with h ≥ 0. Let h be supported on compact K ⊂ Ω.

Let ϕ be a positive mollifier, that is, an infinitely differentiable nonnegative
function on R

d with ϕ(x) ≡ 0 for |x| ≥ 1 and
∫

ϕ dx = 1.
Let ϕn(x) := ndϕ(nx). Let n > d(F,Ωc). Then fn := f ∗ϕn is defined and

infinitely differentiable on a neighbourhood of K. It is also subharmonic:

f ∗ϕn(x) =

∫

B1/n

f (x− y)ϕn(y)dy

≤ 1

λ (Br)

∫

B1/n

∫

Br

f (x− y+ z)ϕn(y)dzdy

=
1

λ (Br)

∫

Br

f ∗ϕn(x+ z)dz.

1Our signed measures are always bounded, |ν|(Ω)< ∞.
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Therefore, ∇2( f ∗ϕn) exists and is nonnegative.
It is well-known that f ∗ϕn → f in L1(F). So,

∇2( f dλ )(h) =

∫

f ∇2hdx = lim
n→∞

∫

( f ∗ϕn)∇2hdx

= lim
n→∞

∫

∇2( f ∗ϕn)hdx

≥ 0.

That is true for every nonnegative h ∈C∞
c (Ω), so ∇2 f is positive on Ω. �

Lemma 3.2. If ψ is a positive distribution on Ω, then there is a locally finite

measure µ on Ω with ψ(h) =
∫

hdµ for every test function h ∈C∞
c (Ω).

Proof. See Rudin [5], chapter 6 exercise 4. We sketch the proof.
Let ψ be a positive distribution. If K ⊂⊂ Ω is a compact subset, then

there is a nonnegative h1 ∈C∞
c (Ω) that is identically 1 on K. Positivity says

0 ≤ ψ(h) ≤ ψ(h1) if h ∈ C∞
c (K) and 0 ≤ h ≤ 1. Therefore, the restricted

distribution ψ|K : C∞
c (K)→R is continuous with respect to ‖h‖∞.

By the Riesz representation theorem and the positivity, there is a finite
measure µK with ψ(h) =

∫

hdµK for every test function h supported on
the compact set. These restricted measures are compatible, and we can
combine them to get a locally finite measure µ on Ω with ψ(h) =

∫

hdµ
for h ∈C∞

c (Ω).

Corollary 3.3. If f is subharmonic on Ω, then there exists a locally finite

measure µ on Ω with ∇2( f dλ ) = dµ .

Proof. The distributional Laplacian ∇2( f dλ ) is positive by Theorem 3.1,
so there is a locally finite measure µ with ∇2( f dλ ) = dµ by Lemma 3.2.

�

3.1.2. What is coming next. Corollary 3.3 tells us a lot about functions
which are subharmonic on open sets. What if a function f is subharmonic
on a general measurable set?

It turns out that if we already know that the distributional Laplacian
∇2( f dλ ) is a signed measure dν , then we can get very precise informa-
tion: if f is subharmonic on a measurable set E, then ν is positive on E.

That is a special case of Theorem 3.13. In the next few sections we
will study the relationship between the spherical average function and the
distributional Laplacian, and then finally prove that theorem.

3.2. The existence of the spherical average function. Suppose f is lo-
cally integrable, x is a point in Ω, and 0 < r < d(x,Ωc). Let the average on
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the sphere of radius r around x be

L f (x;r) :=
1

Cd

∫

|z|=1
f (x+ rz)dz.

Again, Cd is the total surface area of the unit sphere.
If the reader is doubtful about the notation

∫

|z|=1 dz, we will see a con-
crete interpretation in the next section, Section 3.3.

Lemma 3.4. Let Ω be an open set, and fix a point x ∈ Ω.

If f is locally integrable on Ω, then L f (x;r) is defined for almost every

r < d(x,Ωc), and
∫ s

0 rd−1|L f (x;r)|dr < ∞ for s < d(x,Ωc).

Proof. Let 0 < s < R. Bs(x) is compact, so
∫

Bs(x)
| f |dx < ∞.

Write this as a double integral in polar coordinates y= x+rz, where r > 0
and z is a point on the unit sphere:

∫

Bs(x)

∣

∣ f (y)
∣

∣dy =

∫ s

0

[

∫

|z|=1

∣

∣ f (x+ rz)
∣

∣rd−1 dz

]

dr.

The left-hand integral is finite, so Tonelli’s theorem tells us that the inte-
gral in brackets is finite for a.e. r ∈ (0,s), and therefore a.e. r ∈ (0,R).

Therefore, L f (x;r) := 1
Cd

∫

|z|=1 f (x+ rz)dz is well-defined a.e., and
∫ s

0
|L f (x;r)|rd−1 dr =

1

Cd

∫ s

0

∣

∣

∣

∣

∫

|z|=1
f (x+ rz)

∣

∣

∣

∣

rd−1 dzdr

≤ 1

Cd

∫ s

0

∫

|z|=1
| f (x+ rz)|rd−1 dzdr

< ∞.

Corollary 3.5. The function r 7→ L f (x;r) is locally integrable on (0,d(x,Ωc)).

Proof. If 0 < t < s < d(x,Ωc), then (r/t)d−1 ≥ 1 when r ∈ [t,s], so
∫ s

t
|L f (x;r)|dr ≤ 1

td−1

∫ s

t
|L f (x;r)|rd−1 dr < ∞.

Therefore, r 7→ L f (x;r) is integrable on compact subsets of (0,d(x,Ωc)).
�

Corollary 3.6. The average of a locally integrable function f on Bs(x) is

A f (x;s) =

∫ s

0

drd−1

sd
L f (x;r)dr.
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Proof. We use the change of variables y = x+ rz again to write
∫

Bs(x)
f (y)dy =

∫ s

0

∫

|z|=1
f (x+ rz)rd−1 dr dz

=
∫ s

0
CdL f (x;r)rd−1 dr.

Dividing this by the integral
∫

Bs(x)
1dy =Cdsd/d gives the result. �

At this point we know that L f (x;r) makes sense and is integrable. The
next step is to show that spherical averages are related to the distributional
Laplacian by an integral equality. We do that in the next section.

3.3. A digression: multidimensional polar coordinates. In case one finds
the “polar coordinates” y = x+ rz above to be a little suspicious, we will
provide a concrete interpretation.

We define multidimensional polar coordinates r,ϕ1, . . . ,ϕd−2,θ , where

y1 = x1 + r sinϕ1,

y2 = x2 + r cosϕ1 sinϕ2,

y3 = x3 + r cosϕ1 cosϕ2 sinϕ3,

...

yd−2 = xd−2 + r cosϕ1 · · ·cosϕd−3 sinϕd−2,

yd−1 = xd−1 + r cosϕ1 · · ·cosϕd−3 cosϕd−2 sinθ ,

yd = xd + r cosϕ1 · · ·cosϕd−3 cosϕd−2 cosθ

The bounds are r > 0, −π
2 ≤ ϕ1, . . . ,ϕd−2 ≤ π

2 , 0 ≤ θ < 2π . They are the
usual polar coordinates when d = 2,3. For example, in d = 3,

y1 = x1 + r cosϕ1 cosθ ,

y2 = x2 + r cosϕ1 sinθ ,

y3 = x3 + r sinϕ1.

We want to find the determinant of the Jacobian matrix J. One way to
do this is to calculate the metric g = JJT , which is diagonal with grr =
∂y
∂ r

· ∂y
∂ r

= 1, gϕ jϕ j
= ∂y

∂ϕ j
· ∂y

∂ϕ j
= r2 cos2 ϕ1 · · ·cos2 ϕ j−1, and gθθ = ∂y

∂θ · ∂y
∂θ =

r2 cos2 ϕ · · ·cos2 ϕd−2. We have detg = (detJ)2, so we take the square root:

|detJ|=
√

detg =
√

∏gii = r× (r cosϕ1)×·· ·× (r cosϕ1 · · ·cosϕd−2),

or |detJ|= rd−1 cosd−2 ϕ1 · · ·cosϕd−2.
We don’t need to know the sign, but if we want it, we can get it by looking

at the point ϕ1 = · · ·=ϕd−2 = 0, θ = 0, r = 1, where J is the identity matrix.
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The sign of the determinant is positive there, and {detJ 6= 0} is connected
and dense, so the sign is nonnegative everywhere.

The change-of-variables formula tells us that
∫

Rd
f (y)dy =

∫ ∞

0

∫ π/2

−π/2
· · ·

∫ π/2

−π/2

∫ 2π

0
f (x+ rz)rd−1

cosd−2 ϕ1 · · ·cosϕd−2 dϕ1 · · · dϕd−2 dθ dr.

Now we ask the reader to interpret
∫

|z|=1 as shorthand for integration over
all the coordinates except r, and dz as an abbreviation for the expression
cosd−2 ϕ1 · · ·cosϕd−2 dϕ1 · · · dϕd−2 dθ .

Then we do have the identity
∫

f (y)dy =
∫ ∞

0

∫

|z|=1 f (x+ rz)rd−1 dzdr,
and the derivation in the last section makes sense.

3.3.1. Exercise: the value of Cd . This gives us another expression for Cd:

Cd =
∫

|z|=1
dz =

∫ π/2

−π/2
· · ·

∫ π/2

−π/2

∫ 2π

0
cosd−2 ϕ1 · · ·cosϕd−2 dϕ1 · · ·dϕd−2 dθ

= 2π
d−2

∏
j=1

∫ π/2

−π/2
cos j ϕ dϕ.

Use the beta integral
∫ 1

0 xα−1(1− x)β−1 dx = Γ(α)Γ(β )/Γ(α +β ) and the
special value Γ(1/2) =

√
π to show that this is equal to 2πd/2/Γ(d/2).

Hint: evaluate
∫ π/2
−π/2 cos j ϕ dϕ = Γ(1

2)Γ( j/2+ 1
2)/Γ( j/2+1).

3.4. Spherical averages and the distributional Laplacian. We can get
many weighted integrals of the spherical averages L f (x;r) by evaluating
the Laplacian ∇2( f dλ ) on certain nonnegative functions.

Lemma 3.7. Let x ∈ Ω. Let R := d(x,Ωc). Let η ∈ C∞
c (0,R) with η ≥ 0.

Then there is a nonnegative function h ∈C∞
c (Ω) with

∇2( f dλ )(h) =−
∫ R

0
η ′(r)L f (x;r)dr

for every locally integrable function f on Ω.

Proof. Let h(y) := H(|y− x|) for y ∈ BR(x), where

H(r) :=
∫ R

r

η(ρ)

Cdρd−1
dρ .

The compactly supported function η is zero on a neighbourhood of 0 and
R, so H(r) is smooth, constant near 0, and zero on a neighbourhood of R.
Therefore, h is smooth even at x, and compactly supported in BR(x).
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If a smooth function h is radially symmetric around a point x, then there
is a formula for its Laplacian which holds in any R

d:

∇2h =
1

rd−1

∂

∂ r

[

rd−1 ∂

∂ r
h

]

where we are using the polar coordinates y = x+ rz.2

The radial derivative of h is of course ∂h
∂ r

= H ′(r) = −η(r)/Cdrd−1,

which means the Laplacian is ∇2h =−η ′(r)/Cdrd−1. Then

∇2( f dλ )(h) =
∫

BR(x)
f ∇2hdy

=−
∫

BR(x)
f (y)

η ′(r)
Cdrd−1

dy

=−
∫ R

0

∫

|z|=1
f (x+ rz)

η ′(r)
Cdrd−1

rd−1 dzdr

=−
∫ R

0

η ′(r)
Cd

∫

|z|=1
f (x+ rz)dzdr

=−
∫ R

0
η ′(r)L f (x;r)dr.

This is the result. �

We will use this basic result to evaluate the differences A f (x;s)−A f (x; t)
in terms of the distributional Laplacian. We will get an especially precise
result when ∇2( f dλ ) = dν for some signed measure ν .

3.5. Difference of averages: choosing functions for approximation. Re-
call that A f (x;r) is the average of f on the ball Bx(r).

Let x ∈ Ω, 0 < r < s < d(x,Ωc). We construct some nonnegative func-
tions ηm that are suitable for Lemma 3.7, and then use it to prove that

(2) A f (x;s)−A f (x; t) = lim
m→∞

∇2( f dλ )(hm)

where hm(y) :=
∫ ∞
|y−x|ηm(r)/Cdrd−1 dr as in the lemma.

Write the formula in Corollary 3.6 as A f (x;s) =
∫ ∞

0 1r<s
drd−1

sd L f (x;r)dr.
Then we can write the difference A f (x; t)−A f (x;s) as

A f (x; t)−A f (x;s) =
∫ ∞

0

[

1r<t
drd−1

td
−1r<s

drd−1

sd

]

L f (x;r)dr.

2We can get this from the Voss-Weyl formula ∇2h= 1√
detg ∑i j

∂
∂ξi

(
√

detggi j ∂
∂ξ j

h). Here

gi j = (g−1)i j. Using the coordinates from Section 3.3, we get the result.
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We want to connect this to Lemma 3.7. Let w be the function

(3) w(r) :=

{

drd−1 if r < 1, and

0 if r ≥ 1.

Let W (r) :=min{1,rd} be the integral of w from 0 to r. Then the expression
in brackets is the derivative of W (r/t)−W(r/s), where it is differentiable.
Unfortunately, W isn’t smooth, so we can’t plug it into Lemma 3.7 directly
and we have to approximate.

Let wm be a sequence of compactly supported, nonnegative smooth func-
tions wm ∈C∞

c (0,∞) which increase to w. Let Wm(r) :=
∫ r

0 wm(ρ)dρ .

Lemma 3.8. Given 0 < t < s, the sequence of functions

ηm,s,t(r) :=Wm(r/t)−Wm(r/s)

converges uniformly to W (r/t)−W(r/s), and each function satisfies

0 ≤ ηm,s,t(r)≤
{

min{1,rd/td} if r < s

0 otherwise

and

|η ′
m,s,t(r)| ≤

{

drd−1/td if r < s

0 otherwise.

Proof. Here ηm,s,t(r) ≥ 0 because Wm is increasing and r/t > r/s, and
ηm,s,t(r)≤Wm(r/t)≤W (r/t) = min{1,(r/t)d}. The rest is easy. �

Lemma 3.9. Suppose x ∈ Ω and 0 < t < s with Bs(x) ⊆ Ω. If we choose

functions ηm,s,t as above, then we will have

(2) A f (x;s)−A f (x; t) = lim
m→∞

∇2( f dλ )(hm,s,t,x)

for hm,s,t,x(y) :=
∫ ∞
|y−x| ηm,s,t(r)/Cdrd−1 dr as in Lemma 3.7.

Proof. We start from Corollary 3.6, and remember that the functions wm(r)
are functions that increase to drd−1 for r < 1.

A f (x;s) =

∫ s

0

drd−1

sd
L f (x;r)dr

=

∫ ∞

0
lim

m→∞

wm(r/s)

s
L f (x;r)dr.

That is bounded by 1r<s(d/s)|L f (x;r)|, which is integrable by Lemma 3.4.
So we can use dominated convergence to get:

A f (x;s) = lim
m→∞

∫ ∞

0

wm(r/s)

s
L f (x;r)dr.
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Replace s by t and subtract:

A f (x;s)−A f (x; t) = lim
m→∞

∫ ∞

0

[

wm(r/s)

s
− wm(r/t)

t

]

L f (x;r)dr

= lim
m→∞

∫ ∞

0
(−η ′

m,s,t(r))L f (x;r)dr

= lim
m→∞

∇2( f dλ )(hm,s,t).

The last equality comes from Lemma 3.7. This is the desired identity. �

If ∇2( f dλ ) is a signed measure dν , we can use this lemma to write
the difference A f (x; t)−A f (x;s) as an integral with respect to the signed
measure.

3.6. Difference of averages: a formula for signed measures.

Theorem 3.10. Suppose f is locally integrable on Ω and ∇2( f dλ ) = dν
where ν is a signed measure. Let x ∈ Ω and 0 < t < s < R = d(x,Ωc).

Let

hs,t,x(y) :=
∫ ∞

|y−x|

W (r/t)−W(r/s)

Cdrd−1
dr.

Then
∫

hs,t,x dν = A f (x;s)−A f (x; t).

Proof. Let hm,s,t,x be the functions provided by Lemma 3.9 with

A f (x;s)−A f (x; t) = lim
m→∞

∇2( f dλ )(hm,s,t,x).

If we can prove that limm

∫

hm,s,t,x dν =
∫

hs,t,x dν , we will be done. We
can write the difference as

hs,t,x(y)−hm,s,t,x(y) =

∫ ∞

|y−x|

W (r/t)−W(r/s)−ηm,s,t(r)

Cdrd−1
dr.

This difference is uniformly bounded in absolute value by
∫ ∞

0

|W (r/t)−W(r/s)−ηm,s,t(r)|
Cdrd−1

dr.

Lemma 3.8 says that the integrand is uniformly bounded by 1r<srCd/td,
and that it goes to zero pointwise. By the dominated convergence theorem,
max |hs,t,x−hm,s,t,x| → 0, so we do have limm

∫

hm,s,t,x dν =
∫

hs,t,x dν . �

This lemma will allow us to get an estimate on the difference of averages
from weak estimates on the Laplacian. To get it, we need to know

∫

hdx.

Lemma 3.11. Let x ∈ Ω and 0 < t < s. With hs,t,x defined as in Theo-

rem 3.10,
∫

hs,t,x(y)dy =
1

2(d+2)
(s2− t2).
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Proof. We know what the function is, so the proof is a calculation. First,
∫

Rd
hs,t,x(y)dy =

∫

Rd

[

∫ s

|x−y|

W (ρ/t)−W(ρ/s)

Cdρd−1
dρ

]

dy

=

∫ ∞

0

[

∫ s

r

W (ρ/t)−W(ρ/s)

Cdρd−1
dρ

]

Cdrd−1 dr

=
∫ s

0

W (ρ/t)−W(ρ/s)

ρd−1

[

∫ ρ

0
rd−1 dr

]

dρ

=

∫ s

0
(W (ρ/t)−W(ρ/s))

ρ

d
dρ .

We have W (r) = min{1,rd}, so

∫ s

0
(W (ρ/t)−W(ρ/s))

ρ

d
dρ =

[

∫ t

0

ρd+1

dtd
dρ +

∫ s

t

ρ

d
dρ

]

−
∫ s

0

ρd+1

dsd
dρ

=
t2

d(d +2)
+

s2 − t2

2d
− s2

d(d +2)

=
1

2(d+2)
(s2 − t2).

�

We will use this in Lemma 3.15 and Theorem 3.16 to get quadratic
bounds on A f (x;s)−A f (x; t) in the case where ∇2( f dλ ) = ρ dλ with 0 ≤
ρ ≤ 1.

3.7. Limits of radial averages. A function is a limit of radial averages at

x if it is integrable in a neighbourhood of x and the limit limr→0 A f (x;r)
exists and is equal to f (x). This is strictly weaker than continuity at a point.

A subharmonic function is always a limit of radial averages, because

h(x)≤ inf
0<r<s

Ah(x;r)≤ limsup
y→x

h(y)≤ h(x).

3.7.1. Subharmonicity on average. We say that a function f is subhar-

monic on average at x if it is a limit of radial averages at x and satisfies
condition (b) in the definition of subharmonicity. That is, there exists some
small ε > 0 so that

lim
r→0

A f (x;r) = f (x) = inf
0<r<ε

A f (x;r).

This is strictly weaker than subharmonicity. For example, the sign func-
tion is subharmonic on average everywhere, but its average on the interval
B2(1) = (−1,3) is A f (1;2) = 1

2 , which is strictly less than sign1 = 1.
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From our point of view, the problem is that the distributional Laplacian
of the sign function is too irregular: it is not a signed measure.3

3.7.2. ...implies positivity of the Laplacian. We will show that, if the Lapla-
cian is a signed measure dν , then ν is positive on any measurable set where
f is subharmonic on average.

We need a consequence of the Lebesgue-Besicovitch theorem.

Lemma 3.12. If E ⊆Ω is measurable and ν is a signed measure with ν(E)<
0, then there is a point x ∈ E with

limsup
t→0

ν(Bt(x))

λ (Bt(x))
< 0.

Proof. Let µ = |ν|+λ , and f = dν/dµ . Then
∫

f dµ = ν(E) < 0, so the
set of points where f is negative must have positive measure.

By the Lebesgue-Besicovitch differentiation theorem,

lim
t→0

ν(Bt(x))

µ(Bt(x))
= f (x)

except on a set N with µ(N) = 0. The set of points with f (x) < 0 has
positive measure, so there must be some point x with f (x) < 0 and x /∈ N.

By definition of the limit, ν(Bt(x)) is negative for small t, and 0 ≤ λ ≤ µ ,
so 1/λ (Bt(x))≥ 1/µ(Bt(x)) and ν(Bt(x))/λ (Bt(x))≤ ν(Bt(x))/µ(Bt(x)).

We therefore have the strict inequality

limsup
t→0

ν(Bt(x))

λ (Bt(x))
≤ limsup

t→0

ν(Bt(x))

µ(Bt(x))
= f (x)< 0.

That proves the result. �

Theorem 3.13. Suppose f is locally integrable on Ω, and ∇2( f dλ ) = dν
where ν is a signed measure.

If f is subharmonic on average on a measurable set E, then E is a posi-

tive set for ν , i.e. ν(E ′)≥ 0 for E ′ ⊆ E.

Proof. Suppose E is not positive. Let E ′ be a measurable subset of E with
negative ν-measure. By Lemma 3.12, ∃x ∈ E ′ with

limsup
t→0

ν(Bt(x))

λ (Bt(x))
=−c < 0.

Let s > 0 be small enough that ν(Bt(x))/λ (Bt(x)) <−c/2 for t < s and
the subharmonic inequality holds for Bs(x).

3If h is a test function, then ∇2(sign)(h) =
∫ ∞
−∞ signxh′′ dx =−2h′(0). Suppose there

were a signed measure ν with
∫

hdν = −2h′(0). Then there would be a constant C =
|ν|(Ω)/2 with |h′(0)| ≤C max |h| for every test function h, but this is absurd.
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Theorem 3.10 and Corollary 3.11 tell us that, for each x∈Ω and 0< t < s,
there is a nonnegative radially symmetric continuous function hs,t,x with

∫

hs,t,x(y)dν(y) = A f (x;s)−A f (x; t).

The reader can check from the definition that hs,t,x(y) is supported on Bs,
radially symmetric, and decreases as y gets farther from x. So if α > 0, then
{hs,t,x > α} is a ball around x of radius less than s, and

∫

hs,t,x dν =
∫ ∞

0
ν({hs,t,x > α})dα

≤−c

2

∫ ∞

0
λ ({hs,t,x > α})dα

=−c

2

∫

hs,t,x dλ =− c

4(d+2)
(s2 − t2).

The last step is Lemma 3.11.
Fix s, take t → 0, and use the fact that A f (x; t)→ f (x) as t → 0, because f

is a limit of radial averages at x. We get the impossible inequality:

0 ≤ A f (x;s)− f (x) = limsup
t→0

∫

hs,t,x dν ≤− c

4(d +2)
s2 < 0.

So, there is no measurable subset E ′ with ν(E ′)< 0. �

3.8. On an open set, positivity implies subharmonicity. Now we will go
from the Laplacian to full subharmonicity.

Lemma 3.14. Let f be locally integrable on an open set Ω. Suppose

∇2( f dλ ) is positive on Ω. Then there is a subharmonic f̄ on Ω with f̄ = f

a.e.on Ω.

Proof. Let x ∈ Ω and t < s < d(x,Ωc).
Theorem 3.10 tells us that A f (x;s)−A f (x; t) = ∇2( f dx)(hs,t) ≥ 0 for a

certain function hs,t , so A f (x; t) decreases to a limit (possibly −∞) as t → 0.
Let f̄ (x) be that limit:

f̄ (x) := lim
t→0

A f (x; t) = inf
t>0

A f (x; t).

The Lebesgue differentiation theorem tells us that A f (x; t) → f (x) for al-
most every x, so f = f̄ for almost every x ∈ Ω.

We claim f̄ is subharmonic on Ω. It is less than or equal to its aver-
ages on balls because f̄ (x) ≤ A f (x; t) = A f̄ (x; t), so (b) in the definition of

subharmonicity is satisfied. We must prove that f̄ is upper semicontinuous.
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Let xn be a sequence of points in Ω that converge to x. Let 0 < r <
d(x,Ωc). We can break down f̄ (xn) in the following way:

f̄ (xn) =
[

f̄ (xn)−A f (xn;r)
]

+
[

A f (xn;r)−A f (x;r)
]

+A f (x;r).

The first summand is nonpositive by definition. The second one converges
to 0 as n→∞, because A f (x;r) is continuous in x. This is a general property
of convolutions, but it can be proven directly in this case by writing

A f (r;xn)−A f (r;x) =
1

λ (Br)

∫

(1Br(xn)−1Br(x)) f (y)dy.

The integrand is dominated by | f | and converges pointwise to zero. Take
the lim sup of both sides of the equality as n → ∞:

limsup f̄ (xn) = (nonpositive)+A f (x;r)

and then take r → 0 to get limsup f̄ (xn) ≤ f̄ (x). So f̄ is upper semicontin-
uous, and therefore subharmonic. �

Note. Theorems 3.13 and 3.14 together tell us that if f is subharmonic on
average, and its Laplacian is a signed measure, then it is subharmonic.

3.9. The measure of the Laplacian on the zero set. In what follows, we
suppose f is a limit of radial averages, f ≥ 0, and the distributional Lapla-
cian ∇2( f dλ ) is ρ dλ with |ρ | ≤C.

We will show that ρ = 0 a.e. on the zero set {x : f (x) = 0}, which we will
need later for the crucial Corollary 4.7. First, we show that f (y) converges
uniformly to zero as y approaches the zero set.

Lemma 3.15. Suppose f ≥ 0 is a limit of radial averages and ∇2( f dλ ) =
ρ dλ with |ρ | ≤C. If f (x)= 0, then f (y)≤ 2dC|y−x|2 if |y−x|< 1

2d(x,Ωc).

By Theorem 3.10, if x is a point in Ω and 0 < t < s < d(x,Ωc), then

A f (x;s)−A f (x; t) =
∫

hs,t,x ρ dλ

where h ≥ 0 and
∫

hdλ = (s2 − t2)/2(d+2). Therefore,

|A f (x;s)− f (x)|= lim
t→0

|A f (x;s)−A f (x; t)| ≤ Cs2

2(d +2)
.

Fix x,y ∈ Ω with |y− x|< 1
2d(x,Ωc). Suppose f (x) = 0. Write

f (y) = f (y)− f (x)

= [ f (y)−A f (y;s)]+ [A f (y;s)−2dA f (x;2s)]+2d[A f (x;2s)− f (x)].



20 HANNAH CAIRNS

The first summand is bounded in absolute value by Cs2/2(d+2), the second
one is nonpositive because Bs(y) ⊆ B2s(y) and λ (B2s) = 2dλ (Bs), and the
third one is bounded by 2d+2Cs2/2(d+2). So,

f (y)≤Cs2 1+2d+2

2(d +2)
≤ 2dCs2.

This is the result. �

Theorem 3.16. Suppose f ≥ 0 is a limit of radial averages and ∇2( f dλ ) =
ρ dλ with |ρ | ≤C. Then ρ = 0 a.e. on the zero set {x ∈ Ω : f (x) = 0}.

Proof. Let Z := {x ∈ Ω : f (x) = 0}. By the Lebesgue density theorem,
there is a set of zero λ -measure N so that for every point x ∈ Z \N, both of
the following equalities hold:

lim
r→0

λ (Br(x)∩Zc)

λ (Br)
= 0 and(4)

lim
r→0

1

λ (Br)

∫

Br(x)
ρ dλ = ρ(x).(5)

By the last theorem, f (y)≤ 2dC|y− x|2 for y sufficiently close to x, so

A f (x;s)≤ λ (Bs(x)∩Zc)

λ (Bs(x))
×O(s2) = o(s2).

This estimate holds for every x ∈ Z \N.

For every x ∈ Z and s < d(x,Ωc), we have the inequality f (x) = 0 ≤
A f (x;s), so f is subharmonic on average on Z. The Laplacian is the signed
measure ρ dλ , and by Theorem 3.13, that signed measure must be positive
on Z, which means that we must have ρ ≥ 0 almost everywhere on Z.

So it is enough to prove ρ ≤ 0 a.e. on the zero set. Suppose not. Then
there must be at least one point x ∈ Z \N with ρ(x)> 0. The point is not in
N, so the limit in equation 5 exists. For s > 0 sufficiently small, we have

inf
t∈(0,s)

1

λ (Bt)

∫

Bt(x)
ρ dλ >

ρ(x)

2
for t ∈ (0,s).

Construct hs,t,x as in Theorem 3.10, and repeat the reasoning in the proof of
Lemma 3.13 to get the inequality

∫

hs,t,x ρ dλ ≥ ρ(x)

2

∫

hs,t,x dλ .

Then by Theorem 3.10 and the Lemma 3.11,

A f (x;s)−A f (x; t) =
∫

hs,t ρ dλ ≥ ρ(x)

2

∫

hs,t dλ =
ρ(x)

4(d+2)
(s2− t2).
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Take the limit of both sides as t → 0 and use the fact that limt→0 A f (x; t) =
f (x) = 0 to get the inequality

A f (x;s)≥ ρ(x)

4(d+2)
s2.

This contradicts the estimate A f (x;s) = o(s2) for x ∈ Z.
Therefore, ρ = 0 a.e. on the zero set Z. �

4. THE EXISTENCE OF QUADRATURE DOMAINS

4.1. A maximization problem. A weight function is properly supported

if it is greater than or equal to 1 on some bounded open set, and 0 outside
that open set. For example, a sum of indicator functions of bounded open
sets is properly supported, but the function 1

21B1 is not properly supported.
From now on, suppose w is a properly supported weight function. We

will prove the existence of a quadrature domain for w. We start by posing
a maximization problem, then extract a set from the solution, and finally
prove that the set is a quadrature domain in Theorem 4.14.

Definition. If ψ and ψ ′ are distributions, then we say that ψ ≤ ψ ′ if ψ ′−ψ
is a positive distribution.

We will put a weak continuity condition on the functions in our problem.
Let RA(Rd) be the set of functions f : Rd → R which are a limit of radial
averages at every point in R

d . See Section 3.7 for the definition of a “limit of
radial averages.” These functions are all locally integrable by definition, so
∇2( f dλ ) exists as a distribution. It’s a big class of functions: for example,
any integrable superharmonic or subharmonic function is in RA(Rd).

The maximization problem is:

Maximization problem.

Find the largest nonpositive f ∈ RA(Rd) with ∇2( f dλ )≥ (w−1)dλ in the
sense of distributions.

It will turn out that there is a function that is pointwise greater than or
equal to any other function, so there will really be a largest function.

If we allow the whole class of nonpositive locally integrable functions,
we could set any function to zero on a set of measure zero without affecting
its distributional Laplacian. That means that no function can be pointwise
largest except for 0, which is typically not a solution.
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4.2. Newtonian potentials. If w is a bounded, compactly supported weight
function, let the Newtonian potential of w be the convolution of w with the
unrestricted Green’s function:

Nw(x) :=
∫

Rn
G(x,y)w(y)dy.

Recall that G(x,y) is a function of x−y only, so this is really a convolution.
The convolution of a bounded, compactly supported function with a lo-

cally integrable function is continuous. Green’s function is locally inte-
grable, so Nw is continuous on all of Rd . It has the first derivative

∂

∂xi
Nw(x) =

∫

Rn

∂G(x,y)

∂xi
w(y)dy =− 1

Cd

∫

Rn

xi − yi

|x− y|d w(y)dy

which is continuous on R
d for the same reason. To see that this is really the

derivative, one can integrate, use Fubini’s theorem, and check that the result
is Nw plus a function independent of xi.

We have already observed in Corollary 2.2 that −∇2(Nϕ) = ϕ in the
sense of distributions, so−∇2(Nwdλ )=wdλ . If w is bounded and constant

outside a compact set, we can still define Nw: let c be the constant, and set
Nw := N(w−c)+ c

2d
|x|2. Again −∇2(Nwdλ ) = (w−c)dλ +cdλ = wdλ .

Note that a continuous function is necessarily a limit of radial averages,
so if f is a limit of radial averages, then so is f +Nw.

4.3. Maximization over subharmonic functions.

Theorem 4.1. The maximization problem is equivalent to:

Find the largest nonpositive function f on R
d with the property that

the sum f +N(w−1) is subharmonic everywhere in R
d .

Proof. We will show that f is a limit of radial averages with ∇2( f dλ ) ≥
(w−1)dλ if and only if f +N(w−1) is subharmonic, so the set of admis-
sible functions is the same for both problems.

Suppose f is a limit of radial averages and ∇2( f dλ )≥ (w−1)dλ . Then

∇2[( f +N(w−1))dλ ] = ∇2( f dλ )− (w−1)dλ ≥ 0.

By Lemma 3.14, there is a subharmonic f̄ which is equal almost everywhere
to f +N(w− 1), but in fact this equality holds everywhere, because both
sides are a limit of radial averages. Therefore, f +N(w−1) is subharmonic,
and f is an admissible function for the second problem.

On the other hand, suppose f +N(w − 1) is subharmonic. By Theo-
rem 3.1, ∇2[( f +N(w−1))dλ ] =∇2( f dλ )−(w−1)dλ ≥ 0, so ∇2( f dλ )≥
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(w−1)dλ . Finally, f is the difference of a subharmonic function and a con-
tinuous function, f = ( f +N(w− 1))−N(w− 1), so it is a limit of radial
averages, and it is admissible for the first problem.

The admissible functions for both problems are the same, so they are
equivalent. �

We can now use the fundamental convergence theorem for subharmonic
functions to find a minimum.

Theorem 4.2 (Fundamental convergence theorem).
Let Γ be a family of subharmonic functions defined on an open subset of

R
d and locally uniformly bounded above. Let u(x) be the pointwise supre-

mum of all the functions in Γ. Let u+(x) = max{u(x), limsupy→x u(y)}.

Then u+ = u almost everywhere, and u+ is subharmonic.

Proof. See for example Section 1.III.3 of Doob [1] although this is stated
in terms of superharmonic functions.

Corollary 4.3. Let π be a measurable, bounded function on R
d that is con-

stant outside a compact set. Then there is a largest f ≤ 0 with the property

that f +Nπ is subharmonic.

Proof. Let Γ = {u : u is subharmonic, u ≤ Nπ}. The functions in this class
are uniformly bounded above on any compact set K by maxK Nπ .

Apply the fundamental convergence theorem to Γ to get a subharmonic
function u+ greater than or equal to every function in Γ. Then u+ ∈ Γ:

u+(x) = max{u(x), limsup
y→x

u(y)}

≥ max{Nπ(x), limsup
y→x

Nπ(y)}

≥ Nπ(x)

by continuity of Nπ(x), so it satisfies the inequality and is subharmonic.
Set f := u+−Nπ . Then f ≤ 0 and f +Nπ is subharmonic. If g is any

other function with g ≤ 0 and g+Nπ subharmonic, then the sum g+Nπ is
in the class Γ, so u+ ≥ g+Nπ and f ≥ g. �

Corollary 4.4. There is a largest function f ≤ 0 that is a limit of radial

averages and satisfies ∇2( f dλ )≥ (w−1)dλ .

Proof. Combine Corollary 4.3 with Theorem 4.1. �

In the next section, we will characterize the Laplacian of the minimal
function, and discover that there is a quadrature domain hiding inside it.
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4.4. Finding the Laplacian. In the rest of this section, we fix a properly
supported weight function w, and we define an associated open set A and a
locally finite measure µ .

Let f ≥ 0 be the solution of the maximization problem in Section 4.1.
Let u := f +N(w−1), which is a subharmonic function.

Observe that f = u−N(w−1) is the difference of a subharmonic function
and a continuous function, so it’s upper semicontinuous. This means that
the sets { f < c} are open for c ∈ R.

Definition. Let A be the open set {x : f (x)< 0}.

We will prove later that A∪ {w ≥ 1} is the quadrature domain we are
looking for. See Corollary 4.10 and Theorem 4.14.

A subharmonic function has a positive distributional Laplacian, which is
a locally finite measure by Corollary 3.2. We give this measure a name.

Definition. Let µ be the locally finite measure with ∇2(udλ ) = dµ .

We now study the geometry of µ and A. We first want to prove the basic
fact that µ is supported on Ac.

Lemma 4.5. µ(A) = 0.

Proof. Let x ∈ A, so that we have f (x)< 0 and u(x)< N[w−1](x). Choose
a small radius r > 0 with Br(x)⊆ Ω and

max
y∈Br(x)

u(y)< min
y∈Br(x)

N[w−1](y).

This is possible because u is upper semicontinuous.
We can use the Poisson kernel to construct a function u′ that is equal to u

outside Br(x), and is harmonic on Br(x). The resulting function will still be
subharmonic, and u′ ≥ u. See e.g. I.II.6 of Doob [1].

Then u′≤N(w−1), because u′(y)≤maxBr
u≤minBr

N(w−1) inside the
ball and u′ = u≤N(w−1) outside the ball. But u is the largest subharmonic
function that is less than or equal to N(w−1), so u′ = u.

It follows that the original function u was harmonic on Br(x). If a func-
tion is harmonic on an open set, then its Laplacian is zero on that set, so
∇2(udλ )[h] = 0 for any function h ∈C∞

c (Br(x)). Therefore µ(Br(x)) = 0.
We can cover A by countably many balls Br(x), so µ(A) = 0. �

We now bring in the theory from Section 3 to find an explicit formula for
the distributional Laplacian ∇2( f dλ ) in terms of w and A. First, we’ll use
Lemma 3.13 together with the Lebesgue density theorem to get bounds on
the restriction of µ to ∂A.

Theorem 4.6. If E ⊆ Ac is measurable, then µ(E)≤ λ (E).
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Proof. We know f is a limit of radial averages. If x is any point in Ac,
then f (x) = 0, so f (x) ≥ Ar( f ;x) just because the function is nonpositive.
Therefore, − f is subharmonic on average on Ac.

Let ν be the signed measure ν(E) := µ(E)+
∫

E(w−1)dλ . Then dµ =
∇2(udλ ) = ∇2( f dλ )− (w−1)dλ by definition and Corollary 2.2, so

∇2( f dλ ) = ∇2(udλ )+(w−1)dλ

= dµ +(w−1)dλ

= dν.

Of course, that means that the distributional Laplacian of − f is also a signed
measure, ∇2(− f dλ )=−dν . This allows us to use Lemma 3.13 on − f , and
we get −ν(E) ≥ 0 for measurable E ⊆ Ac.

The weight function is nonnegative by definition, so

µ(E) = ν(E)−
∫

E
(w−1)dλ ≤

∫

E
1dλ = λ (E).

This proves the result. �

Corollary 4.7. ∇2( f dλ ) = (w−1)1A dλ .

The theorem implies that µ is absolutely continuous with respect to λ , so
there is a Radon-Nikodym derivative dµ/dλ .

Let ρ = dµ/dλ +w− 1, so that ρ dλ = dν = ∇2( f dλ ). This function
is bounded, because −1 ≤ ρ ≤ maxw, so we are in the setting of Theorem
3.16, which tells us that ρ = 0 a.e. on the set where f is zero, which is Ac.

Theorem 4.5 says that the measure µ is zero on A, so ρ = w−1 on A a.e.
Therefore, ∇2( f dλ ) = ρ dλ = (w−1)1A dλ . �

4.5. Quadrature domain inequality for Green’s functions. In this sec-
tion, we’ll prove that Q := A ∪ {w ≥ 1} satisfies the quadrature domain
inequality as long as h is one of Green’s functions.

Theorem 4.8. If f solves the maximization problem, then f =N
[

(1−w)1A

]

.

Proof. Let ρ := (w−1)1A. By Corollary 2.2, −∇2(Nρ dλ ) = ρ dλ , so

∇2[( f −Nρ)dλ ] = 0.

Then f −Nρ is a harmonic function.4

We want to show that it’s zero. Our strategy will be to prove that it goes
to zero at infinity and use the maximum principle.

We start with the remark that the set A = { f < 0} is always bounded.
To prove this, one just has to exhibit a function h that is admissible in the

4As before, we use Corollary 3.14 to get a subharmonic function f̄ that is equal a.e.,
and then argue that f −Nρ is a limit of radial averages, so it has to be exactly equal to f̄ .
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maximization problem and is compactly supported. This is straightforward
but somewhat tedious and we postpone it to the next section.

If d ≥ 3, then the unrestricted Green’s function is |x− y|2−d/(d −2)Cd .
Because A is bounded, this goes to zero as x → ∞ uniformly for y ∈ A. So

Nρ(x) =
∫

G(x,y)ρ(y)dy

converges uniformly to zero as x →∞. Of course, f is compactly supported,
so f (x)→ 0 as x→∞. Now we can apply the maximum principle: if |x| ≤ r,

min
z∈∂Br

f (z)−Nρ(z)≤ f (x)−Nρ(x)≤ max
z∈∂Br

f (z)−Nρ(z),

and taking limits as r → ∞, we get f (x)−Nρ(x) = 0 for x ∈ R
d .

What about when the dimension is smaller? In d = 2, we’ll use a similar
strategy, but we require more information than before. Let h be a smooth,
compactly supported function which is 1 on A. Then

∫

hρ dλ = (ρ dλ )[h] = ( f dλ )[∇2h] =
∫

f ∇2hdλ = 0,

because ∇2h = 0 on A and f = 0 outside A. But ρ = hρ , so
∫

ρ dλ = 0.
This means in particular that the integral against any constant is zero.

Then we again have

Nρ(x) =

∫

G(x,y)ρ(y)dy

=
∫

(G(x,y)−G(x,0))ρ(y)dy

=

∫

1

π
log

|x|
|x− y|ρ(y)dy → 0.

In one dimension, we also want to know that
∫

yρ dy = 0, which can be
proved in the same way using h ∈C∞

c with h(y) = y for y ∈ A. Then

Nρ(x) =

∫

G(x,y)ϕ(y)dy =

∫

(y− x)ρ(y)dy

for x ≥ maxA, and this is zero because
∫

ρ dy =
∫

yρ dy = 0. Similarly,
Nρ(x) = 0 when x ≤ minA. In each case, we conclude that f = Nρ . �

We restate this in terms of a set Q which will turn out to be our quadrature
domain.

Corollary 4.9. Let Q := A∪{w ≥ 1}. Then f = N[1Q −w].

Proof. By the proof of Corollary 4.7, ν is zero on Ac. Let E be any mea-
surable subset of Ac. Then µ(E) = ν(E)−∫

E(w−1)dλ =−∫

E(w−1)dλ .
For this to be nonnegative, we must have w ≤ 1 almost everywhere in Ac.
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Part of the definition of a good weight function is that w = 0 or w ≥ 1 at
every point, which means that 1Q = w a.e. on Ac. Therefore,

1Q −w = (1Q −w)1A = (1−w)1A a.e.

It follows immediately that f = N[(1−w)1A] = N[1Q −w]. �

We now prove that Q satisfies the quadrature domain inequality if h is
one of the Green’s functions.

Corollary 4.10. If ϕ = 1Q −w, then Nϕ ≤ 0 on Q and Nϕ = 0 on Qc. If h

is subharmonic on Q and h =±Gx for x ∈ R
d , then

∫

hwdy ≤
∫

Q
hdy.

The first statement is obvious: we have proven that f = Nϕ , and f is
nonnegative everywhere by definition, so f (x)≤ 0 on Q. If x ∈ Qc, then we
are outside the set A = { f < 0}, so f (x) = 0.

The second statement follows almost immediately. By the definition of
the Newtonian potential,

∫

Q
Gx dy−

∫

Gxwdy = N[1Q −w](x) = f (x).

The functions of the form ±Gx that are subharmonic on Q are −Gx for
all points x ∈ R

d , and Gx for x /∈ Q. If we set h =−Gx, then
∫

Q
hdy−

∫

hwdy =− f (x) ≥ 0

for any point x ∈ R
d . In the same way, if h = Gx, then

∫

Q hdy−
∫

hwdy =

f (x), which is zero for any point x ∈ Qc. That proves the corollary. �

In the proof above, we used the fact that A is always bounded, and we
will prove that in the next section.

After that, we’ll start working on Theorem 4.13, which states that, if the
quadrature domain inequality holds for subharmonic functions of the form
±Gx, then it holds for any integrable subharmonic function.

4.5.1. The set A is always bounded. If w is any properly supported weight
function, and f is the solution of the maximization problem, then A = { f <
0} is always bounded.

We will prove this by finding a function ϕ ≤ 1−w where Nϕ is com-
pactly supported. First we compute the Newtonian potential of the ball.

Lemma 4.11.

N1BR
=

{

c1 −|x|2/2d |x| ≤ R

G(x,0)λ (BR) |x| ≥ R
,

where c1 is the constant that makes this continuous.
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Proof. If |x| ≥ R, then the function y 7→ G(x,y) is harmonic on BR, so
∫

G(x,y)1BR
dy is equal to G(x,0) times the measure of BR.

Let h(x) := N1BR
+ |x|2/2d. This function is continuous. The distribu-

tional Laplacian of h is zero inside the ball, because ∇2N1BR
= −1BR

and
∇2|x|2 = 2d. By Lemma 3.14 applied to both h and −h, it is both subhar-
monic and superharmonic, so h is harmonic inside the ball.

The Newtonian potential of the ball is radially symmetric, and so is
|x|2/2d, so the value of h on the sphere |x|= R is a constant. By the maxi-
mum principle, h is constant inside BR, so N1BR

= c1 −|x|2/2d in BR. �

Note that the radial derivative of this potential is

∂

∂ r
N1BR

=

{

−r/d |x| ≤ R

Rd/drd−1 |x| ≥ R
.

Corollary 4.12. If w is a properly supported weight function, then A is

always bounded.

Proof. Let c = 1∨maxw. A properly supported weight function is zero
outside a bounded set. Let R be the radius of that set, and let R′ = c1/dR.

Set ϕ = 1BR′ − c1Br
. Note ϕ ≤ 1−w, so

∇2(Nϕ dλ ) =−ϕ dλ ≥ (w−1)dλ .

Therefore, Nϕ will be admissible in the maximization problem as long as
Nϕ ≤ 0. The lemma tells us that

Nϕ =











(c−1)|x|2/2d − c1 |x| ≤ R

−cG(x,0)λ (BR)−|x|2/2d− c2 R ≤ |x| ≤ R′

0 |x| ≥ R′.

Here c1,c2 are constants that make this continuous. Note that the function is
zero outside the ball BR′ . We computed the radial derivative of N1BR

above,
and if we plug it in, we will get

∂

∂ r
Nϕ =











(c−1)r/d r ≤ R

r(cRd/rd −1)/d R ≤ r ≤ c1/dR

0 r ≥ c1/dR

where r = |x|. This derivative is at least zero, because R > r, so Nϕ ≥ 0.
Therefore, Nϕ is admissible in the maximization problem that we solved

to get f , so 0 ≥ f ≥ Nϕ and in particular f = 0 whenever Nϕ = 0. But
Nϕ = 0 outside BR′, so A must be bounded. �
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4.6. Quadrature domain inequality generally. Here is the grand climax
of this chapter, Sakai’s Lemma 5.1 [6]. We present the proof and some
minor results that are used.

Theorem 4.13 (Sakai’s Lemma 5.1). Let Q be an open bounded set. If there

is a function ϕ ∈ L∞(Q) with Nϕ ≤ 0 on Q and Nϕ = 0 on Qc, then
∫

sϕ dy ≥ 0

for every integrable subharmonic function s on Q.

Proof. The basic idea is approximation, but it’s delicate and relies on a tight
estimate of Nϕ near the boundary of Q.

Without loss of generality, we can assume that |ϕ| ≤ 1 everywhere. Let s

be an integrable subharmonic function on Q. Let sn := s∗ψn be the approx-
imations defined in Theorem 3.1. As before, each function sn is defined on
{d(x,Qc)> 1/n}, and it’s smooth and subharmonic.

Let h j be the sequence of functions from Theorem 4.19. These are
smooth functions that are compactly supported in Q with 0 ≤ h j ≤ 1 that
converge pointwise to 1, and h j ≡ 1 on the set {d(x,Qc)> 1/ j}. They have
some other properties that we will need.

By the dominated convergence theorem,

lim
j→∞

∫

sh jϕ dy =
∫

sϕ dy.

Each h j is supported on a compact subset Q j of Q, so
∫

sh jϕ dy is the
limit of

∫

snh jϕ dy. Therefore,

lim
j→∞

(

lim
n→∞

∫

snh jϕ dy

)

=

∫

sϕ dy.

If j is fixed, then for large enough n, snh j is smooth and compactly sup-
ported in Q. By Lemma 2.1 and the fact that Green’s function is symmetric,

∫

snh jϕ dy =
∫

N(−∇2)(snh j)ϕ dy =
∫

(−∇2)(snh j)Nϕ dy.

A smooth subharmonic function has a positive Laplacian, so ∇2sn ≥ 0, and
by our assumption, Nϕ ≤ 0. So ∇2(sn)h jNϕ is less than or equal to zero.
That gives us the inequality

(−∇2)(snh j)Nϕ ≥ (−∇2)(snh j)Nϕ +∇2(sn)h jNϕ

=−2(∇sn) · (∇h j)Nϕ − sn∇2(h j)Nϕ

=−2∇ · (sn∇(h j)Nϕ)+2sn(∇h j ·∇Nϕ)+ sn∇2(h j)Nϕ.
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Divergences go away when we integrate, because all these functions are
smooth and compactly supported in Q, and we get a lower bound

∫

snh jϕ dy =
∫

(−∇2)(snh j)Nϕ dy

≥
∫

2sn(∇h j ·∇Nϕ)+ sn∇2(h j)Nϕ dy.(6)

We have managed to get the dependence on n outside of the derivatives.
Our goal now is to prove a lower bound of the form −C/ j on (6) and transfer
it to

∫

sϕ dy = lim j limn

∫

snh jϕ dy.
The test functions from Theorem 4.19 are constant in the set {d(x,Qc)>

1/ j}, so ∇h j = 0 and ∇2h j = 0 in that set. So to bound the integrals in (6),
we need to study Nϕ,∇Nϕ,∇h j,∇

2h j near the boundary of Q.

Recall that Nϕ has a continuous first derivative. For y ∈ Q, let δ (y) =
d(y,Qc). Our assumption says that Nϕ = 0 on Qc, and the function isn’t
positive anywhere, so ∇Nϕ must be zero on Qc.

By Lemma 4.15 below, there are constants δ0 > 0 and C > 0 with

|∇Nϕ(y)−∇Nϕ(x)| ≤C|y− x| log
1

|y− x|
for y,x ∈ R

d with |y− x| < δ0. We have seen that ∇Nϕ = 0 outside Q, so
the gradient is small near the boundary: |∇Nϕ(y)| ≤Cδ log1/δ for δ < δ0.

The bound on the gradient implies a bound on Nϕ:

|Nϕ(y)|= |Nϕ(y)−Nϕ(x)|

≤
∫ δ

0
Ct log1/t dt

≤
∫ δ

0
C(2t log1/t − t)dt

=Cδ 2 log1/δ .

In the third line, we assume that δ0 < 1/e, so log1/t > 1.
We chose test functions h j from Lemma 4.19, so we can use the bounds

in the lemma. The magnitude of the gradient is

|∇h j| ≤
1

jδ log1/δ

and |∇2h j| ≤ |∂ 2h j/∂y2
1|+ · · ·+ |∂ 2h j/∂y2

d | ≤ 2d/( jδ 2 log1/δ ). These
blow up as y approaches the boundary of Q, but they grow slowly enough
that the bounds on Nϕ and ∇Nϕ cancel them out.
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We have |∇h j||∇Nϕ| ≤C/ j, which gives a bound on the first part of (6):
∣

∣

∣

∣

∫

2sn(∇h j ·∇Nϕ)dy

∣

∣

∣

∣

≤ 2C

j

∫

Q j

|sn|dy

For the second integral, we have the bound |∇2h j||Nϕ| ≤ 2Cd/ j, so
∣

∣

∣

∣

∫

sn∇2(h j)Nϕ dy

∣

∣

∣

∣

≤ 2Cd

j

∫

Q j

|sn|dy.

Set C′ = 2(1+d)C. Then we can put these bounds together to get
∫

snh jϕ dy ≥−C′

j

∫

Q j

|sn|dy.

Again, |s| is integrable, so if we take the limit on both sides and use
bounded convergence, we get

∫

sh jϕ dy ≥−(C′/ j)
∫ |s|dy.

Finally, we can take the limit as j → ∞, and this shows that
∫

sϕ dy ≥ 0:
∫

sϕ dy ≥ lim
j→∞

∫

sh jϕ dy ≥ lim
j→∞

−C′

j
= 0.

This is what we were trying to prove. �

The corollary is that quadrature domains exist.

Theorem 4.14. Every properly supported weight function has a quadrature

domain.

Proof. We have a recipe for the quadrature domain: we solve the maxi-
mization problem in Section 4.1, and then we set Q := { f < 0}∪{w ≥ 1}
as in Corollary 4.9. This is an open set, and it’s bounded, by Lemma 4.12.

By Corollary 4.10, f = N(1Q −w) is nonpositive everywhere and zero
outside Q, so we can use Theorem 4.13 with ϕ = 1Q −w. This tells us that
for any integrable subharmonic function s on Q,

∫

s(1Q−w)dy ≥ 0.
In other words, if s is integrable and subharmonic on Q, then

∫

swdy ≤
∫

Q
sdy.

That’s the definition of a quadrature domain. �

4.7. Denouement 1: log-Lipschitz continuity. We owe two lemmata that
we must prove. First, a lemma which says that the first derivative of the
Newtonian potential is a little worse than Lipschitz.

Lemma 4.15 (Günther, [2], §13). Suppose ϕ is bounded and measurable,

and zero outside a bounded set E. If y,y′ ∈ R
d and |y− y′|= ε , then

∣

∣

∣

∣

∂Nϕ

∂yi
(y)− ∂Nϕ

∂yi
(y′)

∣

∣

∣

∣

= O

(

ε log
1

ε

)

.



32 HANNAH CAIRNS

The constant in the O-notation depends only on max |ϕ|and diamE.

Proof. Write both terms as derivatives of integrals, move them both under
the same integral sign, and move the derivative inside the integral, to get

∣

∣

∣

∣

∂Nϕ

∂yi
(y)− ∂Nϕ

∂yi
(y′)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

[

∂G

∂yi
(x,y)− ∂G

∂yi
(x,y′)

]

ϕ(x)dx

∣

∣

∣

∣

.

This is justified because ∂G/∂yi is locally integrable and ϕ is bounded.
Let A = {x ∈ Ω : |x− y| < 2ε}, and break the integral on the last line up

into
∫

A and
∫

E\A. The first derivatives of G(x,y) are O(||x− y||1−d), so
∫

A

[

∂G

∂yi
(x,y)− ∂G

∂yi
(x,y′)

]

ϕ(x)dx = O

(

∫

B2ε(y)
||x− y||1−d dx

)

= O(ε).

For the part outside of A, we estimate the integrand with derivatives. By
the mean value theorem, there is a point y′′ on the line segment between y

and y′ with ∂G
∂yi

(x,y)− ∂G
∂yi

(x,y′) = (y− y′) ·∇∂G
∂yi

(x,y′′). The second deriva-

tives of G(x;y) are O(||x− y||−d), so that dot product is at most

|y− y′|×
∣

∣

∣

∣

∇
∂G

∂yi

(x,y′′)

∣

∣

∣

∣

= O(ε||x− y′′||−d).

When x is not in A, ||x− y|| ≥ 2ε , so

||x− y′′|| ≥ ||x− y||− ||y− y′′||
≥ ||x− y||− ||y− y′|| ≥ 1

2 ||x− y||.
Therefore ||x− y′′||−d ≤ 2d||x− y||d and O(||x− y′′||−d) = O(||x− y||−d),
and the dot product is bounded by |(y− y′) ·∇∂G

∂yi
(x,y′′)|= O(ε||x− y||−d),

where the constants in the O-notation depend only on max |ϕ|.
If E \A is empty, the integral over it is zero. Otherwise, let Br1 \Br0 be the

minimal closed annulus containing E \A, i.e. r0 := inf{|x− y| : x ∈ E \A}
and r1 := sup{|x− y| : x ∈ E \A}, with r0 ≥ 2ε and r1 ≤ diamE.

We can estimate the integral over E \A by
∫

E\A

∣

∣

∣

∣

(y− y′) ·∇∂G

∂yi
(x,y′′)

∣

∣

∣

∣

ϕ(x)dx =
∫

E\A
O(ε||x− y||−d)dx

≤ O

(

∫ r1

r0

εr−d Cdrd−1 dr

)

= O

(

ε log
r1

r0

)

.

Again, the constants in the O-notation depend only on max |ϕ|.
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Then r1/r0 ≤ diamE/2ε , so the estimate is O(ε logr1/r0) = O(log1/ε),
where the constants in the notation now depend on max |ϕ| and diamE.
Combine the estimates for A and E \A to get the result:
∫

E

[

∂G

∂yi
(x,y)− ∂G

∂yi
(x,y′)

]

ϕ(x)dx =

∫

A
(· · ·)ϕ(x)dx+

∫

E\A
(· · ·)ϕ(x)dx

= O(ε)+O

(

ε log
1

ε

)

= O

(

ε log
1

ε

)

.

This is our bound on the derivatives of the Newtonian potential. �

Corollary 4.16. The same holds if ϕ is constant outside a bounded set.

Proof. If ϕ(x) = c as x → ∞ then Nϕ = N(ϕ −c)+c|x|2/2d. The first term
has O(ε log1/ε) modulus of continuity, and |x|2 is Lipschitz. �

4.8. Denouement 2: a smooth approximation of the distance function.

Let δ (x) = d(x,Qc). The second lemma that we owe gives us smooth test
functions h j that are constant on {δ (x)> 1/ j} and which have good point-
wise bounds on the derivatives. For example,

|∇h j(x)| ≤
1

jδ log(1/δ )
.

Compare this to the naive choice ĥ j = 1∧ jd(x,Qc) where max j |∇ĥ j(x)|
is of order 1/δ (ignoring smoothness issues). We are able to reduce the
pointwise bound by a factor of j log(1/δ ) compared to this naive function.

Let ξ (t) := 1/(t log1/t). Then ξ is decreasing on (0,1/e), and for any
small ε , the integrals of ξ and |ξ ′| on (0,ε) are +∞.

Lemma 4.17. For any m > 0 there is a function ηm ∈ C∞
c (0,1/m) with

∫ ∞
0 ηm dt = 1 where 0 ≤ ηm ≤ ξ/m and |η ′

m| ≤ ξ/mt.

Proof. Let m > e without loss of generality, so ξ ′ ≤ 0. Choose a sequence
of nonnegative smooth functions fn on (0,1/m) that increase to −ξ ′/m≥ 0.

Let Fn(t) :=
∫ 1/m

t fn(τ)dτ . Then Fn(t)≤ ξ (t)/m, and the integral of ξ (t)

on (0,1/m) is +∞, so In :=
∫ 1/m

0 Fn(t)dt → ∞ as n → ∞.
Choose n with In ≥ 1. Let ηm(t) := Fn(t)/In. Then this function has the

desired properties: it’s smooth and compactly supported on (0,1/m), the
integral over that interval is In/In = 1, the function is bounded above by
Fn(t)≤ ξ (t)/m, and the derivative of ξ is negative and bounded by

−ξ ′(t) =

(

log
1

t
−1

)

ξ 2(t)≤
(

log
1

t

)

ξ 2(t) =
ξ (t)

t
,
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so |η ′
m|= |F ′

n(t)/In| ≤ −ξ ′/m ≤ ξ/mt. �

Lemma 4.18 (Stein §VI.2 Theorem 2 [7]). Let Q be an open set. There

exists a smooth function ∆Q(x) on Q with d(x,Qc)≤ ∆Q(x)≤Cd(x,Qc) for

some positive constant C > 0 depending only on the dimension, and

|∇∆Q| ≤C

∣

∣

∣

∣

∂ 2

∂xa∂xb

∆Q

∣

∣

∣

∣

≤ C

d(x,Qc)
.

Sketch of proof. Let the side length of a cube ω be denoted by side(ω).
The set Q can be written as a union of closed cubes with disjoint interiors
in such a way that the side length of each cube ω is a power of two, and

d(ω,Qc)≤ 8side(ω)≤ 4d(ω,Qc).

Scale up each cube around its center by a factor of 1+ 1/
√

d. All the
scaled cubes are still contained in Q.

Pick a smooth function h ≥ 0 that is compactly supported in the open
cube with side 1 + 1/

√
d centred at the origin and so that h ≡ 1 inside

the unit cube centred at the origin. If yω is the centre of ω , let hω(x) =
h((x−yω)/side(ω)). Then hω ≡ 1 on ω , and its support is contained inside
the scaled cube. The scaling multiplies the first derivatives by a factor of
1/side(ω), and the second derivatives by a factor of 1/side(ω)2.

If ω ′ is a scaled cube containing x, then

d(x,Qc)≥ d(ω ′,Qc)

≥ d(ω,Qc)−
√

d

2

1√
d

side(ω)

≥ (1/2)side(ω),

so the original cube ω has side length at most 2d(x,Qc).
In the other direction,

d(x,Qc)≤ d(ω ′,Qc)+diam(ω ′)

≤ d(ω,Qc)+
3

2

√
d side(ω ′)

≤ (8+3
√

d/2)side(ω),

so the original cube has side at least βd(x,Qc) where β = 1/(8+3
√

d/2).
There are at most 2d scaled cubes of a certain side length containing

any point x. Let N = ⌊log2(2/β )+ 1⌋. Then the total number of cubes
containing x of any side length is at most N2d .

We now construct the smooth function as follows:

∆Q(x) :=
1

β ∑
ω

side(ω)hω(x).
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This sum is locally finite, and every point x ∈ Q is contained in at least one
unscaled cube ω with side(ω) ≥ Bd(x,Qc), so ∆Q(x) ≥ d(x,Qc). We also
have the upper bounds that we want:

∆Q(x)≤
2

β ∑
ω

d(x,Qc)hω(x)≤
N2d+1

β
d(x,Qc).

Set C1 := N2d+1/β . For the first derivative, |∇hω | ≤ max |∇h|/side(ω), so

|∇∆Q(x)|=
∣

∣

∣

∣

1

β ∑
ω

side(ω)∇hω

∣

∣

∣

∣

≤C2,

where C2 = N2dβ−1 max |∇h(x)|. In the same way we get the bound
∣

∣

∣

∣

∂ 2∆Q

∂xa∂xb

∣

∣

∣

∣

≤ 1

β ∑
ω

1

side(ω)
|∂a∂bhω(x)| ≤

C3

d(x,Qc)
,

where the constant is C2 = N2dβ−2 max |∂a∂bh(x)|. These are the bounds
that we want, with C = max{C1,C2,C3}. �

Lemma 4.19 (Hedberg, [3], Lemma 4). Let δ = δ (x) be d(x,Qc). If Q

is a bounded open set, there is a sequence h j ∈ C∞
c (Q) with 0 ≤ h j ≤ 1

everywhere, h j(x) = 1 if δ (x)> 1/ j, and

∣

∣∇h j(x)
∣

∣≤ ξ (δ (x))

j
,

∣

∣

∣

∣

∂ 2

∂xa∂xb

h j(x)

∣

∣

∣

∣

≤ 2ξ (δ (x))

jδ
.

Proof. Let ∆Q(x) be the smooth distance function from Stein §VI.2 Theo-
rem 2 [7], quoted below as Lemma 4.18. Let C be the constant.

Set H j(t) :=
∫ t

0 η1/C j(τ)dτ , where ηm with m = 1/C j is obtained from
Lemma 4.17. Our sequence is h j(x) := H j(∆Q(x)). These are compactly
supported because ∆Q(x)≤Cδ (x) and H j(t) is zero for small enough t. We
need to prove the bounds on the first and second derivatives.

The gradients of this sequence of functions are ∇h j = η j(∆Q)∇∆Q, and

∂ 2h j

∂xa∂xb

= η j(∆Q)
∂ 2∆Q

∂xa∂xb

+η ′
j(∆Q)

∂∆Q

∂xa

∂∆Q

∂xb

.

We plug in the bounds |η1/C j(t)| ≤ ξ (t)/C j, |η ′
1/C j

(t)| ≤ |ξ (t)|/C jt from

the first lemma above, and the bounds δ (x) ≤ ∆Q(x) and |∇∆Q| ≤ C and
|∂a∂b∆Q| ≤C/δ (x) from the second lemma above.

The resulting bounds are |∇h j| ≤ ξ (δ )/ j and |∂a∂bh j| ≤ ξ (δ )/ jδ , and
this is what we want. �
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